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In the present study, we evaluated omega-3 polyunsaturated fatty acid (PUFA) (consisting of
20:5n-3 and 22:6n-3) properties on inflammation and nociception. Among the in vivo tests,
writhing, formalin, and hot plate tests were conducted in mice, and carrageenan-induced paw
edema, peritonitis, and Hargreaves tests were performed in rats. Following the carrageenan-
induced edema, immunohistochemistry for tumornecrosis factor-α (TNF-α)was also carried out.
We found that omega-3 PUFA treatment significantly decreased acetic acid–induced abdominal
contortions as well as the first and second phases of the formalin test, which were reversed by
naloxone. The carrageenan-induced rat paw edema was significantly reduced, along with
neutrophil migration to the peritoneal cavity in the omega-3 PUFA treatment. In addition, there
was a decrease in TNF-α immunostained cells in the inflamed pawwith the omega-3 treatment
compared with no omega-3. Withdrawal threshold in response to the thermal stimulation was
significantly increased by the omega-3 treatment in the Hargreaves and hot plate tests. The in
vitro studies (myeloperoxidase, lactate dehydrogenase, MTT cell viability and lipid peroxidation
assays) were performed in human neutrophils. These studies showed that omega-3 treatment
significantlydecreasedmyeloperoxidase release,presentednocytotoxicity, anddidnotalter lipid
peroxidation. Our study suggests that omega-3 PUFA anti-inflammatory and antinociceptive
actionsmay involve inhibitionof cyclooxygenases andmicroglial activation, leading to a reduced
release of proinflammatory cytokines such as TNF-α, among other factors. The omega-3 PUFAs
are potential candidates used alone or in combination with conventional nonsteroidal anti-
inflammatory drugs, for the treatment of diseases where inflammation plays an important role.
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1. Introduction 2. Methods and materials
Omega-3 refers to a family of polyunsaturated fatty acids
(PUFAs) among which the most nutritionally notable ones are
α-linolenic acid (18:3n-3), eicosapentaenoic acid (EPA) (20:5n-3),
and docosahexaenoic acid (DHA) (22:6n-3). The body converts
α-linolenic acid to EPA and then to DHA. The formulation used
in the present work is a combination of EPA to DHA, that is, a
direct and efficient way to increase long-chain omega-3 PUFA
body levels (eg, by consuming EPA- and DHA-rich foods or
supplements) [1]. Eicosapentaenoic acid is converted to pros-
taglandins (PGs) in the body to regulate cell activity and
maintain healthy cardiovascular functions. Docosahexaenoic
acid is one of the products of omega-3 PUFA metabolism and
the main n-3 PUFA in the brain and nervous tissues [2].

The anti-inflammatory properties of EPA as well as DHA
have been supported by numerous clinical studies, such as
those focusing onmaintaining normal blood cholesterol levels,
controlling depression, and preventing stroke and cancer [3].
Docosahexaenoic acid is another long-chain omega-3 PUFA,
found in abundance in fish and some algae. It is the
predominant omega-3 PUFA, not only in the brain, but also in
the retina, andanadequatesupply ofDHA isessential for proper
brain, eye, and nerve functions. Low levels of DHA have been
associated with Alzheimer disease and dementia [4].

Anti-inflammatory drugs consist of nonsteroidal anti-
inflammatory drugs (NSAIDs) and glucocorticoids. Nonsteroi-
dal anti-inflammatory drugs include nonselective cyclooxy-
genase inhibitors (COX-1 and COX-2 inhibitors) and COX-2
selective inhibitors, also referred to as coxibs. Although COX-2
inhibitors present less upper gastrointestinal toxicity than
traditional NSAIDs, both selective and nonselective COX
inhibitors (excluding aspirin) can exert deleterious effects on
the cardiovascular system [5,6]. Continued studies on inflam-
matory diseases are needed because the side effects of
available anti-inflammatory drugs pose a major problem
for clinical use. The development of newer and more
powerful anti-inflammatory drugs with fewer side effects is
greatly needed.

Most of the literature on omega-3 PUFA deals with their
anti-inflammatory effects and actions on cardiovascular
diseases and diabetes [7-9]. Some literature states their effects
on inflammatory bowel diseases and rheumatoid arthritis [10-
13]. Recent studies also report omega-3 PUFA actions on
inflammation in rodents [14-19], but few deal with nocicep-
tion [20,21]. Furthermore, with few exceptions that adminis-
tered omega-3 PUFA intravenously [17,19], most were carried
out by adding omega-3 to the diet [15,16,18,21,22].

Based on these observations, we hypothesized that long-
chain omega-3 PUFA exerts anti-inflammatory properties in
the rat. To test this hypothesis, EPA and DHA were adminis-
tered orally to rodents at low doses to determine the actions
on nociception. In addition, our specific research objectives
included conducting immunohistochemistry assays for TNF-α
in rat paws with carrageenan-induced edema as well as
myeloperoxidase (MPO), lactate dehydrogenase (LDH), 3-(4, 5-
dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide
(MTT), and thiobarbituric acid reactive substances (TBARS)
assays in human neutrophils in vitro, to examine the extent of
omega-3 PUFA anti-inflammatory and antioxidant actions.
2.1. Drugs

The omega-3 supplement used for this study was obtained
from Proepa, Aché Laboratórios Farmacêuticos, São Paulo,
Brazil, and each 1000-mg capsule contained 180 mg EPA, 120
mg DHA, and 2 mg tocopherol. Carrageenan (λ type IV),
naloxone, and indomethacin were purchased from Sigma
Chemical (St Louis, MO). Dexamethasone was obtained from
Aché Laboratories; heparin, from Wyeth (São Paulo, Brazil);
and morphine, from Cristália (São Paulo, Brazil). The omega-3
supplement (administered orally) was dissolved in an aque-
ous suspension prepared with 0.4% Tween 80 (as vehicle and
always used as control) immediately before use. All other
reagents were of analytical grade.

2.2. Animals

Male Swiss mice (25-30 g) or male Wistar rats (180-200 g) were
provided by the Animal House of the Federal University of
Ceará, Brazil. The animals were housed in plastic cages with
sawdust as bedding and kept in a room with controlled
temperature (25°C ± 2°C) under a 12 hours/12 hours light/dark
cycle. Food and water were provided ad libitum. The
experiments were carried out according to the Guide for the
Care and Use of Laboratory Animals of the US Department of
Health and Human Services (NIH publication no. 85-23,
revised 1985). The project was approved by the Animal Ethics
Committee of the Faculty ofMedicine of the Federal University
of Ceará.

2.3. Pharmacological testing in vivo

2.3.1. Acetic acid–induced abdominal contortions
(writhing test) in mice
This method is used to evaluate peripheral analgesic actions.
Acetic acid causes analgesia by liberating endogenous sub-
stances, including serotonin, histamine, PGs, bradykinin, and
substance P that stimulate pain in nerve endings. Local
peritoneal receptors (acetylcholine and histamine receptors)
and their mediators are postulated to be partly involved in the
abdominal constriction (writhing) response [23]. The method
has been associated with increased levels of PGE2 and PGF2α in
peritoneal fluids as well as lipoxygenase products. Male
Swiss mice (8-12 animals per group) were used in this
experiment. The animals were treated with the omega-3
supplement (1, 2.5, and 5 mg/kg, orally) 60 minutes before
receiving a 0.6% acetic acid injection (10 mL/kg, IP), and the
number of contractions was recorded for 20 minutes after a
10-minute interval.

2.3.2. Formalin test in mice
The formalin test is a tonicmodel of continuous pain resulting
from formalin-induced tissue injury. It is a useful model for
the screening of new drugs thought to act on inflammatory,
neurogenic, and central mechanisms of nociception [24].
Twenty microliters of 1% formalin was administered (subcu-
taneous) in the mouse's right hind paw, and the licking time
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was recorded from 0 to 5 minutes (phase 1, neurogenic) and
from 20 to 25 minutes (phase 2, inflammatory) after the
formalin injection. The animals (8-15 per group) were treated
with saline (0.1 mL/10 g, IP), morphine (4 mg/kg, IP), omega-3
supplement (0.5, 1, and 5 mg/kg, orally), morphine + nalox-
one (4 and 1 mg/kg, IP, respectively), or naloxone + omega-3
(5 mg/kg, orally, respectively), 30 minutes before the formalin
injection. Naloxone was injected 15 minutes before morphine
or the omega-3 administrations. Morphine was used as the
reference drug, whereas naloxone, an opioid antagonist, was
used to assess a possible participation of the opioid system in
the omega-3 PUFA effect.

2.3.3. Carrageenan-induced paw edema in rats
Paw swelling or footpad edema is a convenient method for
assessing inflammatory responses to irritants such as carra-
geenan. Typically, the drugs are assessed for acute anti-
inflammatory activity by examining their ability to reduce or
prevent the development of carrageenan-induced paw swell-
ing. This model has long been used to evaluate the anti-
inflammatory properties of agents such as NSAIDs that inhibit
PG production [25]. The animals were randomly selected and
divided into groups of 5 to 17 animals. The omega-3
supplement was dissolved in 1% Tween 80 and orally
administered at the doses of 1, 2.5, and 5 mg/kg. The other
groups were injected with either the reference drug (indo-
methacin, 20 mg/kg, orally) or vehicle (Tween 80). Thirty
minutes later, edemawas induced by the injection of 0.1mL of
a 1% carrageenan solution into the animal's right hind paw.
Measurements of the paw volume were done by means of a
plethysmometer (Ugo Basile, Comerio, VA, Italy), immediately
before the carrageenan injection and 1, 2, 3, 4, and 24 hours
after. The paw edema volume was determined by the
difference between the final and initial volumes.

2.3.4. Immunohistochemistry analyses for tumor necrosis
factor-α
Tumor necrosis factor-α (TNF-α) is a central regulator of
inflammation, and its antagonists may be effective in treating
inflammatory disorders in which TNF-α plays an important
pathogenic role [26]. For immunohistochemistry assays of the
TNF-α, the streptavidin-biotin-peroxidase method was used.
Three groups of rats were treated with either the vehicle (0.4%
Tween 80 in distilledwater as normal controls) or omega-3 (2.5
or 5 mg/kg, orally). After 30 minutes, an intraplantar injection
of 1% carrageenan was administered to the animals, and 3
hours later, all animals were euthanized, and 5-mm plantar
region sectionswere immersed in a buffered formalin solution
for 24 hours. The sections were then deparaffinized, dehy-
drated in xylol and ethanol, and immersed in 0.1 M citrate
buffer (pH 6) under microwave heating for 18minutes to allow
for antigen recovery. After cooling at room temperature for
20 minutes, the sections were washed with a phosphate-
buffered saline (PBS) and followed by a 15-minute blockade of
endogenous peroxidase with a 3% H2O2 solution. The sections
were incubated overnight (4°C) with rabbit primary antibodies
(anti–TNF-α) as 1:200 in PBS–bovine serum albumin (BSA). The
next day, the sections were washed in PBS and incubated for
30 minutes with the secondary biotinylated rabbit antibody
(anti-IgG), 1:200 dilution in PBS-BSA. After washing in PBS, the
sections were incubated for 30 minutes, with the conjugated
streptavidin peroxidase complex (ABC Vectastain complex;
Vector Laboratories, Burlingame, CA). After another washing
with PBS, the sections were stained with 3,3′-diaminobenzi-
dine-peroxide (DAB) cromophore, counterstained with Mayer
hematoxylin, dehydrated, and mounted in microscope slides
for analyses.

2.3.5. Carrageenan-induced peritonitis in rats
The carrageenan-induced peritonitis is a well-characterized
experimental model of acute inflammation, largely used to
test new anti-inflammatory drugs that permit the quantifica-
tion of the leukocytesmigration into the peritoneal cavity [27].
Groups of 5 animals were treated with either the omega-3
supplement (2.5, 5, and 10 mg/kg, orally), dexamethasone
(5 mg/kg, IP), or vehicle, 30 minutes before the induction of
inflammation by means of a 2% carrageenan (500 μg/mL)
intraperitoneal injection. All drugs were administered at a
10mL/kg volume, and then the animals were returned to their
cages with free access to water. After 5 hours, the peritoneal
fluid was collected by abdominal laparoscopy. For this, all
animals were pretreated with a heparinized saline (5 IU/mL,
IP). A sample of the peritoneal fluid was diluted (1:10) in Turk
liquid for quantification of cell numbers, using a Neubauer
chamber. For differential counting of leukocytes, the exudate
was centrifuged at 1000 rpm for 5minutes, and 3%BSA (200 μL)
was added to the pellet for the preparation of slides. The cells
were stained by a conventional fast pigment, and the results
were expressed by the number of cells/mm3 (total and
differential leukocyte counts in the wash fluid).

2.3.6. Hargreaves test in rats
The plantar test (Hargreaves' method) enables the researcher
to discern the drug effect on a peripherally mediated response
to thermal stimulation in the unrestrained rat. Itmeasures the
response to an infrared heat stimulus by focusing the infrared
source below the rat plantar surface [28]. By pressing a button,
the latency to paw withdrawal and infrared intensity are
recorded automatically. The rats (180-200 g) were distributed
into the following groups (5-6 animals per group): normal
controls (animals received only distilled water, orally), carra-
geenan group (animals received water, orally, and subse-
quently an intraplantar injection of 100 μL 1% carrageenan
into the right hind paw), Indo20 (animals received 20 mg/kg
indomethacin, orally, before the injection of carrageenan),
and 3 groups were treated with the omega-3 supplement (1, 5,
and 10 mg/kg, orally). With the exception of normal controls,
the treatments of all other groups were immediately followed
by the administration of carrageenan. One hour after treat-
ments, the animals were submitted to a focused thermal
stimulation for provoking peripheral hyperalgesia. The with-
drawal threshold (time in seconds to move the injected paw)
was measured. The data were analyzed by analysis of
variance (ANOVA) and the Student-Newman-Keuls test, with
P < .05 considered significant.

2.3.7. Hot plate test in rats
The hot plate test measures the response to a noninflamma-
tory acute nociceptive input and is a model normally used for
studying central nociceptive activities [29]. This testmeasured
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Fig. 1 – Omega-3 PUFA (1, 2.5, and 5 mg/kg, orally) dose
dependently decreased the abdominal contortions
(writhings) induced by acetic acid in mice. Values are
expressed as means ± SEM from 8 to 13 animals per group.
***P < 0.001 vs control (One-way ANOVA followed by the
Student-Newman-Keuls as the post hoc test).
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the nociceptive responses of mice when placed on a warmed
metal plate, at a standard constant temperature. The latency
to a nociceptive response was recorded at the baseline and 30,
60, 90, and 120 minutes after administration of the tested
drugs. It was defined as the time elapsed until the subject
licked or flicked its hind paw. The omega-3 supplement was
orally administered at doses of 2.5 and 5.0 mg/kg, and
morphine (4 mg/kg, IP) was used as reference.

2.4. In vitro studies

2.4.1. Myeloperoxidase release from human neutrophils
Myeloperoxidase is a hemeprotein abundantly expressed in
polymorphonuclear leukocytes (neutrophils) and secreted
during their activation [30]. The MPO release test from
human neutrophils was performed according to a previously
described method [31]. Myeloperoxidase is widely used as a
biomarker for inflammation. In the present work, human
leukocytes (2.5 × 106 cells/mL) were suspended in buffered
Hank's balanced solution with calcium and magnesium. The
preparations predominately contained neutrophils (85.0% ±
2.8%), and the cell viability, as determined by the trypan blue
test, was 97.7% ± 0.94%. The cells were preincubated with the
omega-3 supplement (1, 10, 50, and 100 μg/mL) for 15 minutes
at 37°C. Indomethacin (Indo, 35.7 μg/mL) was used as the
positive control and reference drug. Human neutrophils were
stimulated by the addition of phorbol myristate acetate (PMA)
(0.1 μg/mL) for 15 minutes at 37°C. The suspension was
centrifuged for 10minutes at 2000g, 4°C. Aliquots (50 μL) of the
supernatants were added to PBS (100 μL), phosphate buffer
(50 μL, pH 7.0), and H2O2 (0.012%). After 5 minutes at 37°C,
3,3′,5, 5′-tetramethylbenzidine (1.5 mM, 20 μL) was added as
substrate, and the reaction was stopped by 30-μL sodium
acetate (1.5 M, pH 3.0). The absorbance was determined
spectrophotometrically at 620 nm.

2.4.2. Lactate dehydrogenase assay in human neutrophils
The assay was performed according to the manufacturer
instructions (Labtest, Minas Gerais, Brazil). The LDH is a
simple and accurate colorimetric assay for dead and plasma
membrane damaged cells. Lactate dehydrogenase present in
human neutrophils (due to plasma membrane damage)
participates in a coupled reaction, which converts a yellow
tetrazolium salt into a red formazan dye measured at 492 nm.
The concentrations of the omega-3 supplement used were 1,
10, 50, and 100 μg/mL. The amount of formazan formed in the
reaction is directly proportional to the amount of LDH present
in the samples, which, in turn, is directly proportional to the
number of dead or damaged cells [32].

2.4.3. MTT assay for cell viability measurements in
human neutrophils
Another parameter used for cytotoxicity is the metabolic
activity of viable cells. Tetrazolium salts are reduced only by
metabolically active cells. Thus, the yellow salt MTT is
reduced by the mitochondrial enzymatic system succinate-
tetrazole reductase to a blue-purple–colored formazan salt.
The absence of MTT reduction is an indication of cytotoxicity
[33]. Human neutrophils (2.5 × 106 cells/mL) were incubated in
plaques of 96 wells for 30 minutes at 37°C under a 5% CO2
atmosphere, in the presence of omega-3 (1-100 μg/mL), Hanks
(untreated cells), or Triton X-100 (0.2% as reference). The
plaques were then centrifuged at 2000 rpm for 15 minutes at
25°C, and the supernatants discarded. A 10% MTT solution
(200 μL, 10 mg/mL) was added to each well. After 3 hours, the
cells were centrifuged again under the same conditions, and
the supernatants discarded. Then, dimethyl sulfoxide (150 μL)
was added, the plaques were shaken for 15 minutes, and the
absorbancewasmeasured in the plaque reader at 540 nm. The
experiments were carried out fivefold and repeated on 3
different days.

2.4.4. Determination of TBARS levels in human neutrophils
Oxidative stress in the cellular environment results in the
formation of highly reactive and unstable peroxides derived
from PUFAs. Their decomposition results in the formation of
malondialdehyde, which can be colorimetrically quantified,
following its reaction with thiobarbituric acid. The measure-
ment of TBARS is a well-established method for screening
and monitoring lipid peroxidation. This method was previ-
ously described [34]. Briefly, a suspension of neutrophils (2.5 ×
106 cells/mL) was incubated with omega-3 (1, 10, 50, and
100 μg/mol), vitamin E (50 μg/mL), distilled water (vehicle), or
Hanks' solution [Hanks’ balanced salt solution (HBSS)
untreated cells]. Next, 10-μM citochalasin B was added,
followed by 100-nM N-formyl-methionyl-leucyl-phenyl-ala-
nine. After 20 minutes, the mixture was then centrifuged, and
trichloroacetic (20% in HBSS) and tiobarbituric (1.2%) acids
were added to the supernatant (500 μL). The reaction medium
was heated for 30 minutes at 100°C, and the absorbance
determined at 560 nm.

2.5. Statistical analyses

All results are presented as means ± SEM. A One-way ANOVA
followed by the Student-Newman-Keuls test were used for
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comparing the results among treatments. However, in the
case of tests evaluating effects at different time points
(carrageenan-induced paw edema and hot plate tests), the
Two-way ANOVA and P<0.05.
3. Results

3.1. Pharmacological testing in vivo

3.1.1. Writhing test
The acetic acid–induced writhing test in mice is used for
detecting both central and peripheral analgesia. The intraper-
itoneal administration of acetic acid provokes a stereotype
behavior characterized by abdominal contractions, among
other effects. In the writhing test, the oral administration of
the omega-3 supplement decreased the acetic acid-induced
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abdominal contortions by 48%, 85%, and 71% at doses as low
as 1, 2.5, and 5 mg/kg, respectively (Fig. 1).

3.1.2. Formalin test
The omega-3 supplement doses at 1 and 5 mg/kg decreased
the response of the first phase of the formalin test by 30% and
46%, respectively, whereas no effect was seenwith the 0.5mg/
kg dose. However, inhibitions of the order of 29%, 54%, and
95% were observed with the doses of 0.5, 1, and 5 mg/kg in the
second phase of the test. Morphine, as expected, significantly
decreased both phases of the formalin test (77% and 94% for
the first and second phases, respectively) (Fig. 2A). On the
other hand, the naloxone (1 mg/kg, IP, 15 minutes before
omega-3 administration) pretreatment significantly reversed
the effect of the omega-3 supplement at both phases of the
test, suggesting the involvement of the opioid system in the
antinociceptive effect of the fatty acids (Fig. 2B).
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3.1.3. Carrageenan-induced paw edema in rats
The omega-3 supplement at doses of 1, 2.5, and 5 mg/kg,
orally, significantly decreased the edema volume at all periods
of observation, with percentage inhibitions of 42, 46, and 63
(third hour) and 65, 48, and 40 (fourth hour), at the 3 doses
studied, respectively. Indomethacin, which was used as the
reference drug, decreased the edema volume by 75% and 63%,
at the third and fourth hours, respectively (Fig. 3).

3.1.4. Immunohistochemistry for TNF-α in the carrageenan-
induced rat paw edema
In Fig. 4A, an intense immunostaining was observed, indicat-
ing a massive expression of TNF-α–positive cells in rat paws
injected with 1% carrageenan (inflamed paw from the
untreated group). It may also be inferred that TNF-α plays an
important role in this inflammation model. It is possible to
observe a strong brown staining in the cytoplasm of neutro-
phils, eosinophils, and macrophages because TNF-α is a well-
known proinflammatory cytokine involved in carrageenan
mechanisms. In the groups treated with omega-3 (2.5 and
5 mg/kg, orally), the immunostaining for TNF-α was markedly
reduced (Fig. 4B and C). The leukocytes infiltration was also
reduced, and the small quantity of neutrophils present did not
show any immunostaining. Therefore, it could be assumed
that, at the doses tested, the omega-3 supplement reduces the
expression of TNF-α in the model of paw edema induced by
carrageenan. Fig. 4D shows the reduction in immunostained
mononuclear cells after omega-3 treatment, as compared
with the carrageenan-treated group (vehicle).

3.1.5. Carrageenan-induced peritonitis in rats
Although carrageenan significantly increased the neutrophil
migration to the rat peritoneal cavity by 82%, as compared
with negative controls, this increase was only 51% with
omega-3 at the dose of 2.5 mg/kg, orally. The values returned
to normal at omega-3 supplement doses of 5 and 10 mg/kg,
and a similar effect was observed with dexamethasone (10
mg/kg, orally), used as the reference drug (Fig. 5).
3.1.6. Hargreaves test in rats
The omega-3 supplement at doses of 1, 5, and 10mg/kg, orally,
increasedmore than 2-fold the latency to withdrawal from the
thermal stimulus (eg, withdrawal threshold), as compared
with controls injected with carrageenan only. These effects
were very similar to those observed after indomethacin
administration, which was used as reference drug (2.4 times
increase) (Fig. 6).

3.1.7. Hot plate test in mice
The omega-3 supplement significantly increased the with-
drawal threshold in a dose-dependentmanner comparedwith
controls. Thus, 30 minutes after omega-3 administration (2.5
and 5.0 mg/kg, orally), the latency time increased 1.1 and 1.9
times compared with controls at the same period of observa-
tion. After 90 minutes, the increases were 1.2 and 2 times for
the 2 doses. Morphine (4 mg/kg, IP), used as the reference,
increased around 3 times and near to the cutoff time
(45 seconds) of the animal's withdrawal threshold to thermal
stimuli (Fig. 7).

3.2. In vitro testing

3.2.1. PMA-stimulated MPO release from human neutrophils
The cells incubated in the presence of positive controls (0.4%
Tween 80) significantly had increased MPO release, a bio-
marker for inflammation in human neutrophils, bymore than
2 times when compared with cells exposed to Hanks' solution
(negative controls). The cells exposed to the omega-3 PUFA, at
concentrations of 1, 10, 50, and 100 μg/mL, brought MPO
release values close to or even lower (with the higher
concentration) than those observed with the negative control.
Similar results were observed for indomethacin that was used
as a reference drug (Fig. 8).

3.2.2. Lactate dehydrogenase assay in human neutrophils
Although 0.2% Triton used as a cytotoxic and positive control
increased the LDH release 6-fold, indicating a cell membrane
damage, values observed in the presence of omega-3 PUFA at
concentrations ranging from 1 to 100 μg/mL were close to and
not significantly different from those of the negative controls
(HBSS solution) (Fig. 9).

3.2.3. MTT assay in human neutrophils
The omega-3 PUFA did not alter cell viability as evaluated by
the MTT assay in human neutrophils in vitro. The observed
values were close to those observed with the negative control
(HBSS solution). The percentage of viable cells in the presence
of 0.2% Triton (positive control) was very low (Fig. 10).

3.2.4. Determination of TBARS levels in human neutrophils
(lipid peroxidation assay)
The results presented in Fig. 11 show that the omega-3 PUFA
at a low concentration range (1-50 μg/mL) did not affect lipid
peroxidation levels. However, at higher concentrations
(100 μg/mL), it increased TBARS levels, which is indicative of
lipid peroxidation as compared with the negative control
(HBSS solution). Use of 0.2% Triton significantly increased
lipid peroxidation levels 9-fold. Vitamin E (50 μg/mL) pre-
sented values close to those of negative controls.
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Fig. 4 – Omega-3 PUFA decreased TNF-α immunostainings in the rat inflamed paw, as evaluated by the carrageenan-induced
edemamodel. The animals were treated with distilled water or the omega-3 supplement (2.5 and 5mg/kg, PO) and 60minutes
later injectedwith carrageenan at the right hind paw. The animals were euthanized 3 hours later, and their paws processed for
immunohistochemistry studies. A, Inflammation positive control (TNF-α). B, Omega-3 (2.5 mg/kg). C, Omega-3 (5 mg/kg). The
brown staining indicates interaction of primary and secondary antibodies and, as a consequence, the presence of TNF-α. The
dark arrow indicates immunostained cells (original magnification ×400). D, Number of immunostained mononuclear cells
(original magnification ×1000). Columns represent means ± SEM of the number of stained cells (n = 3) counted in 10 different
fields. **P < 0.001 vs vehicle (One-way ANOVA followed by Student-Newman-Keuls as the post hoc test).
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4. Discussion

Dietary omega-3 PUFA are known to present anti-inflamma-
tory and immunomodulating effects that may be of relevance
to several diseases (such as atherosclerosis and stroke) as well
as chronic diseases involving the inflammatory processes
[12,13,35,36]. Previously, omega-3 PUFA anti-inflammatory
actions were attributed mainly to their suppressive effect on
the formation of arachidonic acid–derived PGs and leukotri-
enes. However, more recent studies demonstrated that those
effects are due to omega-3–derived lipid mediators, resolvins
and protectins, which present anti-inflammatory and inflam-
mation-resolving properties [37,38].
Other findings have demonstrated that some resolvins,
such as those belonging to the D and E series, can dampen
pain of inflammatory and postoperative origin [39]. Chemi-
cally, these compounds are hydroxylated derivatives of EPA
(for E-resolvins) and of DHA (for D-resolvins and protectin D1)
[40]. A recent review [41] discussed the mechanisms by which
resolvins act as antinociceptives on their receptors in immune
and neuronal cells by regulating inflammatory mediators,
transient receptor potential ion channels, and spinal cord
synaptic transmission.

Nonsteroidal anti-inflammatory drugs are the most widely
prescribed drugs for the treatment of pain and inflammation.
Conventional NSAIDs inhibit COX-1 and COX-2 isoforms of the
COX enzyme. The inhibition of COX-1 up-regulates COX-2
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expression in association with gastric hypermotility, and PGs
produced by COX-2 counteract the deleterious effect of COX-1
inhibition [42]. In addition, the suppression of COX-2–derived
prostacyclin (PGI2) is sufficient to explain most adverse
cardiovascular effects of NSAIDs, which are likely to be
augmented by secondary mechanisms such as suppression
of nitric oxide production [43]. Newer NSAIDs have been
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the latency towithdrawal (seconds) from the thermal stimuli,
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kg, orally) was used as reference. Measurements were
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introduced in recent years, and although they present better
safety, efficacy, and tolerability, the full spectrum of adverse
reactions of these drugs is yet to be known [44]. Furthermore,
there is a need for safer and more tolerable drugs. Natural
products, alone or in combination with NSAIDs, would
amplify the potency of anti-inflammatory drugs and reduce
their side effects as already suggested [45].

Although the literature presents several studies on the
inflammatory effects of omega-3 PUFA in humans [46-53],
there are only a few based on their antinociceptive effects [20]
and almost none in rodents. Such findings induced us to
conduct this work, relating the anti-inflammatory activity of
omega-3 PUFA to their antinociceptive effects on experimental
models of inflammation and nociception, at low doses.
Although we did not perform pharmacokinetic experiments,
there are several earlier and more recent works [54-57] on the
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bioavailability of omega-3 PUFA in humans, and some in
rodents as well [58,59]. We observed, even at very low doses,
that omega-3 PUFAs were tolerated and absorbed in rats, but
we cannot assume that the effects are entirely due to EPA and
DHA or from their lipidmetabolites. However, the evidence for
the safety and efficacy of omega-3 PUFA are compelling [60]
and appear to be beneficial in the current study.

In the writhing test, we found that omega-3 PUFA
decreased mice writhes values significantly and dose depen-
dently. Different nociceptive mechanisms are known to be
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involved in this rather nonselectivemodel, such as the release
of biogenic amines (as histamine and serotonin) and in-
hibitions of COXs and their metabolites (as PGE2 and PGF2α) as
well as of the opioid system [61,62]. It is also established that
the nociceptive response caused by acetic acid is dependent
upon the release of cytokines, such as TNF-α, interleukin-1β,
and interleukin-8, via modulation of macrophages and mast
cells in the peritoneal cavity [63].

Although omega-3 PUFA significantly inhibited both
phases of the formalin test, its effect occurred predominantly
at the second phase of the test. The first phase of the formalin
test corresponded to acute neurogenic pain, whereas the
second phase corresponded to inflammatory pain. They are
believed to reflect the excitation of peripheral afferent
nociceptors and central sensitization [64,65]. Substance P
and bradykinin participated in the first phase, whereas
serotonin, histamine, nitric oxide, and PGs were involved in
the second phase [66]. The first and second phases were
attenuated by opioids, whereas COX inhibitors were known to
attenuate only the second phase. Interestingly, we found that
the naloxone pretreatment partially reversed the omega-3
PUFA effects in both phases of the formalin test, suggesting
that the opioid system participated in that action. A recent
work [20] also showed that antinociceptive effects of DHA
were abolished after the naloxone pretreatment, which
confirms our results. Thus, we could assume that omega-3
PUFA acts by both peripheral and central mechanisms
because the formalin test encompasses inflammatory, neu-
rogenic, and central mechanisms of nociception [24].

Carrageenan-induced inflammation is a classical model of
edema formation and hyperalgesia, extensively used in
studies of NSAIDs. It is known that peripheral inflammation
involves an increase in COX-2–mediated PG synthesis in the
central nervous system, contributing to allodynia and
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hyperalgesia [25]. We observed that omega-3 PUFA reduced
the carrageenan-induced edema that leads us to assume that
these PUFA inhibit COX-2, thus decreasing PG concentrations.

Wealso found that theomega-3 PUFAdecreasedMPOrelease
to the peritoneal cavity, as evaluated by the carrageenan-
induced peritonitis. In addition, the number of neutrophils
was significantly reduced.This isamodel of acute inflammation
[28] characterized by a rapid influx of polymorphonuclear
neutrophils, followed by mononuclear cell infiltration. It is
often used to assess the anti-inflammatory effects of drugs and
as an in vivo model to study inflammatory mediators [67,68].

The Hargreaves method used mild radiant heat to
measure thermal nociception in cutaneous hyperalgesia,
and the time for foot withdrawal characterized the pain
response [28]. It can be used as an in vivo model where
inflammation is produced by a chemical agent as carrageen-
an. This test enabled one to discern the drug effect on a
peripherally mediated thermal stimulation, in the unre-
strained rat, and is sensitive to COX inhibitors. We demon-
strated that the omega-3 PUFA significantly increased the
withdrawal threshold, not only in the plantar test, but also in
the hot plate test. This last test is considered to be suitable for
measuring the effects of opioid analgesics and is not sensitive
to analgesic effects of NSAIDs [69]. Like the Hargreaves
method, the hot plate is a common test that measures the
response to thermal nociception of drugs acting by a central
mechanism. Thus, as far as the antinociceptive effects are
concerned, our data from both the Hargreaves method and
the hot plate test confirm that these omega-3 PUFAs act by
both peripheral and central mechanisms.

It is assumed that omega-3 PUFAmay have antinociceptive
properties, in part by inhibiting microglial release of matrix
metalloproteinases [70]. Microglial cells appear to play a vital
role in the initiation of processes promoting persistent pain
states [71]. Glial activation can be induced by C-fiber
nociceptive input from the sciatic nerve, and thus, the
nociceptive-induced glial activation appears to be crucial in
contributing to acute and inflammatory pain in rodentmodels
[72]. The pretreatment of RAW 264.7 cells with omega-3 was
shown to significantly attenuate TNF-α production in lipo-
polysaccharide-stimulated macrophages [73].

Clinical trials show that omega-3 PUFAmay be of benefit in
the management of patients with neuropathic pain [74]. A
significant factor in neuropathic pain is the activation of
spinal cord glial cells [75]. Activated glial cells are character-
ized by the proliferation, hypertrophy, and increased produc-
tion of inflammatory cytokines, such as interleukin-1β,
interleukin-6, and TNF-α. Eicosapentaenoic acid and DHA
could possibly reduce the production of these cytokines. In the
present work, we demonstrated that the omega-3 treatment
reduced immunostaining for TNF-α in the inflamed rat paw,
as evaluated by the carrageenan-induced edema.

Our in vitro studies showed that the omega-3 supplement
significantly decreased MPO release from PMA-stimulated
human neutrophils, confirming the anti-inflammatory action
of EPA and DHA. In addition, it did not present any cytotoxic
effect on those cells at the concentration range used as
assessed by the LDH and MTT assays. However, EPA and DHA
increased lipid peroxidation at higher concentrations, as
demonstrated by the TBARS assay.
Although we did not explore some other molecular/
cellular targets for EPA and DHA actions, these may involve
inhibition of COXs and microglial activation, leading to a
reduced release of proinflammatory cytokines, such as
TNF-α. The EPA and DHA could be combined to reduce the
amount of NSAIDs for the management of inflammatory
diseases and pain. However, some additional translational
studies are needed to confirm the beneficial effects of EPA
and DHA and/or their active metabolites, as previously
reported [76], alone or in conjunction with NSAIDs, for
their potential in the treatment of inflammation and pain-
related processes.
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