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Abstract
Melting of a finite size binary system consisting of two types of particles having
different charges and/or masses, confined in a two-dimensional (2D) parabolic
trap, is studied. The melting temperature is obtained for different values of
the ratio between the charges and/or masses of the two types of particles.
The two types of particles melt at different temperatures; e.g., particles with
smaller charge melt first. The importance of the commensurate/incommensurate
configurations and the different normal modes to the melting phenomenon
is studied. When the ground state consists of a nonsymmetric arrangement
of particles new thermally induced structural phase transitions are found. In
addition, a remarkable temperature induced spatial separation of the two types
of particles is found.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Two dimensional (2D) clusters of confined charged particles have been used to model a large
number of different experimental systems, such as surface electrons on a thin liquid helium
film [1, 2], colloidal suspensions on an inert substrate [3], dusty plasmas [4, 5], and electrons
confined in low dimensional semiconductor structures [6]. Even several model systems were
recently realized experimentally, consisting of macroscopic objects such as charged metallic
balls [7] and magnetic discs [8, 9]. Such 2D clusters exhibit remarkable and unexpected
physical behaviour, which is, in most cases, very distinct from the analogue 3D case. As an
example, we can cite the microscopic theory of Kosterlitz–Thouless–Halperin–Nelson–Young
for phase transition in a 2D system. In the 2D case, and as pointed out by several authors, the
transition from a solid phase to a complete isotropic liquid phase can be characterized by a two-
step process with an intermediary hexatic phase [10–12]. However, such a melting scenario is
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not unique and it depends on the considered system. Furthermore, recent papers have shown
that the melting of 2D clusters is nonuniversal [13, 14].

Melting in small clusters of charged particles has also received considerable attention in
recent years [15–19]. Very interesting properties have been observed in such systems, e.g. a
two-step melting (angular versus radial melting) [16], nonhomogeneous melting due to the
existence of geometry induced defects [17], and a re-entrant melting behaviour [15, 18] in hard
wall confined systems.

In the present paper we investigate the melting phenomenon in a binary system containing
two types of particles confined in a parabolic trap. In other words, we study how the presence
of impurities [8, 9, 20], represented here by particles with different charges and/or masses,
influences the melting of such small confined 2D clusters. The thermal properties of the system
are analysed as a function of the ratio between the charges (α) and masses (β) of the two types
of particles.

Previously we studied the zero temperature configurations and the normal mode spectrum
of such a system as a function of α and β [21]. We found that for distinct values for α (β) the
two types of particles separate, and arrange in different shells. In addition, we found that the
normal modes are not only determined by the commensurate ratio of the number of particles
in the shells, as pointed out in [22], but mainly by the parameters α and β . Melting in such
a system was also studied in [22, 23]. However, the results presented in [22] were restricted
to the special case in which particles have equal mass and the ratio between the two types of
charges was q1/q2 = 2, while in [23] the special case of two very distinct type of particles,
i.e. q1/q2 = 8, was studied. We extend the work in [22] and investigate the case in which
particles have distinct charges and different masses.

Very recently, we addressed the question about the melting in small clusters with one
type of particle, but subjected to a Coulomb [24] or to a parabolic [25] confinement potential.
Structural phase transitions were found that occur before the complete melting of the system.
Recently [19], local melting in small confined clusters of charged particles was observed
experimentally. In the present paper, we show how local melting takes place in a binary
system of particles with distinct charges and masses. For the computational work we restricted
ourselves to the specific system of 13 particles which is representative for the main new physics
exhibited by small binary clusters.

The present paper is organized as follows. In section 2 we present the model. The analysis
of melting is given in section 3. Our conclusions are presented in section 4.

2. Numerical approach

Our system consists of a two-dimensional cluster with Nf particles with fixed charge qf and
fixed mass mf, and Nv particles with charge qv and mass mv which we will vary. All charged
particles interact through a pure repulsive Coulomb potential 1/r , and the particles are kept
together by a parabolic potential. The Hamiltonian of such a system is given by

H =
Nf∑

i=1

1

2
mfω

2
0r 2

i +
Nv∑

i=1

1

2
mvω

2
0r 2

i + q2
f

ε

Nf∑

i> j=1

1

|ri − r j |

+ q2
v

ε

Nv∑

k>l=1

1

|rk − rl | + qfqv

ε

Nf∑

m=1

Nv∑

n=1

1

|rm − rn | , (1)

where ε is the dielectric constant of the medium the particles are moving in, and ri ≡ |ri | is the
distance of the i th particle from the centre of the confinement potential. In order to reveal the
important parameters of the system, it is convenient to define qv/qf = α, mv/mf = β and to
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write the energy and the distances in units of E0 = (mfω
2
0q4
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2
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1/3,
respectively. In so doing, the Hamiltonian is reduced to
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Nf∑

i=1

r 2
i + β

Nv∑

i=1

r 2
i +

Nf∑

i> j=1

1

|ri − r j | ×
Nv∑

k>l=1

α2

|rk − rl | +
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Nv∑
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α
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and the state of the system is determined now by (α, β) and the number of particles (Nf, Nv).
Considering the dimensions of the quantities defined above, the temperature is expressed in
units of T0 = E0/kB, where kB is the Boltzmann constant.

The ground state configurations (T = 0) of the two-dimensional binary system were
obtained with the Monte Carlo (MC) method (using the standard Metropolis algorithm [26])
and the modified Newton method [27]. The negatively charged particles are initially put
in random positions within some circular area and then allowed to reach a steady state
configuration after about 104–2 × 105 simulation steps. Simultaneously, we calculated
the frequencies of the normal modes of the system using the Householder diagonalization
technique [27]. The configuration was taken as final when all frequencies of the normal modes
were positive and the energy did not decrease further. Also special care was taken (see [21])
that we started from the ground state configuration and not from a metastable state.

To study melting the system was heated up (where temperature was increased by steps of
δT , typically ≈10−3) and equilibrated at the new temperature during 5×104–2×105 MC steps
(one MC step corresponds with a displacement of all particles). After annealing, the average
energy is calculated, together with the mean squared radial displacement

〈u2
R〉 ≡ 1

N

N∑

i=1

(〈r 2
i 〉 − 〈ri 〉2)/ρ2, (3)

where ρ is the average distance between the particles at zero temperature. The symbol 〈 〉 stands
for an average over typically 106–107 MC steps after equilibration of the system.

Angular melting is studied using the angular intrashell displacements,

〈u2
a1〉 ≡ 1

Ns

Ns∑

i=1

[〈(ϕi − ϕi1)
2〉 − 〈(ϕi − ϕi1)〉2]/(ϕs

0)
2, (4)

where i1 indicates the nearest neighbour in the same shell and ϕs
0 = 2π/Ns . The angular order

between adjacent shells is characterized by the angular intershell displacement, defined as

〈u2
a2〉 ≡ 1

Ns

Ns∑

i=1

[〈(ϕi − ϕi2)
2〉 − 〈(ϕi − ϕi2)〉2]/(ϕs

0)
2, (5)

where i2 indicates the nearest neighbour in an adjacent shell. The shells, as well as all
neighbours, were identified at the beginning of each temperature run.

The melting temperature was determined through a Lindemann-like criterion, which has
been widely used for 2D finite size clusters. For finite systems, melting occurs over some
temperature range and consequently there is some arbitrariness when defining a melting
temperature. But what is essential is that fluctuations in the position of the particles change
rapidly with temperature beyond some melting temperature. The Lindemann-like criterion
adopted in the present work states that melting occurs when the parameters 〈u2〉 defined above
reach 0.1 [28], or 0.05 for each coordinate separately. However, this criterion is not unique. A
very interesting discussion about melting in small clusters is made in [19].

3. Melting

In this section we present the temperature dependence of the mean square displacements
previously defined. First, the general properties of the melting transition will be addressed.
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The results presented here were obtained for the particular cluster with Nf = 7 particles of
fixed charge and with Nv = 6 particles of variable charge. This particular choice allows us to
compare the melting phenomenon in commensurate and incommensurate configurations simply
by changing the ratio α between the charges of the two types of particles [21]. A commensurate
configuration occurs when the number of particles in the shells is multiple. If this is not the
case, the ring-like configuration is said to be incommensurate. For example, a cluster with 13
particles arranged in shells (rings) as (1, 6, 6), i.e., one particle at the centre, six particles in the
first shell, and six particles in the most external shell, presents a commensurate configuration.
On the other hand, a cluster with the structural arrangement (1, 5, 7) has an incommensurate
configuration. Concerning the lowest normal mode at T = 0, the results presented in [21]
indicate that such a mode depends on the ratio between charges. Here, we will show that the
shape of the mode plays an important role in the melting process. In spite of the particular
system chosen here, the general features of the rich melting behaviour presented in this paper
remain valid for other clusters.

3.1. Particles with distinct charges

In this section we take by default β = 1, i.e. we consider particles with the same mass. In this
way, the effects of the electrostatic interaction between the different types of particles on the
melting phenomenon can be emphasized.

In figure 1(a) the mean radial displacement (〈u2
R〉) for the cluster with (Nf = 7, Nv = 6)

particles is shown. The ratio between the charges is α = 3.0. For these specific values of the
parameters (α, β), particles arrange themselves in the commensurate ground state configuration
(1, 6, 6), as shown in the inset of figure 1(a). As shown in [21], when particles are arranged
in a ring-like structure, the ones with larger charge are always located at the exterior boundary
of the system. The melting phenomenon in such a system presents an interesting anisotropy
with respect to the different type of particles, i.e., with respect to the charges of the particles.
As can be observed in figure 1(a), particles with smaller charge have a smaller radial melting
temperature Tr when compared to the ones with larger charge. In general, the internal particles
always melt first and such a behaviour was observed for all values of α.

The angular disorder in each shell is analysed through the mean angular intrashell
displacements (〈u2

a1〉). Due to the commensurate arrangement of the particles observed in the
cluster with (Nf = 7, Nv = 6) particles, the intrashell melting temperature Ta1 for the first shell
is only slightly smaller than the one for the radial melting (figure 1(b)). Note that the sudden
increase in 〈u2

a1〉 occurs at the same temperature as the one for the quantity 〈u2
R〉 but the value

0.05 is reached at a different temperature, i.e. Ta1 ≈ 0.022 and Tr ≈ 0.024. The very packed
configuration of the cluster generates a high potential barrier for intrashell disorder. However,
we found that such a feature is nonuniversal in the binary system, and depends strongly on the
interaction between the particles, and consequently on the parameter α.

As already observed in small clusters with only one type of particles [16, 19, 27], the first
melting process which takes place in the cluster is characterized by intershell rotation, which
is activated at a temperature smaller than the one for radial melting. In figure 1(c), the mean
angular intershell displacement (〈u2

a2〉) is shown as a function of temperature. It is clear that
the thermal threshold (Ta2 ≈ 0.012) for intershell rotation between the two types of particles
occurs at a smaller temperature than the one for radial and intrashell melting (figure 1(c)), i.e.,
Ta2 < Tr and Ta2 < Ta1. As will be shown later, thermally activated intershell rotation is not
always observed in a binary system.

Recently, Drocco et al [22] found that the matching between the configurations of the
particles in the inner and in the outer shell results in a higher melting temperature and in a



Melting of a two-dimensional binary cluster of charged particles confined in a parabolic trap 9389

(a)

(b)

(c)

Figure 1. (a) The mean radial displacement (〈u2
R〉), (b) the mean angular intrashell displacements

(〈u2
a1〉), and (c) the mean angular intershell displacements (〈u2

a2〉) for a cluster with Nf = 7, Nv = 6
particles. The ground state configuration is shown in the inset of (a). The black spheres are the
reference particles (qf = 1), while the grey spheres represent the particles with charge qv = 3. The
lowest normal mode is depicted in the inset of (c).

higher thermal threshold for intershell rotation than in the case of nonmatching configurations.
These authors only addressed this question with respect to the number of particles in the shells.
But, the matching is also a consequence of the effective potential due to the particles in the
different shells, and this potential depends not only on the number of particles, but also on
other parameters such as the charge and the mass of the particles. Recently, we found that not
only the number of particles, but also the ratio between the charges and/or masses of the two
types of particles are important parameters in the activation of some specific normal modes at
T = 0 [21]. Since the normal modes (specially the one associated with the lowest nonzero
frequency) are directly related to the stability and deformability of the cluster configuration,
they may also be important to the melting transition. As pointed out by Schweigert and Peeters,
the melting temperature can, in fact, be written as a function of the frequencies of the normal
modes at T = 0 [27]. In general, we find here (see also [17]) that the lowest normal mode
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(a)

(b)

(c)

Figure 2. (a) The lowest non-zero frequency (LNF) as a function of α for a cluster with Nf = 7 and
Nv = 6 particles. Some ground state configurations are shown as the inset (black symbols represent
particles with charge qf = 1, while grey symbols are for the particles with charge qv = α). (b) The
radial melting temperature Tr, the intrashell melting temperature Ta1 (for the internal shell), and
the intershell melting temperature Ta2 as a function of α. (c) Distance of each particle from the
centre of the confinement potential as a function of α. Black and grey curves are associated with
the particles with charges qf = 1 and qv = α, respectively.

plays an important role in the melting process of the binary system. More specifically, an α-
dependence of the radial melting temperature is observed when specific lowest normal modes
are found at T = 0. The thermally activated intershell rotation is also a function of α. In order
to illustrate these statements, we resort again to the cluster with Nf = 7 and Nv = 6 particles,
but now for different values for α.

In order to better understand the results, we first present in figure 2(a) the lowest normal
mode frequency (LNF) for the cluster with Nf = 7, Nv = 6 particles as a function of α. As
discussed above, and as shown previously [21], the lowest normal mode (at T = 0) of the binary
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system is a sensitive function of the ratio between the charges of the two types of particles. This
fact is highlighted in 2(a). The regions I, II, III, and IV define the α intervals where the ground
state configurations have different symmetries. Some of the configurations are shown as insets
of figure 2(a). E.g., in region II the particles are arranged in the incommensurate configuration
(1, 5, 7), i.e., one particle with variable charge qv at the centre, five particles with variable
charge qv at the first shell, and seven particles with fixed charge qf at the last shell. Note that
in this case the reference particles (qf = 1) are the external ones, since they have now a larger
charge. In region IV the commensurate configuration (1, 6, 6) is observed, and in this case the
reference particles are the internal ones.

Since radial melting is anisotropic with respect to the different types of particles, we
concentrate here on the results concerning the internal ones, which melt first. The analysis of
the results can be better understood if we also define the sub-regions IVa (1.307 � α � 1.431),
IVb (1.431 � α � 2.384), and IVc (α � 2.384), where the system has the same configuration,
but a different lowest normal mode. In region II and in sub-regions IVa, IVb, and IVc the
obtained lowest normal modes are shown as insets to figure 2(a). In particular, note that in
regions IVb and IVc the observed lowest normal modes consist of a vortex–antivortex pair and
intershell rotation, respectively.

The different melting temperatures (Tr, Ta1, Ta2) for the internal particles as a function of
α are shown in figure 2(b) for the cluster with Nf = 7, Nv = 6 particles. Since we want to
investigate the influence of the type of lowest normal mode on the melting process, we will
choose the values of α in region IV of figure 2(a), where the cluster presents the same ground
state configuration, but distinct lowest normal modes. Note that the vertical dotted line in
figure 2(b) separates subregions IVb and IVc previously defined in figure 2(a).

In general, the melting process in the binary system can be characterized by the loss of
order between the shells (thermally activated intershell rotation), by the loss of order within a
shell (intrashell disorder), and by the radial diffusion of particles among shells (radial melting).
The occurrence of the last two kinds of disorder is observed for any value of α in region IV,
as can be seen in figure 2(b). On the other hand, thermally activated intershell rotation is not
always present, as shown in figure 2(b). E.g., note that for α � 1.9 (region 1—left of the
vertical dashed line) the melting temperature for intrashell disorder (green curve with open
triangles) is slightly smaller than the one for thermally activated intershell rotation (red curve
with square symbols), i.e. Ta1 � Ta2. This means that orientational disorder between shells is
observed simply as a consequence of the angular disorder in the internal shell.

Thermally activated intershell rotation is found only for α � 1.9 (region 2—right of
the vertical dashed line). Note that in this interval Ta1 > Ta2, implying that the angular
disorder between shells occurs before the loss of order within the internal shell. In region 2,
Ta2 continuously decreases with increasing α, indicating that the thermally activated intershell
rotation is independent of the lowest normal mode, since no special feature in the curve Ta2

is observed when the lowest normal mode is changed from a vortex–antivortex to intershell
rotation. However, the α-dependence of Ta2 indicates that thermal activation of intershell
rotation becomes easier with increasing α. Such a behaviour can be understood if we analyze
the mean distance of each particle from the centre of the confinement potential (〈ri 〉) as a
function of α, which is shown in figure 2(c). Notice that the radius of the internal shell (particles
with charge qf = 1) is practically constant, while the radius of the external shell (particles
with charge qv = α) increases with increasing α, which is due to the larger electrostatic
repulsion. The larger separation between the shells results in a weaker coupling between them,
and consequently makes thermal excitation of intershell rotation easier.

Now we will discuss the radial melting and the thermally activated angular disorder within
the shell as a function of α. As commented before, such melting processes were observed for
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all values of α in region IV of figure 2(a). Here, we stress again that the results for Tr and
Ta1 are associated with the particles in the internal shell, which melt first. The behaviour of
the melting temperatures Tr and Ta1 as a function of α suggests that the lowest normal mode
has some influence on them (see figure 2(b)). In region IV(b) of figure 2(b), where the lowest
normal mode at T = 0 is the vortex–antivortex pair (region VI(b)), both temperatures (Tr and
Ta1) are clearly affected by α. More specifically, Tr and Ta1 increase with increasing α up to
Tr ≈ 0.024 and Ta1 ≈ 0.022, respectively (α ≈ 2.38). For α � 2.38 the melting temperatures
Tr and Ta1 decrease very slowly with increasing α, where the lowest normal mode at T = 0
corresponds to intershell rotation (region VI(c)).

The preceding results suggest that the shape of the lowest mode excitation determines
its thermal behaviour. The usual two-step melting found before [16] in clusters with one
type of particles is not always found in a binary system. Such a dependence of the melting
temperatures on the lowest normal mode was never found before in small confined clusters of
charged particles.

The results for the melting temperatures shown in figure 2(b) were restricted to values of α

in region IV of figure 2(a), where the ground state configuration is a commensurate state. Now
we will study the thermal behaviour of the system in region II (0.053 � α < 0.694) when an
incommensurate arrangement of particles is found as the ground state (see inset of figure 2(a)).
Note that particles with charge qf = 1 are now located at the external shell (black spheres). The
incommensurate ground state configuration is a ring-like structure (1, 5, 7).

As already shown by Schweigert and Peeters [27] for a system with one type of particle,
and by Ferreira et al [21] for the present binary system, incommensurate configurations are
highly unstable against intershell rotation. As pointed out by Ferreira et al, it is expected that
such an instability should also be observed with respect to the structure inside each shell, and
with respect to the diffusion of particles between shells, when the temperature of the system
is increased [21]. Recently, Drocco et al [22] showed that incommensurate configurations
have a smaller thermal threshold for intershell rotation as compared to the case of matching
configurations. However, the results presented in [22] were restricted to the case α = 2. In
the present work, we show that the results of [22] are also valid for different values of α. In
addition, we show the dependence of the melting temperatures Tr and Ta1 (for incommensurate
configurations) on the ratio between the charges of the two types of particles.

The melting temperatures Tr and Ta1 as a function of α are shown in figure 3 for the case of
an incommensurate configuration. As can be observed, Tr and Ta1 are one order of magnitude
smaller than the melting temperatures found in the case of commensurate configurations (see
figure 2(b)). These results mean that not only the thermal activation for intershell rotation,
but also the radial melting and the intrashell disorder, are more easily driven in the case of
incommensurate configurations. These results are valid for different values of α. Figure 3 also
indicates that Tr and Ta1 increase with increasing α. Such a behaviour should be associated
with the increase of the coupling between the different types of particles when α increases, and
with the height of the saddle point energy separating the ground state from metastable states,
as can be seen in figure 3, where the energy difference between the first metastable state (with
configuration (6, 7)—see inset in figure 3) and the ground state (Em − Eg) is shown. The
increase of the melting temperature as a function of α follows the increase of (Em − Eg). It
is worth commenting here that the height of the saddle point energy has no influence on the
melting temperature shown in figure 2(b), since only one stable state, the ground state, was
observed for those values of α.

Up to now we have limited the discussion to the particular cluster with Nf = 7, Nv = 6
particles. We found that the effect of the commensurability of the ground state configuration
on the melting process of binary systems is also observed in clusters with different number of
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Figure 3. The radial melting temperature Tr, the intrashell melting temperature Ta1 (both for the
internal shell), and the energy difference between the first metastable state and the ground state
(Em − Eg) as a function of α for the cluster with Nf = 7 and Nv = 6 particles. The configurations
of the ground state and the metastable state are shown in the inset.

Figure 4. The mean radial displacement (〈u2
R〉) as a function of the temperature T for

commensurate and incommensurate configurations of the cluster with Nf = 19, Nv = 6 particles.
The ground state configurations are presented as insets. Black spheres represent the reference
particles (qf = 1), while grey spheres are the particles with variable charge qv = 0.1 or qv = 1.5.

particles. For example, the temperature dependence of the mean squared radial displacement
as a function of temperature for the internal particles of the cluster with Nf = 19, Nv = 6
particles is shown in figure 4. This system can present a commensurate or an incommensurate
configuration depending on the value of α (see insets in figure 4). As can be observed, the
melting temperature for the incommensurate configuration (α = 0.1) is one order of magnitude
smaller than the one for the matching configuration (α = 1.5). For the incommensurate
configuration (1, 5, 7, 12), we consider as internal particles only the ones with variable charge
(grey spheres), which form the first shell. For the commensurate configuration (1, 6, 6, 6, 6),
we considered as internal particles the ones with fixed charge (black spheres), which are
distributed over three circular shells. The reason for these choices is the anisotropy in the
melting process with respect to the different types of particles as shown previously in figure 1.
As can be observed in figure 5(a), for the commensurate configuration, and in figure 5(b),
for the incommensurate configuration, the mean squared radial displacement for the external
particles is much smaller than the one for the internal particles. In addition, we observe in
figure 5(a) that the more internal the shell the smaller the melting temperature.
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(a)

(b)

Figure 5. The mean radial displacement (〈u2
R〉) as a function of temperature for the different

shells of the (a) commensurate and (b) incommensurate configurations of the cluster with Nf = 19,
Nv = 6 particles. Ground state configurations are presented as insets. Black spheres represent the
reference particles (qf = 1), while grey spheres represent particles with variable charge qv = 1.5
in (a) and qv = 0.1 in (b).

3.2. Particles with distinct masses

In this section we present the results for the case in which particles have different masses, i.e.
β �= 1, and as an example we take again the cluster with Nf = 7 and Nv = 6 particles. New
commensurate and incommensurate configurations are obtained by changing β .

In figures 6(a)–(c) the dependence of the mean radial displacement (〈u2
R〉), the mean

angular intrashell displacement (〈u2
a1〉), and the mean angular intershell displacements (〈u2

a2〉)
are shown, respectively, as a function of temperature in the representative case β = 0.1, where
one type of particle (with mass mf) is ten times heavier than the other one (with mass mv).
In order to emphasize the inertial effects on the melting properties of the system, we take
α = 1, i.e. particles with the same charge. The ground state configuration of the system is a
commensurate ring-like structure (1, 6, 6), as shown in the inset of figure 6(a). Particles with
larger mass are located at the internal shell, in order to minimize the confinement potential
energy (see equation (2)). As observed in the preceding section for particles with distinct
charges, an anisotropic melting is also found when particles are distinguished from one another
by their masses. As can be nicely seen in figures 6(a) and (b) the internal particles melt first.
This is in some sense a surprising result since the internal particles are the heaviest ones, and
intuitively we could expect that the motion of such particles requires more energy than the
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(a)

(b)

(c)

Figure 6. (a) The mean radial displacement (〈u2
R〉), (b) the mean angular intrashell displacement

(〈u2
a1〉), and (c) the mean angular intershell displacements (〈u2

a2〉) for the cluster with Nf = 7,
Nv = 6 particles. The ground state configuration is shown in the inset of (a). Black spheres
represent the reference particles (mf = 1), while grey spheres represent the particles with mass
mv = 0.1.

motion of the lighter ones, i.e. a larger temperature is required to destroy the order of the heavier
particles. The results presented in figures 6(a) and (b) may be an indication that the inertial
properties of the system are not important when compared to the electrical interaction. In fact,
we find that the electrostatic interaction between particles overcomes any inertial dependence
of the melting process.

In order to verify the importance of the electrostatic effects over the inertial ones, we
present in figure 7 the mean radial displacement 〈u2

R〉, for the internal and external shells, as
a function of temperature for the cluster with Nf = 7 and Nv = 6 particles, in cases where
particles also have different charges, i.e. α �= 1. As previously considered, the reference
particles have charge qf = 1, mass mf = 1, and are always represented by black spheres,
while the other type of particle has charge qv = α, mass mv = β , and are represented
by grey symbols. In general, we find that when α �= 1, and the ring-like structure is the
ground state, particles with smaller charge are always located at the internal shell and melt first,
independently of the ratio between the masses. This is shown in figures 7(a) and (b) for α = 0.3
and α = 4.85, respectively, and for three different values of β .
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(a)

(b)

Figure 7. The mean radial displacement 〈u2
R〉 as a function of temperature for the cluster with

Nf = 7 and Nv = 6 particles and for different values of β in the cases where (a) α = 0.3 and
(b) α = 4.85. Typical ground state configurations for each value of α are shown as insets. Black
spheres are the reference particles (mf = 1), while grey spheres represent particles with mass
mv = β.

E.g., in the case (α = 0.3, β = 0.5) we observe that particles with smaller charge
and smaller mass (internal ones) melt first. In fact, this is the expected behaviour, since the
electrostatic correlation and the inertial effects for these particles are less important than the
ones for the reference particles (figure 7(a)). However, the case (α = 0.3, β = 3) shows
that the radial melting is mainly determined by the electrostatic correlation effects. Note that
particles with smaller charge (qv = α) melt first, even when having larger mass. The larger
charge of the reference particles makes the interaction between such particles stronger, which
means a more stable structure and a larger melting temperature. The same conclusions are
found for the case with α = 4.85 (figure 7(b)).

The inertial effects become apparent only when we compare the radial melting
temperatures of the internal particles in clusters with the same ratio between charges (α). As can
be observed in figures 7(a) and (b), for α = 0.3 and α = 4.85, respectively, the radial melting
temperature of the internal particles increases with increasing mass of such particles. The larger
the value of β , the larger the radial melting temperature. Note that such a behaviour is found
for commensurate (figure 7(b)) as well as for incommensurate configurations (figure 7(a)).
The behaviour observed for the radial melting temperature is also found for angular disorder
within the shell (i.e., for the intrashell melting temperature Ta1), and for the intershell disorder
temperature (Ta2).
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Figure 8. The mean squared radial displacement 〈u2
R〉 as a function of temperature T for a cluster

with Nf = 7, Nv = 6 particles and different values of α. All particles have the same mass, i.e.,
β = 1.

3.3. Thermally induced structural phase transitions

Recently, a new feature in the melting of clusters with one type of charged particles was found:
namely, the occurrence of local structural phase transitions before complete melting of the
system [19, 24, 25]. As shown in [24, 25], these structural transitions depend on the exact
ground state configuration of the system and lead to an enhancement of the symmetry of the
cluster with increasing temperature. In this section, we show that such structural transitions can
also be observed in binary clusters and they produce a segregation of the two types of particle.

As an example, we consider clusters with β = 1 and values of α in region III of figure 2(a)
(indicated by blue stars). In that region, particles of each type are arranged in asymmetric
ground state configurations, which are beneficial for observing thermally induced structural
phase transitions.

The temperature dependence of the mean squared radial displacement 〈u2
R〉 of the reference

particles (qf = 1) is shown in figure 8 for α = 1.03, 1.1, 1.2, 1.25, 1.28, 1.3. The mean squared
radial displacement for the other particles (with qv = α) is not shown since the values of 〈u2

R〉
are usually one or two orders of magnitude smaller than the ones for the reference particles in
the temperature interval considered in figure 8. The radial melting temperatures Tr obtained
from figure 8 are comparable to the ones observed in ring-like incommensurate configurations
(figure 3), indicating that in both cases the clusters are not very stable.

In figure 8 we notice the occurrence of plateaus for α = 1.25, 1.28, 1.3. As shown
in [24, 25] for systems with one type of particle, such plateaus are typical signatures for
thermal induced structural phase transitions. In order to confirm that this is also the case for
the present binary system, we present in figure 9 the temperature dependence of the mean
distance of each particle 〈ri 〉 from the centre of the confinement potential for clusters with
α = 1.03, 1.1, 1.25, 1.3.

For α = 1.03 (figure 9(a)) and α = 1.1 (figure 9(b)) the structure of the cluster is changed
only when radial melting sets in (T ≈ 0.01, for α = 1.03, and T ≈ 0.009, for α = 1.1). For
α = 1.25 (figure 9(c)) and α = 1.3 (figure 9(d)), thermally induced structural phase transitions
are observed at low temperatures. Note that in the considered temperature range, 〈u2

R〉 is still
very small, indicating that the oscillations of the particles are not large enough to destroy the
ordered structure of the configuration.

Comparing figures 8 and 9 we find that the fast increase of 〈u2
R〉 (in order to form the

plateau) is related to structural modifications in the cluster to a more symmetrical configuration.
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(a) (b)

(c) (d)

Figure 9. The mean distance of each particle from the centre of the confinement potential as a
function of temperature for the cluster with Nf = 7 and Nv = 6 particles, and (a) α = 1.03,
(b) α = 1.1, (c) α = 1.25, and (d) α = 1.3. All particles have the same mass, i.e. β = 1.

For example, in figure 9(c) a thermally induced structural phase transition occurs at T ≈ 0.001,
which coincides with the beginning of the formation of a plateau in figure 8.

The results in figure 9 also reveal an interesting feature. There is a clear enlargement
of the separation between the distinct types of charges with increasing temperature. Particles
with smaller charge become more confined in the internal region of the cluster, while the ones
with larger charge stay at the edge of the system, and at the same distance from the centre.
This thermally induced charge segregation is observed for all values of α in region III of
figure 2(a), where mixed configurations are found as ground state. The thermally induced
charge segregation is observed even when the difference in charge between the particles is
very small. E.g., for α = 1.03 (figure 9(a)) we observe that after the melting temperature
(T ≈ 0.0135) the mean distance of the reference particles from the centre is 〈ri 〉 ≈ 1.2, while
for the other ones 〈ri 〉 ≈ 1.7. Before melting, both types of particles (see inset of figure 9(a))
are, approximately, at the same distance from the centre of the confinement potential, indicating
that the system is in a mixed state as defined in [21]. The thermally induced charge separation
is observed for all values of the ratio between the charges.

Now we make some comments about the general behaviour of the melting temperature as
a function of α for clusters in region III of figure 2(a). Remarkable features observed in this
region are (i) the presence of a large number of metastable states when α ≈ 1 (see table 1),
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Figure 10. The radial melting temperature Tr as a function of α for the cluster with Nf = 7 and
Nv = 6 particles. Ground state configurations are shown as insets.

Table 1. Number of metastable states (Nmeta) for several values of the ratio between charges α in
clusters with Nf = 7, Nv = 6 particles.

α Nmeta

0.83 72
0.88 109
0.92 108
0.96 109
1.03 112
1.10 115
1.20 84
1.25 40
1.28 34
1.30 18

and, as previously stated, (ii) mixed ground state configurations characterized by an asymmetric
distribution of the distinct types of particles. As will be shown here, only the latter has some
influence on the melting process.

In figure 10 the radial melting temperature Tr of the cluster with Nf = 7, Nv = 6 particles
as a function of α is shown. The radial melting temperature decreases with increase of the
difference |α−1|, i.e. when the difference between charges of both types of particles increases.
For α ≈ 1 the distinct types of particles have almost the same charge, and consequently we have
Nf + Nv = 13 almost identical particles distributed over rings [16]. When |α − 1| increases,
the ring-like structure of the charge distribution is destroyed, since distinct types of particles
are found in the same shell. The symmetry breaking in the distribution of charge over the rings
reduces the stability of the radial fluctuations of the entire cluster, and consequently the radial
melting temperature is reduced.

The stability of the cluster is related to the frequency of the lowest normal mode (LNF).
The behaviour of Tr as a function of α (figure 10) does not match the α-dependence of the LNF
in region III of figure 2(a). This apparent discrepancy can be easily understood by recalling that
for α ≈ 1 the incommensurate ring-like structure (4, 9) is observed, for which the lowest normal
mode is intershell rotation, which does not influence the radial melting temperature. Such
incommensurate ring-like structure is highly unstable against the intershell rotation motion,
which is reflected in a very small frequency of this mode, that is normally two orders of
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Figure 11. The intershell melting temperature Ta2 as a function of α for the cluster with Nf = 7,
Nv = 6 particles in the limit α → 1 in region III of figure 2(a).

magnitude smaller than the frequency of the other modes [27]. Here, the intershell rotation
mode has a very small activation frequency ω = 6.002 × 10−4 for α = 1 (grey triangle in
figure 2(a)). When α slightly differs from one, the ground state configuration is the same as
the one observed for α = 1 (see insets in figure 10), and the lowest normal mode is still the
intershell rotation, but now with a frequency two orders of magnitude larger than that for the
α = 1 case.

The α-dependence of the LNF in region III of figure 2(a) is reflected in the intershell
melting temperature Ta2. In figure 11, we present Ta2 as a function of α for the cluster with
Nf = 7, Nv = 6 particles in the limit |α − 1| → 0. Notice that Ta2 follows the α-dependence
of the LNF. For example we found Ta2 � 10−6 (α = 1), 4 × 10−5 (α = 0.999) and 9 × 10−5

(α = 1.001). The presence of particles with a larger charge in both rings (for α � 1) increases
the coupling between such charges and the thermally induced intershell rotation needs higher
energy (i.e. higher temperature) to be activated.

4. Conclusions

We studied melting in a binary finite system of charged particles, with distinct charges and/or
masses, confined by a parabolic potential. Since the model system presents a large number of
parameters (temperature, charge and mass ratio) which have an important influence on the
melting properties, we made the choice to present a thorough investigation of a particular
cluster with N = 13 particles, which exhibits the main features. This particular choice does
not restrict the general conclusions and the essential physics of the melting process. E.g., the
commensurability effects are general and are not an artefact of the N = 13 system.

In general, the binary system exhibits an anisotropic melting with respect to the different
types of particles. Particles with smaller charge melt first, and this is observed independently
of the mass of both types of particles. The influence of the inertial effect on the melting process
becomes relevant only when we compare clusters in which particles have the same charges. In
this case, particles with larger mass have the highest melting temperature.

The dependence of the radial (Tr), intrashell (Ta1), and intershell (Ta2) melting
temperatures on the shape of the lowest normal mode at T = 0 was studied for the cases
in which particles are arranged in a commensurate ring-like configuration. We found that Tr

and Ta1 have different behaviours for distinct shapes of the lowest modes. Thermally activated
intershell rotation is not observed for any value of α, which means that the melting process in
small clusters of charged particles is not universal.
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A remarkable temperature induced separation of the distinct types of particles is observed
with increasing temperature. Particles with smaller charge become confined in the internal
region of the cluster. This interesting thermal segregation was also observed for particles with
different masses.

The opposite limit of the present system is the one in which N = (Nf + Nv) → ∞.
In this case, the formation of a 2D Wigner crystal will essentially depend on the ratio Nf/Nv

between the number of both types of particles. If it is a nonrational number, it is expected that
no Wigner lattice will be formed and the system will be disordered. In the other case, one may
expect ordered crystal structures with a larger unit cell (how large will depend on the exact
value of the ratio Nf/Nv). Because of the complexity of the situation in 2D we prefer not to
speculate on this issue and limit ourselves to the finite size system where we can make clear
statements that are supported by our numerical results. The possible T = 0 lattice structures
and the melting of such a 2D binary system is very interesting and will be left for future study.
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