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Ground state and normal-mode spectra of a two-dimensional system of dipole particles confined
in a parabolic trap
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The ordered configurations of a monolayer of interacting magnetic dipoles confined in a circular parabolic
potential are investigated as a function of the dipole moment of the particles. Despite the circular confinement,
we find very asymmetric ordered structures like chains and Y-shaped configurations when a magnetic field is
applied parallel to the plane of the particles. The normal-mode spectrum of the particles and its dependence on
the magnetic field and the strength of the dipole moment of the particles are studied. The vibrational and
rotational modes of the spectrum, which are associated with the stability of the system, are investigated in
detail. The number of particles is varied and we found different ordering of the particles for different values of
the dipole moment and the magnetic field. A ring structure with a large number of particles is observed for high

values of the dipole moment of the particles.
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I. INTRODUCTION

The structure and collective behavior of magnetic colloi-
dal particles exhibit considerable challenges to condensed
matter physics with possible applications in various disci-
plines. For biomedical applications, these microspheres are
paramagnetic particles which become magnetic in the pres-
ence of an external magnetic field [1]. They are frequently
encountered in diverse physical experiments [2,3]. On the
other hand, colloidal ferrofluids are dipolar fluids consisting
of spherical ferromagnetic particles having a permanent
magnetic dipolar moment present in diverse systems in
medicine [4], which have been studied theoretically [5], and
are utilized in many industrial applications [6,7]. The struc-
tural behavior of ferrofluids is mainly governed by the dipo-
lar interaction, leading to a self-assembling of particles into a
variety of magnetic equilibrium structures such as rings (flux
closure), wormlike, branched dipole chains, and crystalline
lattices [2,8-10]. Recently, there has been an increased ex-
perimental interest in colloidal ferrofluids due to the im-
provement of synthetic methods and the use of high-
resolution transmission electron microscopy [11-13]. For
instance, field-induced two-dimensional structures in a fer-
rofluid of magnetic nanoparticles with a permanent magnetic
dipole moment were analyzed on the single-particle level by
in situ cryogenic transmission electron microscopy (cryo-
TEM) [14].

The different ordered structures and the phase behavior of
colloidal ferrofluids have been studied in two [9,14,15] and
three dimensions [2,16,17]. However, the ordering of such
systems in reduced dimensions is not necessarily equivalent
to that of the related three-dimensional system. Moreover,
calculations on two-dimensional dipolar systems are more
directly relevant for the common experimental situation than
those on bulk systems, because structural characterization of
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highly aggregated ferrofluids are largely carried out on thin
films or on monolayers [11-13].

Recently, special attention was paid to finite-size systems
of interacting particles subjected to parabolic [18] and Cou-
lomb potentials [19]. Several experiments have been per-
formed on dust plasma where Coulomb particles move in a
plane and are confined in a parabolic trap. Both their ground
state configuration [20] and the normal modes [21] were
measured. Another experimental system is the one of para-
magnetic colloidal particles in a two-dimensional circular
cavity with varying depth that simulates a parabolic confine-
ment potential [22]. Theoretic studies on such confined sys-
tems showed that the ordered structure of the ground state
influences the dynamic of the particles [18] and the melting
process [23]. In ferrofluids, Duncan and Camp [15] recently
studied experimentally a quasi-two-dimensional dipolar fluid
and observed characteristic frequencies of the single-particle
orientational and translational motion for different values of
the dipole moment of the particles which induce different
kinds of structural arrangements of particles. In colloidal sys-
tems, clusters that are stabilized only by the magnetic inter-
action between the particles were studied recently [24]. It
was found that the arrangement of the hard core particles
within the cluster is imposed by magnetic frustration.

Motivated by the increasing experimental and technologi-
cal interest in dipolar systems, we study in this paper the
equilibrium configurations (7=0) of a two-dimensional sys-
tem of dipolar particles confined by a parabolic potential. We
explore the dependence of the ground state configuration on
the strength of the permanent magnetic dipole moment of the
particles. The particles spontaneously self-assemble into a
variety of interesting structures. If a magnetic field is applied
parallel to the plane of the particles a diverse range of pos-
sible configurations are found (e.g., ring, chain, and Y-shaped
structures). In addition, we investigate the normal-mode fre-
quencies of the ground state configurations with and without
the presence of an external magnetic field. The vibrational
and rotational components of the mode associated with the
lowest nonzero frequency are found and they show a strong
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dependence on the external magnetic field and the size of the
dipole moment of the particles. When the number of particles
is varied, we find different configurations for different sizes
of the dipole moment and magnetic field.

This paper is organized as follows. In Sec. II, we describe
the mathematical model and summarize the numerical ap-
proach to obtain the ground state configurations of the sys-
tem. Section III A contains the results for the dependence on
the dipolar moment with and without the influence of a mag-
netic field parallel to the plane of the particles. Section III B
presents an analysis of the spatial structure of the ground
state and its normal modes for different magnetic field inten-
sities. The system structure and normal modes for different
numbers of particles with and without the presence of a mag-
netic field are investigated in Sec. III C. Our conclusions are
presented in Sec. IV.

II. MODEL

Our system consists of a monolayer of N particles inter-
acting with each other via a dipole-dipole pair potential. The
particles are kept together by a parabolic potential centered
at the origin. We will introduce a preferential direction in the
problem by applying a magnetic field parallel to the confine-
ment plane. The case of a perpendicular magnetic field was
considered before and leads to results that are similar to the
Coulomb and Yukawa type of interparticle interaction
[25,26]. The potential energy of our system is given by
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where € is an energy parameter which characterizes the
short-range repulsion of the particles preventing them from
coalescing in a single point, g, is the dipole vector on par-
ticle 7, r;; is the interparticle separation vector between par-
ticles i and j, r;=|r,| is the distance of the ith particle from
the center of the parabolic confinement, m is the mass, and o
is the diameter of the colloids. In order to reveal the impor-
tant parameters of the system, it is convenient to define u*
=\u?/e0” and to use ¢ for the unit of energy, By=\&/ o for
the unit of magnetic field, and o (a measure of the radius of
the colloids) for the characteristic length scale in this system.
In so doing, we obtain the potential energy (1) in dimension-
less form,
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which indicates that the system depends on the number of
particles N, the relative strength of the confinement potential
a=mw?*c?/2e, the dipolar moment of the particles M;k, and
the external magnetic field B. The interaction energy be-
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tween the dipole i and the applied magnetic field is described
by the term —,uf -B. In our study, we took =1 and applied
the magnetic field along the x axis, i.e., B=(B,0,0).

The ground state configurations (7=0) of the present sys-
tem were obtained using the Monte Carlo annealing simula-
tion technique followed by a Newton optimization procedure
[27]. The annealing simulation method was used in order to
ensure that the obtained energy was close to the global mini-
mum. To check if a configuration is stable, we calculated,
using the Householder diagonalization technique, the eigen-
values of the dynamical matrix

FH

- 9 (3)
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where a,B=x,y and 6. The i,j indices indicate the particle
number and 6 is the angle between their dipole moments.
From all the stable states obtained, the one with the lowest
energy was taken as the ground state.

III. RESULTS
A. Dependence on dipole moment u*

In the following, we analyze, as an example, a system
composed of N=19 dipolar particles as a function of the
dipole moment of the particles w* with and without the pres-
ence of a magnetic field B. Initially, the ground state configu-
ration is obtained in the absence of an external magnetic field
where the minimum energy structure is a consequence of the
strength of the interparticle interaction. After that, the B# 0
case will be considered.

1. Zero magnetic field

To study the structure of the ground state of the system,
Fig. 1(a) shows the distance of the N=19 particles with re-
spect to the center of the confinement potential as a function
of w*. We clearly see five structural transitions indicated by
the vertical dashed lines between the different configurations
which are presented in Figs. 1(c)-1(f). For u* =0 [Fig. 1(c)],
the configuration consists of shells with a local hexagonal
arrangement of particles as observed experimentally in infi-
nite systems of dipolar particles [28]. The hexagonal ground
state structure for u*=0 is a specific feature of the balance
between the parabolic confinement potential and the isotro-
pic r~!2 repulsive interparticle interaction [Eq. (2)]. When the
dipole moment is increased from u*=0 to u*=1.6 (region
I), the system configuration remains unaffected but now the
dipole moments of the particles are oriented in a kind of
spiral shape as indicated by the dashed line in Fig. 1(c). This
behavior reveals the angular dependence between the dipole
moments of the particles which attempts to align them.

At w*=1.6 (region II), the dipolar interaction starts to
influence the ground state configuration which changes to a
transient configuration between a hexagonal-shaped and a
ring structure. As can be seen in Fig. 1(d), one particle
moved from the center of the system to the inner shell and
another one moved from the inner shell to the outer one,
forming a structure of noncircular rings. This configuration is
a result of the in-plane dipole-dipole interaction which tends
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FIG. 1. (Color online) (a) Radial position and (b) normal-mode
frequency of N=19 dipolar particles in zero magnetic field B=0 as
a function of the dipole moment of the particles w*. The associated
breathing mode in ©*=0 is shown as a red line. (c)—(g) The ground
state configuration of the system for each region defined in (a). The
dashed line shown in (c) is a guide to the eye.

to align the particles in a chain, but due to the parabolic
confinement potential turns them into a ringlike structure.
When u* is further increased, the attraction between the di-
poles becomes sufficiently strong and as a consequence the
system configuration changes continuously to two rings
shown in Figs. 1(e) and 1(f) regions III and IV) through two
structural transitions at u*=~1.97 and pw*=2.2, respectively.
From Fig. 1(a) we see in region IV that the outer shell has a
finite width and thus forms a nonperfect shell of particles. At
p*=3.7 (region V), a clear ringlike structure is observed
[Fig. 1(g)], but now with a different number of particles in
each shell as compared to the structure in regions III and IV.
The most symmetric configuration is obtained for u*>4.5
when the system consists of a single ring [see Fig. 1(g)].
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In Fig. 1(b), the normal-mode frequency (NMF) spectrum
of the system in units of w,/\2 is shown as a function of w*.
The same regions I-VI as previously defined in Fig. 1(a) are
also indicated. The NMFs are sensitive to structural transi-
tions, showing a discontinuous change when a first-order
structural transition occurs, and a typical softening in one of
the frequencies in the case of a second-order transition. In
general, most of the NFMs increase with u*. However, there
are two special frequencies, namely, =0 and \E, which
remain constant for all values of u*. These frequencies are
associated with the rotation of the entire cluster around the
center and the motion of the center of mass, respectively.
Another special frequency [indicated as a red line in Fig.
1(b)], associated with the breathing mode of the particles
(w=5.29 for u*=0), also increases as a function of u*. This
behavior is due to the fact that this frequency depends on the
confinement and interaction potential [29] and as a conse-
quence its frequency increases with the dipolar moment of
the particles, u*. In region I there are clearly two classes of
normal modes: the low-frequency modes whose frequencies
increase linearly with u* and a set of higher-frequency
modes that increase quadratically with u*. The normal-mode
frequencies in regions II and III exhibit a rather complex
behavior which is due to the gradual coalescence of particles
into a ringlike structure [see Fig. 1(a)]. In regions IV, V, and
VI the NMF increases roughly linearly with u* except for
the lowest nonzero frequency.

Now we carefully analyze the behavior of the lowest non-
zero frequency (LNF) mode and its associated oscillation,
which is linked with the stability of the ground state configu-
ration. In addition, this LNF mode plays an important role in
the melting properties of the cluster [23,27]. In Fig. 2(a), the
LNF of the cluster with N=19 particles and zero magnetic
field is presented as a function of u*. The same regions
defined in Fig. 1(a) are indicated. However, new subregions
separating different w* intervals in which the ground state
configuration is similar, but the excited normal modes of
vibration and/or rotation are different (regions Ila, IIb, Ilc,
VIa, and VIb), are also defined.

The vibrational motion of the particles in each region of
Fig. 2(a) is shown in Figs. 2(b)-2(i). The arrows indicate the
direction and its size represents the amplitude of oscillation.
In general, the vibrational mode is different for each configu-
ration. However, we find that distinct normal modes can be
excited for the same minimum energy configuration. For ex-
ample, in subregions Ila, IIb, and Ilc, the configuration is
given in Fig. 1(d), but different lowest normal modes are
obtained [Figs. 2(c)-2(e), respectively]. In regions V and
VIb, it is observed that the LNF mode becomes the center of
mass mode of the particles shown in Figs. 2(h)-2(j), respec-
tively. Clearly, the LNF mode is tunable by w*, and, as a
consequence, also the stability of the cluster. Based on a
recent study [23], this fact could indicate that u* also influ-
ences the melting temperature of the system.

Although the LNFs are different in regions III and IV [see
Fig. 2(a)], the normal modes in both regions are rather simi-
lar [Figs. 2(f) and 2(g)]. The understanding of the change in
LNF behavior is complicated by the fact that the LNF is also
associated with a rotational component of the individual di-
poles. In order to analyze the associated lowest nonzero ro-
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FIG. 2. (a) Lowest nonzero frequency (LNF) as a function w*
for system with N=19 particles and B=0. (b)—(j) Normal modes of
vibration for each subregion defined in (a).

tational mode, Figs. 3(a)-3(g) show the rotational mode of
each dipolar particle for all regions defined in Fig. 2(a). The
rotational mode is indicated by colors inside the circles rep-
resenting the direction and amplitude of oscillation of each
particle. The arrows indicate the orientation of the dipoles.
When the system has a hexagonal structure (region I), we
observe that the direction of oscillation of each particle are
symmetric with respect to the center of the confinement po-
tential [Fig. 3(a)]. Specifically, we observe that two particles
of the inner shell are oscillating clockwise (light blue circles)
while the other two oscillate counter clockwise (yellow
circles). The central particle in Fig. 3(a) rotates counterclock-
wise with a large angular amplitude in order to conserve the
total angular moment of the system where there are few par-
ticles oscillating with small angular amplitude (green par-
ticles).

Figures 3(a)-3(i) show that the rotational modes of the
particles are different for each region of Fig. 2(a). It is also
observed that there is no rotation of particles in regions V
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FIG. 3. (Color online) Rotational component of the LNF mode
for the system with N=19 particles and B=0. In each figure the
subregions defined in Fig. 2(a) are indicated. The color scale gives
the amplitude and the direction of rotation of the particles.

and VIb [Figs. 3(g) and 3(i)] where the modes are associated
with the motion of the center of mass of the system. In ad-
dition, the rotational component of the LNF reveals a very
interesting characteristic in Fig. 2(a). As can be seen, the
rotational modes of particles in the regions III and IV [Figs.
3(e) and 3(f)] are different although the configuration and the
vibrational components of the mode are similar in these re-
gions. This fact indicates that the second-order structural
phase transition of the system between the regions III and IV
is exclusively due to the change of the rotational mode of the
particles and therefore is essential in the study of the stability
of our dipolar system.

2. In the presence of a magnetic field

In the following we present the dependence of the con-
figuration and the normal modes of N=19 particles on u* in
the presence of a magnetic field B applied along the x axis.
The magnetic field introduces a preferential direction into the
problem which will tend to break the circular symmetry of
the ordered structures. Here, we fix B and vary p*. In Fig.
4(a) we show the radial position of N=19 particles with re-
spect to the center of the confinement potential as a function
of u* for B=5. The system exhibits several structural phase
transitions as a function of u* which are indicated in Fig.
4(a) by vertical dashed lines. Such lines separate regions
with different ground state configurations shown in Figs.
4(c)—4(n).

For small values of w* (region I), the particles are ar-
ranged in the same configuration as observed in zero mag-
netic field [see Fig. 1(c)] but now all dipoles are oriented in
the same direction, i.e., parallel to the magnetic field [Fig.
4(c)]. At u*=1.2 (region II), the system experiences a first
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FIG. 4. (a) Radial position and (b) distance of each particles
with respect to the x axis of N=19 dipolar particles for B=5 as a
function of dipole moment of particles w*. (c)—(n) The ground state
configuration of system for each region defined in (a).

structural phase transition and changes from a hexagonal to a
four-line configuration as shown in Fig. 4(b). Notice that the
chains are parallel to the x axis, which means that the mag-
netic field adds an additional one-dimensional confinement
to the parabolic potential. In order to better observe the sym-
metry of the system with respect to the B direction, we
present in Fig. 4(b) the distance of each particle with respect
to the x axis as a function of u*. With further increase of u*,
we observe that particles of the outer chains (with respect to
the x direction) successively move to the inner chains, as a
consequence decreasing the number of particles in the outer
chains after each structural phase transitions. These transi-
tions can be recognized by jumps in Figs. 4(a) and 4(b).
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At u*=3.1 (region VII), the system turns into an unex-
pected configuration formed by the quasi-two-lines of par-
ticles shown in Figs. 4(i) and 4(j). These configurations are
composed of a line of particles and a chain composed by a
mixture of one- and two-lines, that is, the system presents a
local splitting of a single line into two which we will call a
2Y-shaped configuration. The Y-shaped configuration was
analyzed and observed in diverse theoretical and experimen-
tal studies in dipole particle systems [8,14,30,31], but here it
appears as two connected Y-shaped configurations. This
structure is due to the influence of the confinement potential
which compresses the system connecting two lines through
two dipolar particles. The size of the 2Y-shaped configura-
tion decreases up to u*=~3.64 when the system transits into
two curved lines (region IX). At u*=4.76, the system tran-
sits to a 2Y-shaped configuration before it exhibits the con-
figuration composed by a line of particles for w*>7. It is
important to observe that the Y-shaped configuration appears
when the number of chains decreases, i.e., between the con-
figurations with three and two chains (regions VI and IX)
and between two and one chains (regions IX and XII). This
fact indicates that the appearance of the Y-shaped configura-
tion is due to the high density of particles in the B direction
caused by the balance between the confinement potential and
the magnetic field.

Figure 5(a) shows the corresponding frequencies of the
normal modes where the vertical lines indicate the transitions
as shown also in Fig. 4(a). As is apparent, the degeneracy in
the frequency spectrum found in the zero-magnetic-field case
is lifted due to the preferential direction introduced by the
applied field. In general, most of the frequencies increase
with increasing w*, as was found also in the case with B
=0. Notice that the u*-independent frequency w=0, which
was previously associated with the rotation of the entire clus-
ter, attains a value w# 0 when p*# 0. This fact is a conse-
quence of the breaking of the rotational invariance intro-
duced by the magnetic field. The system still exhibits one
mode with a frequency that is independent of w*, namely, the
center of mass mode (w=12).

The lowest nonzero normal-mode frequency is shown in
Fig. 5(b) as a function of u* for B=5. New subregions sepa-
rating different u* intervals in which the ground state con-
figuration is the same, but the excited normal modes of vi-
bration and/or rotation are different (subregions IXa, IXb,
Xlla, and XIIb), are also defined. It is important to note that
the LNF value becomes different from zero for small values
of B. This fact confirms that the magnetic field influences the
system even when it has a hexagonal structure as the ground
state configuration. The vibrational components of the LNF
mode associated with each region of Fig. 5(b) are shown in
Figs. 5(c)-5(p). Figure 5(c) shows the vibrational component
of the LNF in the hexagonal structure (region I). Note that
this mode differs from the one associated with the rotation of
the entire system by one particle motion which is presented
by the red arrow. Figures 5(c)-5(p) show that the vibrational
components of the modes are different for each configuration
presented in Figs. 4(c)-4(n), i.e., they change as a function
of w*. Nevertheless, the configuration in the regions IX and
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FIG. 5. (a) Normal-mode frequency and (b) lowest nonzero frequency of N=19 dipolar particles as a function of the dipole moment of
the particles u* for B=5. (c)-(p) Normal modes of vibration for each subregion defined in (b).

XII of Fig. 5(b) present very different vibrational motions of ~ XIIb, where all particles are moving in the same direction
particles. In addition, the center of mass mode becomes the with the same amplitude. Notice that in these regions the
LNF mode in the configuration of regions IX, X, XI, and  particles are moving in different directions, indicating that
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FIG. 6. (Color online) Normal modes of rotation for the system
with N=19 particles and B=5. In each figure the subregions shown
in Fig. 5(b) are indicated. The color scale indicates the amplitude
and the direction of rotation of the particles.

the magnetic field B does not influence the direction of vi-
bration of particles.

In order to study the influence of the magnetic field in the
rotational motion of particles, Figs. 6(a)-6(n) show the rota-
tional components of the LNFs of particles in each region
shown in Fig. 5(b). We observe that the particles of the hex-
agonal configuration present an interesting rotational behav-
ior shown in Fig. 6(a). Unlike in the zero-magnetic-field
case, the particles with the lowest rotational amplitude of
oscillation are located in the center of the system. In addi-
tion, we observe that the particles with the same amplitude of
oscillation are located symmetrically with respect to the di-
rections parallel and perpendicular to the magnetic field. In
the case of the chain configurations, regions II-VI, the par-
ticles with the highest amplitude of oscillation are located in
the center of the chains. This scenario is clearly observed for
the configuration of region V [Fig. 6(e)]. This behavior is
due to the fact that the particles located in the center have
more nearest neighbors than those in the extreme of the sys-
tem and therefore there is more orientational coupling of the
dipole moments. In this manner, the center particles rotate
with the highest amplitude since they have more neighbor
particles to align. This is clearer for the configurations of
region V [Fig. 6(e)] because of its perfect symmetry with
respect to the x direction which is not observed in the con-
figuration of Figs. 6(b)-6(d) and 6(f). This scenario is not
observed when the system presents a 2Y-shaped configura-
tion shown in Figs. 6(g) and 6(h) (regions VII and VIII of
Fig. 5(b)). Increasing u* further, we observe that the con-
figuration corresponding to regions IX and XII in Fig. 5(b)
presents different rotational modes for the same configura-
tion, indicating that the rotational component of the LNF is
strongly dependent on the w* value. It is important to notice
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that the angular amplitude of particles is zero when w= V2
(i.e., when w=wy). This behavior is observed in the rota-
tional motion of the system of regions IXb, X, XI, and XIIb
which are shown in Figs. 6(j)-6(1) and 6(n), respectively.

B. Dependence on magnetic field B

In this section, we investigate the N=19 particle system
with fixed dipole moment u*=5 as a function of the mag-
netic field B applied parallel to the x axis of system. In Fig.
7(a) we present the radial distance of each particle with re-
spect to the center of the confinement potential as a function
of B for u*=5. Despite the constant value of u*, the system
exhibits several structural phase transitions indicated by ver-
tical dashed lines in Fig. 7(a). Figure 7(b) shows the distance
of each particle with respect to the x axis. As can be seen in
Fig. 7(b), the symmetry of the configuration with respect to
the x axis increases as a function of B. The configurations in
each region of Fig. 7(a) are shown in Figs. 7(c)-7(f). Up to
B=2 (region I), the particles are ordered into a single ring
[Fig. 7(c)]. At this B value, the structure changes to an inter-
esting nonsymmetric configuration which is a mixture of a
single chain and an elliptic ring around it [Fig. 7(d)]. This
nontrivial configuration [Fig. 7(d)] clearly shows the compe-
tition between the external forces, i.e., forces due to the mag-
netic field and the confinement potential.

In B~2.4 (region III), the system transits to a 2Y-shaped
configuration, which was also observed in the previous sec-
tion when the system was studied as a function of p*. In B
=~ 13 (region IV), the system configuration changes to two
parallel chains with different particles in each one. In order
to minimize the energy of the system, the distances of each
chain with respect to the x axis are different as can be ob-
served in region IV of Fig. 7(b). In this figure, we clearly
observe an increase of the system symmetry with respect to
the x axis when the magnetic field is increased. In general,
the dependence of the configuration on the magnetic field
and on the dipole moment are similar, i.e., the system struc-
ture changes from a shell structure to chains as a function of
w* for B fixed, and vice versa. Nevertheless, the transient
configurations found are different when we vary u* or B. In
addition, we note that the final configuration of the system is
composed of two chains [Fig. 7(f)] of particles instead of one
[Fig. 4(n)]. This is due to the fact that the attraction between
the particles is not large enough to form a single chain.
Therefore, we can conclude that the value of the magnetic
field B guides the symmetry of the system with respect to the
B direction, while the dipole moment u* controls the number
of chains parallel to it.

In Fig. 8(a), the frequencies of the normal modes of vi-
bration and rotation of the system are shown as a function of
B for u=5. It is divided in the same regions as defined in
Fig. 7(a). It is important to note that most frequencies do not
increase further when the magnetic field B is increased. On
the other hand, the frequency associated with the rotation of
the whole system, which is directly associated with the con-
finement potential, increases as a function of B, indicating
that the magnetic field also acts as an effective confinement
potential in one direction. The behavior of this frequency
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FIG. 7. (a) Radial position and (b) distance of each particle with
respect to the x axis of N=19 dipolar particles as a function of the
magnetic field B for fixed dipole moment u*=5. (c)—(f) The ground
state configuration of the system in different regions defined in (a).

shows that the energy necessary to excite the mode associ-
ated with the rotation of the whole system increases when
the magnetic field is increased. This is reasonable since the
increase of magnetic field decreases the circular symmetry of
the system.

In order to better understand the influence of the magnetic
field on the normal modes of the system we plot in Fig. 8(b)
the lowest nonzero normal-mode frequency as a function of
the magnetic field B. New subregions (Illa and ITIb) separat-
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FIG. 8. (a) Normal-mode frequency and (b) lowest nonzero fre-
quency (LNF) of N=19 dipolar particles as a function of magnetic
moment B for fixed dipole moment of particles u*=5. (c)—(g) Nor-
mal modes of vibration for each subregion defined in (b).

ing different B intervals are defined in addition to the regions
defined in Fig. 8(a). The vibrational motion of each particle
in each region of Fig. 8(b) are shown in Figs. 8(c)-8(g). At
regions IIIb and IV, the LNF corresponds to the mode asso-
ciated with the motion of the center of mass. In addition, we
observe that nontrivial configurations induce an interesting
vibrational mode of particles such as, for example, the con-
figuration corresponding to subregion Illa [Fig. 7(e)]. In or-
der to study the influence of the magnetic field on the angular
oscillation of the particles, Figs. 9(a)-9(e) show the rota-
tional component of the LNF mode for each region of Fig.
8(b). Notice that the system exhibits different rotational
modes for each configuration. As observed for the vibrations,
the rotational mode of the system in region III can be
changed by increasing the value of B, leading the system to a
scenario without rotation of particles [Fig. 9(d)] which is

031405-8



GROUND STATE AND NORMAL-MODE SPECTRA OF A...

Counter
Clockwise

No
Oscillation

(c)

Clockwise

FIG. 9. (Color online) Normal modes of rotation for the system
with N=19 particles and u*=5. In each figure the subregions de-
fined in Fig. 8(b) are indicated. The color scale gives the amplitude
and the direction of rotational oscillation of particles.

associated with the frequency of the center of mass [see Fig.
8(b)]. This fact shows the strong dependence of the modes
on the magnetic field B.

C. Dependence on the number of particles

Up to now, we have considered the specific example of a
system composed of N=19 particles. One may wonder how
general the conclusions are for systems with different num-
bers of particles. Therefore, we present now a study of the
structure and normal frequencies of the system as a function
of the number of particles N for fixed values of the dipole
moment p* and the magnetic field B.

1. Zero magnetic field

In order to study the self-assembled structure of the sys-
tem of dipole particles, Fig. 10(a) shows the radial position
of the particles in the ground state configuration of systems
with different numbers of particles N for u*=5 and B=0.
Figure 10(a) is divided into regions where the system exhib-
its diverse structures shown in Figs. 10(c)-10(e). As can be
observed, region I of Fig. 10(a) is characterized by systems
which present a kind of ferromagnetic configuration, i.e., all
particles are aligned in the absence of a magnetic field [Fig.
10(c)]. The arrangement of the particles in a line appears as
the ground state configuration for systems up to N=4 par-
ticles (region I). The ring configuration is found in region II,
i.e., for 5=<N=20 particles. It is important to note that the
late appearance of the ring configuration is due to the fact
that the energy between two dipole particles is minimum
when they are aligned. The critical value N=5, for which the
ring structure is obtained, increases with increasing u*. In
the present case, the line configuration is destroyed because
the parabolic confinement folds the chain of particles into a
closed line. The interparticle potential between the dipoles
also influences the ring configuration which becomes more
stable than in a system of charged particles. Indeed, we
found that the single ring configuration is the ground state up
to N=20 particles (N=5 particles in the case of charged par-
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FIG. 10. (a) Radial position and (b) normal-mode frequency as a
function of the number of particles N for u*=5 and B=0. (c)—(e)
The ground state configuration of the system for the three regions
defined in (a).

ticles [32]). For N=21 (region III), a second ring of particles
shows up, forming a structure of two rings (6,15) meaning
that there are six particles in the inner shell and 15 particles
in the outer one [see Fig. 10(e)].

The normal-mode spectrum is presented in Fig. 10(b) as a
function of N. As can be observed, the frequencies exhibit
jumps when the configuration changes discontinuously. In
addition, we observe that the highest value of frequency is
reached for a system with only a few particles and it does not
increase further with N. Thus, new frequencies arise with
values below the highest one, which is opposite to the case
of the charged particle system where the highest frequency
increases as a function of the number of particles [27].

2. In the presence of a magnetic field

In the following, systems with different numbers of par-
ticles N are studied in the case of a nonzero magnetic field B.
The radial position as a function of N for u*=5 and B=5 is
shown in Fig. 11(a). For 2<N<12 (region I), the particles
are ordered into a single chain along the direction of B [Fig.
11(d)]. Note that the line structure is the ground state con-
figuration for clusters with larger numbers of particles than
those in the zero-magnetic-field case. This indicates that the
number of particles in this structure increases with the mag-
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FIG. 11. (a) Radial position, (b) distance of each particles with
respect to the x axis, and (c) normal-mode frequency as a function
of the number of particles for u*=5 and B=5. (d)—(h) The ground
state configuration of the system for each region defined in (a).

netic field, which stabilizes them in a line shape. When the
system is composed of N=13 particles (region II), we find a
2Y-shaped configuration which is observed for systems up to
N=20 particles. Figures 11(e) and 11(f) present this structure
for clusters with N=13 and 15 particles, respectively. In re-
gion III (21 < N<25), the system consists of two chains [see
Fig. 11(g)]. Systems with 25<N<230 (region IV) particles
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consist of a mixture of a chain and a 2Y-shaped configuration
which can be observed in Fig. 11(h).

Although the system is being confined by a circular po-
tential, we found that the flux-closure configurations (e.g.,
rings) do not appear for any number of particles of the dipole
system in the presence of a magnetic field and u*=5. This
fact indicates that, in the case shown here, the magnetic field
determines the configuration of the system, changing the
symmetry of the system from circular to one that is parallel
to the x axis. In addition, we found that the magnetic field
also influences the appearance of the Y-shaped configuration
which was observed only in systems in the presence of a
magnetic field. It is important to note that the closed
Y-shaped configuration precedes the chain structure with a
larger number of chains when the number of particles is in-
creased. In other words, we observe that the closed Y-shaped
configuration is preferentially formed before a new chain of
particles. Therefore, we can conclude that the closed
Y-shaped configuration arises due to the increase of the den-
sity of particles in a chain, which disappears when a new
chain is formed.

Figure 11(c) shows the frequency spectrum as a function
of the number of particles N. The qualitative dependence of
the frequencies on N in the presence of a magnetic field is
similar to that of the system with B=0, i.e., the highest value
of the frequency is reached for a system with few particles,
and new frequencies appear for a larger number of particles
below this value. We found in the previous section that most
frequencies increase as a function of p* and remain practi-
cally unaltered as a function of B. Therefore, we conclude
that the behavior of the frequencies in Figs. 10(b) and 11(c)
is a consequence of the value of the dipole moment of the
particles and therefore it is rather similar in a system with or
without an applied magnetic field.

IV. CONCLUSION

Systems consisting of a finite number of magnetic dipoles
were analyzed as a function of the dipole moment of the
particles and the magnitude of an external magnetic field
applied parallel to the plane of the particles. The system of
dipole particles undergoes several structural phase transitions
as a function of the dipole moment and/or the magnetic field.
In particular, when the dipole moment of the particles is
increased at zero magnetic field, the hexagonal structure,
which is the ground state configuration of a system of par-
ticles with zero dipole moment, was deformed in order to
increase the structure symmetry, i.e., particles organize in
rings when the dipole moment of the particles increases.
When a magnetic field is applied, several different kinds of
configurations are found as a function of the dipole moment
of the particles like, for example, chains and Y-shaped struc-
tures, which were previously also encountered in experi-
ments on infinite systems.

We found that the system under the influence of a mag-
netic field changes its circular to line symmetry, showing that
the dipole-dipole interaction in a magnetic field dominates
over the confinement potential. In addition, the system ex-
hibits a special configuration, namely, a closed Y-shaped
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structure which occurs when two Y-shaped configurations are
connected. This structure is attributed to the high density in
one direction due to the balance between the confinement
potential and the magnetic field. The dependence on the
magnetic field was also studied. The system presented an
interesting mixture of chain and ring structures for some val-
ues of the magnetic field.

The normal-mode frequencies were also studied as a func-
tion of the dipole moment and/or magnetic field. The vibra-
tional and rotational oscillation of particles, associated with
the lowest nonzero frequency, were studied in detail. In the
case of zero magnetic field, all frequencies, except those of
the center of mass and rotation modes of the system, increase
as a function of the dipole moment of particles. In addition,
it was found that the behavior of the LNF is also determined
by the rotational motion of the particles and the central par-
ticle of the hexagonal structure exhibits the highest ampli-
tude of rotation. Therefore, the rotational motion of particles
was shown to be very important in determining the behavior
of the LNFs and as a consequence in predicting the stability
of the system. In the presence of a magnetic field, it was
found that, in addition to most of the frequencies, the fre-
quency of rotation of the system also increases as a function
of the dipole moment of the particles. In this case, only the
frequency associated with the normal mode of the center of
mass remains constant. It was observed that the magnetic
field induces a chain structure but produces no effect on the
direction of oscillation of the particles. In the hexagonal
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structure, the particles with the highest amplitude of rota-
tional oscillation are located at the edge of the system. When
the magnetic field is varied, the frequencies remain practi-
cally unaltered except the one associated with the rotation of
the whole system, which changes its value as a function of
the magnetic field.

The dependence on the number of particles was also in-
vestigated. In the zero-magnetic-field case, the system with
few number of particles (N<5) showed a stable line con-
figuration. In addition, in a dipolar system the maximum
number of particles in a single ring (N=20 when p*=5) was
found to be larger than that for Coulomb interparticle inter-
action (N=5). Systems with a large number of particles (20
<N <30 for u*=35) show a structure composed of two rings.
In the nonzero-magnetic-field case, the system exhibits
chains that are more stable and therefore they can hold a
larger number of particles (N=12 for u*=5 and B=5). Due
to the fact that the magnetic field acts also as a unidirectional
confinement potential, ring structures were not observed.
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