
PHYSICAL REVIEW E 85, 051404 (2012)

Bilayer crystals of charged magnetic dipoles: Structure and phonon spectrum
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2Centro de Tecnologia, Bloco 710, Universidade Federal do Ceará, Campus do Pici, 60455-760 Fortaleza, Ceará, Brazil
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We study the structure and phonon spectrum of a two-dimensional bilayer system of classical charged dipoles
oriented perpendicular to the plane of the layers for equal density in each layer. This system can be tuned through
six different crystalline phases by changing the interlayer separation or the charge and/or dipole moment of the
particle. The presence of the charge on the dipole particles is responsible for the nucleation of five staggered
phases and a disordered phase which are not found in the magnetic dipole bilayer system. These extra phases are
a consequence of the competition between the repulsive Coulomb and the attractive dipole interlayer interaction.
We present the phase diagram and determine the order of the phase transitions. The phonon spectrum of the
system was calculated within the harmonic approximation, and a nonmonotonic behavior of the phonon spectrum
is found as a function of the effective strength of the interparticle interaction. The stability of the different phases
is determined.
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I. INTRODUCTION

Strongly repulsive interacting particles crystallize for a cer-
tain range of density and temperature. This has been found in
systems of rather different nature and therefore the study of the
structural and dynamical properties of such a crystalline phase
is of fundamental interest. The crystallization phenomenon
of strongly interacting particles was originally predicted for
an electron gas [Wigner crystal (WC)] by E. P. Wigner in
1934 [1]. Up to now, the original three-dimensional (3D) WC
of electrons is not yet observed experimentally mainly due
to defects and imperfections in real lattice structures. But
experimental evidence of the WC was found in 1979 in a
two-dimensional (2D) system of electrons on the surface of
liquid helium [2]. Nowadays, the term Wigner crystal is used
in a broad sense for the crystalline state of clusters of strongly
interacting particles. Such Wigner crystallization has also been
observed in atomic and molecular clusters [3–5] and in several
nonelectronic classical systems as colloids [6–11], complex
dusty plasma [12], and metallic spheric balls [13].

For the particular case of classical systems (e.g., charged or
magnetic colloidal particles [14]), crystallization is observed
if the interaction potential energy overcomes the kinetic
energy of the particles and correlation effects dominate the
long-range structure of the system [15]. More specifically,
the thermodynamic state of the system is characterized by
the coupling parameter �, defined as the average of the ratio
between the interaction potential energy and the kinetic energy.
For a 2D classical system of charged particles with Coulomb
interaction � = q2√πn/kBT , where q is the charge of each
particle, n the density, kB the Boltzmann constant, and T the
temperature. For � < 1, the kinetic energy largely dominates
the interacting term and the system behaves as a classical
gas. For intermediate values 1 � � � 100, particles become
more correlated and a liquid state is found. For � > 100,
the interacting potential energy dominates the kinetic energy,
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particles become strongly correlated and the system typically
transits to a crystalline phase for � ∼ 130.

In a 2D system of purely repulsive interacting particles the
ground-state configuration is found to be the hexagonal lattice
[16,17]. However, a more interesting scenario is observed
if a 2D system of particles with pure repulsive interaction
is arranged in a bilayer structure. In this case, the set of
possible ground-state configurations is richer, and many other
2D structures, not observed in the single-layer case, now
appear as the minimum energy configuration. Goldoni and
Peeters [18] showed that the hexagonal lattice is the ground
state only when the separation between layers is zero or larger
than a critical value. In the latter case, the hexagonal lattice in
each layer are displaced with respect to each other (staggered
hexagonal phase). For intermediate distances between the
layers, staggered square, rectangular, and rhombic phases
become the ground state.

In a 2D system of magnetic dipoles oriented perpendicu-
larly to the layers, Lu et al. [19] showed that, independently
of the distance between the layers, the hexagonal phase is the
minimum energy structure in each layer, and the dipoles in the
different layers are aligned along the direction perpendicular to
the layers (matching hexagonal phase). In addition, a reentrant
melting temperature, which was related to the anisotropic
nature of the dipole interaction, was predicted in this case.
Magnetic 2D systems of colloidal particles appear yet in many
interesting recent studies [9,10,20–22].

Motivated by modern technical methods of synthesizing
particles and the assembly of colloidal particles in controlled
structures [23] we study in this paper a 2D classical bilayer
system of charged magnetic dipoles directed perpendicular
to the layers (which can be realized by the application of
a magnetic field). Such particles have recently been produced
using magnetic colloidal particles [7] with electric stabilization
[24]. Note that in an electric stabilized colloidal system the
charge of the colloids can in principle be controlled by the
PH of the solution by adding or removing salt to or from
the solvent [25]. Furthermore the magnetic moment of the
paramagnetic particles is tunable by the strength of the external
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magnetic field. In a single layer both the Coulomb and the
magnetic interaction lead to a repulsion between the particles
favoring the formation of a 2D Wigner lattice. Between the
layers the particles exert a repulsive Coulomb interaction
while the magnetic interaction is attractive. Depending on
the relative strength between the magnetic and Coulomb
interaction the particles in both layers tend to be staggered
or on top of each other. In the present paper, we study the
ground-state configurations and the frequencies of the phonon
modes as a function of the separation between the layers and
a parameter which is related to the ratio between the dipole
moment (μ) and the charge (Q) of the particles (λ = μ2n/Q2,
with n the density of particles).

Our paper is organized as follows. In Sec. II we introduce
the model, define the important parameters used to characterize
the system and calculate the total energy of the system. In
Sec. III the results for the ground-state configurations are
presented and discussed as a function of the separation between
the layers and λ. In Sec. IV we present the methodology used
to calculate the phonon spectrum and discuss the numerical
results. Our conclusions are given in Sec. V.

II. MODEL

We study a two-dimensional classical crystal of charged
dipole particles with total density n arranged in a bilayer
structure. The particles are evenly distributed over the layers
(xy plane), which are separated by a distance d along the
z axis. Each particle has charge Q and magnetic dipole
moment �μ = μêz oriented perpendicular to the layers. Thus,
the interparticle interaction consists of a repulsive Coulomb
term Q2/|�r1 − �r2| and a dipole interaction term μ2/|�r1 − �r2|3.
For convenience we included the dielectric constant ε of the
medium into Q2 and therefore, Q/

√
ε is the real charge of the

particles.
In order to confine the colloidal particles in each layer

into a plane one can make use of, for example, glass plates.
Because of the difference between the dielectric constants
of the glass plates and the water environment where the
colloids are moving in, this will lead to image charges as
were, for example, discussed by Peeters and Wu [26]. But
because the dielectric constant of water (ε = 80) is much larger
than of the confining glass plates the induced image charges
have the same charge as the colloidal particles. This will
have two effects: (1) The colloidal particles will be repelled
by the glass plates and will therefore form a 2D layer in the
middle between the two glass plates, and (2) the intercolloid
repulsive interaction will increase which can, to some extent,
be modeled by replacing the charge Q by an effective charge
Q∗ > Q. Therefore, including this dielectric mismatch effect
will not qualitatively modify our results.

Typically we consider colloidal particles containing mag-
netic ions exhibiting paramagnetic behavior and thus a
magnetic field is applied in the z direction aligning all
magnetic moments in the z direction. The considered crystal
structures are 2D lattices in which the unit cell consists of two
particles, one in each layer, where we will label the lattices
in different layers by A and B. The equilibrium positions of
the particles in each layer are given by �RA = l1�a1 + l2�a2, and
�RB = l1�a1 + l2�a2 + �c, where l1 and l2 are integers, �a1 and �a2

are the primitive vectors; �c is a two-dimensional vector which
describes the shift of lattice B with respect to A in the xy

plane. For �c = 0 the lattices are not displaced, and are exactly
on top of each other (matched case). The case �c �= 0 implies
staggered lattices. Because of equal density of particles in both
layers, the lattice structure in both layers is the same.

The total interaction energy is given by

Et = Et
el + Et

mag, (1)

with the Coulomb interaction energy,

Et
el = 1

2

∑
RA �=R′

A

Q2

| �RA − �R′
A| + 1

2

∑
RB �=R′

B

Q2

| �RB − �R′
B |

+
∑

RA,RB

Q2√
| �RA − �RB |2 + d2

, (2)

where d is the separation between the layers. The dipole-dipole
interaction energy is

Et
mag = 1

2

∑
RA �=R′

A

μ2

| �RA − �R′
A|3 + 1

2

∑
RB �=R′

B

μ2

| �RB − �R′
B |3

+
∑

RA,RB

μ2(| �RA − �RB |2 − 2d2)

[| �RA − �RB |2 + d2]
5
2

. (3)

Since the layers are equivalent, it is convenient to write the
total energy per particle E as

E = Et

N
= Eel + Emag, (4)

where the total Coulomb (Eel) and magnetic (Emag) energy per
particle can be split as

Eel = 1
2 (E0E + EIE), (5a)

Emag = 1
2 (E0M + EIM ), (5b)

where

E0E =
∑
�R �=�0

Q2

| �R| , (6a)

E0M =
∑
�R �=�0

μ2

| �R|3 , (6b)

are the Coulomb and magnetic interaction energy per particle
in each layer, respectively, and �R = l1�a1 + l2�a2. On the other
hand,

EIE =
∑

�R

Q2

(| �R + �c|2 + d2)1/2
, (7a)

EIM =
∑

�R

μ2(| �R + �c|2 − 2d2)

(| �R + �c|2 + d2)5/2
, (7b)

are the Coulomb and magnetic interaction energy per particle
between particles in distinct layers, respectively. Following
the procedure developed in Refs. [16–19] we define now the
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auxiliary functions:

T0(�r,�q) = e−i �q·�r ∑
�R

ei �q·(�r− �R)

|�r − �R| − 1

r
, (8a)

TI (�r,�q) = e−i �q·�r ∑
�R

ei �q·(�r− �R+�c)

[|�r − �R + �c|2 + d2]1/2
, (8b)

ψ0(�r,�q) = ei �q·�r ∑
�R �=�0

e−i �q·(�r+ �R)

|�r + �R|3 , (8c)

ψI (�r,�q) = ei �q·�r ∑
�R

(
e−i �q·(�r+ �R+�c)

|�r + �R + �c|3 + −3d2e−i �q·(�r+ �R+�c)

|�r + �R + �c|5
)

.

(8d)

The function ψI (�r,�q) can also be written as

ψI (�r,�q) = ψI1(�r,�q) − 3d2ψI2(�r,�q), (9)

with

ψI1(�r,�q) =
∑

�R

e−i �q·( �R+�c)

|�r + �R + �c|3 , (10a)

ψI2(�r,�q) =
∑

�R

e−i �q·( �R+�c)

|�r + �R + �c|5 , (10b)

where |�r + �R + �c| ≡ (|�r + �R + �c|2 + d2)1/2. Using Eqs. (8)–
(10) we can write Eqs. (6) and (7) as

E0E = Q2 lim
�r→0

T0(�r,�0), (11a)

EIE = Q2 lim
�r→0

TI (�r,�0), (11b)

E0M = μ2 lim
�r→0

ψ0(�r,�0), (11c)

EIM = μ2 lim
�r→0

ψI (�r,�0). (11d)

Due to the long-range nature of the interactions, we use
the Ewald summation method in order to improve the conver-
gence of the energy expressions. Therefore, for the Coulomb
interaction, Eqs. (8a) and (8b) are rewritten as [16–18]

T0(�r,�q) =
√

n/2
∑

�G
e−i(�q+ �G)·�r�

( |�q + �G|2
2πn

)

+
√

n/2
∑
�R �=�0

e−i �q· �R�(πn|�r − �R|2/2)

+
√

n/2�(πn|�r|2/2) − 1

r
, (12a)

TI (�r,�q) =
√

n/2
∑

�G
e−i(�q+ �G)·�re−i �G.�c�

( |�q + �G|2
2πn

,πη2

)

+
√

n/2
∑

�R
e−i �q·( �R−�c)�(π [n|�r− �R+�c|2/2+η2]),

(12b)

where G are arbitrary reciprocal lattice vectors given by
�G = l1 �b1 + l2 �b2 (l1, l2 are integers) and �b1, �b2 are the primitive
translation vectors of the reciprocal lattice. The functions,

�(x) =
√

π

x
erfc(

√
x), (13)

and

�(x,y) = 1

2

√
π

x
[e

√
4xyerfc(

√
x + √

y)

+ e−√
4xyerfc(

√
x − √

y)] (14)

rapidly converge to zero for large values of their arguments.
erfc(x) is the complementary error function, and η = d

√
n/2

is a dimensionless parameter proportional to the separation
between the two layers. By considering Eqs. (13) and (14),
Eqs. (11a) and (11b) can be written as

E0E = Q2
√

n/2A, (15)

where

A = 2
∑
�R �=�0

�(πn| �R|2/2) − 4, (16)

and

EIE = Q2
√

n/2B(η), (17)

where,

B(η) =
∑

�R
�(π [n| �R + �c|2/2 + η2])

+
∑
�G�=�0

e−i �G·�c�
( |�q + �G|2

2πn
,πη2

)

+ 2
{
πη × erfc(

√
πη) − e−πη2}

. (18)

A similar approach is considered for the magnetic inter-
action. In this case, following Ref. [19], rapidly convergent
expressions are obtained:

ψ0(�r,�q) = πn

2

∑
�G

ei(�q+ �G)·�r
[

4ε√
π

e−|�q+ �G|2/4ε2 − 2|�q + �G|erfc

( |�q + �G|
2ε

)]
+

[
2εe−ε2r2

√
πr2

− erf(εr)

r3

]

+
∑
�R �=�0

e−i �q· �R
[

erfc(ε| �R + �r|)
| �R + �r|3 +

(
2ε√
π

)
e−ε2| �R+�r|2

| �R + �r|2
]
, (19a)
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ψI (�r,�q) = πn

2

∑
�G

ei(�q+ �G)·�rei �G·�c
[

4ε√
π

e
− |�q+ �G|2

4ε2 −ε2d2 − e−|�q+ �G|d |�q + �G|erfc

( |�q + �G|
2ε

− εd

)

− e|�q+ �G|d |�q + �G|erfc

( |�q + �G|
2ε

+ εd

)]
+

∑
�R

e−i �q·( �R+�c)

[
erfc(ε| �R + �c + �r|)

| �R + �c + �r|3 +
(

2ε√
π

)
e−ε2| �R+�c+�r|2

| �R + �c + �r|2

− 3d2

(
erfc(ε| �R + �c + �r|)

| �R + �c + �r|5 +
(

2ε

3
√

π

)
(3 + 2ε2| �R + �c + �r|2)e−ε2| �R+�c+�r|2

| �R + �c + �r|4
)]

, (19b)

where | �R + �c + �r| ≡ (| �R + �c + �r|2 + d2)1/2, and the param-
eter ε > 0 is related to the inverse of the average distance
between particles in the same layer (i.e., ε = 1/r0 = √

πn/2).
In this case, Eqs. (11c) and (11d) can be written, respectively,
as

E0M = μ2(n/2)3/2C, (20)

where

C =
∑

�G

[
4πe−| �G|2/2πn − 2| �G|π√

n/2
erfc

( | �G|
2
√

πn/2

)]

+
∑
�R �=�0

[
erfc(

√
πn/2| �R|)

(n/2)3/2| �R|3 +
(

4

n

)
e−πn| �R|2/2

| �R|2
]

− 4π

3
,

(21)

and

EIM = μ2(n/2)3/2D(η), (22)

where

D(η) =
∑

�G
ei �G·�c

[
4πe− | �G|2

2πn
−πη2

− π | �G|√
n/2

e−| �G|η/
√

n/2erfc

( | �G|
2
√

πn/2
− √

πη

)

− π | �G|√
n/2

e| �G|η/
√

n/2erfc

( | �G|
2
√

πn/2
+ √

πη

)]

+
∑

�R

[
erfc(

√
πn/2| �R + �c|)

(n/2)3/2| �R + �c|3
(

1 − 6η2

n| �R + �c|2
)

+ 4e−πn| �R+�c|2/2

n| �R + �c|2
(

1 − 6η2

n| �R + �c|2 − 2πη2

)]
. (23)

Finally, the total energy per particle defined in Eq. (4) can
be written as

E

Q2
√

n
= 1

2
√

2
(A + B(η)) + μ2n

Q2

1

25/2
(C + D(η)). (24)

Now we define the dimensionless parameter,

λ = μ2n

Q2
, (25)

which relates the density, the magnetic moment, and the charge
of each particle. It is a measure of the relative strength of the
magnetic interaction as compared to the Coulomb interaction.

In this case, Eq. (24) takes the form,

E

Q2
√

n
= 1

2
√

2
(A + B(η)) + λ

25/2
(C + D(η)). (26)

Because λ is associated with the relative strength of the
dipole-dipole interaction with respect to the charge-charge
interaction, it can be varied experimentally, for example,
through an external magnetic field. Notice that the total energy
of the system is only a function of λ and η and therefore the
zero temperature (T = 0) phase diagram can be represented
in (λ,η) space. The density enters only in the energy (i.e.,
E0 = Q2√n) and length (r0 = √

2/πn) scales of the problem
and in the parameter λ.

III. GROUND-STATE CRYSTAL STRUCTURES

In this section we present the analytical results for the
structure of the T = 0 configurations (ground state).

The ground-state configurations were obtained numerically
by comparing the total energy [Eq. (26)] of the nine possible
crystalline structures, described in Table I, for both �c = 0
(matching) and �c �= 0 (staggered) cases as a function of λ and
η. From all the considered structures the one with the lowest
energy is chosen as the ground-state configuration associated
with the particular set of parameters (λ, η).

An example of the total energy as a function of η (λ = 0.04)
for the lattices shown in Table I is presented in Fig. 1. Notice
that the energy curves cross each other or merge with (or
split away from) one another, and these facts are associated
with first- and second-order structural phase transitions, which
can be observed more clearly in Fig. 1(b). For a first-order
structural phase transition, the energy is continuous but the first
derivative of the energy with respect to η is discontinuous. In
this case, the energy curves associated with different structures
cross each other. For a second-order transition, the energy and
its first derivative are continuous, but the second derivative of
the energy with respect to η is discontinuous. In this case, the
energy curves merge with (or split away from) one another.
The transition from the staggered rhombic (SRhomb) to the
staggered hexagonal (SH) phase at η ≈ 0.65 is an example of a
first-order structural transition, while a second-order structural
transition is observed when the system changes from the
staggered square (SS) to the SRhomb phase. Notice that such
phases differ from each other only in the aspect ratio a2/a1 and
angle θ between the primitive vectors. As shown in Fig. 1(c)
for η ≈ 0.51 the system starts to change continuously from the
SS (sinθ = 1; a2/a1 = 1) to the SRhomb phase (sinθ �= 1).
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TABLE I. Lattice parameters of the different crystalline structures. a is the average nearest neighbor distance which is determined by the
density and the configuration (see last column). For each case, �a1 and �a2 are the primitive lattice vectors, and �c is the interlattice displacement
vector. �b1 and �b2 are the primitive vectors of the reciprocal lattice. n is the density. The aspect ratio of phases II and VII is α = a2/a1. In phases
IV and IX, the angle between the lattice vectors �a1 and �a2 is θ .

Phases �a1/a �a2/a �c �b1/(2π/a) �b2/(2π/a) na2/2

I. One-component hexagonal (OCH) (1,0) (0,
√

3) (�a1 + �a2)/2 (1,0) (0,1/
√

3) 1/
√

3
II. Staggered rectangular (SRect) (1,0) (0,α) (�a1 + �a2)/2 (1,0) (0,1/α) 1/α

III. Staggered square (SS) (1,0) (0,1) (�a1 + �a2)/2 (1,0) (0,1) 1
IV. Staggered rhombic (SRhomb) (1,0) (cos θ, sin θ ) (�a1 + �a2)/2 (1,− cos θ/sin θ ) (0,1/sin θ ) 1/sin θ

V. Staggered hexagonal (SH) (1,0) (1/2,
√

3/2) (�a1 + �a2)/3 (1,−1/
√

3) (0,2/
√

3) 2/
√

3
VI. Matching hexagonal (MH) (1,0) (1/2,

√
3/2) 0 (1,−1/

√
3) (0,2/

√
3) 2/

√
3

VII. Matching rectangular (MRect) (1,0) (0,α) 0 (1,0) (0,a1/a2) 1/α

VIII. Matching square (MS) (1,0) (0,1) 0 (1,0) (0,1) 1
IX. Matching rhombic (MRhomb) (1,0) (cos θ, sin θ ) 0 (1,− cos θ/sin θ ) (0,1/sin θ ) 1/sin θ

We summarize our results in the phase diagram of Fig. 2.
The different phases are separated by solid (dotted) lines for
first (second)-order structural phase transitions. In the point
(λ, η) = (0, 0) the system is found in the one-component
hexagonal (OCH) phase, where particles are arranged in a
single-layer triangular lattice and the interparticle interaction
is only electrostatic. Notice that of the studied nine phases
only six are found to be able to become the ground state in a
certain area of the (λ, η) plane. The OCH phase is also found
along the line η = 0, where the magnetic interaction is present
(λ �= 0), but in this case the interparticle interaction is only
repulsive, since the dipoles are all aligned along the z axis
and the interlayer separation is zero. This is the well-known
2D Wigner crystal phase [16]. Along the line λ = 0 the OCH
phase is found only in a very small interval of η. In fact, already
for η = 0.006 the OCH phase is no longer the ground state. The
line λ = 0 corresponds to the case in which the interparticle
interaction is only electrostatic. In this case, the system can be
found in five energetically favorable staggered configurations
(phases I, II, III, IV, and V; see Table I) as a function of η. The
latter results are in complete agreement with those discussed
earlier in Ref. [18].

In general, when the magnetic interaction is taken into
account (λ �= 0) it is possible to find a configuration in which
the dipoles in distinct layers are positioned on top of each other
(matching configuration). This phase was absent in Ref. [18]
and is a consequence of the attractive magnetic interaction
between the particles in different layers. We find that the
matching configuration is always reached for a high enough
value of λ (which is a function of η) through a first-order
structural transition (Fig. 2). In this case, the system is always
found in the MH phase, where particles in distinct layers
are arranged in a hexagonal lattice and their dipoles are
aligned along the z axis. Recently, Xin Lu et al. showed
that the MH phase is the ground-state configuration for a
2D classical bilayer system of dipoles oriented perpendicular
to the plane of the layers, independently of the interlayer
separation and density [19]. They did not include any Coulomb
interaction and therefore it corresponds to the case λ → ∞. An
interesting point here is that the charging of the dipole particles
allows the bilayer system to crystallize in different lattice
structures which are not possible when only the magnetic
dipole interaction is present.

The critical value of λ, where the system changes from
a staggered (rectangular, square, rhombic, hexagonal) to the
MH phase, is a monotonic increasing function of η. As seen
in Fig. 2 we notice two distinct behaviors of λ(η). Initially,
there is a fast increase of λ with increasing η, followed by an
almost constant λ(η). Such a behavior can be qualitatively
understood taking into account the range of the Coulomb
and magnetic dipole interparticle interaction. An interparticle
interaction is defined as short range if it decreases faster
than 1/rα , where α is the dimensionality of the system [27].
In the opposite case, the interaction is long range. In this
sense the Coulomb interaction can be considered as long
range and the magnetic dipole interaction as short range.
For small η the separation between layers is small and the
dipole interaction is dominant over the electric interaction.
As a consequence, the transition to the MH phase, which
is the ground state for a system with only magnetic dipole
interaction, occurs for small λ. For a large enough separation
between the layers the coupling between dipoles in distinct
layers (the interlayer interaction) becomes very small. For
example, for η = 0.8 the interlayer interaction is only 0.3% of
the total energy. As a consequence, for high enough values of
η the layers become independent, and it becomes numerically
impossible to determine if the SH or MH phase is the ground
state; for example, for η = 2.3 (λ ≈ 0.044) the absolute
difference in energy between the SH and MH phases is of the
order of 10−8, which is the level of our numerical accuracy.
In this case, the total energy is twice the energy of each
layer.

A more detailed analysis of the critical λ(η) which defines
the transition from a staggered to the MH phase identifies
a clear crossover between the fast (strong coupling between
dipoles in distinct layers) and slow increase of λ(η). This
is shown in Fig. 3, where a log × log plot of the critical
λ(η) curve which separates the staggered phases from the
MH phase is presented. As can be seen, there is a power-law
increase of λ(η) for η � 0.15 with exponent β ∼ 1.92. Thus
for η � 0.2 the critical distance between the layers scales
as d ∝ (μ/Q)1.04n0.021, which indicates a weak dependence
on the density and an almost linear dependence on the ratio
μ/Q. This scaling behavior can be understood as follows: The
interlayer dipole interaction is ∼μ2/d3 while the Coulomb
interlayer interaction is ∼Q2/d and therefore we expect the
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(b)

(c)

(a)

FIG. 1. (Color online) (a) The total energy per particle (in units
of E0 = Q2√n) as a function of η for the different phases presented
in Table I. (b) Detailed view of (a). (c) The sine of the angle between
the primitive vectors �a1 and �a2 of the SRhomb phase as a function
of η. The inset in (c) shows how the aspect ratio a2/a1 for the SRect
phase depends on η.

staggered to matched transition approximately when Q2/d ∼
μ2/d3 and thus λ ∼ η.

To conclude, we also present a hatched area in the (λ,η)
phase diagram (Fig. 2). It corresponds to a disordered phase
which cannot be obtained from our analytical calculations. The
discussions concerning such a phase will be postponed until
the next section.

IV. DYNAMICAL PROPERTIES

Now we turn our discussion to the dynamical properties of
the system. Such a study in addition will give us information on

FIG. 2. (Color online) The zero-temperature phase diagram
where λ = μ2n/Q2 and η = d

√
n/2. First (second)-order structural

phase transitions are indicated by solid (dotted) lines. The labels
indicating the crystalline phases are given in Table I. The hatched
area corresponds to the disordered phase.

the stability of the different phases considered in the previous
section. The phonon spectra are calculated within the harmonic
approximation. The phonon frequencies for a general lattice
are directly obtained from the dynamical matrix through the
square root of the eigenvalues. Since we are studying a 2D
crystal with two particles per unit cell (one in each layer), the
dynamical matrix corresponds to a 4 × 4 matrix which can be
written as

D =
(

DAA DAB

DBA DBB

)
, (27)

where DAA, DAB , DBA, DBB are 2 × 2 block matrices
which include the intra- and interlayer electric and magnetic
interactions. The labels A and B describe the distinct layers,
and each block matrix is of the form,

[Dτν(�q)]αβ = [
Dτν

el (�q)
]
αβ

+ [
Dτν

mag(�q)
]
αβ

, (28)

where τ,ν = A,B; α,β = x,y. Following the procedure de-
scribed in Ref. [18] and by using Eqs. (12a), (12b), (19a),

FIG. 3. (Color online) The log × log plot of the critical λ(η) curve
which separates the staggered phases from the MH phase taken from
Fig. 2.
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and (19b), the different terms present in Eq. (28) are given
by

[
DAA

el (�q)
]
αβ

= 1

m

{[
SAA

el (0)
]
αβ

+ [
SAB

el (0)
]
αβ

− [
SAA

el (�q)
]
αβ

}
,

(29a)[
DAB

el (�q)
]
αβ

= 1

m

{−[
SAB

el (�q)
]
αβ

}
, (29b)

[
DAA

mag(�q)
]
αβ

= 1

m

{[
SAA

mag(0)
]
αβ

+ [
SAB

mag(0)
]
αβ

− [
SAA

mag(�q)
]
αβ

}
,

(29c)[
DAB

mag(�q)
]
αβ

= 1

m

{−[
SAB

mag(�q)
]
αβ

}
, (29d)

where m is the mass of each particle and[
SAA

el (�q)
]
αβ

= −Q2 lim
r→0

∂α∂βT0(�r,�q) = −Q2√ns[E(�q)]αβ,

(30a)[
SAB

el (�q)
]
αβ

= −Q2 lim
r→0

∂α∂βTI (�r,�q) = −Q2√ns[F (�q,η)]αβ,

(30b)[
SAA

mag(�q)
]
αβ

= −μ2 lim
r→0

∂α∂βψ0(�r,�q) = −μ2√ns[G(�q)]αβ,

(30c)[
SAB

mag(�q)
]
αβ

= −μ2 lim
r→0

∂α∂βψI (�r,�q) = −μ2√ns[H (�q,η)]αβ.

(30d)

The auxiliary functions [E(�q)]αβ , [F (�q,η)]αβ , [G(�q)]αβ , and
[H (�q,η)]αβ are given by

[E(�q)]αβ = −
∑

�G
(�q + �G)α(�q + �G)β�

( |�q + �G|2
4πns

)
+ lim

r→0

∑
�R �=�0

e−i �q· �R∂α∂β�(πns |�r − �R|2) + δαβ

4

3
πns, (31a)

[F (�q,η)]αβ = −
∑

�G
(�q + �G)α(�q + �G)βe−i �G·�c�

( |�q + �G|2
4πns

,πη2

)
+ lim

r→0

∑
�R

e−i �q·( �R−�c)∂α∂β�(π [ns |�r − �R + �c|2 + η2]), (31b)

[G(�q)]αβ = −πns

∑
�G

(�q + �G)α(�q + �G)βϒ

( |�q + �G|
2ε

,0

)
+ lim

r→0

∑
�R �=�0

e−i �q· �R∂α∂β�1(|�r + �R|) + δαβ

8ε5

5
√

π
, (31c)

[H (�q,η)]αβ = −πns

∑
�G

(�q + �G)α(�q + �G)βei �G·�cϒ
( |�q + �G|

2ε
,εd

)
+ lim

r→0

∑
�R

e−i �q·( �R+�c)∂α∂β�2(|�r + �R + �c|), (31d)

and the functions ϒ(x,y), �1(x), and �2(x) which appear in Eqs. (31c) and (31d) are

ϒ(x,y) = 4ε√
π

e−x2−y2 +
∑
±

(−2)εxe±2xyerfc(x ± y), (32a)

�1(x) = erfc(εx)

x3
+ 2εe−ε2x2

√
πx2

, (32b)

�2(x) = erfc(εx)

x3
+ 2εe−ε2x2

√
πx2

− 3d2

[
erfc(εx)

x5
+ 2ε(3 + 2ε2x2)e−ε2x2

3
√

πx4

]
. (32c)

By using the relations ε = 1/r0 = √
πns , ns = n/2, and λ = μ2n/Q2 the terms of the matrix given in Eq. (27) become

[DAA(�q)]αβ = −Q2n3/2

m

[
1

23/2ns

{[E(0)]αβ + [F (0,η)]αβ − [E(�q)]αβ} + λ

(2ns)5/2
{[G(0)]αβ + [H (0,η)]αβ − [G(�q)]αβ}

]
,

[DAB(�q)]αβ = Q2n3/2

m

[
1

23/2ns

[F (�q,η)]αβ + λ

(2ns)5/2
[H (�q,η)]αβ

]
.

The two layers of particles are equivalent. In this case,
DAA = DBB , DAB = [DBA]†, and the dynamical matrix D

may now be calculated as a function of λ, �q, and η. In general,
the dynamical matrix is complex Hermitian. Therefore, it is
possible to apply a unitary transformation in order to generate
a real and symmetric matrix. Such a transformation is given
by the matrix,

U = 1√
2

(
I2 iI2

iI2 I2

)
, (33)

where I2 is the 2 × 2 identity matrix, and

D̄ = UDU−1 =
(

DAA + ImDAB ReDAB

ReDAB DAA − ImDAB

)
, (34)

where ReDAB and ImDAB are the real and imaginary parts
of DAB , respectively. Since a unitary transformation does not
change the eigenvalues, we may consider now the real and
symmetric matrix D̄ in order to obtain the eigenvalues and
the phonon frequencies. For each (λ,η), which specify a given
structure in the phase diagram shown in Fig. 2, we vary the
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wave vector �q along a given symmetry direction of the first
Brillouin zone of the corresponding phases. For each value of
�q we generate a 4 × 4 matrix which gives us four eigenvalues
ω2

j (�q)/ω2
0, with j = 1,...,4 and ω2

0 = Q2n3/2/m, and for each
eigenvalue a corresponding eigenvector �e(�q,j ) which indicates
the direction of the phonon oscillation.

In our analysis of the dispersion relation we will present
only frequencies which are real positive [i.e., ω2

j (�q)/ω2
0 � 0].

For ω2 < 0 the frequencies are imaginary, which means that
the amplitudes of particle oscillation become an exponentially
increasing function of time. In this case the crystalline structure
is unstable and will not exist. As commented earlier, in all
phases studied in the previous section there are two particles
per unit cell, one in each layer. As a consequence, there are two
acoustic and optical modes which are associated with the in-
phase and out-of-phase vibrations of particles in the unit cell,
respectively. The acoustic branch is characterized by ω(�q) →
0 for �q → 0, while in the optical branch ω(�q) → constant
in the limit �q → 0. Besides, the acoustic and optical branches
may also be defined as longitudinal, �e ‖ �q, and transverse mode
[28], �e ⊥ �q. Due to the extended parameter space, we present
here only some examples which illustrate the general behavior
of the phonon spectrum.

In general, we find qualitative distinct behaviors for the
normal mode spectra for the staggered phases and for the
matching hexagonal phase. With exception of the SH phase,
for a given staggered phase the phonon spectrum is almost
independent of λ, but it depends strongly on the parameter η. In
addition, for a given high-symmetry direction of the reciprocal
space we found a monotonic increasing (or decreasing)
behavior of the phonon frequencies as a function of η. As an
example, the phonon frequencies for the SS phase along the
high-symmetry directions of the reciprocal space are presented
in Fig. 4 for λ = 0.002 and λ = 0.029 and different η. The
high-symmetry points in the first Brillouin zone are indicated
in the insets. Notice that for both values of λ, which are one
order of magnitude distinct, the same qualitative behavior
is found for the phonon frequencies as a function of the
wave vector. The phonons soften with increasing η along
the �X direction. Along the XM direction, the normal mode
frequencies are degenerate for any value of η. The lowest
normal mode frequencies cross at a specific q value which is
independent of η. Notice that in the �M direction the lowest
energy phonons soften with decreasing η which is the opposite
behavior found along the �X direction.

For the MH phase we present in Fig. 5 the phonon
spectrum for λ = 0.046. In this case, the bilayer system
is found in the MH phase for any value of η. Again the
high-symmetry points in the reciprocal space are labeled in
the inset. For a fixed density n, the parameter η = d

√
n/2

is directly related to the separation between the layers. For
η = 0.1 a large gap between the acoustic and optical modes
is observed. The later ones, which describe the out-of-phase
vibrations of particles in distinct layers, are two orders of
magnitude larger than the acoustic ones. Such a behavior
is due to the strong dipolar magnetic interaction for small
η. Notice that the dipole interaction (∝1/r3) is dominant
over the Coulomb interaction (∝1/r) for short distances r .
The acoustic modes, which describe the in-phase oscillation
of particles in the unit cell (distinct layers), are almost not

FIG. 4. (Color online) The phonon spectrum for the staggered
square phase for different values of η and for (a) λ = 0.002 and
(b) λ = 0.029. The high-symmetry directions of the reciprocal
space are presented in the insets. The frequency is in units of
ω0 = Qn3/4/m1/2.

affected by the dipole coupling. In addition, the width of the
optical band becomes extremely narrow. For large separation
of the layers (η = 0.8) all mode frequencies have the same
order of magnitude (Fig. 5), indicating a weaker coupling
between dipoles in distinct layers. This is in agreement
with the comment made in the previous section that, for
η = 0.8 the interlayer interaction is only 0.3% of the total
energy. The gap between the acoustic and optical modes is
observed for η � 0.44. For η � 1 the acoustic and optical
modes (transverse and longitudinal) become degenerate since

FIG. 5. (Color online) The phonon spectrum for the MH phase
for different values of η and fixed λ. The high-symmetry directions
of the reciprocal space are presented in the inset.
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FIG. 6. (Color online) The sound velocity (in units of v0 =
ω0/

√
n) of the TA mode as a function of η for λ = 0.046 and λ = 0.5.

the coupling between the layers becomes very small, and the
system behaves as two independent single-layer systems.

As shown previously for the SS phase, we also find a mono-
tonic behavior of the phonon spectrum of the MH phase for
λ = 0.046 (i.e., there is a softening of the phonon frequencies
with increasing η for all the high-symmetry directions of the
reciprocal space). Such a behavior is interesting, since in the
bilayer system with only dipole interaction, a nonmonotonic
behavior of the phonon spectrum was observed as a function
of η [19]. Such a behavior was explained in Ref. [19] as
being linked to the competitive character of the dipole-dipole
interaction. In that case, the nonmonotonic behavior of the
phonon spectrum also revealed a nonmonotonic dependence
of the sound velocity on η. In addition, for η → 0 the sound
velocity is a factor

√
2 larger than the value obtained for

η � 1, showing that for small separations the bilayer system
of dipoles behaves as a crystal of particles with twice larger
dipole moment and mass. In the present bilayer system of
charged dipole particles, we found that such a nonmonotonic
behavior for the phonon spectrum depends on the parameter
λ as shown in Fig. 6. For λ = 0.046 the sound velocity is
a monotonic function of η, but, for example, for λ = 0.5
it is nonmonotonic exhibiting a minimum for η = 0.73. We
found that the nonmonotonic versus monotonic behavior of the
sound velocity is associated with a change in the attractive or
repulsive character of the total energy (i.e., it is attractive when
vT A is nonmonotonic). This is an interesting feature, since in
electrically steric colloidal systems the charge adsorbed on the
colloidal particles can be controlled, for example, by changing
the PH of the solution [25]. In addition, since the melting
temperature can in principle be calculated from the normal
mode frequencies, the nonmonotonic behavior of the phonon
spectrum should play an important role in the behavior of the
melting temperature, which should become noticeable when
varying λ.

As shown in Fig. 2, for η � 0.732 (λ � 0.35) the bilayer
system can be found in either the SH or MH phases, depending
on λ. Note that λ can be varied either through Q or μ. Now
we study how the phonon spectrum changes as a function of λ

in the case where the hexagonal phase is found as the ground
state in each layer. This is shown in Fig. 7 where the phonon
spectra for different values of λ are presented for η = 0.8. As
shown in Fig. 2, a structural first-order phase transition from

FIG. 7. (Color online) The phonon spectrum for the SH and MH
phases for different λ and fixed η = 0.8. The high-symmetry direction
of the reciprocal space are presented in the inset.

the SH to the MH phase is observed with increasing λ. For
λ � 0.0436 the MH phase appears as the ground state. It is
interesting to notice that for η = 0.8 (λ = 0.046) the layers
are sufficiently far apart in order that the optical and acoustical
frequencies are of the same order of magnitude, indicating
a weak dipole-dipole coupling between layers. However, the
magnetic interaction still plays an important role since the
MH phase is found as the ground state. The optical modes
are softened and the acoustical modes are hardened when the
system changes from the SH to the MH phase.

Now we study the interval of stability of the different phases
(deduced from the phonon spectrum) and compare it with the
position of the phase boundary (obtained from the minimum
energy criterion).

As expected, not only the phase boundary but also the
stability of the MH phase is enhanced with increasing λ in the
sense that the interval of η increases with increasing λ. This is
shown in Fig. 8 for λ = 0.01 and 0.03. Notice that the stability
interval of the MH phase is larger than the phase boundaries
in both cases, indicating that the MH phase is metastable
beyond the phase boundary. In such a case the structural
phase transition is first order. The interval of stability of the
staggered phases with increasing λ depends on the crystalline
structure. For the OCH, which is not found as a ground state
for λ �= 0, the interval of stability decreases with increasing
λ (Fig. 8). For the SS phase and λ = 0.03 the interval of
stability of the SS phase (0.238 � η � 0.534) becomes larger
than its phase boundary (0.262 � η � 0.534) and a first-order
transition separates the SS and MH phases. When the SS phase
is bordered by the SRect and SRhomb phases (λ � 0.027) its
phase boundary and interval of stability coincide and these
phases are separated by a second-order structural (continuous)
transition, characterized by the softening of one of the phonon
mode frequencies. The SRect phase, which is suppressed as
a ground-state configuration for λ � 0.027, is still stable as
shown, for example, for λ = 0.03.

An interesting feature of the present system, found for
λ �= 0, is that more than two phases can be stable for some
interval of η. For example, for η = 0.24 (λ = 0.03) the MH,
SS, and OCH phases are all stable. In contrast, for the
pure Coulomb [18] and magnetic [19] systems a maximum
number of two phases were found to be stable in a given
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FIG. 8. (Color online) The phase boundaries (circles) and the
range of stability (colored triangles) for the different phases as a
function of η for two values of λ. Solid (open) circles refer to first
(second)-order structural phase transitions.

interval of η. The presence of many stable phases might have
important consequences for the melting temperature. In this
case, structural transitions between such phases should, in
principle, be possible before the system melts.

From Fig. 8 we notice that in the large η region (hatched)
in the (λ,η) phase diagram (Fig. 2) there is a discrepancy
between the found lowest energy structure and its stability. For
λ = 0.01 we found that the SH configuration has the lowest
energy for η > 0.706 while it is only stable for η > 0.727.
For η < 0.727 the frequency of the transverse acoustic mode
of the SH phase becomes imaginary along the �X and �J

directions. Imaginary frequency is also found for the other
phases presented in Table I. From this observation we are
forced to conclude that in the region 0.706 < η < 0.727 none
of the nine crystal structures can be the ground state. This
discrepancy is even more pronounced for λ = 0.03 where the
SH phase was found to be unstable in the range 0.660 < η <

0.981 where (from the analytical calculations) it was initially
predicted to be the ground state (Fig. 2). An important lesson to
be learned from this stability analysis is that one has to be very
careful to rely only on the most plausible crystal structures
in combination with an energy minimization when deciding
which phase is the ground state. In order to find the true ground
state in this area of the phase diagram we resorted to a pure
numerical approach.

We used Monte Carlo (MC) numerical simulations in order
to find the stable ground-state configuration. As an example
we took λ = 0.03 and η = 0.8 and we notice from the inset
of Fig. 9(a) that the obtained ground-state configuration
is similar to the SH phase [inset Fig. 9(c)], but the 2D
displacement of one layer with respect to the other one

FIG. 9. (Color online) The radial distribution function as calcu-
lated from our MC simulations for the new phase and the SH phase for
two different temperatures. For the new phase, (a) T = 1 × 10−5 and
(b) T = 0. For the SH phase: (c) T = 0 and (d) T = 3 × 10−6. The
configuration of the new phase (energy E = −1.340575) is presented
as an inset in (a), while the configuration of the SH phase (energy
E = −1.340534) is presented as an inset in (c). The T �= 0 results in
(a) and (d) were obtained by applying MC simulations starting with
the new phase and the SH phase at T = 0, respectively. Solid and
open circles represent particles in distinct layers.

is different [i.e., �c �= (�a1 + �a2)/3]. The energy of this new
phase is slightly lower (i.e., the difference with the SH phase
is �E ≈ 10−5).

To test numerically the stability of the new configuration
[inset of Fig. 9(a)] we compare the T = 0 and T �= 0
pair distribution functions g(r) calculated from the MC
simulations. Remark that g(r) contains both the interlayer
[g12(r)] and the intralayer [gii(r)] radial distribution, where
the latter takes into account only the in-plane component.
As can be observed from Fig. 9(a) the g(r) function remains
almost unaltered when we increase T slightly, indicating the
thermal stability of the phase. That the SH phase is indeed
unstable we tested by using our MC simulations and let the
program run for T �= 0. Notice that the g(r) for T = 0 and
the one for very low temperature T = 3 × 10−6 are different
[Figs. 9(c) and 9(d)]. There is a clear disordering of the lattice
which indicates that very small thermal fluctuations destroy
already the SH phase and consequently the SH phase is indeed
unstable.

From the inset of Fig. 9(a) it appears that in the new phase
both lattices are slightly shifted with respect to each other.
This is reflected in g(r) where the first peak now appears
at a slightly smaller r value and there is a second peak for
r ≈ 1 which is not present in the SH phase. These two peaks
reflect only the short-range interlayer ordering. In fact, a more
careful analysis reveals that the new phase does not consist of a
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FIG. 10. (Color online) The radial distribution function as calcu-
lated from our MC simulations (T = 0) taking into account only one
layer of the SH phase (dash-dotted black curve) and one layer of the
new phase (solid red curve).

perfect hexagonal configuration in each layer. This can be seen
in Fig. 10 where a comparison between the pair distribution
functions gii(r) calculated in each layer of the new phase and
the one calculated in each layer of the SH phase is presented in
two narrow ranges of r . The difference observed in the gii(r)
functions between both phases indicates that the new phase
does not consist of a perfect hexagonal lattice in each layer.
Notice that for each peak of the SH phase, there appear many
peaks (or a broadening of the hexagonal lattice peak) of the
new phase around it, which indicates that the lattice is distorted
(or strained).

V. CONCLUSION

We studied a 2D classical bilayer system of charged
magnetic dipoles. The phase diagram at T = 0, as well as
the phonon spectra were obtained through minimization of the
energy and within the harmonic approximation, respectively.
We obtained a very rich phase diagram at T = 0 with six
different crystalline structures, being five staggered phases
(OCH, SS, SRect, SRhomb, SH), which were previously found
as the ground-state configuration when no magnetic interaction
is present [18], and an MH phase, which was obtained as
the only ground-state configuration for the bilayer system
of dipoles aligned perpendicularly to the layers [19]. Notice
that the presence of both Coulomb and magnetic interaction
allows the appearance of phases which were not found in the
pure Coulomb (MH phase) and magnetic systems (staggered
phases). In the latter, the charges on the dipole particles
allow the bilayer system to crystallize in different lattice
structures which are not possible when only the magnetic
dipole interaction is present (e.g., the SH and SRhomb phases
appear not stable for any interval of η). The phase diagram
was obtained as a function of the separation between the layers
(η), and a parameter (λ) which is associated with the relative
strength of the magnetic and Coulomb interaction between
the particles. We found that the staggered phase boundaries
depend on λ. For example, the SRect phase is no longer the
ground state for λ � 0.027.

The phonon spectrum of the different phases given in the
(λ,η) phase diagram was obtained. With the exception of the
SH phase, we found that for a given staggered phase the phonon
spectrum has the same qualitative behavior for different λ,
but depends sensitively on the separation between the layers
η. For the MH phase, there is a strong dependence of the
phonon spectrum on η. For small η the optical frequencies
become very large due to the strong coupling between dipoles
in the distinct layers. In addition the optical band becomes very
narrow. In addition, a nonmonotonic behavior of the phonon
spectrum as a function of λ was found for the MH phase,
which is related to the competition between the dipole and the
Coulomb interaction [19]. We found that the nonmonotonic
behavior of the phonon spectrum is associated with a change
from attractive to repulsive character in the total energy. Notice
that in electrically steric colloidal systems the charge adsorbed
on the colloidal particles can be controlled, for example, by
changing the pH of the solution [25]. In this case, for a large
enough separation between the layers, where only the MH
and SH phases are found as ground state, it is possible to
tune the configuration between staggered and matching by
changing, for example, the charge on the particles (fixed
μ) and, consequently, λ. Alternatively, we may change the
magnetic field strength in order to tune the value of λ. In
addition, since the melting temperature can, in principle, be
calculated from the normal mode frequencies (at least within
the harmonic approximation), the nonmonotonic behavior of
the phonon spectrum might play an important role when
determining the melting temperature for different λ.

The stability of the phases obtained from the phonon spec-
trum were compared with the phase boundaries for different
values of (λ,η). In particular, the MH phase is enhanced with
increasing λ, in the sense that a larger phase boundary and
interval of stability is observed. The SRect phase, which
is no longer observed as a ground-state configuration for
λ � 0.027 still appears as a metastable configuration. As an
important finding, the presence of both electric and magnetic
interaction stabilizes up to three phases in some η interval
of a given ground-state configuration, and this fact should
have profound implications on the melting temperature, since
structural transitions may take place for temperatures T �= 0.

We found a region in the (λ,η) phase diagram where
the SH phase has the lowest energy among the considered
nine crystal structures while from the phonon spectrum it
appears to be unstable. Monte Carlo simulations were used
to determine the ordered structure in this region, and we found
that the lowest energy configuration corresponds to a distorted
hexagonal lattice structure, where the lattice positions are
slightly disordered.
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