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Structure and reentrant percolation in an inverse patchy colloidal system
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Two-dimensional systems of inverse patchy colloids modeled as disks with a central charge and having
their surface decorated with oppositely pointlike charged patches are investigated using molecular dynamics
simulations. The self-assembly of the patchy colloids leads to diverse ground state configurations ranging from
crystalline arrangements of monomers to linear clusters, ramified linear clusters and to percolated configurations.
Two structural phase diagrams are constructed: (1) as a function of the net charge and area fraction, and (2) as
a function of the net charge and the range of the pair interaction potential. An interesting reentrant percolation
transition is obtained as a function of the net charge of the colloids. We identify distinct mechanisms that lead to
the percolation transition.
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I. INTRODUCTION

Colloidal particles have attracted a lot of interest in soft
matter and material science due to their broad potential
applicability in, e.g., biomaterials, catalytic supports, and
lightweight structural materials [1–3]. Spherical colloids are
most popular due to their convenient preparation providing
uniform particle size and shape [4]. New synthesis routes
for colloids have given the possibility to create functional
materials with enhanced complexity and functionality [4–6]. In
general, the number of different structures formed by spherical
particles (with isotropic interaction) is limited. In order to
expand the possibilities of new building blocks, the use of
particles with heterogeneous shapes and interactions have been
proposed [7–10]. The phase behavior of colloidal particles with
heterogeneously patterned surfaces, called patchy particles,
has been a very active field of research [5,11–14] not only
from a fundamental point of view, but also because it allows
the synthesis of exotic building blocks for the self-assembly
of new materials [12,15,16].

Anisotropic patchy models have received interest as a
model system, e.g., in the context of protein crystallization
[17–20]. In general, proteins are hard to crystallize. The crystal
functionality of a given protein can be studied through the
analysis of its structure in large crystals using high-resolution
x-ray diffraction [21]. Theoretical studies are very useful to
predict when crystallization occurs. In this context, some
contributions have been made through theoretical models
with isotropic potentials. However, it is known that pro-
tein interactions are short ranged and highly anisotropic
and consequently such models will, at some point, break
down [22].

Much effort is currently devoted to the development
of sophisticated techniques for the synthesis of anisotropic
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colloidal particles. These techniques come from a combina-
tion of diverse fields providing a powerful arsenal for the
fabrication of new building blocks [23–26]. Patchy particles
with interactions given by electrostatic repulsion in the middle
and hydrophobic attraction at the poles were fabricated
recently by Chen et al. [27], which used them as building
blocks to obtain a complex predetermined colloidal open
kagome structure. Diverse experimental [28,29], theoretical
[30–32], and computer simulation studies [33–35] showed that
aggregates can be obtained from the competition between a
screened electrostatic repulsion and a short-range attraction
between the colloids. Besides, the shape and size of such
aggregates depend on the balance between repulsion and
attraction [36,37], as observed in protein solutions at the limit
of low salt concentration [28,38]. Very recently, Rikkert et al.
[39] investigated and quantified the effects of the pH and salt
concentration on the charge regulation of the bacteriophage
PP7 capsid. These effects are found to be extremely important,
introducing qualitative changes in the charge state of the capsid
such as a transition from net-positive to net-negative charge
depending on the pH of the solution.

Introduced by Bianchi et al. [40], inverse patchy colloids
(IPCs) are colloidal particles whose anisotropic interaction
originates from the presence of oppositely charged regions
on the surface of a uniformly charged colloid. In contrast
to conventional patchy colloids, where the patches exhibit
short-range attractive interaction, the interaction between the
charged patches is repulsive, with the added possibility to
tune the range of the interaction, through the screening of
the Coulomb interaction [40] by the ions in the solution [41].
The uniform charge of an IPC is modeled by a central charge
with opposite sign with respect to the ones in the patches.
As a consequence, the interaction between two IPCs can be
attractive or repulsive according to the relative orientation
between them. The system with IPCs is thus characterized
by a nontrivial competition between attractive and repulsive
directional interactions.

Noya et al. studied the phase behavior of colloidal particles
with two charged patches in three dimensions [42]. It was
shown that the system exhibits an unusual equilibrium phase
diagram characterized by a broad region where a novel
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structure composed of parallel colloidal monolayers is stable.
On the other hand, an investigation of IPCs in two dimensions
showed different cluster sizes with tunable spatial and orienta-
tional order [43]. In this study, the electrostatic interaction
between the colloids and the substrate was included. It is
interesting to notice that previous studies of IPCs in two
[43,44] and three dimensions considered mostly neutral IPCs,
i.e., the absolute value of the charge in the center is equal
to the sum of those in the patches. Recently, Peng et al.
presented a method to fabricate patchy particles consisting of
different materials in the center and the poles [4]. The authors
used seeded emulsion polymerization to fabricate a nearly
monodisperse system of linear-trimeric particles, i.e., particles
with opposing lobes at the surface. Note that different materials
in a given solvent may result in colloids which have parts
charged with opposite signs. Besides that, van Oostrum et al.
[45] created IPCs with center charge and opposite charged caps
at the surface of each particle. The different regions of particles
(center or caps) could be distinguished using fluorescence
microscopy.

In this work, we present a systematic computer simulation
study of a two-dimensional system of IPCs composed of two
polar patches as a function of the net charge of IPCs which may
be related to the effects of the pH and/or salt concentration
of the solvent in which the particles are immersed [39].
We discover a rich set of characteristic configurations for
distinct values of the net charge. The dependence of the
critical percolation density, the percolated structures, and the
mechanisms of percolation for distinct net charges are also
described, highlighting a reentrant percolation phase which
is observed by changing the net charge of the IPC for
fixed density. The shape and microstructure of the different
configurations are discussed.

The paper is organized as follows. Our model system is
presented in Sec. II. The results and discussions are presented
in Secs. III– VI and our conclusions are given in Sec. VII.

II. MODEL

We consider a two-dimensional system in which a given
IPC is allowed to occupy any position in the two-dimensional
(2D) plane. Each IPC is a hard disk with mass m0, diameter
σ , and a central positive pointlike charge Q and two patches,
each with negative pointlike charge −q, located at the surface
of the disk and diametrically opposite. The diametral line
connecting the two patches defines the main axis of a given
IPC (Fig. 1). The interparticle potential of our system consists
of a Yukawa potential plus a hard-disk repulsion term. The full
pair interaction potential is given by

Uij = UHD
ij + UY

ij (1)

with the hard-disk potential

UHD
ij = h

(
σ

rij

)12

, (2)

where h is a constant of energy and rij is the separation between
the centers of particles i and j . The last term in Eq. (1) is
the Yukawa pair interaction potential between the charges of

FIG. 1. Schematic view of the model (a) and the different types
of bonds (b). Blue crosses refer to the positive charge in the center of
the colloid and the red dots are the negative patches at the surface. θ

is the angle between the main axis of two IPCs. The angle φ is the
angle between the lines connecting the centers of two IPCs i and j

with the central particle k as the vertex, where i and j are neighbors
of k. The angle � is the angle between the line connecting the centers
of two IPCs i and j and the x axis. In (c) we show some examples of
distances r

ij

kl .

different colloids i and j ,

UY
ij =

2∑
k=0

2∑
l=0

ZkZl

ε

exp
( − κr

ij

kl

)
r

ij

kl

, (3)

where Z0 = +Q, Z1 = Z2 = −q, κ is the inverse of the
Debye screening length, and ε is the medium permittivity.
The terms r

ij

kl are the distances between the different parts
of each particle i and j [see Fig. 1(c)]. The indexes k and l

represent a tag for each part of the particle. k = 0 and k �= 0
(or l = 0 and l �= 0) represent the indexes for the center and
the two patches of each particle, respectively. In order to
reveal important parameters which characterize the system,
we rewrite the energy Uij in a dimensionless (uij ) form by
making use of the following variable transformations: UY

ij =
E0u

Y
ij , UHD

ij = E0u
HD
ij , rij → rij σ, κ → κ/σ , where E0 is

the unit of energy. Moreover, the net charge of each particle is
given by C = Q − 2q and we can normalize it in terms of q

(C → qC), with α = Q/q being the ratio between the charge
at the center and the charge of each patch. Thus, the net charge
of each particle is C = α − 2. The pair interaction potential is
given by

uHD
i,j = h

E0

(
1

rij

)12

(4)
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and

UY
ij = q2

εσE0

2∑
k=0

2∑
l=0

Z′
kZ

′
l

exp
(−κr

ij

kl

)
r

ij

kl

, (5)

where Z′
0 = α and Z′

1 = Z′
2 = −1. We fixed h = q2/εσ =

E0. Thus, the unit of time is written in terms of t0 =√
m0σ 2/2E0. The ground state will depend on the number

of particles N per computational unit cell (i.e., the area
fraction η), the ratio between charges α, and the inverse
Debye screening length κ . In this way, the interaction energy
is effectively related to the net charge (C) of a given IPC when
a patchy particle is neutral (C = 0) or overcharged (C �= 0).

The simulations are conducted within a molecular dynamics
[46] protocol (MD) with a periodic repeated simulation box
of area A = L2. We cut the interparticle potential at rc = 20σ

where the interaction energy between two IPCs, regardless of
θ, �, and C, approaches Emax(rc) ∼ 10−9E0 in the case κ = 1.
The equations of motion are integrated using the velocity
Verlet algorithm with a time step of 0.01t0. Temperature T
is fixed by means of the Berendsen thermostat with a time
constant of 10 (NVT ensemble). The results presented here
are obtained at temperature T/T0 = 10−3, which is constant
during all simulations with T0 = E0/kb and kb the Boltzmann
constant. The area fraction is defined as η = Nπσ 2/4L2,
which represents the fraction of the simulation box occupied
by the IPCs. Different values of the area fractions are obtained
by using a simulation box with constant size and considering
different numbers of particles (N = 600–2000). Typically, the
equilibrium structures are obtained after 106 time steps, which
are enough to stabilize the total energy of the system for most
of the cases. After equilibration, we run additional 2 × 106

time steps in order to average the quantities of interest (cluster
size distribution, gyration radius, etc.). For some specific cases,
it is not easy to find the stable configuration due to the large
number of metastable states (local minima) in the configuration
space. A standard procedure to test if the minimum energy
configuration was indeed reached is to heat up the system
and cool it down at different rates. We then compare the
energy of the obtained configurations. Such a procedure is
repeated several times in our simulations in addition to the
use of different initial configurations. The cluster phases are
defined by a visual and geometric criterium. In all obtained
configurations if separation between neighbor particles in
a cluster is less than rbond ≈ 1.3σ we consider a pair of
particles as bonded. The reason is that for such a separation the
interparticle distance is in the attractive part of the potential
and corresponds to the area between the first two peaks in the
radial distribution function (see Sec. IV).

III. PHASE DIAGRAM

We show first that some interesting information can be
obtained from the functional form of the pair-interaction po-
tential when minimized with respect to the relative orientation
between IPCs (angles θ and � in Fig. 1). For example, for
neutral IPCs (C = 0) the pair-interaction potential is attractive
(see Fig. 2), which favors aggregation of particles into clusters.
As will be shown, this is indeed observed in the many-body
case. The dependence of the pair-interaction potential with
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FIG. 2. The lowest interaction potential energy between two
particles for different values of the net charge C, i.e., minimized
with respect to the particle orientation angles θ and � (see Fig 1).
The solid lines indicate the presence of a global minimum energy for
r � rbond. Dashed lines are for the cases that the lowest interaction
energy is found for r → ∞.

respect to the separation between IPCs for different values of
the net charge C is shown in Fig. 2. The curves correspond to
the lowest energy between two IPCs from all possible relative
orientations; in other words, angles θ and � shown in Fig. 1,
where θ is the angle between the main axis of two IPCs and
� is the angle between the line connecting the centers of two
particles and the x axis. To analyze the structures found, we
defined the angle φ [Fig. 1(b)] as a triplet angle calculated as

φi,j = cos−1

( −→
Ri,k · −−→

Rj,k

|−→Ri,k||−−→Rj,k|

)
. (6)

In general, due to the nonhomogeneous charge distribution
over each IPC, the interaction is not symmetric with respect
to C. For negative net charge, the excess of charge is on the
surface of the particle, favoring repulsion between distinct
IPCs. For positive net charge, the excess is on the center of
the particle, favoring attractive interaction. For example, the
pair interaction potential for C = −1 is repulsive, while for
C = 1 it presents an attractive short-range well and becomes
almost zero for r � 1.75. As a consequence, we expect that
in the many-body case with C = −1 no clustering will be
observed. Indeed, for C = −1 the IPCs self-assemble as a
set of monomers, where for sufficiently small temperature
(T/T0 ∼ 10−6) the IPCs are arranged in a configuration with
both translational and orientational order. On the other hand,
in the many-body case with C = 1 no monomers are found.
Instead, the IPCs are arranged in linear clusters. As can be seen
in Fig. 2, the pair interaction potential becomes repulsive for
large enough positive C � 3, indicating that in the many-body
case monomers should again be observed.

We stress here that the curves presented in Fig. 2 are the
ones which minimize the pair interaction energy with respect
to the angles θ and �. Interestingly, out of those values of θ

and �, a rather distinct qualitative behavior may be observed
for C = 3 in spite of the minimum pair-interaction potential
presented in Fig. 2 being repulsive for any r; an attractive pair
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FIG. 3. Structural phase diagram in the plane of net charge
(C) of each IPC and area fraction of the system (η). Symbols
represent different structures: �, monomers; �, mixed clusters; ◦,
linear clusters; �, ramified-linear clusters; and �, percolated clusters.
Solid lines are guides to the eyes separating the different phases.

interaction is still possible for some specific values of θ and
�. Notice that in the many-body case, due to the complex
interaction among the IPCs, the relative orientations between
neighbor particles do not always correspond to the one which
minimizes the pair interaction energy.

In general, a short-range attractive well competes with a
long-range repulsive tail, with the magnitude of both being
dependent on C. In addition, the presence of a global minimum
at finite r indicates that clusters may appear. In the many-body
case clusters are found in a finite interval of area fraction and
net charge.

From our systematic MD simulations we find an interesting
set of stable configurations, which are summarized in a (C,η)
structural phase diagram (Fig. 3). The set of obtained config-
urations consists of monomers (blue diamond), linear clusters
(black circle), ramified-linear clusters (red square), mixed
cluster (green left-triangle), and percolated configurations
(yellow up-triangle). Linear clusters are characterized by a
sequence of IPCs with main axis aligned along the cluster
(θ = 0◦ and φ = 135◦ in Fig. 1). When such linear clusters
join one another or when one or more lines start to grow
from a given one, a ramified-linear cluster is formed. For
mixed clusters the majority of the connections between IPCs
is such that neighbor bonded particles have their main axis
perpendicular to each other. However, there are also some other
small clusters in which the main axis of the particles have
an angle smaller than 90◦. The monomers to linear clusters
transitions (C > 1) can be found by analyzing the average
interparticle separation R1 given by the position of the first
peak of radial distribution g(r). Usually, for bidimensional
systems with repulsive interaction, R1 depends on the area
fraction η following a power law of the form R1(η)/σ ∼ η−1/2.
Thus, when one cluster is found, a little peak in g(r) is observed
for r � rbond < R1(η).

From the obtained clusters we basically observe three types
of bonds between IPCs, namely, linear, T-like, and V-like

bonds. The latter is mainly observed in the ramified linear
clusters, where it corresponds to the connection between
distinct linear clusters (or a new branch in a linear cluster)
or in small clusters (e.g., three particles) in the mixed cluster
phase. A schematic view of the distinct types of bonds is shown
in Fig. 1.

Examples of typical configurations in the different regions
of the phase diagram shown in Fig. 3 are presented in
Fig. 4, namely, monomers [Figs. 4(a) and 4(h)], mixed clusters
[Figs. 4(b) and 4(d)], percolated structures [Figs. 4(c) and
4(e)], ramified-linear clusters [Fig. 4(f)], and linear clusters
[Fig. 4(g)]. The configurations presented in Fig. 4 have the
same area fraction η = 0.235 and different net charges. In
general, by changing the net charge of each IPC we are
able to modify the microstructure of the configurations. For
example, for C = −1 [Fig. 4(a)], the total energy per particle
is repulsive, and only monomers are observed. In this case,
we find that the monomers are arranged in a square lattice,
for η � 0.235, with defects due to the relatively small value
of the potential energy as compared to the kinetic energy.
In Fig. 5(a) we present the probability distribution of the
triplet angle φ defined in Eq. (6) for C = −1 and different
area fractions. For η � 0.235, the pronounced peaks near to
φ = 90◦ and φ = 180◦ indicate the presence of a square lattice
structure. For lower temperature T/T0 = 10−6 (not shown),
the number of defects is drastically reduced and a square
lattice becomes clear with both translational and orientational
order, i.e., the IPCs in neighboring lattice sites have their
main axes perpendicular to each other. For 0.078 � η < 0.235
we observe a mixing of triangular and square lattices. For
small area fraction, η � 0.078, the IPCs self-assemble in a
triangular lattice. Normally, in the zero temperature limit a
classical system of particles with repulsive interaction will
assemble in a periodic structure that minimizes the potential
energy. It is well known that the triangular structure is the
only stable arrangement in 2D for particles with repulsive
radial symmetric pair-interaction potential [47]. Besides that,
Malescio and Pellicane [48] showed that it is possible to find
other structures in 2D with isotropic repulsive interaction.
The increase of density can promote the transition from
the triangular lattice to the stripe phase. In our case, for
C = −1.0 and low temperature, it is possible to observe the
transition from triangular to square lattice with increasing
density. However, the different arrangements observed here
for C = −1, especially the square lattice for high enough area
fraction, is a consequence of the nonhomogeneous charge
distribution in each IPC. More generally, monomers are
observed for C � −1. For neutral IPCs (C = 0) the system
always self-organizes in a single cluster mostly with T-like
bonds. The larger the area fraction η, the larger the size of
the single cluster. For η ≈ 0.16 the single cluster becomes
percolated. On the other hand, for a small, but nonzero, net
charge, e.g., C = −0.5 and C = 0.5, the IPCs self-assemble
as a set of small clusters with mostly T-like bonds [Figs. 4(b)
and 4(d)]. For C = 1 the system is already percolated for
η = 0.235. In this case, the IPCs are mostly bonded to one
another through linear bonds. For C > 1, the total energy
per particle is positive (repulsive). The larger C the larger
the total energy per particle indicating that repulsion among
IPCs is stronger. This can be seen in Figs. 4(f)–4(h) where
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FIG. 4. Representative configurations observed in the (C,η) phase diagram for area fraction η = 0.235 and different net charge
(a) C = −1.0, (b) C = −0.5, (c) C = 0.0, (d) C = 0.5, (i) C = 1.0, (j) C = 1.5, (k) C = 3.0, and (l) C = 4.0. Different colors represent
clusters of different sizes. The symbols above each figure refer to the configuration in the phase diagram of Fig. 3. From (e)–(h) and (m)–(p)
are shown the distributions of the triplet angle φi,j defined in Eq. (6) (see Fig. 1) for the structures (a)–(d) and (i)–(l), respectively. In all the
cases P (φi,j ) is a normalized distribution.

the size of the linear clusters decreases with increasing C

(for η = 0.235). For a given C > 1 we always observe the
same sequence of configurations (monomers, linear clusters,
ramified-linear clusters, and percolated) as the area fraction is
increased (Fig. 3).

Interestingly the monomer phase obtained for positive C

presents a different arrangement from the one obtained for
negative C, and this is due to the excess of charge located at
the center of each IPC. For example, for C = 4 and η = 0.235
[Fig. 4(h)] the IPCs are arranged as a triangular lattice, but
with many defects due to the small value of the potential
energy when compared to the kinetic energy. In Fig. 5(b)
the average angle distribution for C = 4 and different area
fractions is presented. The peaks around φ = 60◦, 120◦, and
180◦ indicate a triangular lattice structure, which is clearly
obtained for low area fraction (η = 0.078). The triangular
lattice structure becomes distorted for larger area fractions due

to the tendency to form linear clusters for C = 4 (Fig. 3). For
lower temperature (∼10−6) the number of defects is reduced
and a more ordered triangular lattice is obtained (not shown). It
is interesting to note that the percolated structures in Figs. 4(c)
and 4(e) are essentially distinct. The former originates from
T-like clusters, while the latter is obtained from linear clusters.
The mechanism driving the percolation transition depends on
the net charge C, as will be discussed later in this paper.

IV. PERCOLATION

In this section we examine the connectivity properties of the
different equilibrium structures. Configurations are percolated
when, accounting for periodic boundary conditions, one of the
clusters forms a percolating path [49], i.e., the cluster touches
at least two opposite sides of the simulation box. In order to
identify the critical area fraction for percolation, we calculate
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FIG. 5. Distribution of the triplet angle φi,j defined in Eq. (6) [see
Fig. 1(a)]. For different area fraction and net charge (a) C = −1 and
(b) C = 4. In both cases P (φij ) is a normalized distribution.

the average size of the largest cluster Smax as a function of
η. Percolation happens when Smax is at least 50% of the size
of the whole system (Fig. 6) [50,51]. The lowest percolation
density is found when the net charge is C = 0, and this is a
consequence of the purely attractive pair-interaction potential
in this case, which facilitates the attraction of all particles to
the same cluster.

For C � −1 the system does not percolate in the considered
η interval. The total energy per particle is repulsive for any
value of η, and only monomers are observed. For C > 1 the
critical area fraction for percolation increases with increasing
C. In this case, linear clusters are observed. We find that the
repulsive energy among those clusters overcomes the attractive
energy between IPCs in the case of linear clusters. As a
consequence, the total energy per particle is repulsive and
the average cluster size decreases, which explains why the
percolation threshold occurs for higher area fractions (Fig. 6).
Such a behavior is opposite to that observed recently by
Valadez-Perez et al. [52] for a system with isotropic Yukawa
pair-interaction potential.

In order to study percolated structures in more detail
we also consider the pair connectedness function gconn(r),
which is defined as the conditional probability of finding a
particle at a distance r from a particle located at the origin,

FIG. 6. The average size of the largest cluster Smax as a function
of the area fraction for different values of the effective charge C. The
horizontal solid line represents the percolation threshold defined as
Smax/N = 0.50. The inset shows net charge (C) at which percolation
occurs at a given area fraction (ηc).

connected via a sequence of bonds, i.e., within the same
cluster [35]. In Fig. 7(a), gconn(r) is shown for C = 3 and
different area fractions, while in Fig. 7(b) gconn(r) is presented
for η = 0.235 and distinct net charges. When an infinite
large cluster is present gconn(r) remains finite on every length
scale, as shown in Fig. 7(a) for η > 0.43. On the other hand,
the usual radial distribution function g(r) is not sensitive to
the percolation transition [see inset in Fig. 7(a)]. Note that
g(r) for η = 0.314, η = 0.392, and η = 0.431 (percolated)
exhibits the same general behavior, while gconn(r) expresses
perfectly the percolated case. For C = 3 and low area fraction
(η = 0.078) there is no clustering and the IPCs self-organize as
monomers in a triangular structure with no orientational order
(for T/T0 = 10−3), similar to the one observed experimentally
by Peng et al. [4]. For larger area fraction (e.g., η = 0.235),
the collective behavior becomes more complex, because the
attractive part of the interaction (note that the pair-interaction
potential for C = 3 is purely repulsive) becomes important,
resulting in clusterlike structures [Fig. 4(g)]. For larger net
charge (e.g., C = 4) the triangular structure of monomers is
observed as the ground state for larger area fractions because
the repulsive interaction between IPCs starts to dominate.

In Fig. 3 we observe percolated configurations for C > −1
and η � 0.17. For high enough area fractions the perco-
lated regions of the phase diagram separate configurations
of monomers, which are a consequence of the repulsive
interaction due to large negative (C < −1) or large positive
net charges. As already stated, the different configurations
observed for a given |C| (cases −C and C) is due to the
nonhomogeneous charge distribution in each IPC. Since the
negative patches are at the surface of each IPC, a dominant
repulsive interaction is observed for lower absolute value of
the negative net charge than in the case of positive net charge.
We find an interesting reentrant percolation between cluster
phases for fixed η. This is shown in Fig. 7(b), where the pair
connectedness function gconn(r) is presented for fixed area
fraction η = 0.235 and distinct net charges.
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FIG. 7. Pair connectedness function gconn(r): (a) for net charge
C = 3 and different area fraction η [the corresponding radial
distribution function g(r) is shown in the inset] and (b) for fixed
area fraction η = 0.235 and different net charge C.

For C = 0 and C = 1 we find percolated configurations
while for C = −0.5, C = 0.5, and C > 1 nonpercolated
configurations are observed. A reentrant percolation locus in
a three-dimensional (3D) system of particles with competitive
interaction potential was observed previously as a function
of temperature [35]. Here, the system exhibits a different
mechanism to induce the reentrant percolation locus, which
is found for fixed temperature and density, by changing the
net charge of each IPC. The reentrant percolation with respect
to the effective electrostatic interaction should be observable
since it is experimentally possible to change the charge density
in colloids [53] or in proteins [39]. Patchy particles with
different materials [4] may result in regions with distinct
charges over the colloid.

V. CLUSTER STRUCTURE

In the following we study those structures in the phase
diagram characterized as cluster phases (symbols ©,�,� in
Figs. 3 and 4) through the cluster size distribution n(s) and the
radius of gyration Rg , both as a function of the cluster size
s. The former is obtained simply by counting the number of
clusters with s components averaged over time. As pointed out

FIG. 8. Cluster size distribution ns for several values of area
fraction η for net charge (a) C = −0.5 and (b) C = 2.5. In each
panel, the solid line represents the function ns ∼ s−2.05.

in Sec. II, a given particle becomes part of a cluster when its
distance from a neighboring particle of the cluster is r � 1.3σ .

The cluster size distribution for different area fractions
η and representative cases with net charges C = −0.5 and
C = 2.5 is presented in Figs. 8(a) and 8(b), respectively. In
general, n(s) decreases with increasing cluster size, and for a
high enough η we observe a percolated structure. In general,
close to the percolation transition the n(s) curves develop a
power-law dependence, n(s) ∼ sτ , with exponent τ ≈ −2.05
which is related to random percolation predicted for 2D
(τ = −187/91 = −2.05) [54], but with distinct percolation
mechanisms for different net charges. For C = −0.5 the
average energy per particle is nearly zero, which means that
the bond interaction is unimportant. As a consequence, close to
percolation the cluster size distribution behaves as that found
in a random percolated system, where an increase of the cluster
size occurs due to the aggregation of particles in an aleatory
way. Far from the critical area fraction for percolation, only
clusters of size s � 20 are observed [n(s) � 1]. Such behavior
is understood by taking into account the average energy per
particle as a function of the cluster size s. We find a minimum
for s = 3 (η = 0.157) and s = 4 (η = 0.235).
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For C = 2.5 linear clusters are observed. The cluster size
distribution is also significant for s � 20, but with cluster sizes
equally distributed in this interval. For large enough η the n(s)
curves exhibit a peak for s ≈ 1000 which is associated to the
percolated structure and which is indicative for a gel phase
[55]. Such behavior is observed in all cases with no significant
bond interaction (E/N ≈ 0) or with repulsive interaction
(E/N > 0).

Now we address the size of the clusters by studying the
dependence of the radius of gyration on the cluster size for
IPCs with distinct net charges C. The radius of gyration Rg(s)
of a cluster with s particles is defined as

Rg(s) =
√√√√〈

1

2s2

∑
i,j,i �=j

|ri − rj |2
〉

s

, (7)

where 〈· · ·〉s stands for the average over clusters with the
same size. The radius of gyration is an interesting quantity
since it can be determined experimentally, allowing a direct
test for theoretical model systems. In addition, the shape of
the clusters can be highlighted from the fractal dimension df

which is obtained from the curves Rg × s through the relation
〈Rg(s)〉 ∼ s1/df [49].

In Fig. 9 the radius of gyration as a function of the cluster
size is shown for distinct values of the net charge and area
fraction. The bond lifetime is very long because of the small
temperature (T/T0 = 10−3) and the formed clusters remain
well defined over time. For C = −0.5 the total energy per
particle is E/N ≈ 0 and it changes only slightly as the area
fraction increases. This means that the bond interaction is
not the main mechanism that determines the formation of the
cluster structure. As a consequence, the Rg × s curves are
almost independent of the area fraction. As stated before, the
random percolated regime in this case is due to the aleatory
aggregation of particles in the clusters.

For C = 2.5 the pair-interaction potential is repulsive with
its minimum value obtained when the angle θ between the main
axis of neighbor IPCs is θ = 0◦ (linear bond; see Fig. 1). Such
a bond is the main one observed in the many-body case, where
the total energy is also repulsive (E/N > 0) and it increases
with increasing area fraction. The linear bonds (θ = 0◦ and
φ ≈ 135◦) lead to the formation of linear clusters. The linear
growth of the clusters for low area fraction is observed in
Fig. 9(b) for η � 0.314. For larger area fractions the linear
clusters start to merge one after another and these larger
clusters now are characterized by a different growth regime.
For example, for η = 0.369 the radius of gyration exhibits
two distinct growth regimes with a clear crossover between
them. For small clusters (s � 20) a more linear regime is
observed with df ≈ 1, while for the ones with size s � 50
their structures are characterized by pieces of linear clusters
connected to each other through branching points (linear
ramified clusters). The branches are connected in a random
way in order that the radius of gyration of such clusters
scales with the size s with df ≈ 91/48 which characterizes
the random percolation regime in 2D. The mechanism for
the formation of ramified linear clusters described here is
observed for the cases with C � 1, and it is analogous to
the 3D network structures obtained with Bernal spirals in 3D

FIG. 9. Size dependence of the cluster gyration radius for several
area fractions and net charge (a) C = −0.5 and (b) C = 2.5. The
black (solid) line corresponds to df = 1, while the blue (dashed) line
corresponds to df = 91/48 in the relation 〈Rg(s)〉 ∼ s1/df .

[35]. As compared to the case with C = −0.5 (E/N ≈ 0), the
distinct mechanism observed in the case C = 2.5 (E/N > 0)
is due to the stronger interaction between IPCs that induces
the formation of linear bonds.

In Fig. 10 we present the average distribution of the
angle between the main axis of neighbor IPCs for C = −0.5
and C = 2.5 and distinct area fractions. This quantity helps
us to better understand the microstructure of the obtained
configurations. As mentioned previously, we observe three
different types of bonds (Fig. 1). For C � −0.5 the total
energy per particle is repulsive for area fraction η � 0.08, but
the microstructure of the system changes with η. For a very
diluted system (low η) the small clusters are mostly formed
by pairs of IPCs connected through T-like bonds. Note that
the pair-interaction potential for C = −0.5 presents a very
shallow global minimum at r ≈ 1.2σ and a very short repulsive
barrier that separates the global minimum from the minimum
at r → ∞ (Fig. 2), which favors the formation of small stable
clusters consisting of few particles for low η. For η = 0.117
and η = 0.157 small clusters with typically N = 3–5 particles
favor the formation of V-like bonds (with 60◦ � θ � 90◦).
For larger area fraction η (close to percolation) the larger and
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FIG. 10. Average angle between the main axis of neighbor
bonded patchy particles for different area fractions and net charge
(a) C = −0.5 and (b) C = 2.5. In both cases P (θij ) is a normalized
distribution.

more rounded clusters favor the formation of T-like bonds [see
Fig. 10(a), η = 0.314].

For C � 1.5 the total energy per particle is repulsive for any
η, but the microstructure of the clusters is essentially different
as a consequence of the nonhomogeneous charge distribution.
For low values of η, the bonds between IPCs are mostly linear
resulting in linear clusters. The repulsive energy between those
linear clusters overcomes the attractive interaction between
the IPCs in the clusters. As the area fraction increases the
linear clusters start to merge one after another with angles
distributed in the interval 45◦ < θ � 90◦. However, in this case
the linear bond is still the main feature of all self-assembled
configurations. These features are illustrated in Fig. 10(b) for
C = 2.5.

VI. INTERACTION RANGE

Now we discuss the effects of the range of the pair
interaction potential on the self-assembled configurations.
Experimentally, the range of the interaction in colloidal
systems can be modified, e.g., by changing the pH of the
solvent that the particles are immersed in. In this section, we
illustrate how the self-assembled configurations are modified

FIG. 11. Structural phase diagram in the plane of screening
parameter (κ) and net charge (C) for (a) η = 0.078 and (b) η = 0.235.
Symbols represent different structures: �, monomers; �, mixed
clusters; ◦, linear clusters; and �, percolated clusters. Solid lines
are a guide to the eyes that separate the different phases.

as a function of the net charge C and screening parameter of the
pair-interaction potential κ . The dimensionless temperature is
kept constant at T/T0 = 10−3. The results for the area fractions
η = 0.078 and η = 0.235 are presented in Fig. 11.

In general, for large enough κ (short-range interaction) the
IPCs self-assemble as a set of monomers, which may or may
not present an ordered arrangement according to the values of
T , η, and C. For η = 0.078 [Fig. 11(a)] a fluid phase is found
for κ � 6 due to the small area fraction and the relatively large
temperature (in comparison to the interaction among IPCs).
The total interaction energy is almost zero and the system
behaves approximately as an ideal gas. The monomer phase is
also observed for small κ � 3 and sufficiently large |C|, but
in this limit it is due to the strong repulsion between IPCs.
As a consequence of such a strong interaction, triangular or
squared ordered arrangements can be observed, as mentioned
previously for the case with κ = 1. The triangular lattice is
obtained for positive and negative (low η) C, while the square
lattice is obtained only for negative C. Such an asymmetry
in the self-assembled configurations is a consequence of
the nonhomogeneous charge distribution over the IPC. For
intermediate values of κ and C, linear and mixed clusters
are found as a consequence of the interaction among the
nonhomogeneously charged IPC.

For large area fraction, percolated phases become possible.
For distinct charges we always find a random percolation
regime, as shown previously for κ = 1, but the leading
mechanism of percolation depends on (C,κ). For example,
for η = 0.235 and C = 2.5 [Fig. 11(b)] the percolated phases
observed for κ � 3 originate from the random merging
between linear clusters, which are characterized by linear
bonds. On the other hand, for larger values of the screening
parameter (e.g., κ ≈ 5) the percolated phase arises from the
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aggregation among more rounded clusters (mixed cluster
phase). In this case, the IPCs are mainly connected to each
other through T-like bonds, which causes an increase in the
average number of neighbors per particle.

VII. CONCLUSIONS

We presented a systematic numerical study of the minimum
energy configurations of a 2D system of IPCs. Each IPC is
modeled as a disk with central positive pointlike charge Q

and two patches, each with pointlike charge −q in diametral
opposite positions, located at the surface. The diametral line
connecting the two patches defines the main axis of a given
IPC. The many-body system was studied as a function of the
net charge C = Q − 2|q| of each IPC and the area fraction
η. The lowest energy configurations consisting of monomers,
linear clusters, ramified-linear clusters, mixed clusters, and
percolated configurations were summarized in a C-η phase
diagram. The effects of the range of the interaction potential
were also addressed for some specific densities.

Due to the nonhomogeneous charge distribution over the
colloids, there is no symmetry in the pair-interaction potential
with respect to the sign of the net charge. As a consequence,
for the same absolute value |C|, a configuration observed for
a given negative C is different from the one found for positive
C. For sufficient large value of |C| crystal-like arrangements
of monomers are found for both positive and negative net
charges. Interestingly, due to the asymmetry in the charge
distribution, it is possible that the system of IPCs with high
enough negative C self-assemble in a square lattice. On the
other hand, for IPCs with high enough positive net charge the
effective repulsive pair interaction has higher radial symmetry
(positive charge at the center of each IPC) and the observed
configuration turns out to be a triangular lattice.

The shape and the size of the clusters were also investigated
for different net charges and area fractions (κ = 1). In general,
for |C| < 1 the IPCs self-assemble in more rounded clusters
mainly characterized by T-like bonds (mixed clusters), while
for |C| � 1 the self-assembled configurations depend on the
sign of the net charge. For negative C < −1, the monomer
phase is always found for any area fraction, while for positive
C the monomer phase is observed for small area fraction.
By increasing the area fraction, linear clusters and ramified

linear clusters are observed, before the percolated phase is
observed for large enough area fraction. We also studied how
the microstructure of the clusters depends on C by calculating
the average angle between bonded neighbor particles. In
general, the clusters exhibit three types of bonds (linear, T-like,
and V-like bonds) which depends on the net charge and area
fraction. For κ = 1, linear bonds are found for C � 1, while
T-like bonds are observed only in the interval |C| � 0.5. For
κ �= 1, linear bonds are still observed for C � 1, but T-like
bonds becomes possible for larger values of C in the low area
fraction limit.

A reentrant transition between percolated and nonperco-
lated configurations in a finite interval of area fraction and
net charge was observed. The random percolation transition
observed from our study is driven through distinct mechanisms
which depends on the net charge of the IPC. For example,
for C > 1 percolation occurs through the random aggregation
of linear clusters, while for −1 < C < 1 the percolation
transition is the result of the aleatory aggregation of IPCs in
more rounded clusters. For a given area fraction the reentrant
percolation transition is driven by changes in the net charge of
the colloids.

Self-assembled configurations are becoming tools in the
development of new materials. From our model we observed
distinct self-assembled structures which depend on the differ-
ent model parameters (C, κ , and η). For example, we found
that square or triangular lattices may be obtained according
to the net charge of the IPCs. The different self-assembled
crystal structures will lead to different interference patterns
of light which are of great importance in applications of
photonic crystals. An interesting extension of the present work
is the combination of the present anisotropic interaction with
different external parameters (temperature and/or pressure),
and to consider the effect of the number of charged patches
and its distribution (regular or irregular) over the surface of the
particles on the self-assembled configurations.
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J. 107, 1970 (2014).
[40] E. Bianchi, G. Kahl, and C. N. Likos, Soft Matter 7, 8313 (2011).
[41] D. El Masri, P. van Oostrum, F. Smallenburg, T. Vissers, A.

Imhof, M. Dijkstra, and A. van Blaaderen, Soft Matter 7, 3462
(2011).

[42] E. G. Noya, I. Kolovos, G. Doppelbauer, G. Kahl, and E. Bianchi,
Soft Matter 10, 8464 (2014).

[43] E. Bianchi, C. N. Likos, and G. Kahl, ACS Nano 7, 4657 (2013).
[44] E. Bianchi, C. N. Likos, and G. Kahl, Nano Lett. 14, 3412

(2014).
[45] P. D. J. van Oostrum, M. Hejazifar, C. Niedermayer, and E.

Reimhult, J. Phys.: Condens. Matter 27, 234105 (2015).
[46] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids

(Oxford University Press, Oxford, 1987).
[47] L. Bonsall and A. A. Maradudin, Phys. Rev. B 15, 1959 (1977).
[48] G. Malescio and G. Pellicane, Nat. Mater. 2, 97 (2003).
[49] D. Stauffer and A. Aharony, Introduction to Percolation Theory

(Taylor Francis Group, Philadelphia, PA, 1994).
[50] Y. Liu and R. B. Pandey, J. Chem. Phys. 105, 825 (1996).
[51] R. Chelakkot and T. Gruhn, Soft Matter 8, 11746 (2012).
[52] N. E. Valadez-Perez, R. Castaneda-Priego, and Y. Liu, RSC Adv.

3, 25110 (2013).
[53] A. F. C. Campos, F. A. Tourinho, G. J. da Silva, M. C. F. L. Lara,

and J. Depeyrot, Eur. Phys. J. E 6, 29 (2001).
[54] M. Rubinstein and R. H. Colby, Polymer Physics (Oxford

University Press, New York, 2003).
[55] P. Douglas Godfrin, N. E. Valadez-Perez, R. Castaneda-Priego,

N. J. Wagner, and Y. Liu, Soft Matter 10, 5061 (2014).

062606-11

https://doi.org/10.1063/1.2752155
https://doi.org/10.1063/1.2752155
https://doi.org/10.1063/1.2752155
https://doi.org/10.1063/1.2752155
https://doi.org/10.1021/nl102539a
https://doi.org/10.1021/nl102539a
https://doi.org/10.1021/nl102539a
https://doi.org/10.1021/nl102539a
https://doi.org/10.1039/C0SM01125H
https://doi.org/10.1039/C0SM01125H
https://doi.org/10.1039/C0SM01125H
https://doi.org/10.1039/C0SM01125H
https://doi.org/10.1063/1.479243
https://doi.org/10.1063/1.479243
https://doi.org/10.1063/1.479243
https://doi.org/10.1063/1.479243
https://doi.org/10.1103/PhysRevE.66.011909
https://doi.org/10.1103/PhysRevE.66.011909
https://doi.org/10.1103/PhysRevE.66.011909
https://doi.org/10.1103/PhysRevE.66.011909
https://doi.org/10.1063/1.1569473
https://doi.org/10.1063/1.1569473
https://doi.org/10.1063/1.1569473
https://doi.org/10.1063/1.1569473
https://doi.org/10.1021/jp0525989
https://doi.org/10.1021/jp0525989
https://doi.org/10.1021/jp0525989
https://doi.org/10.1021/jp0525989
https://doi.org/10.1126/science.277.5334.1975
https://doi.org/10.1126/science.277.5334.1975
https://doi.org/10.1126/science.277.5334.1975
https://doi.org/10.1126/science.277.5334.1975
https://doi.org/10.1021/ja0550632
https://doi.org/10.1021/ja0550632
https://doi.org/10.1021/ja0550632
https://doi.org/10.1021/ja0550632
https://doi.org/10.1021/cm051123r
https://doi.org/10.1021/cm051123r
https://doi.org/10.1021/cm051123r
https://doi.org/10.1021/cm051123r
https://doi.org/10.1002/adma.200306638
https://doi.org/10.1002/adma.200306638
https://doi.org/10.1002/adma.200306638
https://doi.org/10.1002/adma.200306638
https://doi.org/10.1126/science.1086189
https://doi.org/10.1126/science.1086189
https://doi.org/10.1126/science.1086189
https://doi.org/10.1126/science.1086189
https://doi.org/10.1038/nature09713
https://doi.org/10.1038/nature09713
https://doi.org/10.1038/nature09713
https://doi.org/10.1038/nature09713
https://doi.org/10.1038/nature03109
https://doi.org/10.1038/nature03109
https://doi.org/10.1038/nature03109
https://doi.org/10.1038/nature03109
https://doi.org/10.1103/PhysRevLett.94.208301
https://doi.org/10.1103/PhysRevLett.94.208301
https://doi.org/10.1103/PhysRevLett.94.208301
https://doi.org/10.1103/PhysRevLett.94.208301
https://doi.org/10.1063/1.1830433
https://doi.org/10.1063/1.1830433
https://doi.org/10.1063/1.1830433
https://doi.org/10.1063/1.1830433
https://doi.org/10.1103/PhysRevE.70.050401
https://doi.org/10.1103/PhysRevE.70.050401
https://doi.org/10.1103/PhysRevE.70.050401
https://doi.org/10.1103/PhysRevE.70.050401
https://doi.org/10.1088/0953-8984/16/42/006
https://doi.org/10.1088/0953-8984/16/42/006
https://doi.org/10.1088/0953-8984/16/42/006
https://doi.org/10.1088/0953-8984/16/42/006
https://doi.org/10.1021/la048554t
https://doi.org/10.1021/la048554t
https://doi.org/10.1021/la048554t
https://doi.org/10.1021/la048554t
https://doi.org/10.1103/PhysRevLett.93.055701
https://doi.org/10.1103/PhysRevLett.93.055701
https://doi.org/10.1103/PhysRevLett.93.055701
https://doi.org/10.1103/PhysRevLett.93.055701
https://doi.org/10.1021/jp052683g
https://doi.org/10.1021/jp052683g
https://doi.org/10.1021/jp052683g
https://doi.org/10.1021/jp052683g
https://doi.org/10.1103/PhysRevE.66.066108
https://doi.org/10.1103/PhysRevE.66.066108
https://doi.org/10.1103/PhysRevE.66.066108
https://doi.org/10.1103/PhysRevE.66.066108
https://doi.org/10.1088/0953-8984/2/33/001
https://doi.org/10.1088/0953-8984/2/33/001
https://doi.org/10.1088/0953-8984/2/33/001
https://doi.org/10.1088/0953-8984/2/33/001
https://doi.org/10.1140/epje/e2005-00009-x
https://doi.org/10.1140/epje/e2005-00009-x
https://doi.org/10.1140/epje/e2005-00009-x
https://doi.org/10.1140/epje/e2005-00009-x
https://doi.org/10.1016/j.bpj.2014.08.032
https://doi.org/10.1016/j.bpj.2014.08.032
https://doi.org/10.1016/j.bpj.2014.08.032
https://doi.org/10.1016/j.bpj.2014.08.032
https://doi.org/10.1039/c1sm05597f
https://doi.org/10.1039/c1sm05597f
https://doi.org/10.1039/c1sm05597f
https://doi.org/10.1039/c1sm05597f
https://doi.org/10.1039/c0sm01295e
https://doi.org/10.1039/c0sm01295e
https://doi.org/10.1039/c0sm01295e
https://doi.org/10.1039/c0sm01295e
https://doi.org/10.1039/C4SM01559B
https://doi.org/10.1039/C4SM01559B
https://doi.org/10.1039/C4SM01559B
https://doi.org/10.1039/C4SM01559B
https://doi.org/10.1021/nn401487m
https://doi.org/10.1021/nn401487m
https://doi.org/10.1021/nn401487m
https://doi.org/10.1021/nn401487m
https://doi.org/10.1021/nl500934v
https://doi.org/10.1021/nl500934v
https://doi.org/10.1021/nl500934v
https://doi.org/10.1021/nl500934v
https://doi.org/10.1088/0953-8984/27/23/234105
https://doi.org/10.1088/0953-8984/27/23/234105
https://doi.org/10.1088/0953-8984/27/23/234105
https://doi.org/10.1088/0953-8984/27/23/234105
https://doi.org/10.1103/PhysRevB.15.1959
https://doi.org/10.1103/PhysRevB.15.1959
https://doi.org/10.1103/PhysRevB.15.1959
https://doi.org/10.1103/PhysRevB.15.1959
https://doi.org/10.1038/nmat820
https://doi.org/10.1038/nmat820
https://doi.org/10.1038/nmat820
https://doi.org/10.1038/nmat820
https://doi.org/10.1063/1.471891
https://doi.org/10.1063/1.471891
https://doi.org/10.1063/1.471891
https://doi.org/10.1063/1.471891
https://doi.org/10.1039/c2sm07379j
https://doi.org/10.1039/c2sm07379j
https://doi.org/10.1039/c2sm07379j
https://doi.org/10.1039/c2sm07379j
https://doi.org/10.1039/c3ra44588g
https://doi.org/10.1039/c3ra44588g
https://doi.org/10.1039/c3ra44588g
https://doi.org/10.1039/c3ra44588g
https://doi.org/10.1007/s101890170025
https://doi.org/10.1007/s101890170025
https://doi.org/10.1007/s101890170025
https://doi.org/10.1007/s101890170025
https://doi.org/10.1039/c3sm53220h
https://doi.org/10.1039/c3sm53220h
https://doi.org/10.1039/c3sm53220h
https://doi.org/10.1039/c3sm53220h



