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ABSTRACT 

 

Drought is a complex, multifaceted phenomenon that crosses political and geographical borders.

However, it is usually studied using one-dimensional time series of drought variables, ignoring

the multivariate characteristics of droughts and their interdependence. On the other hand,

increasing the complexity of drought analysis by considering multiple variables can be difficult

to incorporate into management. Impediments to using multivariate analysis in this context may

include high entrance barriers for analysts to perform multivariate analysis and difficulty

presenting the results to decision-makers. This gap prevents us from adequately forecasting,

planning, and managing to cope with the adverse effects of droughts. Therefore, finding a

balance between complexity and simplicity is something that must be sought. In this thesis, I

argue that the shift to understanding drought as a multivariate event provides enough gain of

information to justify its use in drought planning and management if it is possible to make a

link between science and management. To do so, I study droughts' compounding relationships

in three different dimensions of drought risk: monitoring and early warning, multivariate

frequency analysis, and spatio-temporal characterization. (i) Droughts can be anticipated and

mitigated using a Continuous Drought Probability Monitoring System (CDPMS). This system

uses the conditional probability theory to monitor the occurrence probability of drought during

the rainy season, as the rainy season advances. The likelihood that the rainy season is defined

as drought is updated every month inside this period. The concept of precipitation thresholds is

used in CDPMS to simplify the drought analysis for decision-makers. The model was assessed

in mainland Portugal and demonstrated the capacity to anticipate drought by modeling the

complex dependence structures between total and given precipitation. The proposed framework

can be used to quantify the risk of drought and mitigate its impacts; (ii) Traditional drought

frequency analysis uses only one characteristic of drought (e.g., the duration), which is an

incomplete representation of the event and ignores mutual dependence. Also, it frequently

ignores the spatial extent of droughts or considers it without a relationship with drought

management. A framework to perform multivariate frequency analysis at a spatial level that can

be related to socioeconomic impacts was proposed. The 2012-2018 drought in northeast Brazil

was studied using this framework. Improved risk assessment was achieved by simultaneously

considering drought duration and severity at the hydrographic region level. This framework is

already being used as a planning instrument in new proactive drought plans that are being

constructed in the studied region. (iii) The multivariate characterization of droughts can present

the following dilemma: to oversimplify and ignores other sides of the problem or to increase



complexity and make it difficult for decision-makers to have a clear view of the event. To

improve our understanding of the compounding effects of spatio-temporal relationships it is

proposed a simple way to analyze the drought dynamics over time and space. Intra-event

analysis of drought dynamics and searching for patterns and relationship between mean drought

characteristics are presented. The first part proposes the use of growth curve, growth rate and

acceleration to understand how drought evolves in time and space inside the drought event. The

second analyses the mean characteristics of all drought events in search for patterns and

relationships that can be helpful for decision-makers in drought monitoring and early warning.

It was found that central part of the Northeast region developed longer, more severe, and more

widespread droughts than any other area. This result is important for preparing for upcoming

events that presents its centroid’s onset at this region. This thesis presents strategies and

frameworks that can increase our knowledge of drought events by considering multiple

characteristics but still making them simple and straightforward for decision-makers. This way

we can link science and management, advancing our understanding of drought events and

improving our ability to cope with future droughts.  

 

Key-words: drought; multivariate analysis; spatio-temporal analysis; hydrological extremes. 



RESUMO 

 

A seca é um fenómeno complexo e multifacetado que atravessa fronteiras políticas e

geográficas. Contudo, é normalmente estudado utilizando séries temporais unidimensionais de

variáveis de seca, ignorando as características multivariadas das secas e a sua interdependência.

Por outro lado, aumentar a complexidade da análise da seca, considerando múltiplas variáveis,

pode ser difícil de incorporar na gestão. Os impedimentos à utilização da análise multivariada

neste contexto podem incluir altas barreiras de entrada para os analistas efetuarem análises

multivariadas e dificuldade em apresentar os resultados aos decisores. Esta lacuna impede-nos

de prever, planear e conseguir lidar adequadamente com os efeitos adversos das secas. Por

conseguinte, encontrar um equilíbrio entre complexidade e simplicidade é algo que deve ser

procurado. Nesta tese, defendo que a mudança para compreender a seca como um evento

multivariado proporciona ganhos de informação suficientes para justificar a sua utilização no

planeamento e gestão da seca, se for possível estabelecer uma ligação entre ciência e gestão.

Para tal, estudo as relações de composição das secas em três dimensões diferentes do risco de

seca: monitorização e alerta precoce, análise multivariada de frequência, e caracterização

espaço-temporal. (i) As secas podem ser antecipadas e mitigadas utilizando um Sistema de

Monitorização da Probabilidade de Seca Contínua (CDPMS). Este sistema utiliza a teoria da

probabilidade condicional para monitorizar a probabilidade de ocorrência de seca durante a

estação chuvosa, à medida que a estação chuvosa avança. A probabilidade de que a estação

chuvosa seja definida como seca é atualizada todos os meses dentro deste período. O conceito

de limiares de precipitação é utilizado no CDPMS para simplificar a análise da seca para os

decisores. O modelo foi avaliado em Portugal Continental e demonstrou a capacidade de

antecipar a seca, modelando as complexas estruturas de dependência entre a precipitação total

e a precipitação dada. O quadro proposto pode ser utilizado para quantificar o risco de seca e

mitigar os seus impactos; (ii) A análise tradicional da frequência da seca utiliza apenas uma

característica da seca (por exemplo, a sua duração), que é uma representação incompleta do

evento e ignora a dependência mútua. Além disso, ignora frequentemente a extensão espacial

das secas ou considera-a sem uma relação com a gestão da seca. Foi proposto um quadro para

realizar uma análise multivariada da frequência a nível espacial que pode ser relacionada com

os impactos socioeconómicos. A seca de 2012-2018 no nordeste do Brasil foi estudada

utilizando este quadro. Foi conseguida uma melhor avaliação do risco, considerando

simultaneamente a duração e gravidade da seca a nível da região hidrográfica. Este quadro já

está a ser utilizado como um instrumento de planeamento em novos planos de seca proativos



que estão a ser construídos na região estudada. (iii) A caracterização multivariada das secas

pode apresentar o seguinte dilema: simplificar excessivamente e ignorar outros lados do

problema ou aumentar a complexidade e tornar difícil para os decisores ter uma visão clara do

evento. Para melhorar a nossa compreensão dos efeitos compostos das relações espaço-

temporais, propõe-se uma forma simples de analisar a dinâmica da seca no tempo e no espaço.

São apresentadas análises intra-evento da dinâmica da seca e procura de padrões e relações

entre as características da seca média. A primeira parte propõe a utilização da curva de

crescimento, taxa de crescimento e aceleração para compreender como a seca evolui no tempo

e no espaço dentro do evento da seca. A segunda analisa as características médias de todos os

eventos de seca em busca de padrões e relações que possam ser úteis para os decisores no

monitoramento e alerta precoce da seca. Verificou-se que a parte central da região nordeste

desenvolveu secas mais longas, mais severa e mais generalizada no espaço do que qualquer

outra área. Este resultado é importante para a preparação dos próximos eventos em que o

centroide da seca se iniciar nesta região. Esta tese apresenta estratégias e quadros que podem

aumentar os nossos conhecimentos sobre eventos de seca, considerando múltiplas

características, mas ainda assim tornando-as simples e diretas para os decisores. Desta forma,

podemos ligar a ciência e a gestão, fazendo avançar a nossa compreensão dos eventos de seca

e melhorando a nossa capacidade de lidar com futuras secas. 

 

Palavras-chave: seca; análise multivariada; análise espaço-temporal; extremos hidrológicos. 
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1 INTRODUCTION 

 

Droughts are recognized as the world’s deadliest and one of the costliest natural

hazards (PIEPER, 2020). According to the International Emergency Events Database (EM-DAT)

(EM-DAT, 2023), droughts account for 5% of natural disasters globally while causing more

than 36% of the fatalities linked to natural disasters since 1900. Drought is an extensive and

slow-onset natural disaster, which means the drought events manifest over a widespread area

and its impacts are manifested over months or years. Drought can occur at different spatial and

temporal scales, from local to global and from short-term to long-term (Wilhite & Svoboda,

2000). 

Droughts are complex and multifaceted natural phenomena that do not respect

political or geographical borders. A key aspect of drought planning and management is to

recognize its main characteristics: duration, severity, and spatial extent (ANDREADIS et al.,

2005; LIU et al., 2020; SHEFFIELD; WOOD, 2007; ZHU et al., 2019). Drought impacts can

vary depending on those three characteristics. A shorter drought can affect vast areas and have

an intense severity, causing effects on the environment, economy, and society.Also, long-lasting

droughts, even with lower severity, can decrease water availability to a point where few

measures can be taken to reduce impacts. Widespread droughts lessen the ability to cope with

drought once the surrounding areas also suffer similar impacts. So, recognizing those

characteristics and their relationship is a critical step in better understanding the phenomenon.  

However, droughts are traditionally studied using one-dimensional time series of

drought variables, and methods usually consider station-based, areal average-based or grid-

based information (SONG et al., 2021). Generalizing drought information simplifies its

interpretation at the cost of loss of information as the hazard presents multiple correlated

characteristics variables in space and time (HAO et al., 2017; STAHL et al., 2016). Numerous

studies have shown that the risk of compound events may be underestimated if the dependence

between variables are not considered (BEVACQUA et al., 2017; HAO et al., 2019; HAO;

SINGH; ASCE, 2020; RIBEIRO et al., 2020; WU et al., 2019). By reducing the problem's

dimensionality, we ignore the dependence structure among those aspects, resulting in a poorer

representation of the phenomenon (ALIDOOST; SU; STEIN, 2019; XU et al., 2015a). 

The scientific community has recently begun using multivariate analysis to better

understand droughts (ANDREADIS et al., 2005; HAO; SINGH; HAO, 2018; SHIAU, 2006).

This has been possible due to computational advances, increased hydroclimatic variables
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monitored, and the popularization of statistical techniques. However, little of this advance can

be seen in drought planning and management. Impediments to using multivariate analysis in

this context may include high entrance barriers for drought analysts to perform multivariate

analysis and difficulty in presenting more complex results to decision-makers.  

This gap prevents us from properly forecasting, planning, and managing to cope

with the adverse effects of droughts. For instance, investigating the spatiotemporal

characteristics of droughts and their mutual dependence would provide decision-makers of

drought-prone areas with reliable information on what kind of measures can be taken to cope

with future droughts (LIU et al., 2020). We could also increase forecast skills by exploring the

propagation and dependence between different random variables. 

On the other hand, we need to care about the enhanced complexity created by

increasing the number of random variables to observe. Drought analysis is already difficult to

understand because it has different classifications and various forms of political interference.

Therefore, we need to shift from the paradigm of analyzing drought as a univariate event to

understanding it as a multivariate event, however seeking for simple results presentation.  

 

1.1 Hypothesis 
 

Multivariate drought analysis provides enough gain of information to justify its use

in drought planning and management. 

 

1.2 Objectives 
 

The main objective of this thesis is to advance the understanding of droughts by

providing multivariate analysis frameworks that can be used to cope with the adverse effects of

droughts. 

 

Specifically, it aims to:  

• Develop a monitoring and early warning system based on the persistence of

droughts using conditional probability theory. 

• Provide a framework to include multivariate frequency analysis into drought

planning and management. 

• Develop a spatial-temporal drought analysis searching for patterns that can

help early warning and decision making. 
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1.3 Scientific Contributions  
 

The specific objectives of this thesis are answered through three scientific

papers. Each of them focuses on answering a single specific objective.  

The first paper presents an innovative solution that applies the copula

functions to predict the occurrence of drought. The second presents a technological

contribution by establishing a framework on how to use multivariate information in

drought planning. The third paper presents an innovative solution to monitor the space-

time dynamics of droughts and finds patterns that can help monitoring and early warning

for droughts in Northeast Brazil.  

The next chapter situates the reader in the theme in which the present thesis

is located and introduces how the articles are structured, what are the main results and

how they are related to each other. 
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2 SCIENTIFIC BACKGROUND 

 

There is no unique definition of drought as its perception varies according to users’

specific interests (PALMER, 1965). However, all definitions are somehow related to below-

average precipitation. If the event persists long enough, it can progressively affect soil moisture,

water resources, and economic and social development. For example, for a farmer who only

cultivates rain feed cultures, drought impacts can be perceived earlier than a water supply

company that uses stored water from reservoirs. Therefore, a classical classification of droughts

according to their impacts are: meteorological, agricultural, hydrological, and socioeconomic

(Heim, 2002; Wilhite & Glantz, 1985).  

In addition to the perception of drought being different according to the type of

water use, the analysis of drought should also seek to understand the different variables that are

linked to the definition of drought. The most common characteristics used to characterize a

drought event are duration, severity, and area. (Andreadis et al., 2005; Liu et al., 2020; Sheffield

&Wood, 2007; Zhu et al., 2019). To analyze drought characteristics, first one must extract them

from a drought index time series. Many different indices have been proposed in the last decades.

For example, the first drought index to gain relevance was the Palmer Drought Severity Index

(PDSI) (PALMER, 1965). Recently, the World Meteorological Organization (WMO)

recommended the Standardized Precipitation Index (SPI) (MCKEE; DOESKEN; KLEIST,

1993) to monitor meteorological drought conditions since it relies only in precipitation variable,

the most available hydroclimatic variable in the world.  

To use SPI, a long-term precipitation time-series is required (MISHRA; SINGH,

2010). This time-series is fitted to a probability distribution, usually Gamma or Pearson type

III (GUTTMAN, 1999; MCKEE; DOESKEN; KLEIST, 1993; SANTOS et al., 2013;

VICENTE-SERRANO, 2006), which is then transformed to a normal distribution. The result

of this mathematical transformation is that the mean precipitation value is transformed into zero

SPI value for the location and desired period. This transformation allows SPI values to be

compared in any region of the world. 

Despite the drought index used, drought characteristics can be identified from

historical time series data based on the run theory (Yevjevich, 1967). Using run theory, each

drought event can be analyzed separately from the original time series. This technique gained

popularity in drought analysis as it allows univariate and multivariate frequency analysis and

comparisons between different drought variables (ESPINOSA et al., 2021; RIBEIRO et al.,

2020; SHIAU, 2006; WU et al., 2018).  
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As introduced earlier, the definition of drought depends on the user's perception and

type of water use. This consideration can be incorporated into the drought characterization by

changing the threshold by which the separation of drought events will occur from run theory.

Less extreme thresholds allow the event to start earlier and take longer to exit. More extreme

thresholds define more extreme events, that is, they take longer to start and are less likely to

occur. This makes the definition of drought sensitive to the choice of threshold. The decision

on what threshold to choose is up to the drought analyst and the intent of his analysis (DRACUP;

LEE; PAULSON, 1980). 

Another way to influence the characterization of drought is the time aggregate used

in the analysis. Standardized drought indices such as SPI can accumulate information over

several months. The time aggregate, also known as timescale, is used to study the influence of

a larger number of months within the definition of the event. For example, smaller timescales,

such as 1 or 3 months, are used to characterize short-term events, generally associated with

impacts on agriculture. Longer timescales are used to study drought associated with long-term

impacts, such as using 12 or 24 months to study hydrological and/or socio-economic droughts.  

A discussion that arises in drought definition due to the impact of parameters in

drought definition is the difficulty to stablish when a drought event starts or ends. Each

timescale used will provide a different date to be marked as the drought onset. Therefore,

instead of focusing on determining exactly when did the drought started or ended, we

recommend the use of reference periods. This reference periods can be seasons or years when

the drought event begins. Less attention should be given to the proper definition of exactly

month when the drought has its onset. The focus should shift to the reference period itself.

Therefore, making easier to analyze drought events using different time-scales. In addition to

the complexity of defining droughts according to users' perceptions, understanding that there is

dependence between the variables and that this dependence can be used to improve

understanding of the drought event is fundamental. 

Factors that lead to the dependence of the variables can be linked to the following:

external factors, system feedback and conditional dependence (HAO; SINGH; ASCE, 2020).

External factors are related to general atmospheric circulation, such as natural cycles (e.g., El

Niño–Southern Oscillation, ENSO) or circulation patterns (e.g., low-pressure, or high-pressure

systems). These external factors can influence persistence over time in a given area and/or co-

occurrence in different areas at the same time. If these areas become connected, they form a

contiguous drought affected area. The land-atmosphere feedback is another cause of compound

events. The lower precipitation can reduce evapotranspiration, creating even more favorable
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conditions for drought to occur. This feedback can influence the migrations of droughts across

continents (HERRERA-ESTRADA; DIFFENBAUGH, 2020; HERRERA-ESTRADA;

SATOH; SHEFFIELD, 2017). Conditional dependence happens when the occurrence of one

variable determines, to some extent, the occurrence of another variable. For example, the

propagation of drought through the water cycle is a well-known behavior. The lack of

precipitation influences the dryness of the soil, later reducing the amount of water available in

the river and subsequently reducing groundwater levels (VAN LOON, 2015). Therefore,

understanding how different variables are related can improve drought planning and

management capacity. 

Best practices for drought planning requires information about the two different

components of drought risk: hazard and impacts (TIJDEMAN et al., 2022). The drought hazard

does not imply the impact as the exposed system needs to be vulnerable to the impact really

occurs. For example, previously taken measures can increase the capacity to cope with drought,

reducing the vulnerability, and consequently, the impact. From a hazard perspective, it is

essential to understand meteorological drought better, as it can be used as an early sign of further

impacts during drought propagation through the terrestrial part of the hydrological cycle (VAN

LOON, 2013).  

Therefore, from a risk analysis perspective, the study of droughts can be divided

into twomajor dimensions, hazard, and impact, each one having its relevance. In the perspective

of hazard, some dimensions deserve to be highlighted, such as monitoring and early warning

and frequency analysis and spatio-temporal characterization. In this sense, this thesis presents

three different papers that use multivariate analyses, and each present a framework to improve

understanding of droughts by using multivariate analysis (Figure 1). Each framework is

independent and was built to achieve specific purposes to consider multiple variables and

simplify the results for decision makers. These frameworks are easily replicable in other regions

and this thesis did not seek to apply them to the same region. Next, each framework will be

explained in greater detail and the main results will be presented. 
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Figure 1: Drought study area, from a risk assessment perspective. The bigger circle indicates
the state-of-the-art knowledge in drought area. The orange lines indicate where this thesis
expands the current knowledge. 

 
Source: Prepared by the author 

 

The first paper is related to monitoring and early warning which forms the basis for

proactively dealing with droughts (Wilhite, 2012; Wilhite et al., 2005; Wilhite & Svoboda,

2000). Dynamic and statistical modeling are the most common approaches to early warning

systems (YANG; LIU, 2020). Dynamic modeling uses General Circulation Models (GCMs) to

predict rainfall based on the temperature conditions of the ocean's surface (DELGADO et al.,

2018; PORTELE et al., 2021). Statistical modeling uses regressions, stochastic, probabilistic,

and artificial intelligence modeling to understand the persistence of environmental variables

(KRISHNAMURTHY R et al., 2020).  

To model the persistence of drought over time, it is important to incorporate the

complex relationship between what has already happened and what is about to happen. In this

study we created an innovative framework that uses the conditional probability theory using

copula functions to model this complex structure using the advantages of copula functions that

allow flexibility in the choice of marginal distribution and split between dependency and

marginal structure analysis. Therefore, a copula-based Continuous Drought Probability

Monitoring System (CDPMS) was developed. The compounding effect of monthly rainfall

during the rainy season was used to calculate the likelihood that drought is onset by the end of
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the season. To facilitate understanding by decision makers, the concept of drought thresholds

was used. This concept translates information from the drought index to absolute precipitation

values. 

The proposed framework intends to answer the following question: will there be a

drought in the rainy season this year, knowing what has happened so far? To answer this

question, first delimit the location, then the rainy season. Throughout the selected rainy season,

the probability of a drought will be updated as each month's precipitation occurs. For example,

knowing that the threshold for the occurrence of a moderate drought in a location is 200 mm in

the period from January to June and knowing that it rained 100mm between January andMarch,

ask: What is the probability of the accumulated Jan-Jun being less than 200mm given that it

rained 100mm from Jan-Mar? This response is given and updated month by month by the

CDPMS as more information is generated. 

This framework was assessed in mainland Portugal and demonstrated the capacity

to anticipate drought by modeling the complex dependence structures between precipitations at

different time intervals. Results demonstrate the capacity to anticipate drought by modeling the

complex dependence structures between total precipitation and the given precipitation for the

period. Since the first month, the forecast using the CDPMS has beaten the climatology. In

addition, the model improves performance as it gains more information over the months.

Therefore, CDPMS has proven to be a valuable tool for monitoring and early warning of

droughts with information that is simple for decision makers to understand. This innovative

approach was applied in Pakistan (Niaz, Almazah, Hussain, and Pontes Filho 2022; Niaz,

Almazah, Hussain, Pontes Filho, et al. 2022). 

The second paper refers to multivariate frequency analysis. Drought memory has

great relevance in mitigating future events and should be preserved in proactive drought plans.

Frequency analysis allows the identification of the exceptionality of each event and can serve

as a marker of the memory of that event. It gives insights into how often a drought event occurs.

Traditionally only one variable is used to perform the frequency analysis, which ignores the

dependence structure with other variables and performs an incomplete representation of the

phenomenon. Also, most previous studies on frequency analysis have only focused on station-

based assessment or considered mathematical regionalization that do not correspond to social-

political organization. Thus, these simplifications ignore widespread impacts and how

mitigation actions are organized. This indicates a need to provide a framework that can

incorporate multivariate frequency analysis at a territory scale that is linked to drought planning

and management.  
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This paper attempts to show that analyzing an extreme event such as the 2012-2018

drought in northeast Brazil by simultaneously considering drought duration and severity at the

hydrographic region scale can improve risk assessment. The results indicate that the 2012-2018

drought event presented the highest bivariate return period ever recorded, 240 years. Events

with similar duration but less severe than the 2012-2018 were also found, enhancing the

importance of considering the dependence between both characteristics. The proposed

framework has shown institutional relevance for the region and is being used as a tool within

the proactive drought plans being produced for the region. 

The regionalized analysis of droughts considering the spatial territory of

hydrographic regions proposed in the second paper’s framework proved to be relevant for

drought planning, as it easily relates to drought management practices. However, droughts do

not respect political or geographic borders and another way to monitor and assess drought risk

is to understand how it moves, connects, and splits over time and space. 

Thus, the third paper explores the dynamics of spatio-temporal relationship between

drought events. Spatio-temporal analysis of droughts can fall into the following dilemma:

oversimplify and ignore other faces of the problem or increase the complexity making it

difficult for decision makers to understand. A simple framework to visualize drought evolution

over time and space is proposed. To do so, we first need to consider the spatio-temporal aspect

in a 3D analysis (lat, long, and time). Then, the article provides two different analyses: intra-

event analysis of drought dynamics and searching for patterns and relationship between mean

drought characteristics. The first part proposes the use of growth curve, growth rate and

acceleration to understand how drought evolves in time and space inside the drought event. The

second analyses the mean characteristics of all drought events in a search for patterns and

relationships that can be helpful for decision-makers in drought monitoring and early warning.

It was found that central part of the Northeast region developed longer, more severe and more

widespread droughts than any other area. This result is important for preparing for upcoming

events that its centroid’s is onset on this region. 

The three proposed frameworks present possible implementations that help gain

insight into drought phenomena by considering multiple variables together, while simplifying

analysis and decision making for managers. The proposed frameworks can serve as tools to be

considered in proactive drought plans according to the needs of each location, with no need for

all three to be incorporated in the same region at the same time. Since the frameworks were

created oriented to decision makers, their application becomes simple to be implement. With

these tools, it is believed that we can advance drought planning and management. 
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3 ACONTINUOUS DROUGHT PROBABILITYMONITORING SYSTEM,
CDPMS, BASED ON COPULAS1 

 

3.1 Introduction 
 

Drought is a natural phenomenon without a clear onset which makes it difficult to

recognize identify. It is the world's costliest natural disaster and can provide impacts in a global

perspective, not restricted to places with low average precipitation amounts (KEYANTASH;

DRACUP, 2002; MISHRA; SINGH, 2010; WILHITE; GLANTZ, 1985). In Europe, the total

cost of drought damages recorded from 1976 to 2006 amounted to 100 billion €

(COMMISSION, 2012). Therefore, the continuous monitoring of the probability of drought

events is crucial to deploy short term emergency measures and to mitigate the social,

environmental, and economic costs and losses associated with those events.  

Considerable disagreement exists about the definition of drought. However, all the

definitions relate the event to below-average precipitation over a period of time. If the event

persists long enough, it can progressively affect soil moisture, water resources, and,

consequently, economic and social development. According to its impacts, the droughts can be

classified into four categories: meteorological, agricultural, hydrological, and socioeconomic

(HEIM, 2002; WILHITE; GLANTZ, 1985). 

Drought indices are the most suitable tool for drought monitoring and evaluation.

Many different indices have been proposed in the last decades. Among the hydrological

variables adopted to detect and characterize drought occurrences, precipitation is the most

widely used, not only due to its intrinsic link with the phenomenon and its consequences but

also because precipitation is widely monitored and there are relatively long historical records.  

In 2009, the World Meteorological Organization (WMO) recommended the

standardized precipitation index (SPI) (MCKEE; DOESKEN; KLEIST, 1993) to monitor

meteorological drought conditions. Since then, the SPI is used worldwide to detect anomalous

precipitation over different time scales. The SPI has the advantage of being independent of the

magnitude of the mean precipitation, because it is a standardized index, and hence, able to

compare droughts in different climatic zones. 

 

1The paper can be cited as: Pontes Filho, J. D., Portela, M. M., Marinho de Carvalho Studart, T., &

Souza Filho, F. D. A. (2019). A continuous drought probability monitoring system, CDPMS, based on copulas.

Water, 11(9), 1925. 
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However, because it provides a standardized numerical value, it is difficult to

connect it expeditiously to precipitation deficits, and, consequently, to use it to recognize or to

predict drought events. 

The droughts have traditionally been studied in a univariate context, mostly aiming

at identifying and describing their occurrences. However, as many of the hydrological

phenomena, they are characterized by multiple aspects some of them expectably correlated.

Since a univariate approach ignores the dependence structure among those aspects, it may result

in a poorer representation of the phenomenon.  

Before copulas approach, some multivariate techniques were introduced in

hydrological studies, such as in the case of the analysis of floods, droughts, and storms. Those

techniques contribute to improving the accuracy of the estimates and provide information about

the dependence structure among the characteristics. Most of them used bivariate probability

distributions, such as bivariate gaussian, exponential, gamma, and extreme value distributions.

The disadvantage of such approaches is that the marginals must have the same probability

distribution and extensions to more than the bivariate case are not clear (GENEST; FAVRE,

2007; SINGH; ZHANG, 2007). However, copulas can overcome such difficulties (CHEN et al.,

2013). The advantages of using copulas to model complex relationships among variables are

(1) flexibility in choosing arbitrary marginals and structures of dependence, (2) capability to

model more than two variables, and (3) splitting of marginal and dependence structure analysis

(GENEST; FAVRE, 2007; HAO; SINGH, 2016; LAZOGLOU;ANAGNOSTOPOULOU, 2018;

SINGH; ZHANG, 2007). 

Multiple dependent random variables need more advanced and complex copulas

than the common ones that are applied to the bivariate case. An example is the vine-copulas

which are able of coupling multiple variables into a pair-to-pair manner (AAS; CZADO;

FRIGESSI, 2009). 

The application of copulas in hydrology has gained some relevance in the last

decades. Regarding drought analysis, one of the main uses of copulas is to model the

frequency analysis, combining different characteristics of the drought events (e.g. intensity,

duration, magnitude, and spatial distribution) (AYANTOBO et al., 2018; CHEN et al., 2019;

MONTASERI; AMIRATAEE; REZAIE, 2018; SHIAU, 2006; XU et al., 2015a). Another

important use of copulas is to integrate the drought index to a couple of different drought

categories, such as meteorological, hydrological and agricultural (CHANG et al., 2016; KAO;

GOVINDARAJU, 2010a; LIU et al., 2019b). 
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In climatic regions like Mainland Portugal, insufficient precipitation during the

short-duration and well-defined rainy season is the main trigger of the drought events. An

innovative use of copulas could be its application in a multivariate context to monitor the

evolution of the drought probability during that season, based on the continuous updating of

precipitation that already occurred and the one that needs to occur, so that there is (or not) a

drought by the end of the rainy season (a typical conditional probability problem). The

conditional probability theory coupled with copulas is frequently used in hydrological

applications to analyze multivariate dependence (MONTASERI; AMIRATAEE; REZAIE,

2018; SHIN et al., 2018; TOSUNOGLU; CAN, 2016) and will be applied in this study. 

Aiming at exploring copula’s forecasting capabilities in a drought monitoring

context, the concept of a precipitation threshold for drought recognition developed by

(PORTELA et al., 2012; SANTOS, 2012; SANTOS et al., 2013) was used. In each rain gauge,

if the cumulative precipitation in a given timespan falls below the precipitation threshold for

that timespan, a drought with a severity (from moderate to extreme), defined by the threshold,

will occur. Figure 2 exemplifies the application to Mainland Portugal of the precipitation

surface threshold concept applied to recognize moderate to extreme droughts from October to

March (the rainy season). If in a certain location the precipitation registered falls below the

value given by one of the maps, then the location experienced a drought, with the intensity

given by the threshold to which the map relates. 
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Figure 2: Mainland Portugal. Surfaces of precipitation thresholds, R_N^*, for the 6-month
period from October to March (SPI6), from the right to the left, for moderate (−0.84), severe
(−1.28), and extreme (−1.65) droughts.  

 

Source: Adapted from (Portela et al. 2012) 

 
The application of the precipitation threshold concept in the scope of the present

study can be formulated as follows: for a season of  months to which the time scale of the

SPI and the precipitation threshold, 
∗ , refer, let  denote the observed precipitation in the

first  months ( ≤  ≤ ) and  the total seasonal precipitation.  

A drought will occur by the end of the  -month period if  added to the

(unknown) precipitation in the remaining ( − ) months, (), is not enough to meet the

threshold, 
∗ , i.e.,:  

 + () ≤ 
∗ ⟺  ≤ 

∗  
(1) 

Consider, for example, the six-month season,  = 6, from October to March

(during which most of the precipitation in Portugal falls) and, that at the end of December of a

given year, an estimate of the probability of a moderate, severe or extreme drought occurrence

is envisaged. Given the observed precipitation from October to December ( with  = 3), the

problem to be addressed for each drought intensity can be stated as what is the probability the

precipitation from January to March (still unknown) added to the precipitation from October to

December being below the drought threshold? The solution is the drought probability given by

the following equation:  
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 ( ≤ 
∗ |) ⟺  (6 ≤ 6

∗|3) 
(2) 

By coupling a copulas approach with the precipitation threshold concept, the main

objectives of this study were as follow: 1) to develop a methodology for a Continuous Drought

Probability Monitoring System, CDPMS, 2) to evaluate the performance of CDPMS, and 3) to

apply the CDPMS to a study area. To demonstrate the methodology, Mainland Portugal and its

rainy season (from October to March) were selected. In Portugal, the precipitation regime is

characterized by very pronounced seasonality, in average with 80% of the precipitation

occurring from October to March, which makes it relevant to be able to anticipate if drought

conditions are expected by the end of that period. 

 
3.2 Materials and Methods 
 

The development of the CDPMS was based on the stepwise approach described in

Sections 2.1.1 to 2.1.3 and shown in Figure 3, steps (a) to (c). First, the drought threshold for a

given time span or scale of the SPI, , and drought severity is defined. After that, the copula

candidates aiming at modeling the precipitation correlation structure are evaluated and those

with best-fit are selected. Finally, the drought probability given by Equation (2) is computed.

Having in mind that the goal of the CDPMS is to continuously monitor the probability of

drought by the end of a -month period, steps (b) and (c) are repeated from  = 1 to  =−1.

The Leave-One-Out Cross-Validation (LOOCV) methodology (steps (b) and (c) repeated from

x = 1 until the length x of time series) was used to evaluate the model performance using the

Brier and the Brier Skill scores (d).  

The CDPMS was applied to Mainland Portugal based on precipitation records at 45

rain gauges (described later in Section 3).  
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Figure 3: Development of the CDPMS and evaluation of its performance 

 

Source: Prepared by the author 
 

3.2.1 CDPMS Definition 
 
3.2.1.1 Seasonal Threshold Definition 
 

The precipitation in Mainland Portugal falls mainly from October (beginning of the

hydrological year) to March, representing, on average, almost 70% and 85% of the annual

precipitation in the North and South, respectively. Therefore, it was considered relevant to

estimate the probability of drought occurrence by the end of the rainy season. The

corresponding precipitation thresholds were obtained by inverting the SPI from October to

March, SPI6, for each of the drought intensities proposed byAgnew [26] and presented in Table

1. For a given rain gauge and drought severity, the precipitation threshold, 
∗ , give the SPI

value back to the precipitation field (PORTELA et al., 2012; SANTOS, 2012; SANTOS et al.,

2013). 

 

 

Table 1: Classes of drought intensity, associated probability, and SPI value 

Drought Class Probability SPI Value 
Moderate Drought 0.20 Less than −0.84 

Severe Drought 0.10 Less than −1.28 
Extreme Drought 0.05 Less than −1.65 
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Adapted from  (AGNEW, 2000). 
 

3.2.1.2 Copula Fitting 
 

The analysis of the dependency structure between two or more random variables

can be used to indicate predictive relationships among them. The most common method is to

measure the linear relationship using the Pearson correlation coefficient. One of the main

weaknesses of linear correlation is that it tends to detect only the degree of dependence despite

its dependence structure.  

The consideration of non-linear dependence is possible by applying a rank

correlation coefficient such as Spearman rank correlation and Kendall's Tau. The last coefficient

is more used because its value directly indicates the probability of observing concordant or

discordant pairs. There exists a relationship between the rank correlation coefficient and copula

function that allows the use of copulas to study non-linear dependences. 

According to Sklar’s theorem (NELSEN, 2006), if the random variables x1, …, xm

follow a marginal probability distribution function F1(x1), …, Fm(xm), respectively, there exists

a copula, C, that can join these marginal distribution functions in the form of a joint distribution

function (Equation (3)), 

(, … , ) = [((),(), … ,() = (,, … ,) 
(3) 

where, Fk(xk) = uk for k = 1, ..., m, with uk ~ u(0,1) and C(u1, ..., um ) being the

copula function. 

Although copulas may be implemented in multiple dimensions only bivariate

copulas were considered in the present study.  

Different families of copulas have been described by Nelsen (NELSEN, 2006), the

families are commonly classified in four main groups: Meta-elliptical copulas (Gaussian and t

Student), Archimedean copulas (Clayton, Gumbel, Frank, and Joe), Extreme value type

(Gumbel, Husler-Reiss, Galambos, Tawn, and t-EV), and miscellaneous type (Plackett and

Farlie–Gumbel–Morgenstern).  

The Archimedean copulas are very popular for hydrological analyses as they allow

modeling a great diversity of dependence structures, especially for dependent tail structures,

and because of its accessible generation properties (AYANTOBO; LI; SONG, 2019; SINGH;

ZHANG, 2007; XU et al., 2015a). At higher orders, the use of Archimedean copulas is limited

because their structure imposes restrictions related to dependence characteristics that are

extremely difficult to satisfy for more than two variables (KAO; GOVINDARAJU, 2010b).
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Meta-Elliptical copulas, on the other hand, can model higher-order due to their simple structure

that can better fit the complex dependence of multi-dimensional problems (CHEN et al., 2013;

SHARIFI; SAGHAFIAN; STEINACKER, 2019). 

The parameters for the copulas families can be estimated either by the method of

moments, inversion of Kendall’s Tau or by maximum likelihood estimation (MLE). The first

method has the disadvantage of being applicable only to one-parameter copulas. As for the

MLE method, two possibilities exist the inference functions from margins (IFM) (JOE, 1997)

or the maximum pseudo-likelihood method (MPL) (GENEST; GHOUDI; RIVEST, 1995). How

the transformation to [0,1] interval was made will dictate which is the best method, parametric

for IFM and MPL for rank-based (BRECHMANN; SCHEPSMEIER, 2013). 

To model the dependence structure between the precipitation in a given sub-period

of the rainy season and the seasonal precipitation itself, as is the case of the current application,

the most popular Meta-Elliptical copulas (Gaussian and t Student), and Archimedean copulas

(Clayton, Gumbel, and Frank) were tested as candidates. The copula formulation for each

candidate family and its parameters’ interval are presented in Table 2. For each month of the

rainy season, the bivariate model was constructed based on the two variables: precipitation in

its initial n months () and the total seasonal precipitation ().  

 

Table 2: Copula candidate family formulation and parameter range. 

Class Family (,) Parameter Range 

Archimedean Gumbel exp {−[(− ln)
 + (− ln)

]

   ∈ [, +∞) 

Archimedean Frank 



lg ( +

( 1 − )( 2 − )

( − )
)  ∈ (−∞, +∞) 

Archimedean Clayton (
 + 

 − )

 )  ∈ (0, +∞) 

Meta-Elliptical Gaussian (
(),

())  ∈ (−,) 
Meta-Elliptical t Student ,(

(),
())  ∈ (−,),  >   

Source: Prepared by the author 
 

The parameters  for Archimedean copulas and  and  for Meta-Elliptical

copulas, with  standing for the degrees of freedom (only needed for t Student copulas), were

estimated for the candidate copulas. This method was chosen because it can estimate both one

and two parameters of the copula without requiring the establishment of the marginal

distributions. 

The Akaike Information Criterion (AIC) was applied to compare the bivariate

copula models for the candidate families. The AIC method penalizes the models with the
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highest number of parameters, allowing to find the model with maximum explanatory power

and fewer parameters, according to the parsimony principle.  

3.2.1.3 Copula Probability 
 

The conditional probability theory associated with copulas is highly used in

hydrological applications to analyze multivariate dependence (MONTASERI; AMIRATAEE;

REZAIE, 2018; SHIN et al., 2018; TOSUNOGLU; CAN, 2016) and can be expressed by

Equation (5). Let two random variables X and Y with  = Fx(x), = Fy(y) and  and 

being specic values. The conditional distribution of X given Y = y is given by:  

( ≤  | = ) = (| = ) = 

=


2
(,)  

(5) 

 
3.2.2 CDPMS Performance Assessment 
 

The CDPMS performance was measured by the Brier Score based on the previous

computation of the probability of the coupled precipitation events for all the years with data but

one (x−1), according to the LOOCV. The validity of the probabilistic prediction was evaluated

by the Brier Skill Score. In the LOOCVmethod, each of the x observed years is evaluated by

removing one year of the time series, by fitting the model to the remaining x−1 years, and by

estimating the removed data (WILKS, 2011). The process is repeated x times to exclude any

bias in performance verification. It is important to note that LOOCV is not part of CDPMS, as

it was used only to assess the model’s performance, as shown in Figure 2. The model

performance is compared against a random reference forecast.  

 

3.2.2.1 Brier Score (BS) 
 

The drought probability provided by the proposed copula-based model for each

month can be analyzed using the Brier Score (BS), a verification measure of binary events

(yes/no) that is used in multivariate models (HAO et al., 2019; KLEIN et al., 2016). BS can

mainly be regarded as the mean squared error between the probability of the drought prediction

(pi), and a value of a binary variable associated with the observations () by assigning 1, if the

event occurs, and 0, if it does not, where x is the length of the time series. The BS takes values

in the range 0 to 1, with 0 being a perfect prediction, according to (WILKS, 2011): 
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 =



∑( − )







 
(6) 

 

3.2.2.2 Brier Skill Score (BSS) 
 

The Brier Skill Score (BSS) was used to evaluate the reliability of the probabilistic

prediction (or skill). The score is calculated from the BS for the CDPMS (BSCDPMS) and from

the BS for a reference forecast (BSREF) according to Equation (7), whose results range from −∞

to 1. BSS = 0 means no skill in comparison to the reference, and BSS = 1, perfect skill. 

 =  −



 

 

(7) 

In the application carried out, the reference forecast selected for the evaluation of

the prediction performance is the random probability of occurrence of a drought with a given

intensity. Since this score was only applied to moderate droughts (SPI < −0.84, corresponding

to the 20th percentile (AGNEW, 2000) the  for the BSREF was set equal to 0.20. 

 

3.2.3 Precipitation Data  
 

To construct a reliable bivariate statistical model for concurrent precipitation

distributions, long historical continuous observations are needed. In the application presented

herein, 45 rain gauges evenly distributed over mainland Portugal were selected (Figure 4, Chart

1). 

Figure 4: Location of the 45 rain gauges used in the study. 
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Source: Prepared by the author 

 

Chart 1: Name, code, identification (ID), and geographic coordinates (WGS84 system) of the
45 rain gauges of Figure 3.

 
Source: Prepared by the author 

 

The monthly precipitation records were acquired by the Portuguese Environmental

Agency, APA, and made available via the SNIRH database (Sistema Nacional de Informacão

de Recursos Hídricos, http://snirh.pt), which has high data quality standards. The SNIRH is the

Name Code ID Lat (o) Long (o) Name Code ID Lat (o) Long (o)

Merufe 01G03UG RG01 42.0180 -8.3890 Bemposta 17I02UG RG24 39.3490 -8.1410

Travancas 03N01G RG02 41.8280 -7.3056 Alter do Chão 18L01UG RG25 39.2182 -7.6844

Leonte 03I03UG RG03 41.7650 -8.1470 Pragança 18C01G RG26 39.1990 -9.0640

Soutelo (Chaves) 03L02UG RG04 41.7530 -7.5348 Pavia 20I01G RG27 38.8965 -8.0136

Campo de Víboras 04R03UG RG05 41.5240 -6.5580 Caia (Monte Caldeiras) 20O02UG RG28 38.8873 -7.0898

Cabeceiras de Basto 04J06UG RG06 41.5127 -7.9792 Santo Estevão 20E02UG RG29 38.8600 -8.7460

Santa Marta da Montanha 04K02G RG07 41.5008 -7.7460 Estremoz 20L01G RG30 38.8416 -7.6159

Folgares 06N01C RG08 41.3032 -7.2828 Colares (Sarrazola) 21A01C RG31 38.8020 -9.4570

Carviçais 06P02UG RG09 41.1790 -6.8900 Évora-Monte 21K02UG RG32 38.7690 -7.7161

Moncorvo 06O04UG RG10 41.1650 -7.0510 São Manços 23K01UG RG33 38.4605 -7.7505

Adorigo 07L01U RG11 41.1460 -7.6070 Barragem de Pego do Altar 23G01C RG34 38.4196 -8.3952

Pindelo dos Milagres 09J02U RG12 40.8060 -7.9630 Amieira 24L01C RG35 38.2793 -7.5605

Freixedas 09O02U RG13 40.6880 -7.1630 Barrancos 25P01UG RG36 38.1321 -7.0013

Gouveia 11L01UG RG14 40.4940 -7.5930 Santa Vitória 26I01UG RG37 37.9645 -8.0227

Santo Varão 12F02C RG15 40.1840 -8.6020 Serpa 26L01UG RG38 37.9426 -7.6038

Góis 13I01G RG16 40.1568 -8.1133 Relíquias 27G01G RG39 37.7030 -8.4825

Soure 13F01G RG17 40.0521 -8.6250 Castro Verde 27I01G RG40 37.6976 -8.0933

Penha Garcia 13O01UG RG18 40.0420 -7.0180 Mértola 28L01UG RG41 37.6371 -7.6619

Alvaiázere 15G01UG RG19 39.8270 -8.3810 Rosário (Almodôvar) 28I02U RG42 37.6020 -8.0810

Ladoeiro 14N02UG RG20 39.8269 -7.2660 Barragem deMira 28G01C RG43 37.5101 -8.4433

Nisa 16L03UG RG21 39.5160 -7.6690 Santa Catarina (Tavira) 31K01UG RG44 37.1487 -7.7847

Castelo de Vide 17M01G RG22 39.4116 -7.4525 Valverde 31E03C RG45 37.0820 -8.7180

Pernes 17F01UG RG23 39.3910 -8.6630
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main source of Portuguese hydrological and hydrometeorological data used by researchers and

practitioners of water resources engineering and science.  

Some of the precipitation series had missing values that were filled by applying an

approach based on a linear regression analysis (PORTELA et al., 2015b). For each monthly gap

in a given rain gauge, the approach identifies the candidate rain gauges that can be used for

filling it. These gauges are next ranked according to the correlation coefficient between paired

series for that month at the rain gauge with the gap and at each of the candidate rain gauges.

The candidate rain gauge with higher correlation coefficient is next selected and used to fill the

gap based on a linear regression model that is specific for each gap (PORTELA et al., 2015b).

The length of the series after filling the missing values was x = 100 hydrological years, from

1918/19 to 2017/18.  

 

3.3 CDPMS for Mainland Portugal: Definition and Performance 
 

The following items describe the stepwise development and the performance

assessment of the CDPMS developed to continuously monitor the drought probability over

Mainland Portugal during the rainy season, based on the precipitation records at the 45 rain

gauges of Figure 3. The application to a specific site is presented in Section 5. 

 

3.3.1 Precipitation Thresholds for Drought Recognition 
 

Chart 2 presents the precipitation thresholds, 
∗ , in the 45 rain gauges obtained by

inverting the SPI for the time span of 6 months (SPI6), from October to March, for the different

drought intensities (moderate, severe, and extreme). By the end of March, a drought with a

given intensity occurs in a given rain gauge whenever the precipitation for the period is smaller

than the precipitation threshold for that intensity. 

 

Chart 2: Precipitation thresholds, R_N*, (mm) for the six-month period, from October to March,
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for the different drought intensities. 

 
Source: Prepared by the author 

 

3.3.2 Copula Fitting 
 

In each rain gauge, the bivariate model was constructed by coupling the

precipitation in the rainy season,  for N = 6, with the precipitation in the initial n months of

that season,  (i.e., the precipitation in October, for n = 1, from October and November, for

n = 2 and so on until n = 5, from October to February). The length of each coupled (, )

series is equal to the length of the recording period (x = 100 years). The parameters were

estimated by the MPL method, and the candidate copula families were selected based on the

AIC. 

For the 45 rain gauges, the frequency of the copula families chosen for each value

of n is presented in Figure 5. Considering, for example, n = 1, the percentage of rain gauges

where the different types of families where selected is as follows: 31% copula Frank, a

symmetric Archimedean copula, 38% Clayton copula, an asymmetric copula with lower tail

dependence, 4% Survival Clayton copula, a 180 degrees rotated Clayton with upper tail

dependence, 18% Gumbel copula, an asymmetric copula with upper tail dependence, and 9%

Gaussian copula, a symmetric Meta-Elliptical copula.  

Moderate Severe Extreme Moderate Severe Extreme

RG01 745.2 550.6 411.7 RG24 307.4 226.9 165.0

RG02 429.9 351.9 297.6 RG25 269.9 190.0 126.2

RG03 1250.0 933.9 701.4 RG26 442.1 357.1 294.9

RG04 338.9 272.4 228.7 RG27 245.4 181.4 132.1

RG05 252.7 212.2 189.9 RG28 228.6 169.4 122.5

RG06 624.0 467.6 350.5 RG29 272.3 208.9 160.4

RG07 774.4 614.7 500.8 RG30 281.6 208.1 151.8

RG08 250.9 197.3 158.8 RG31 371.7 309.3 263.1

RG09 290.0 221.5 172.2 RG32 265.6 201.5 152.4

RG10 225.0 175.0 137.3 RG33 238.9 178.1 130.7

RG11 280.2 223.0 182.2 RG34 269.6 214.9 174.6

RG12 601.4 479.3 393.2 RG35 256.2 202.4 162.6

RG13 311.6 232.8 170.6 RG36 260.6 204.4 160.0

RG14 517.3 419.1 345.1 RG37 251.9 197.7 155.9

RG15 446.4 361.0 294.2 RG38 237.9 182.4 140.6

RG16 557.5 449.0 364.9 RG39 311.3 242.3 191.1

RG17 415.4 320.1 246.6 RG40 267.9 215.7 175.7

RG18 383.7 310.8 255.6 RG41 184.5 146.8 120.9

RG19 586.6 468.6 378.5 RG42 284.4 223.2 176.3

RG20 288.6 234.7 194.2 RG43 292.3 225.8 173.2

RG21 331.5 256.7 199.4 RG44 318.5 239.5 180.3

RG22 370.7 284.5 221.8 RG45 289.5 229.0 182.3

RG23 379.6 288.8 218.2

Drought intensityRain

gauge ID

Rain

gauge ID

Drought intensity
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As n increases, the percentage of rain gauges where Frank copula is selected

decreases from 31 (n = 1) to 7% (n = 5). This is explained by the increase of the linear

dependence between variables as the precipitation in additional months of the rainy season is

progressively known and provided to the model. The same applies to the Meta-Elliptical

copulas, Gaussian and t Student: less than 10% of the rain gauges for n = 1 to approximately

60% of the rain gauges for n from 3 to 5. 

Figure 5: Distribution (in percentage) of the selected copulas by the 45 rain gauges as a
function of the number of initial months of the rainy season. 

 

Source: Prepared by the author 
 

3.3.3 Drought Risk Monitoring 
 

After the bivariate model has been set up for each rain gauge, the CDPMS was

applied to estimate the drought probability, i.e., the temporal evolution of the conditional

probability of drought occurrence as new precipitation records are progressively acquired

(Equation (2)). 

Figure 6 shows the spatial distribution of the moderated drought probability thus

achieved for the rainy season of October 2012 to February 2013, chosen as an example. The

probability surfaces were obtained by averaging the results at the 45 rain gauges according to

the inverse distance weighting (IDW) method with exponent 2. 

 

Figure 6: Example of the application of the CDPMS to the continuous monitoring of the
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likelihood of moderate drought at the end of the six months period from October 2012 to
February 2013. Drought probability from the end of October to the end of February 

 

Source: Prepared by the author 
 
It is possible to see that, for n = 1 (that is, by the end of October), two regions

presented a higher probability of drought occurrence: northwest and southeast regions. For n =

3 (end of December), the probability of drought in those regions increased and even expanded

into some of the central areas. As the precipitation in the following months is progressively

known, only a few regions of the country have a drought risk smaller than 50%. This could

justify issuing an alert regarding a possible drought at the end of March–with caution in

December (n = 3), for sure in January (n = 4) and definitely in February (n = 5). Such an early

warning could raise the awareness of water resources managers and of civil protection

authorities, urging the implementation of some anticipatory measures aiming at mitigating the

consequences of a possible scenario of drought and water scarcity. 

The last map of Figure 5 shows what happened by the end of March. The almost

perfect match between the areas where the drought probability progressively increased with n

(areas shaded from blue to orange and red) and those that in fact experienced drought by the
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end of March (red circles) clearly indicates the ability of the model to identify areas of

increasing drought probability. 

 

3.3.4 CDPMS Performance Assessment 
 

The performance of the CDPMS was assessed based on the BSS computed for each

one of the 45 rain gauges and values of n, according to the LOOCVmethodology (Section 2.2). 

The results achieved for predicted moderate droughts are presented in Chart 3. The

values closer to 1 indicate better model performance, and the negative values indicate that the

reference forecast outperformed the CDPMS. The ability of the CDPMS to predict the drought

probability increases as the number of months, n, with known precipitation increases: for n = 1

the average performance for the complete set of rain gauges is 0.03 while for n = 5 is 0.70. 

 

Chart 3: Moderate droughts. BSS values for n = 1 to n = 5. 

 

Source: Prepared by the author 
 

The rain gauges where CDPMS had a better performance for n = 1 were RG01,

RG06, RG33, RG38, RG41, RG42, and RG43 indicating a higher correlation between the

precipitation in October and from October to March (BBS ≥ 0.07). Only for n = 1 and for seven

rain gauges (RG02, RG09, RG13, RG19, RG26, RG30, and RG37) did the CDPMS perform

Rain

gauge ID
n = 1 n = 2 n = 3 n = 4 n = 5 Average

Rain

gauge ID
n = 1 n = 2 n = 3 n = 4 n = 5 Average

RG01 0.15 0.27 0.46 0.57 0.69 0.43 RG24 0.03 0.23 0.38 0.56 0.81 0.40

RG02 -0.02 0.10 0.13 0.37 0.55 0.23 RG25 0.02 0.15 0.30 0.57 0.73 0.35

RG03 0.05 0.19 0.47 0.63 0.83 0.44 RG26 -0.05 0.12 0.25 0.60 0.78 0.34

RG04 0.04 0.10 0.25 0.44 0.65 0.30 RG27 0.03 0.17 0.30 0.41 0.67 0.32

RG05 0.00 0.18 0.35 0.51 0.65 0.34 RG28 0.03 0.18 0.29 0.47 0.72 0.34

RG06 0.15 0.27 0.44 0.55 0.77 0.44 RG29 0.02 0.10 0.14 0.41 0.55 0.24

RG07 0.06 0.18 0.35 0.52 0.66 0.35 RG30 -0.04 0.11 0.27 0.40 0.54 0.25

RG08 0.04 0.11 0.23 0.41 0.56 0.27 RG31 0.03 0.07 0.24 0.51 0.73 0.32

RG09 -0.03 0.25 0.27 0.53 0.62 0.33 RG32 0.05 0.15 0.25 0.49 0.62 0.31

RG10 0.01 0.16 0.22 0.41 0.52 0.27 RG33 0.08 0.21 0.37 0.48 0.67 0.36

RG11 0.02 0.14 0.22 0.53 0.64 0.31 RG34 0.01 0.13 0.27 0.41 0.68 0.30

RG12 0.01 0.13 0.28 0.44 0.59 0.29 RG35 0.01 0.11 0.32 0.57 0.71 0.34

RG13 -0.03 0.14 0.39 0.71 0.79 0.40 RG36 0.04 0.19 0.29 0.54 0.68 0.35

RG14 0.00 0.11 0.23 0.52 0.66 0.30 RG37 -0.01 0.14 0.29 0.57 0.84 0.36

RG15 0.02 0.19 0.32 0.44 0.70 0.33 RG38 0.07 0.24 0.31 0.48 0.57 0.33

RG16 0.01 0.11 0.23 0.50 0.73 0.32 RG39 0.04 0.17 0.15 0.54 0.71 0.32

RG17 0.02 0.13 0.31 0.54 0.81 0.36 RG40 0.03 0.13 0.31 0.61 0.80 0.37

RG18 0.00 0.12 0.23 0.44 0.58 0.27 RG41 0.10 0.28 0.47 0.70 0.81 0.47

RG19 -0.02 0.09 0.21 0.50 0.70 0.29 RG42 0.07 0.16 0.42 0.66 0.78 0.42

RG20 0.01 0.07 0.21 0.33 0.65 0.25 RG43 0.08 0.20 0.37 0.54 0.70 0.38

RG21 0.01 0.10 0.29 0.42 0.74 0.31 RG44 0.03 0.08 0.35 0.66 0.82 0.39

RG22 0.00 0.13 0.31 0.47 0.69 0.32 RG45 0.01 0.14 0.19 0.47 0.76 0.32

RG23 0.01 0.31 0.44 0.74 0.83 0.47 Average 0.03 0.16 0.30 0.51 0.70 0.34



 
42

worse than the reference forecast (BBS < 0). This means that for these rain gauges the

knowledge of the precipitation in October does not allow accurate forecasts of the probability

of having or not having drought by the end of March. However, the CDPMS performance

increases every month, indicating sustained improvement in the monitoring capabilities as new

precipitation data is being collected and provided to the model.  

Figure 7 shows the spatial distribution and the evolution of the BSS values for

moderate droughts as a function of n, allowing to identify the areas where the CDPMS has

better monitoring capabilities (higher values of BSS). The spatial interpolation technique used

was also the inverse distance weighting (IDW) with exponent 2. 
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Figure 7: Moderate droughts. BSS values for n = 1 to n = 5. The closer to 1, the better the
CDRMS performance 

 

Source: Prepared by the author 
 
To further analyze the variance of the CDPMS performance, box plots were drawn

based on the values of BSS for all rain gauges (Figure 7). The whiskers have a maximum length

of 1.5 × IQR (interquartile range), and the values outside the whiskers are outliers. 

Figure 8 shows that the variance of the performance measure, BSS, increases in the

last two months (n = 4 and n = 5) indicating that, in some rain gauges, a high probability may

not result in a drought event as there is still precipitation to fall. The opposite is also true, low

risk does not mean drought cannot happen, because the above threshold precipitation tendency

presented in the initial months of the rainy season may not be enough to counterbalance the

deficits during the last months. However, both specific cases are less likely to occur. 
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Figure 8: Moderate droughts. BSS values for all the rain gauges as a function of the number of
initial months of the rainy season with known precipitation (n). 

 

Source: Prepared by the author 
 

Drought occurrence in mainland Portugal is associated with a substantial

interannual and decadal variability, strongly linked to precipitation shortage during the rainy

season (RUSSO et al., 2015; TRIGO; DACAMARA, 2000). The dynamic interactions among

weather types associated with mainland Portugal due to its location between theAtlantic Ocean

and the Mediterranean Sea, strong orographic influence and small size contribute to explain

high spatial variability and relative disconnection from general circulation (CORTESI et al.,

2014; TRIGO et al., 2004, 2008; TRIGO; DACAMARA, 2000). The complex interactions

between different weather types during the rainy season, also because of the different

geographic conditions, might explain the variability between the model performances. 

Overall, due to copula's high flexibility, a great variety of copula families can be

chosen to model the temporal dependence structure of the precipitation in each specific rain

gauge, and, by this way, to represent its spatial variability.  

The increasing performance of the CDPMS over time means that it consistently

learns with the addition of the precipitation in the following months. It also consistently

outperforms the reference forecasts, indicating that it can be a valuable source for assessing

drought probability.  
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The application of the LOOCV excluded any bias in the performance verification

by not choosing specific years that could best fit the expected performance, such as very dry or

very wet years. Therefore, the CDPMS proved to be a valuable tool for drought probability

monitoring. However, its application to Mainland Portugal to monitor under real-time

conditions the probability of drought by the end of the rainy season requires a continuous

updating of the precipitation records at the rain gauges of Figure 2, which may not be an easy

task.Alternatively, the CDPMS can be applied to a specific site, as exemplified in the next item. 

 

3.4 CDPMSApplied to a Single Site 
 

This item refers to the CDPMS development and application to a single site in

Mainland Portugal aiming at exemplifying how the system can be operated as a drought

monitoring, but also forecasting tool. For this purpose, the rainy season of the hydrological year

of 2017/2018 (October 2017 to March 2018) at the rain gauge of Santa Marta da Montanha

(RG07) was selected. It was assumed that the precipitation was progressively recorded and

provided to the model until February 2018 aiming at estimating the drought probability by the

end of the rainy season. As already said, such knowledge is extremely important to develop

anticipatory actions and to mitigate impacts related to water scarcity. 

 

3.4.1 CDPMS Development for Santa Marta da Montanha 
 

The dependence structure for each coupled (, ) precipitation series in RG07

rain gauge was modeled by the Archimedean (Frank) and Meta-Elliptical copulas (Gaussian

and t Student). Table 3 presents the bivariate models selected for each n, from October (n = 1)

to February (n = 5). The parameters  (for the Archimedean copulas) and  and  (for the

Meta-Elliptical copulas) were estimated using MPL, and the copula families were selected

based on the AIC, as described in Section 2.1.2. The Kendall’s Tau was applied to verify the

non-linear dependence between  and  modeled by the copulas. A hypothesis test was

applied to determine whether  and  presented a relevant dependence structure, a small

p-value provides strong evidence against the null hypothesis that they are independent, for the

95% confidence level. 

 



 
46

Table 3: Santa Marta da Montanha (RG07) rain gauge. Bivariate models for each coupled
(R_N, R_n) series, their parameters, Kendall Tau correlation (according to the model and
empirical), AIC, and p values. 

 Family 
Parameters 

 
Kendall’s Tau 

AIC p-value 
 or   Model Empirical 

n = 1  Frank 1.75 -  0.19 0.19 −6.16 <0.05 
n = 2 Gaussian  0.60 -  0.41 0.40 −37.86 <0.05 
n = 3 t Student  0.76 30.00  0.55 0.53 −75.34 <0.05 
n = 4 Gaussian 0.91 -  0.72 0.72 −161.84 <0.05 
n = 5 Gaussian 0.96 -  0.83 0.83 −251.14 <0.05 

Source: Prepared by the author 
 

The values of the empirical Kendall Tau correlation coefficient presented in Table

3 indicate that as the precipitation in the rainy season is progressively recorded and introduced

in the model, the dependence between  and  becomes stronger. In fact, for n = 1 the

precipitation in October explains only 19% of the precipitation of the rainy season, while for n

= 2 it explains 40%, and for n = 5, 83%. The small differences between model and empirical

Kendall's Tau values show that the dependence between  and,  was properly modeled

by the copulas. 

The bivariate model adopted for each coupled (, ) series in Santa Marta da

Montanha rain gauge is presented in Figure 9. The axes in the figure were graduated in terms

of the standard normal deviates that correspond to the non-exceedance probability given by the

marginal distributions. The figure shows that as n increases the copulas become narrower due

to stronger correlations between  and . 

 

Figure 9: Santa Marta da Montanha (RG07) rain gauge. Bivariate models for each coupled
(R_N, R_n) series along the rainy season of 2017/2018, from n = 1 to 5. 

 
Source: Prepared by the author 
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3.4.2 CDPMS Application – Drought Risk Monitoring 
 

After the bivariate model has been established, the CDPMS was applied to monitor

the drought probability in Santa Marta da Montanha rain gauge during the rainy season of

2017/2018. The results obtained are exemplified in Chart 4 for the three categories of droughts,

moderate, severe, and extreme droughts. The table includes the precipitation thresholds, 
∗ ,

for the different droughts categories, the precipitation that fell along the season (monthly and

cumulative precipitations) and the historical average monthly precipitations.  

 

Chart 4: Santa Marta da Montanha (RG07) rain gauge. Probability of moderate, severe, and
extreme drought events along the rainy season of 2017/2018 according to the CDPMS (dashed
cells). 

 
Source: Prepared by the author 

 

FromOctober 2017 toMarch 2018, the total precipitation was 697.6 mm, i.e., below

the threshold for moderate drought and above the thresholds for the other drought categories,

meaning that a moderate drought event really occurred by the end of March.  

In what concerns the moderate droughts, the CDPMS proved to the able to detect

the increasing probability of drought: 31% (October 2017), 57% (November 2017), 56%

(December 2017), 71% (January 2018), and 97% (February 2018) which could justify issuing

a drought alert, at least in January and for sure in February. Despite the considerable above-the-

average precipitation that occurred in March, there was a moderate drought, confirming the

prediction of CDPMS.  

The CDPMS also identified an increased risk of severe drought by the end of March,

though with much smaller probability, only 31% in January and 61% in February. However,

there was not a severe drought event, which suggests a poorer performance of the CDPMS.

This circumstance can be explained by the anomalous and unforeseeable precipitation that took

place in March that dampened the expectations of a severe drought.  

The last row of Chart 4 indicates very small probabilities of having an extreme

drought by the end of March, which was confirmed. 

Oct Nov Dec Jan Feb Mar

133.3 160.9 190.1 197.5 135.2 161.7

Monthly 43.1 40.4 173.0 109.0 58.6 273.5

Acumulated 43.1 83.5 256.5 365.5 424.1 697.6

0.31 0.57 0.56 0.71 0.97 Drought

0.16 0.36 0.30 0.31 0.61 No Drought

0.08 0.21 0.13 0.09 0.14 No Drought

Severe (618.83mm)

Extreme (503.49mm)

Mean monthly precipitation (mm)

Observed precipitation

(mm)

Drought category (Threshold) Drought risk

Moderate (779.93mm)
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This example shows the capability of CDPMS in detecting moderate droughts.

However, the model was not able to distinguish the intensity of the event, once severe and

extreme droughts are very sensitive to an individual precipitation event. Precipitation thresholds

for the droughts with higher intensity are lower and can be easily exceeded by a few millimeters

of precipitation.  

 

3.5 Discussion and Conclusion 
 

Drought is a harsh natural disaster with onsets difficult to perceive. Therefore, it is

relevant and challenging to develop a trustful tool able to recognize its occurrences and to

initiate actions aiming at mitigating its impacts. This study developed such a tool, based on

copulas applied to the continuous monitoring of the drought probability, using only

precipitation data, the CDPMS. 

Such a model uses a kind of stepwise procedure applied to each specific location

where the drought probability evaluation is required. It starts with the computation of drought-

triggering precipitation thresholds, which enable assigning precipitations to the drought

categories given by the SPI (PORTELA et al., 2012). The next step refers to the setting up of

the copula-based bivariate model that, by using historical monthly precipitation data, “couples”

the seasonal precipitation of rainy season () with the precipitation until the last but one month

of such season (), according to the dependence structure between  and .  

The last step relates to the application of the CDPMS under current conditions to

monitor the drought probability during the rainy season aiming to answer the following question:

will there be drought by the end of the rainy season? Once the precipitation in each month of

the current rainy season is progressively known and incorporated into the CDPMS, the model

returns the drought probability, that is, the probability of the precipitation being smaller than

the one required to avoid drought conditions by the end of the season. Based on that probability,

drought warnings can be issued, and anticipatory drought mitigation and adaptation measures

implemented. The application based on a single rain gauge was exemplified for the rainy season

from October 2017 to March 2018. 

The CDPMS can also be applied to monitor the evolution of the drought probability

during the rainy season in a region, instead of a single site, based on the continuous updating

of the precipitation deficits or surplus in the region. Such an innovative application was

demonstrated by the application of the CDPMS to Mainland Portugal to monitor the drought

probability during the rainy season from October 2012 to March 2013, based on 100-year of
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precipitation data at 45 rain gauges evenly distributed over the country. The application

demonstrated that the CDPMS can anticipate the regions that later experienced, in fact, drought

conditions. 

The study showed that the continuous drought probability monitoring system can

detect drought events simply based on precipitation data. However, it has lower confidence in

distinguishing among the drought intensities, probably because the differences among

precipitation thresholds for the different intensities are too small and can be easily exceeded by

also small, but unforeseeable, amounts of precipitation during the rainy season. The dynamic

interactions among weather types associated withMainland Portugal due to its location between

the Atlantic Ocean and the Mediterranean Sea, the strong orographic influence in the

precipitation spatial and temporal patterns and its small area may result in the CDPMS

performing better in some regions than in others.  

Notwithstanding, the CDPMS can help decision-makers to anticipate actions and

strategies to decrease potential negative impacts, based on the assignment of a quantitative

measure (the probability) to the imminence of a drought event. It also contributes to a systematic

warning for water managers and civil protection authorities, allowing them to gradually adjust

the public awareness as the threat of a possible drought event becomes more reliable. 

The marked seasonality of the rainfall regime in Mainland Portugal makes the

precipitation shortages during the rainy season a fundamental trigger of droughts, which

explains the good performance of CDPMS despite only based on precipitation data. However,

previous studies suggest that, due to the location of the country, the addition of other variables

linked to climate, such as teleconnection indexes (North Atlantic Oscillation and sea surface

temperature), may improve the drought forecasting capabilities (OJEDA, 2018; SANTOS;

PORTELA; PULIDO-CALVO, 2014). In addition, other climatic and hydrological variables

such as temperature and runoff could also be incorporated into the model. Further studies could

also try to implement a time-varying copula model for bivariate modeling precipitation

( and  ) designed to address the nonstationary behavior of some of the hydrological

variables that are expected to result from climate change. 
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4 COPULA-BASED MULTIVARIATE FREQUENCYANALYSIS OFTHE 2012 -
2018 DROUGHT IN NORTHEAST BRAZIL1 

 

4.1 Introduction 
 

The Northeast of Brazil (NEB) has experienced one of its worst droughts ever

recorded, from 2012 to 2018, leading to devastating widespread impacts on water storages,

agriculture, livestock, and industry (BRITO et al., 2018; CUNHA et al., 2015, 2018; DE

AZEVEDO et al., 2018; GUTIÉRREZ et al., 2014; MARENGO et al., 2017; MARENGO;

CUNHA; ALVES, 2016; MARTINS; MAGALHÃES; FONTENELE, 2017; VIEIRA et al.,

2015). Solely in Ceará State, 39 out of 153 monitored reservoirs completely collapsed, another

42 reservoirs reached their minimum operating water level, and 52% of the State’s

municipalities experienced water supply interruptions by the end of 2016 (MARTINS et al.,

2018).  

Droughts are reported in NEB since the colonial period (CAMPOS, 2015;

MARENGO; TORRES; ALVES, 2017; MARTINS; MAGALHÃES; FONTENELE, 2017).

Historically, the States of Ceará, Rio Grande do Norte, Paraiba, and Pernambuco concentrate

drought hotspots (SILVA et al., 2019). Drought hazard caused massive migration and significant

population death, such as the drought of 1877 – 1879, with human drought-related deaths

estimated around 500,000 persons in Ceará State alone (CAMPOS, 2015). The population had

no warning alert, and countless citizens chose to endure with minimal provisions before

migrating to less impacted areas. Many did perish in the process.  

The inherent characteristics of the semi-arid region (strong seasonality coupled with

high rainfall and discharges variability of its), shallow soils (most above crystalline rock

basement), and elevated evapotranspiration rates amplified drought-related impacts in NEB.  

 

 

 

 

 

 

1The paper can be cited as: Pontes Filho, J. D., Souza Filho, F. D. A., Martins, E. S. P. R., & Studart,

T. M. D. C. (2020). Copula-based multivariate frequency analysis of the 2012–2018 drought in Northeast Brazil.

Water, 12(3), 834. 
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Societies adapt to the environment shaped by climate factors (CAMPOS, 2015) and,

in the case of Ceará, this adaptation was centered on two pillars. The first was the construction

of large dams, used as public policy to help cope with drought. These large reservoirs were

designed to operate in Ceará’s climate, taking into account its interannual rainfall variability,

i.e., the drastic oscillations between wet and dry years (ANDREOLI; KAYANO, 2005;

HASTENRATH, 2012). 

The second was based on the transparent water allocation process and hydrosystems

management supported by an early warning operation system (DELGADO et al., 2018;

FORMIGA-JOHNSSON; KEMPER, 2005; SANKARASUBRAMANIAN et al., 2009;

SOUZA FILHO; LALL, 2003), vital to Ceará’s resilience to drought. These initiatives were

successful in preventing migration and the devastating loss of life but were insufficient to

address other serious economic losses resulting from the 2012 – 2018 drought.  

Research has shown that the adaptive capacity built in Ceará State, e.g., hydraulic

infrastructure and management actions, coupled with emergency measures taken to cope with

the 2012-2018 drought reduced its vulnerability (CAMPOS, 2015; GUTIÉRREZ et al., 2014).

Despite the lessons learned, such measures are still bound by a “reactive” management

paradigm. We evaluate that without proactive management and preventive drought measures,

reduced efficiency was achieved by these past measures. Proactive drought management is the

planning of preventive measures necessary to mitigate drought impacts. 

One of the most striking social features of droughts is the loss or "washing away"

of memory, which usually happens when the first rains arrive. It is this feature that makes most

planning reactive. Our research team found that remnants of this memory can be used and has

great potential for proactive drought planning. It would be possible, for example, to use

frequency analysis of specific events as a memory holder, since it informs the estimated return

period of an event, i.e., the expected recurrence interval of an event with magnitude equal to or

greater than a specified one (HAAN, 2002). Frequency analysis is only possible through

consistent monitoring. It enables the identification of current drought exceptionality and

permits the use of this information as a preparation tool for mitigation of future droughts.  

The univariate approach has traditionally dominated the drought frequency analysis.

However, multiple aspects of drought characteristics present a dependence structure that can be

entirely ignored by the univariate approach, resulting in an incomplete representation of the

phenomenon (ALIDOOST; SU; STEIN, 2019; PONTES FILHO et al., 2019; XU et al., 2015a).

For instance, drought with the same duration could present completely different impacts,

depending on their respective severity. Shiau (2006) developed a way to calculate the return
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period of a drought as a function of its duration and severity. Based on the understanding of

drought from the Standardized Precipitation Index () of a rain gauge in Taiwan, he analyzed

the bivariate nature of droughts by calculating the joint return period of drought duration and

severity. His main contribution was the use of copula functions to model the complex

dependence of drought characteristics. Copulas are functions capable of modeling the

dependency structure flexibly by not restricting the use of the same distribution for its marginals

(CHEN et al., 2013; GENEST; FAVRE, 2007; LAZOGLOU; ANAGNOSTOPOULOU, 2018;

NELSEN, 2006), and many applications were applied all over the world (KIM et al., 2019;

MONTASERI; AMIRATAEE; REZAIE, 2018; SONG; SINGH, 2010; TOSUNOGLU; KISI,

2016; TU et al., 2016; ZHANG; XIAO; SINGH, 2015) primarily on a punctual approach. 

The limitation of the punctual approach is its focus on a local region, but the

occurrence of drought may cover large areas. Thus, regional analysis has proven to be more

efficient for drought management than punctual approach (AYANTOBO et al., 2018;

AYANTOBO; LI; SONG, 2019). Regionalization techniques are essential to reduce random

fluctuations of a point-based approach and homogenizing drought analysis (ESPINOSA et al.,

2019; RIBEIRO et al., 2019b, 2019a). Clustering techniques that consider the point-wise

correlation of temporal series is important and is increasing in use in hydrological applications

(GIMENO et al., 2010; SANTOS; PULIDO-CALVO; PORTELA, 2010; SOUZA FILHO;

LALL, 2003; TOSUNOGLU; CAN, 2016; VICENTE-SERRANO et al., 2004). Even though,

those types of regionalization do not conserve any correlation with the political planning unit.

Thus, the traditional use of hydrographic region’s scale is proposed as it reinforces the

correlation with socio-economic impacts felt in this planning scale. In this sense, this scale is

more appropriate for droughts analysis for the water sector since it is the water planning unit

defined by Brazilian water law and can be used as an essential planning scale for proactive

drought management.  

Many drought analyses have been performed but used either a univariate or point-

scale approach. However, droughts have multivariate characteristics and may cover large areas.

The purpose of this study was to use a statistical model capable of representing drought

multivariate characteristics at a useful scale for decision-makers. The improved understanding

of exceptional droughts by using proposed framework should help improving proactive drought

management. We organized the article into six sections. Section 2 presents the study area, and

the principal mechanisms causing rainfall in the area. Section 3 investigates the large-scale

dynamics that caused the 2012-2018 drought event and the main consequences derived from

this event. Section 4 presents the data and methods used to define and model drought and its
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characteristics. Section 5 introduces the results of these analyses, including the duration and

severity of the drought initiated in 2012 for each hydrographic region, and their univariate and

bivariate return period. Section 6 places a summary with concluding remarks and discussions

of the main results in comparison with the results from other authors. 

 

4.2 Study Area 
 

The State of Ceará is located in the Northern portion of the Northeast of Brazil

(NNEB), Figure 10. The hydrographic regions' code number were defined as a function of

latitude. The hydrographic regions located in the North were classified as HR01 to HR07, those

located in the Central area are HR08 to HR10, and the Southern hydrographic regions are HR11

and HR12. Ceará has more than 90% of its territory inserted in the Brazilian semiarid region

(characterized by low precipitation levels, less than 800 mm per year, high evaporation rates,

and shallow soils). Such characteristics make the region remarkably vulnerable to droughts.

This vulnerability is increasing due to permanent land degradation, which puts 94% of NEB

into moderate to high risk of desertification (VIEIRA et al., 2015). 
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Figure 10: Location of Ceará State, its hydrographic regions and main reservoirs (storage
capacity greater than 100 hm³). 

 

Source: Prepared by the author 
 
The rainy season in Ceará State is characterized by a distinct seasonality, extending

from December to July. The main rainy season occurs from February to May, depending on

oceanic and atmospheric conditions, and the principal mechanism that influences rainfall in this

period is the Intertropical Convergence Zone (ITCZ) (CAMPOS, 2015; HASTENRATH, 2012).

When difference of the sea surface temperature (SST) of tropical north and south Atlantic, i.e.

the Interhemispheric Tropical Atlantic Gradient (IHTAG), , is weaker, the ITCZ reaches its

southernmost position, which usually occurs around March-April (HASTENRATH, 2012;

HASTENRATH; HELLER, 1977; UVO et al., 1998).  

The interannual climatic variability on the NNEB is highly modulated by

thermodynamic patterns that occur over the tropical Pacific andAtlantic Oceans. El Niño South

Oscillation (ENSO) and, IHTAG, can perturb Walker and Hadley cells, causing drifts and

consequently changing the intensity and period of the rainy season in the area (ANDREOLI;

KAYANO, 2005; HASTENRATH, 2012; HASTENRATH; HELLER, 1977; KAYANO;

ANDREOLI, 2004; MOURA; SHUKLA, 1981).  
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Depending on the intensity and period of the year in which it occurs, the ENSO

warm phase is responsible for displacing the descending portion of the Walker cell. This

phenomenon causes a zone of high pressure over NEB, which makes cloud formation in the

region difficult and, consequently, influencing in years considered dry or very dry in the region

(ANDREOLI; KAYANO, 2005; HASTENRATH; HELLER, 1977; UVO et al., 1998). The

IHTAG, on the other hand, is capable of causing drought in the region when abnormal warming

of tropical North Atlantic SST occurs, which creates a low-pressure zone in this part of the

Atlantic Ocean and attracts the ITCZ towards North, avoiding precipitation over South

American continent (HASTENRATH; HELLER, 1977; HOUNSOU-GBO et al., 2019;

MOURA; SHUKLA, 1981; NOBRE; SHUKLA, 1996). Besides, the association of the positive

phase of North Atlantic SST concomitant with an El Niño event provides accentuated regional

impacts on the climatic condition (HOUNSOU-GBO et al., 2016). 

Despite the high-frequency interannual variability, there is also decadal climatic

variability that can be influenced by low-frequency modes of SST anomalies. The pacific SST

varies at a decadal time scale, a mode of SST variability known as Pacific Decadal Oscillation

(PDO). 

Kayano and Andreoli (2004) found a significant climate teleconnection between

the precipitation in NNEB and PDO. The Atlantic Ocean also has its low-frequency variability

mode referred to as Atlantic Multidecadal Oscillation (AMO) (ENFIELD; MESTAS-NUÑEZ;

TRIMBLE, 2001; KERR, 2000). Linkages betweenAMO and seasonal climate variability over

NNEB have also been found (JONES; CARVALHO, 2018; KAYANO et al., 2018; KAYANO;

CAPISTRANO, 2014; KNIGHT; FOLLAND; SCAIFE, 2006; LUCENA; SERVAIN; FILHO,

2011). Periods with simultaneously positive (or negative) PDO and AMO phases result in a

more predictable behavior of rainfall in the region, with values below (or above) than normally

expected (ROCHA; SOUZA FILHO; SILVA, 2019). 

 

4.3 The 2012-2018 drought 
 

The shock of the 2012-2018 drought raised awareness in Ceará’s management

community to the importance of proactive drought management, primarily due to the severity

of its impacts. It was also an opportunity to better comprehend the complex interactions

between ocean-atmosphere and its consequences in the rainfall over NNEB. The leading causes

of this event were related to the serial combination of high and low-frequency anomalies in
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SSTs that caused its persistence. Therefore, the 2012-2018 event can be understood as a series

of consecutive one-year droughts. 

Although El Niño is usually associated with dry periods and La Niña with wet

periods on the NNEB, this drought started under the influence of a La Niña event. Rodrigues

and McPhaden (2014), analyzing how the 2011-2012 La Niña event could have caused the

drought in 2012, found two different types of La Niña events: (1) the cooling concentrated in

the eastern Pacific, causing a cooling of the tropical North Atlantic and warming of the tropical

SouthAtlantic; and (2) the cooling concentrated in the central Pacific, causing the opposite SST

gradient in the IHTAG. The first type, the classical understanding of La Niña, can bring rain to

the NNEB. The second is the one that caused the drought of 2012, which induced migration of

ITCZ towards the north. This means that ENSO is a complex phenomenon and the full

comprehension of its interactions with precipitation over the studied area is still in progress as

new events occurs. Additionally, an upper-level convergence over NEB associated with an

upper-level divergence in Amazonia during the main rainy season in 2012 contributed to this

drought (MARENGO et al., 2013).  

The years of 2013 and 2014 did not present explicit forcing in the inter/intra annual

scales, and AMO/PDO process may have influenced the drought in these years. In 2013, the

ENSO phenomenon presented conditions of neutrality; although, ITCZ operated north of its

climatological position in response to near neutral but still warming condition of surface waters

in the tropical North Atlantic. The ITZC position, combined with westward anomalous

displacement of humidity at high levels, contributed to rainfall below average in NNEB.  

In 2014, neither El Niño nor IHTAG presented strong signals, and spatial variability

of rainfall anomalies was found in NEB. However, a climatic condition that may have

contributed to drought during the period was an anticyclonic anomaly detected in southeastern

Brazil and considered one of the most critical factors of the 2014 – 2015 drought that affected

southeast Brazil (NOBRE et al., 2016). This system had an extension to NEB, affecting the area

since 2012 (MARENGO et al., 2017). 

In 2015, the expansion of positive SST anomalies along the equatorial Pacific

Ocean indicated the full establishment of the ENSO phenomenon. This El Niño persisted and

gained force during 2015 and 2016, influencing the below-average rainfall in 2016 and 2017.

In 2017, the El Niño condition retreated, and a La Niña configuration initiated. This state was

favorable to indicate the end of the drought, but the warming of the North tropical Atlantic

Ocean was also detected, negatively influencing the rain in NEB. 
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In 2018, IHTAG indicated a negative phase, especially around the end of the rainy

season, and, in association with La Niña configuration over equatorial Pacific, contributed to

rainfall around the climatological average over NNEB. This configuration provided enough

rainfall to recover drought state in the majority of NNEB; however, few places still present

persistence of this event. Figure 11 presents the time series of the cumulative rainfall anomaly

and main climatic indexes that present teleconnections to precipitation in the region, NINO 3.4,

IHTAG, PDO and AMO for the period of 2009 to 2018

(https://www.esrl.noaa.gov/psd/data/climateindices/list/). The accumulated rainfall deficit of

the 2012 – 2018 drought is 1225 mm, 1.5 times the yearly climatological rainfall, 800.6 mm. 
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Figure 11: Anomalies of cumulative rainfall (mm), and oceanic index: Interhemispheric
Tropical Atlantic Gradient (IHTAG), Nino 3.4, Atlantic Multidecadal Oscillation (AMO) and
Pacific Decadal Oscillation (PDO). 

 

Source: Prepared by the author 
 

The long duration and severity of the 2012 drought caused many impacts on the

socio-economy and environment in NEB. Figure 12 presents the stored water volume per

hydrographic region and the total accumulation in the state of Ceará. The total water storage

capacity of Ceará State is 18.500 hm³ (26% in the North, 57% in Central and 17% in the South

region). This storage water decreased 63% from 2011 to the end of 2016, with some

hydrographic regions with total collapse. This issue was more accentuated and prolonged in

Central and Southern regions, i.e. HR8 – HR12, which represents 74% of the state’s total

accumulation capacity. With the prolongation of the drought, the small and medium reservoirs

(with storage capacity below 75 hm³ according to Ceará State’s declaration nº 23.068/1994
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(CEARÁ, )) started to collapse both in terms of quantity and quality, enhancing the costs of

capturing and distributing water at longer distances. 

Figure 12: Stored volumes for each hydrographic region in December of 2011 to December of
2018. 

 

Source: Prepared by the author 
 
The water shortage also affected the water quality of those reservoirs, especially

regarding eutrophication and an increase in the concentration of salts due to the low inflow

periods, higher evaporation, and anthropogenic actions. Santos et al. (2017), for instance,

monitored the water quality of the biggest reservoir in the Ceará State (i.e. the Castanhão,

located at HR10) from November 2011 to May 2014 and found it went from an initial

oligotrophic condition, i.e. low nutrient values, in 2011 to a eutrophication condition, i.e. high

nutrient values, with the decrease of its accumulated volume by 2014. Increased water treatment

costs arose from this condition.  

In response to this water shortage, Federal and State actions were taken to build a

series of emergency pipelines, drill wells, construct water cisterns and distribute water through

water tank trucks to meet the demands in rural and urban areas in Ceará. The reactive

characteristic of the measures taken implied in increased associated costs as no previous

planning for these actions existed. 

The impacts on State’s agriculture were felt at different timescales, depending on

the type of agriculture used. In the first two years of the drought, 2012-2013, rainfed agriculture
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was strongly impacted, and many farmers completely abandoned their cultures. The abandoned

soil enabled natural vegetation, adapted to dry conditions, to recover even during prolonged

drought periods. Irrigated agriculture, on the other hand, suffered practically no impact at the

start of the drought, since the large multi-annual reservoirs guaranteed its supply. Those

reservoirs initiated the drought with elevated accumulated levels regarding the previous rainy

year of 2011.With the persistence of drought and the consequent decrease in accumulated levels,

the reduction and posterior interruption of water use permits for irrigation were determined to

save water for the prioritized human water supply, according to Brazilian water law. 

In this sense, a series of crises management measures were promoted by Federal

programs such as: Programa Garantia Safra, granted to farmers that lost at least 50 percent of

their production; Bolsa Estiagem, that distributed US$40/month for smallholder farmers;

subsidized prices for selling maize to feed animals; expansion of emergency credit lines for

farmers, traders and industry sectors; and renegotiation of debt of farmers (GUTIÉRREZ et al.,

2014). Despite the devastating impacts on agricultural, livestock, and industrial activities, this

extreme drought did not lead to human losses nor migration as happened in the past; this lower

social disturbance is associated with government social programs (GUTIÉRREZ et al.,

2014)(CAMPOS, 2015). 

 

4.4 Data and Methods 
 
4.4.1 Data 
 

The series of daily precipitation from 1911 to 2018 used to analyze drought in Ceará

State was obtained from the Brazilian National Water Agency

(http://www.snirh.gov.br/hidroweb/). The average areal rainfall for each of the twelve

hydrographic regions of the Ceará State was obtained by interpolating the daily precipitation at

each rain gauge according to the Inverse DistanceWeighting (IDW) method with exponent two

into grid points with 0.05º size. Further, the average of the interpolated values was extracted for

those inside each analyzed area. The use of hydrographic region’s scale tends to reduce random

fluctuations of a point-based approach, homogenizing drought analysis, and reinforcing

correlation with socio-economic impacts felt in this planning scale.  
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4.4.2 Drought Analysis 
 

The drought analysis was based on the calculation of the Standard Precipitation

Index ( ) (MCKEE; DOESKEN; KLEIST, 1993) with 12 months aggregated timescale

(). The time scale used for the calculation of the index is directly related to the time

required for the effects of drought to be felt on the different activity sectors and the region's

water resources (SILVA; SOUZA FILHO; ARAÚJO JÚNIOR, 2015). A new time-series was

created with only December  values () to represent the accumulated annual

information. This discretization process was performed to remove the continuous information

provided by  moving window. By doing so, the objective was to archive independent

random variables that represent the total annual precipitation, smoothing the temporal series

and avoiding spurious information of  influenced by above or below-average precipitation

in months of the dry season (July to December). 

The calculation of drought duration and severity characteristics for each

hydrographic region was obtained through run theory, as proposed by Yevjevich (1967). Each

drought event is defined as the proportion of time where all values of a variable  are below

a selected truncation level. Specifically for  , the duration of a given drought event is

determined by summing the periods that this event remained below a certain threshold, in this

paper,  = 0. Shiau (2006) used this threshold as it avoids the division of spurious droughts

that occurs inside one longer drought. This makes sense as social and environmental impacts

are more significant in prolonged droughts than in consecutive shorter droughts. Figure 13

illustrates this process. Drought events 1, 2, and 3 are orange. The severity is given by the

summation of  values during one event, according to equation 1:  

 = − ∑





 
(1) 

where  is the severity, and  is the duration, and  is the  value discretized

for every December considering the aggregated time-period of 12 months.  
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Figure 13: Running theory to calculate drought duration D and severity S. 

 

Source: Prepared by the author 
 

4.4.3 Statistical Inference 
 

Once the drought duration and severity characteristics were separated from the

original time series by run theory application, data analysis could be performed to deduce

properties of the variables samples and adjust to a population. The distribution function that

better represents drought duration and severity has not yet established an agreement.

Exponential and Gamma were proposed by Shiau (SHIAU, 2006) for univariate modeling the

drought characteristics; however, many authors prefer to perform a goodness-of-fit test to find

the families that best represent the analyzed sample for each region and drought (KIM et al.,

2019; KWON; LALL, 2016). 

Thus, both duration and severity time series were adjusted for the univariate Log-

normal, Exponential, Weibull, Gamma, and Logistic probability distribution families. The

parameters were chosen based on the maximum likelihood estimation (MLE) method. The

Akaike Information Criteria (AIC) indicated the candidate distributions that best fitted the data.

AIC is a parsimonious estimator of the relative quality of statistical models that penalizes

overfitting. 

Regarding the bivariate model, this study focused on the use of copula functions to

model the dependence structure among marginal distribution functions. The bivariate joint

distribution function (, ), where  and  are the random correlated variables, drought

duration, and severity, with respective marginal distributions () and (), is given by the

copula function [(),()], according to the equation 2: 
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(, ) = [(),()] = (, ) (2) 

Where () and () are equal to  and , with ,  ∈ (0,). 

The copula functions can be classified in Meta-elliptic and Archimedean copulas:

the first is symmetric, presenting no tail dependence; the second is more flexible and can present

upper or lower tail dependence. In this study, three Archimedean copulas, Clayton, Frank, and

Gumbel, and two Meta-elliptic copulas, Gaussian and t-Student, were used as candidates to

identify the family that was best suited to model the dependence structure between the duration

and severity. Equations 3, 4, 5, 6, and 7 present the formulations of the candidate copula families,

where , , and  are the copula function parameters.  

 
Clayton (

θ + 
θ − )


θ ) (3) 

Frank 
−



lg ( +

(eθ u1 − )(eθ u2 − )

(eθ − )
) 

 

(4) 

Gumbel exp {−[(− ln )
θ + (− ln)

θ]

θ  

 

(5) 

Gaussian ϕρ(ϕ
(),ϕ

()) (6) 

t-Student Tρ,v(Tv
(), Tv

()) (7) 

The Inference Function from Margins (IFM) method (JOE, 1997) was used to

estimate copula parameters. IFM is a parametric method that consists of the previous definition

of marginal distributions used to transform samples in the (0,1) interval. Thus, transformed

samples are jointly modeled by estimating the parameters for the families of the candidate

copula using the maximum likelihood method. The minimum value ofAIC was used to find the

best fit model around the candidate copulas. Brechmann and Schepsmeier (BRECHMANN;

SCHEPSMEIER, 2013) defined the AIC relationship with a bivariate copula model and its

respective parameter (), according to equation 8. 

 = −∑[ (, |)] + 





 

 

(8) 
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Where,  = , … , N are the observations of the variables modeled and  the number of

estimated parameters in the model. 

 

4.4.4 Frequency Analysis 
 

To better prepare for the occurrence of future droughts, one analysis that can be

integrated into the risk management is the estimation of return periods of past drought events

through a process known as frequency analysis. Independent and stationary time series are

needed to perform the frequency analysis (HAAN, 2002).  

4.4.4.1 Univariate return period 
 

The calculation of the return period represents the expected period between the

occurrence of two events with the same or superior magnitude. The return period of drought

duration () and severity () are described as a function of the expected interarrival time

() and the cumulative distribution functions (CDF) of the drought characteristic () and

(), as expressed in equations 9 and 10 (KWON; LALL, 2016; SHIAU; SHEN, 2001; SHIAU,

2003, 2006). For the return period of a time series with annual recurrence, such as annual

maxima precipitation, the () is equal to one. However, droughts are not supposed to occur

every year, and () is found by estimating the mean value between the occurrences of

droughts.  

 =
()

( ≥  )
=

()

 − ( ≤  )
=

()

 − ()
 

 

(9) 

 =
()

( ≥  )
=

()

 − ( ≤  )
=

()

 − ()
 

(10) 

 
4.4.4.2 Bivariate return period 
 

According to Shiau (2006), the joint return period of duration and severity can be

defined in two cases: the return period for  ≥    ≥  and return period for  ≥  and

 ≥ . Both definitions of joint return period for copula-based drought events are described by

equations 11 and 12, respectively: 

 =
()

( ≥    ≥ )
=

()

 − (, )
 

 

=
()

 − (), ()
 

(11) 
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& =
()

( ≥ ,  ≥ )
=

()

 − ()− () + (, )
 

 

=
()

 − ()− () + (), ()
 

(12) 

where  is the return period for  ≥    ≥ ; & is the return period for  ≥ 

and  ≥ . 

 
4.5 Results 
 
4.5.1 Drought Analysis 
 

Droughts are, by definition, extreme events and any proactive measure must be

previously defined based on magnitude and frequency of occurrence. In drought-prone areas

such as the Brazilian Semi-arid region, the high interannual variability of hydrologic conditions

must be considered on the standard operational routine, and only exceptional events should

justify special treatment and institutional intervention (AWANGE; MPELASOKA;

GONCALVES, 2016). Therefore, a scientific criterion is required to quantify the frequency of

each event. 

Figure 14 indicates the  calculated for the mean precipitation over the Ceará

State for the aggregated time-period of 1 to 35 months. The darker colors in 2012-2013 indicate

that this was the most critical period of the analyzed drought, and the following individual years

were smoothed. Therefore, the gravity was the combination of its strong beginning with the

abnormal sequence of dry years. 
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Figure 14: SPI for the aggregated period of 1 to 36 months, from 1973 to 2019. Warm colors
represent periods of drought in Ceará State. 

 

Source: FUNCEME (2019).  

Drought events for the twelve hydrographic regions of Ceará State were identified

using  . For the sake of simplicity,  will be treated by  for now on.

The  values for the 2011 – 2018 drought have exceeded the extreme condition (threshold

equals -2.0, according to Mckee, 1993) for the majority of hydrographic regions during the

drought onset in 2012. However, it was not the first time a drought with such magnitude had

occurred in the region, as the events around 1920, and during the 1950s decade, as shown in

Figure 6. The columns in Figure 6 also shows the spatial coverage of extreme events, such as

the warm colors at the dry years of 1915, 1919, 1932, 1958, 1983, 1993 and 2012, and the cold

colors at the wet years of 1917, 1924, 1964, 1974 and 1985. This fact is associated with large

scale systems such as ENSO teleconnections and Atlantic circulation. This regional behavior is

detrimental to drought management as all basins are uniformly affected, making it challenging

to transfer water between hydrographic regions.  

From Figure 15, it is also possible to see that the drought that started in 2012 has

different ending times. For the hydrographic regions closer to the ocean, it ended between 2016

and 2017, indicated by light green colors. For those regions located more central and in the

southern regions, the drought persisted until 2018, with no clear definition of ending for some

of them yet. Also, sequential drought years such as the analyzed one and covering almost all

hydrographic regions can present enormous negative impacts and were detected in 1930 – 1933,

1941 – 1943, 1951 – 1956, 1979 – 1983 and 1990 – 1993, showing the high climatic variability

existent in the region.  
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Figure 15: SPI values for the 12 hydrographic regions of Ceará State organized from northern
to southernmost position, HR01 - HR12. Warm colors represent dry years and cold colors
represent wet years. Spatial coverage of extreme events can be visually detected. 

 

Source: Prepared by the author 
 
The analysis of the descriptive statistics of drought events (Table 4) showed that the

hydrographic regions presented between 22 and 26 drought events over the period 1911 - 2018.

In this period, a drought occurs every 4 to 5 years in each hydrographic region in Ceará State,

as shown by the average inter-arrival time. In general, in the North, there were more droughts,

however, shorter in duration and less severe than in the central and southern regions, where

generally fewer droughts happened, but longer lasting and more severe. The longest drought

occurred in region 08, aged 10 years, and the most severe in region 11, both located in the

central and southern regions. HR08 presents the highest coefficient of variation (CV) for both

duration and severity, indicating that this hydrographic region has the highest exposure to

extreme droughts. Table 4 also shows that for most hydrographic regions, the current drought

is the most severe and prolonged ever recorded. 

  



 
68

Table 4: Descriptive statistics of drought events and the variables duration and severity by
river basin in the period 1911-2018. In bold, when the current drought event initiated in 2012
is equal to the maximum event in time series. 

Region Nº Drought Events 
Inter- 

Arrival Time 

Duration (years)   Severity 

Max 
2012 -2018 

drought 
Mean CV   Max 

2012 -2018 
drought 

Mean CV 

HR01 25 4.32 6 5 2.08 0.71  5.10 5.10 1.69 0.91 
HR02 26 4.15 6 5 2.00 0.85  5.06 4.27 1.65 0.93 
HR03 26 4.15 6 5 2.00 0.82  5.11 5.11 1.64 0.91 
HR04 25 4.32 6 6 2.04 0.74  6.01 6.01 1.73 0.95 
HR05 24 4.5 6 6 2.04 0.73  7.47 7.47 1.85 0.95 
HR06 26 4.15 6 5 2.00 0.85  4.85 4.85 1.69 0.93 
HR07 26 4.15 7 7 1.96 0.82  5.38 5.38 1.62 0.98 
HR08 22 4.91 10 7 2.64 0.90  6.76 6.76 1.92 1.01 
HR09 22 4.91 6 6 2.36 0.77  7.07 7.07 1.99 0.91 

HR010 23 4.7 7 7 2.39 0.76  6.24 6.24 1.85 0.89 
HR011 23 4.7 7 7 2.43 0.71  7.54 7.54 1.85 0.97 
HR012 23 4.7 7 7 2.43 0.79   5.88 5.88 1.83 0.94 

Source: Prepared by the author 
 

Although this analysis indicated that the 12 hydrographic regions of Ceará State

have similar univariate descriptive statistics, the dependence structure between modeled

variables dictates the joint behavior that is the object of analysis in this paper. To be able to

model the joint distribution, the construction of the marginal distribution approach was used.

Using the AIC as decision criteria to choose best-fit distributions, the duration series were best

modeled by Log-normal distribution, while an Exponential distribution better represented the

severity series.  

Figure 16 shows the scatterplot of drought severity and duration. The 2012-2018

drought is one of the most adverse events ever recorded for most hydrographic regions, being

compared to the droughts of 1951-1956 and 1978-1983. The dependence structure of drought

duration and severity presented a tendency to become narrowly correlated with the increase of

the values showing an upper tail correlation, Figure 7. Thus, a simple linear regression model

hardly models this kind of asymmetric correlation. Copula functions, however, can meet this

type of dependence structure. The drought initiated in 2012 is plotted in red. This analysis

agrees with the one presented in Table 4, putting this event as one of the most outrageous ever

recorded for all the hydrographic regions, which associated with population growth, increased

water consumption and the reactive measures taken may explain the massive impacts caused

by this drought. 
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Figure 16: Scatterplot of duration D and severity S of the recorded droughts by hydrographic
region. In solid red, the drought with onset in 2012 and highlighted are the periods of the most
extreme events. 

 

Source: Prepared by the author 
 
By knowing the marginal distributions, the copula functions could be fitted to the

data. The Survival Clayton (180º rotated Clayton) and Gumbel, both asymmetric Archimedean

copulas, were chosen. Table 5 shows the marginal distribution function, the copula functions,

their respective parameter, and the Kendall’s Tau correlation coefficient (τ) for each

hydrographic region. The moderate τ values show that the founded duration and severity are

not highly correlated. One possible reason for this is that the drought threshold equals zero,

which selected a high number of droughts that lasted only one year. The asymmetric behavior

of drought characteristics provided by this threshold is still able to be modeled by taking

advantage of copula capabilities to model tail dependence. Also, this threshold is still adequate

as it incorporates the impacts of drought enhancement and recovery. This moderate correlation

additionally shows the importance of doing a multivariate analysis as drought duration does not

necessarily indicate extreme severity.  
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Table 5: Marginal distribution functions and Copula functions (associated parameters). 

Hydrographic Region Duration  Severity  Copula  

HR01 
Log-normal  Exponential  Gumbel  

(µ = 0.53, σ = 0.61)  (λ = 0.59)  (θ = 2.26, τ = 0.56) 

HR02 
Log-normal  Exponential  Survival Clayton  

(µ = 0.43, σ = 0.67)  (λ = 0.61)  (θ = 1.78, τ = 0.47) 

HR03 
Log-normal  Exponential  Gumbel  

(µ = 0.44, σ = 0.65)  (λ = 0.61)  (θ = 2.38, τ = 0.58) 

HR04 
Log-normal  Exponential  Survival Clayton  

(µ = 0.49, σ = 0.64)  (λ = 0.58)  (θ = 2.56, τ = 0.56) 

HR05 
Log-normal  Exponential  Survival Clayton  

(µ = 0.50, σ = 0.63)  (λ = 0.54)  (θ = 2.28, τ = 0.56) 

HR06 
Log-normal  Exponential  Survival Clayton  

(µ = 0.43, σ = 0.67)  (λ = 0.59)  (θ = 1.70, τ = 0.46) 

HR07 
Log-normal  Exponential  Survival Clayton  

(µ = 0.43, σ = 0.64)  (λ = 0.62)  (θ = 1.56, τ = 0.44) 

HR08 
Log-normal  Exponential  Survival Clayton  

(µ = 0.65, σ = 0.77)  (λ = 0.52)  (θ = 2.32, τ = 0.54) 

HR09 
Log-normal  Exponential  Survival Clayton  

(µ = 0.60, σ = 0.7)  (λ = 0.50)  (θ = 2.33, τ = 0.54) 

HR010 
Log-normal  Exponential  Survival Clayton  

(µ = 0.62, σ = 0.70)  (λ = 0.54)  (θ = 1.90, τ = 0.49) 

HR011 
Log-normal  Exponential  Survival Clayton  

(µ = 0.66, σ = 0.68)  (λ = 0.54)  (θ = 2.23, τ = 0.53) 

HR012 
Log-normal  Exponential  Survival Clayton  

(µ = 0.62, σ = 0.71)  (λ = 0.55)  (θ = 3.20, τ = 0.62) 

Source: Prepared by the author 
 
4.5.2 Frequency Analysis 
 

As stated by Haan (2002) (HAAN, 2002)in order to perform frequency analysis,

primarily is necessary to check for independency and stationarity of the  time series. The

independency was achieved by the discretization of the  into  as discussed

in section 4.2. Figure 17 shows the autocorrelation to the time series of  and 

for the HR04 as an example. The  time series presented strong serial dependence; i.e.

values at some time  are statistically dependent to other lagged value, due to the moving

window used to compute  values. The discretization performed by using 

time series provided the required independency to perform frequency analysis.  

TheMann-Kendall (MK) test (MANN, 1945; KENDALL, 1975) was used to detect

the trends in  time series for the hydrographic regions, which is commonly used in

hydrology and meteorology (PAN; CHEN; LIU, 2018). The null hypothesis of no trend was

tested against the alternative hypothesis of monotonic trend (not shown). From the 12
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hydrographic regions tested, only 2, HR05 and HR09, presented statistically significant

downward trend at a significance level of 0.05 in the  time series. Therefore, for

those regions the return period can be expected to be overestimated, which means that more

frequent events can happen. However, those regions have smaller population density and do not

contribute to the water transfer systems that provide water to coastal areas with higher

population densities.  

 

Figure 17: The differences between autocorrelation of time series of SPI12 and the discretized
SPI12dec for HR04. The SPI12 time series presented strong autocorrelation due to the moving
window used to compute its values. 

 

Source: Prepared by the author 

 
Once the considerations to perform frequency analysis are analyzed, the joint

distribution function modeled based on the marginals and using copula functions can calculate

the return period as indicated by equations 7 and 8. Figure 18 presents return periods for the

hydrographic regions for both the "and" and "or" cases. The return periods are presented in the

form of contour lines. Different combinations of drought duration and severities can provide

the same value for the return period. In the "or" case, those contour lines do not cross the axes,

while the "and" cases are bounded by horizontal and vertical axes. It can be seen that "and"

cases have higher return periods than the "or" ones, as the first analysis is more restrictive than

the second. The information provided by Figure 9 can also specify the return period of a given

event by providing its duration and severity. This functionality enables its use in proactive

drought plans as the return period of any given drought can easily be found by providing the

associated duration and severity. The 2012 event is highlighted in red. Most of the drought

events that occurred in all hydrographic regions has a return period below the 64-year isoline.

More extreme events, such as 1930 – 1933, 1941 – 1943, 1951 – 1956, 1979 – 1983 and 1990

– 1993, in addition to the 2012 – 2018 event have a longer return period. 
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Table 6 summarizes the information from return period for univariate, duration and

severity, and multivariate, "or" and "and" cases for these droughts and rank those return periods

with the set of events recorded. The comparison between univariate return periods ( and )

of the 2012-2018 drought for all analyzed regions presented no clear pattern of which one

presents the highest values. For HR05, HR08, HR09, and HR11, hydrographic regions located

in South, Central and Southern regions,  > , for the others  > .  

It is important to observe that compound events must satisfy following inequalities:

or < mn(  ,), i.e. the compound return period for the "or" case must be inferior to the

minimum of univariate return period of those drought characteristics. As it is a more permissive

event, only one of the two conditions must be satisfied. Also, & > max(  ,) implies

that the compound return period for the "and" case must be superior to the maximum of the

univariate return periods. As it is a more restrictive event, both conditions must be satisfied.

Therefore, the joint return periods for the "and" cases are consistently higher than the univariate

approach. These results indicate the necessity to consider the joint relationship between drought

characteristics to real represents its recurrence as the correlation between drought

characteristics are proportional to its damage potential. The rank also shown in Chart 1 put the

2012-2018 drought as one of the three highest most exceptional droughts that occurred between

1911 – 2018 for all hydrographic regions. Also, although more extended droughts had occurred

in some hydrographic regions, the severity of this drought is highlighted, indicating the

importance of multivariate analysis of drought events. 
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Figure 18: The drought return period of the "or" and "and" cases, i.e. T_DorS and T_(D&S),
for each hydrograph region. Contour lines correspond to the return period (years). 

 

Source: Prepared by the author 

 

 

 

 

 

 

 

 

 



 
74

Table 6: Description of the 2012 onset drought event for each hydrographic region. The
univariate return period (years) of drought duration (T_D) and severity (T_S), and the bivariate
T_DorS and T_(D&S) return periods (years). 

Hydrographic region Drought period    & 
Rank in the set of events 

Duration Severity Joint 

HR01 2012 - 2016 113 88 72 155 2 1 2 

HR02 2012 - 2016 106 56 52 124 3 3 3 

HR03 2012 - 2016 115 94 77 157 3 1 3 

HR04 2012 - 2017 206 141 131 234 1 1 1 

HR05 2012 - 2017 223 254 191 313 1 1 1 

HR06 2012 - 2016 106 73 63 136 3 1 3 

HR07 2012 - 2018 465 117 115 499 1 1 1 

HR08 2012 - 2018 106 165 98 188 2 1 2 

HR09 2012 - 2017 111 168 102 193 1 1 1 

HR010 2012 - 2018 161 136 112 215 1 1 1 

HR011 2012 - 2018 160 275 150 309 1 1 1 

HR012 2012 - 2018 152 119 110 171 1 1 1 

Source: Prepared by the author 
 

Drought risk for any region is a product of the region's exposure to a predefined

event and the vulnerability of society to this event (WILHITE, 2005). The return period can

express the drought exposure as it incorporates the probability of occurrence of an event.

Therefore, it is interesting to analyze the exposure to drought hazard at the different

hydrographic regions of an event with similar characteristics of the 2012-2018 drought. Thus,

the return period of an event with average characteristics of the analyzed drought in the 12

regions (duration equals 6 years and severity equals 6) was calculated, Figure 19. It shows a

clear distinction between North regions with Central and South areas. The south is the region

with more susceptible to severe and persistent drought as the 2012-2018 event and it is where

the main reservoirs are located. The North is less affected by long drought as it is affected by

intra-annual variability caused by oceanity conditions. Also, it is less dependent to ITCZ

position as even a slight modification of its climatological position can still provide

precipitation to the area. On the contrary, precipitation in the Central and Southern regions are

more dependent on ITCZ, and consequently, to IHTAG modulation.  
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Figure 19: Exposure to drought hazard of an event with average characteristics of the 2012-
2018 event. The lower the return period the higher the exposure to drought hazard. 

 

Source: Prepared by the author 
 

 
The presented drought frequency analysis indicates the recurrence of an event with

magnitude equal to or greater than the one of the 2012-2018 drought for each hydrographic

region in Ceará. It indicates that the joint return period is always greater than the univariate

approach. This result indicates the necessity to consider the joint characteristics to understand

the real exceptionality of extreme events. Another impressive result was that the Northern areas

are less susceptible to exceptional droughts, such as the analyzed one. As the main reservoir

storage capacity is localized in Central and South regions, it indicates that the Ceará's water

reserves are concentrated in the more vulnerable areas to jointly occurrence of prolonged and

severe droughts.  
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4.6 Discussions and Conclusions 
 

The Northeast of Brazil (NEB) has experienced one of its worst droughts ever

recorded, from 2012 to 2018. The leading causes were associated with anomalies in SST at

equatorial Pacific and Atlantic oceans caused by low frequency, decadal, and high frequency,

within year to years variability modes. The serial combination and association of the climatic

phenomenon (i.e. La Niña with the cooling occurring at central Pacific, the prevalence of

tropical North Atlantic warming, AMO/PDO low-frequency modulations and El Niño),

influenced the ITCZ and the Walker Circulation Cell to inhibit the occurrence of precipitation

over NNEB. In Ceará State the accumulated rainfall deficit of the 2012 – 2018 drought was

1225 mm, 1.5 times the yearly climatological rainfall. 

NEB is known as a drought-prone region with considerable adaptive capacity, both

in terms of increased water infrastructure and management. This resilience is based on learnt

experiences, acquired from its drought antecedents. This capacity has recently been questioned

due to the magnitude of the current drought and the emergency measures that were needed to

cope with it. Those measures helped to mitigate social damage that historically occurred in the

most extreme droughts, such as human losses and massive migration (CAMPOS, 2015);

however, they were taken under a “reactive” management paradigm, which could not handle

some of the higher economic losses suffered by the Ceará State. 

We believe that proactive drought management can deal with some of the issues not

addressed by its “reactive” predecessor.As stated by Gutiérrez et al (GUTIÉRREZ et al., 2014),

this drought was the trigger needed to start a discussion towards proactive drought management

in NEB. Institutional relations between different public bodies and forums discussing the topic

of drought have improved their performance by establishing monitoring processes and by

incorporating active memory to elaborate proactive drought plans. To preserve this memory,

frequency analysis of past events can be used in proactive drought plans as it enables a scientific

identification of drought recurrence, which can be used as a preparation tool for mitigation of

future droughts. 

The univariate approach to calculate drought return period has traditionally

dominated the drought frequency analysis and it is a common practice in Brazil (AWANGE;

MPELASOKA; GONCALVES, 2016; BRITO et al., 2018; CUNHA et al., 2018; MARENGO

et al., 2017; MARTINS et al., 2018; PORTELA et al., 2015a). Martins et al. (2018) estimated

the return period of the 2012-2016 drought that occurred on the most significant water system

in NEB, São Francisco River Basin, as 135 years using the univariate approach. However, the
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impact caused by a drought event may vary according to its duration and severity. Although

these characteristics are correlated, their associated behavior can provide synergetic impacts

that could be missed by a univariate approach. 

The framework of bivariate frequency analyses can represent the exceptionality of

drought events as the correlation between droughts characteristics are proportional to its

damage potential, i.e. the negative impacts associated with a short drought but extremely severe

may be stronger than another longer but less severe drought. Copula functions were useful to

accurately model the dependence structure of drought characteristics as they presented different

marginal distributions and due to observed upper tail dependence in the joint behavior. Thus,

Gumbel and Survival Clayton asymmetric Archimedean copulas were chosen. 

The hydrographic region was chosen as the planning scale in line with Brazilian

water law that states it as the territorial management unit. There are significant benefits to use

this scale, including better representation of socio-economic and environmental relationship

existent between water supply and demand (e.g. precipitation, runoff, water reserves

accumulated in reservoirs, associated demands for agricultural and urban uses, etc.). Also, it

benefits from the capability to consolidate information that could otherwise randomly fluctuate

in a point-based analysis. 

The 2012-2018 drought in Ceará State had the highest mean bivariate return period

ever recorded, presenting long persistence, substantial severity and spatial coverage. The mean

joint return period, considering the "and" case, was 240 years (maximum of 499 years in HR05).

The mean univariate return period of the 2012-2018 droughts for the 12 hydrographic regions

located in Ceará State was 169 years for the duration (maximum of 465 years in HR07), and

141 years for drought severity (maximum of 275 years in HR11). The bivariate analysis

consistently presented higher values than the univariate, indicating the necessity to consider the

joint behaviors to avoid underestimation of drought impacts. Similar characteristics to this

drought were presented earlier in the 1951-1956 and 1978-1983 events for some regions, with

a mean joint return period of 145 and 135 years, respectively. 

The severity of this drought was influenced by the first two years, 2012 and 2013,

added to the long final sequence; Although the devastating impacts suffered from the current

drought, having started with the most severe part of the drought served as a critical warning.

This opportunity increased the capability to mitigate drought effects in the area, but early

warning and monitoring systems must be prepared to anticipate actions in future droughts that

may not start with the same severity. Most of the other events presented a bivariate return period

of inferior to 64 years for all hydrographic regions. Ceará State is more likely to present another
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drought with the same characteristics as the one here analyzed than California to a drought that

occurred over the same period, 2012-2015, which has a return period estimated in 1400 years

by Kwon and Lall (2016). This fact reflects the extreme variability and frequent drought

recurrence existent in the region, showing the necessity to proper cope drought events with

state-of-art techniques. 

Knowing the exposure to drought is fundamental when planning measures to

mitigate drought. The analysis presented here can inform decision-makers as to which areas are

more susceptible to the occurrence of future droughts. This analysis indicated that the northern

region of Ceará State is less susceptible to severe and persistent drought, such as the 2012-2018

event. Possible explanations are the intra-annual variability caused by proximity to the ocean.

Another fact is that the higher latitudes are less impacted by ITCZ positioned north of its

climatological position. Therefore, in the Central and Southern regions, which concentrate 74%

of State’s potential storage capacity, an extreme event can be more recurrent and water security

can be compromised. Such analysis can be incorporated in drought plans to detect more exposed

areas to drought. A limitation of the present approach is that it reflects meteorological drought

exposure and does not consider water transfer between hydrographic regions, which may cause

different drought risk depending on where the supply is provided.  

Classical approaches such as univariate analysis underestimates events frequency,

others cannot be associated with impacts if analyzed at inappropriate scales. This paper has

argued that considering simultaneously drought duration and severity at a useful scale improves

risk assessment. The presented framework has shown that hydrographic region scale is adequate

to couple drought impacts with the awareness given by bivariate analysis. Copula functions

were vital to jointly modeling drought characteristics as other models cannot cope with their

asymmetric behavior. This framework can be replicated in drought plans for other regions,

serving as a tool to previously prepare measures adapted to the risk exposure in each region.

Further investigation should analyze the scale that best represents specific impacts such as

reservoir operation, water transfer between regions, and urban and agricultural supplies. Also,

efforts should be made to understand the influence of events with different expected intervals

with potential impacts on reservoirs levels, streamflow volumes and ecosystem thresholds.

There are several changes that need to be made in order to mitigate drought impacts and

transforming statistical information into useful information for decision-makers is one of them. 
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5 THE DYNAMICS OF SPATIO-TEMPORALDROUGHTS IN NORTHEAST
BRAZIL 

 

5.1 Introduction 
 

Drought is a natural phenomenon associated with climate variability, characterized

as a period when water availability is lower than the average values for the region. Due to this

difficulty in monitoring the drought onset, a better understanding of the spatio-temporal

distribution of drought and its evolution characteristics is important for proactive drought

management (LIU et al., 2018). 

Drought monitoring has advanced and many different methods to monitor drought

have been proposed. For example, different drought index, such as the Palmer Drought Severity

Index (PDSI) (PALMER, 1965), Standardized Precipitation Index (SPI) (MCKEE; DOESKEN;

KLEIST, 1993), and Standardized Precipitation Evapotranspiration Index (SPEI) (VICENTE-

SERRANO; BEGUERÍA; LÓPEZ-MORENO, 2010). Despite the drought index used, drought

characteristics can be identified from historical time series data based on the run theory

(YEVJEVICH V, 1967). By using run theory, each drought event can be analyzed separately

from the original time series. This technique gained popularity in drought analysis as it allows

univariate and multivariate frequency analysis, and comparisons between different drought

characteristics (ESPINOSA et al., 2019; LIU et al., 2019a; SHIAU, 2006). 

The disadvantages of these analysis based on run theory is that it considers only the

time component of the drought. As droughts are a widespread phenomenon, its analysis should

consider the spatial component to better cope with real impacts. The first studies that considered

the influence of area on drought analysis considered drought as a phenomenon with a fixed

spatial extent and regionalized the precipitation data using Thiessen polygons or homogenous

regions using statistical clusterization such as Principal ComponentAnalysis (PCA) or K-means

(PORTELA et al., 2015a; VICENTE-SERRANO, 2006; ZHOU; LIU; LIU, 2019). However,

these approaches are limited as meteorological droughts do not respect physical, political or

homogenous borders. 

Currently, the characteristics of droughts in space dimensions have attracted more

attention. Starting from the concept of depth-area-duration analysis, (2005) constructed a series

of severity-area-duration (SAD) curves to relate the areal extent of each historical drought to

its severity. To better understand drought the evolution process of droughts in space and time,

simultaneously, Lloyd-Hughes (2012) developed a 3-dimensional (longitude, latitude, and time)

method based on the spatial clustering algorithm proposed by Andreadis et al. (2005). Herrera-
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Estrada et al. (2017) presented an analysis of how drought moves in time and space and Diaz

et al (2019) tracked drought centroid to understand drought dynamics. Following these studies,

3D drought analysis that tracks spatio-temporal development of droughts is demonstrating a

promising area for improvement for better drought monitoring and early warning (LUO et al.,

2022; XU et al., 2015b; ZHOU et al., 2021).  

These studies have advanced the spatio-temporal understanding of droughts.

However, the studies fall into the following dilemma of complexity. To reduce the

dimensionality, ignoring other faces of the problem; or to over-complexify, making it difficult

for managers and decision-makers to analyze. For example, Wen et al. (2020) used a 3D

clustering algorithm to analyze a large number of drought characteristics (drought duration,

drought area, drought mass, drought volume, drought density, drought aggregation index, and

longitude and latitude coordinates of centroid). Also, Herrera-Estrada and Diffenbaugh (2020)

used seven different drought characteristics to characterize landfalling droughts from a 3D

analysis, such as cluster area, growth rates, intensities, intensification, duration, distance, and

maximum extent. Many drought characteristics analyzed makes it difficult for the decision-

maker to take early action due to the high amount of information. Furthermore, the

understanding of how characteristics accelerate and decelerate in time and space has not yet

been analyzed. Previous analyses used to identify droughts in the 3 dimensions and analyze the

direction and trajectory of migration (DIAZ et al., 2019, 2020; HERRERA-ESTRADA;

DIFFENBAUGH, 2020; ZHOU; LIU; LIU, 2019). Understanding how each event evolutes in

terms of its spatio-temporal characteristics is important to improve understanding of the

evolution of droughts. 

In recent years, Brazil has been advancing its official drought monitor, which uses

participatory information to diagnose where the drought areas are located (MARTINS et al.,

2015). However, little spatiotemporal analysis has been made and there is a need for more

research on how to use spatiotemporal analysis to improve drought characterization and

management in Northeast Brazil (Brito et al., 2021). 

The present work aims to fill this gap by analyzing the spatiotemporal patterns and

dynamics of drought events in Northeast Brazil. The study area is divided in two main analysis.

The first analysis how each drought event evolutes according to the growth curve, growth rate

and acceleration. The second aims to understand mean characteristics of drought events

according to the place its centroid was originated. The results of this study will provide valuable

information for drought monitoring, forecasting, and management in Northeast Brazil, and will

contribute to the advancement of the field of spatiotemporal analysis of drought. 



 
81

5.2 Materials and methods 
 

This paper is divided into in two phases, drought spatio-temporal definition and

drought spatio-temporal analysis. The definition has four steps: data processing, drought

definition in one dimension (1D), in two dimensions (2D) and in three dimensions (3D). The

analysis is divided into two parts. The first focuses on observing the dynamics of drought

evolution inside the drought event, and the second focuses on searching for patterns and

relationship between mean drought characteristics.  

The first step for drought spatio-temporal definition is data processing is the first

step. It requires gridded data to support the spatial analysis. Meteorological drought is often

classified as below-average precipitation for a given area. As precipitation is the most

worldwide climatic information, we chose this variable to make further analysis.  

This study was performed in Northeast Brazil, which is known as a drought-prone

area that faces recurrent multi-year droughts. We use monthly total precipitation data from the

University of East Anglia/Climate Research Unit (CRU), CRU TS v 4.05 at 0.5° x 0.5°

resolution from 1950 – 2018 (HARRIS et al., 2020). The CRU TS v 4.05 time series has been

available since 1901, but we chose only to use data from the mid-20th century onwards as the

region did not have many rain gauges at the begging of the century.  

The second step is to define drought. The well-known Standardized Precipitation

Index (SPI) (MCKEE; DOESKEN; KLEIST, 1993) was used as it is the drought index

recommended by the World Meteorological Organization. SPI has the advantages of simplicity

as it uses only precipitation, presents standardized information, making it easy to compare its

values across different regions, and ability to provide information in different timescales, being

able to be used as proxies for agricultural, hydrological, and socioeconomic droughts using

different time scales (HAYES; ALVORD; LOWREY, 2007; PONTES FILHO et al., 2019). 

The perception of drought varies according to users’ specific interests, making it

impractical to have a single completely adequate definition (PALMER, 1965). Users perceive

droughts differently as the water shortage can affect them at different times. Shorter time scales,

such as 1 to 3 months, can be more critical to agricultural users that do not irrigate their cultures.

More extended periods, such as 6 to 12 months, can relate to hydrological impacts on urban and

irrigation water supplies. Thus, the aggregation period and the threshold chosen can strongly

impact drought analysis.  

The identification of spatial-temporal drought is the third step. It involves dividing

interconnected grids into clusters and extracting continuous grids at both spatial and temporal
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scales to construct a three-dimensional (longitude, latitude, and time) drought structure. The

algorithm uses the following sequence.  

The gridded precipitation data is converted to SPI values using the chosen time-

scale. We analyzed SPI for the 3, 6, 12 and 24 time-scale. Run theory is applied for each grid

cell as the traditional 1D analysis. It identifies the periods when the drought index is below the

drought threshold. The values are converted into a binary format (0/1), assigning whether it is

(1) or not (0) under drought conditions.  

For the 2D analysis, the algorithm scans all grid cells below the drought threshold

for each time or snapshot. When the first cell value equals “1”, indicating that the grid is under

drought, the algorithm creates a drought event and searches for the 9x9-1 neighbors, excluding

the center grid. If a neighbor cell also has the “1” value, it is included in the same drought event,

forming a cluster. A new cluster event is created if another cell in the same snapshot has the “1”

value, but it is not contiguous to any previous cluster. A minimum initial area of 1.6% of the

total is required to analyze more regional events (XU et al., 2015b). 

The 3D analysis connects spatial clusters through time. We link clusters with

overlapping grid cells between time  and time  + .An ID is assigned to each spatial cluster.

If two or more different clusters are merged sometime after their formation, the ID of the oldest

is conserved for all clusters (Figure 20). To connect a cluster in time  with  + , a minimum

overlap area is required to eliminate ambiguous drought events. A threshold of overlap area of

1.6% was chosen in this study following Li et al. (2020). 

A sensitive analysis of the temporal and spatial parameters used here, the time-

scales used in the SPI and the minimum initial area and minimum overlap area, is provided to

understand how these parameters can affect drought characterization. 

An important consideration in the proposed algorithm is that if a cluster splits into

two or more clusters, they all keep the same initial ID. This is a modification of the algorithm

used by Diaz et al. (2019) and Herrera‐Estrada et al. (2017), whose analysis conserved only the

areas of the largest clusters. We chose this path as droughts can be onset in different regions at

the same time due to different precipitation mechanisms that affect each region. Therefore,

conserving only the largest area can cause an artificial interruption of an event that still occurs

or even the complete ignoration of an event that happened simultaneously but in different

regions.  
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Figure 20: Definition of spatial-temporal drought events by the three-dimensional clustering
algorithm. Panel (a) shows three cluster events at time t=1. Panel (b) shows two clusters at t=2. 

 
Source: Prepared by the author 

 

After the clusters are defined, we divide the analysis of drought characteristics in

two parts. The first analysis is to understand drought dynamics during each event. The second

is to understand drought patterns of average characteristics.  

For the first part, three drought characteristics were studied: centroid, severity, and

area. Centroid is the geographic coordinates of the mass center of the affected area. The

severity shows the sum of severity at all gridded cells affected. The spatial extent informs how

widespread the event was. Drought duration was not chosen to be analyzed since it is present

in all the other three drought characteristics.  

To understand how the drought event evolves we propose to analyze droughts using

three evolution measures: Growth curve, growth rate and acceleration analysis. The growth

curve is the cumulative sum of the characteristic value. The growth rate is the first derivative

and shows the instantaneous value at a given moment. Acceleration is the second derivative and

informs whether the characteristic is intensifying or not (Table 7). The first application of

growth curve, growth rate and acceleration analysis was proposed by Utsunomiya et al (2020)

as an effort to monitor COVID-19 spread and is here adapted for understanding drought

behavior.  
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Table 7: Description of measures used in this study to characterize drought. 

Characteristic 
Evolution 
Measure 

Equation Description 

Centroid 

Growth 
Curve 

 = ∑





 

Cumulative distance of the 
centroid path (km). Where  
is the centroid growth curve at 
instant , and  is the 
instantaneous centroid 
velocity.  

Growth 
Rate 

 = ( ,) 

Instantaneous centroid velocity 
(km/month). Where  is the 
velocity at moment ,  is 
the centroid position in the 
instant , and  is a 
function that represents 
distance, in this case we used 
the Euclidian distance. 

Acceleration , =
( − )


 

The rate of change of the 
centroid velocity with time 
(km/month²). Where , is 
the instantaneous centroid 
acceleration at instant , and  
is the instantaneous centroid 
velocity.  

Severity 

Growth 
Curve 

 = ∑





 

The cumulative sum of the 
drought index value at the 
drought cluster ([SPI]). It gives 
the idea of total magnitude of 
drought severity . 

Growth 
Rate  =

 ,




 

Mean of cluster’s drought
index value at instant  
([SPI]/month). The , is 
the index value at grid cell  
and instant ;  is the number 
of grid cells belonging to the 
cluster. 

Acceleration , =  −  

The rate of change of the 
severity with time 
([SPI]/month2). Where , is 
the instantaneous severity 
acceleration at instant , and  
is the instantaneous severity. 

    



 
85

Characteristic 
Evolution 
Measure 

Equation Description 

Area 

 

Growth 
Curve 

 = ∑





 
The cumulative sum of the 
drought area  over the time 
the event persists (km²). 

Growth 
Rate 

 = ∑,





 

The drought area at a given 
moment (km²/month). The 
, is the area of each grid 
cell  and instant . 

Acceleration , =  −  

The rate of change of the 
drought spatial extent with 
time (km²/month²). Where , 
is the instantaneous area 
acceleration at instant , and  
is the instantaneous area. 

Source: Prepared by the author 
 

The second part aims to understand drought patterns and relationship between

characteristics. To have this understanding, drought centroid, severity, area ,and duration were

analyzed. The centroid of the onset and offset of drought events were taken to investigate the

possibility of having an area with higher probability of starting more dangerous drought events.

With dangerous we mean events with longer duration, more severe and affecting bigger areas.

The study area was divided into seven zones to try to understand if there are regions more prone

to more dangerous events (Figure 21). The seven zones were divided to better comprehend

drought characteristics at regions influenced by different climatic conditions. The northern part

of the study area is predominantly influenced by the Intertropical Convergence Zone (ITCZ),

the eastern part is more influenced by southeast trade winds, and the southern part is primarily

governed by cold fronts. (COSTA et al., 2018; HASTENRATH, 2012; NOBRE; SHUKLA,

1996; UVO et al., 1998). Due to this divergence, it is important to understand the dynamics of

droughts that had their onset influenced by these precipitation mechanisms. 
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Figure 21: The seven zones selected to analyze drought characteristics. 

 
Source: Prepared by the author 

 

5.3 Results 
 

5.3.1 Intra-event analysis of drought dynamics 
 

The drought spatio-temporal analysis of droughts permit understanding where its

onset was, how it evolved, the regions where it affected, where it remained the longest. This

information is important to decision-makers to create coping measures to deal with future

droughts. The 2012-2014 drought event in Northeast Brazil, for instance, is presented in Figure

22 using SPI 12 and threshold -1. To describe Figure 22, we can see that In (a), The gray cells

are the ones that do not face drought, while the red cells are the ones under drought. When all

the region does not face drought, the region is marked in green. In (b), the red mark is where

the drought centroid started and the blue mark is where it finished. The black line tracks the

centroid’s path. In (c), (d) and (e), the red lines informs the magnitude of the growth curve,

growth rate and acceleration evolution measures. 
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Figure 22: Spatio-temporal analysis of the 2012-2014 drought event in Northeast Brazil using
SPI 12, threshold -1.  

 
Source: Prepared by the author 

The event started in 2012 in the south-west part of the studied region, between the

borders of Piaui and Bahia states. During this year, drought expanded in area, affecting almost

all the grid cells. By the middle of 2013, the drought reduced its impacted area and the severity.

From the centroid path point of view, the drought started by travelling a great distance, but

when it reached its maximum extent, its centroid remained stationary in the center of the study

area. When the drought lost strength, the centroid remained in this area, as the drought was

extinguished from the sides, remaining in the northern, central, and southern portions. The most

affected area was the Central and South-West regions, with lower severity in the West. Figure

22 gives an overview of the drought event. It is possible to see the main affected areas and

understand how drought evolved in time and space. 
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Although the information brought by figure 22 is innovative and can give an

overview of the drought, the discovery of patterns that can help plan and anticipate new events

is only possible when comparing historical events. To do this, the strategy of analyzing average

characteristics of events separated by the region of drought initiation was used and will be

presented in the next section. 

Other important drought events for understanding the spatio-temporal evolution of

droughts in the study region are presented as Appendices. The five main events selected were

the 1950-1956, 1957-1961, 1980-1984, 2012-2014, and 2015-2018 droughts. These events

were selected for their temporal scope, all with more than two years duration, and spatial, and

the severity of the events. 

The 1950s proved to be a very dry period, with virtually the entire decade featuring

drought in some region. In general, all five events analyzed presented a predominance of the

centroid by the central region of the study area. Some droughts presented patches of more

intense severity in an isolated way, such as the 1950-1956 and 1957-1961 droughts. The others,

on the other hand, usually presented warmer regions, such as the 1980-1984 drought that

affected the eastern region more, and the 2015-2018 drought, which affected the northeastern

region less.

5.3.2 Searching for patterns and relationship between mean drought characteristics 
 

The analysis of drought mean characteristics was started by establishing the

drought’s onset region. The study area was divided in seven different regions and the mean

characteristic of each event was analyzed. 

Figure 23 gives an overview of the mean characteristic of each drought event

separated by regions. It is possible to see that droughts that its centroid was in region 5 during

its onset presents the highest mean duration, severity, and area. The characteristics of droughts

from other areas do not present a clear pattern such as the ones from region 5.  

Figure 23 also presents a 4D analysis, by showing how droughts characteristics are

related to each other in the four dimensions (duration, severity, area, and region of centroid’s

onset). The severity and duration are in the y and x axes, the size of the bubble is related to the

affected area and the color is related to where the region of centroid during its onset. It is clear

from this picture that droughts from region 5 present the most important events in terms of

duration, severity, and area. These results suggest the drought monitoring at region 5 is
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fundamental and higher-level observation should take place for droughts that are onset at this

region as they have potential to have more impacts in the region. 

Despite the higher average values presented for droughts that was onset at region 5,

drought characteristics for this region presented also higher variability. This result may be

related to the fact that this area presents strong orographic influence, especially in the South

part of this region, which tends to present a different behavior and increase noise in the

classification of drought characteristics.  

 

Figure 23: Boxplots of drought duration, area (km²), and severity for droughts in each region
of Northeast Brazil using SPI 3. Figure also shows a 4D analysis of duration, severity, area, and
region of centroid’s onset. 

 
Source: Prepared by the author 

 

The correlations between variables are presented in figure 24. Severity and area

present stronger correlation then each characteristic with duration, especially for the lower

values. Region 5 shows most drought events, and the events with higher magnitude in every
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characteristic, showing that this region is more prone to develop droughts and to develop

droughts with higher capacity to impact socio-economic aspects in Northeast Brazil. Therefore,

this region should be always well monitored by drought monitor. 

Figure 24:Scatter-plot of duration, severity area and region of centroid’s onset. 

 
Source: Prepared by the author 
 

5.4 Sensitive analysis 
 

A sensitivity analysis was carried out to investigate the temporal and spatial

characteristics of drought. The temporal component was evaluated using different time scales

of the Standardized Precipitation Index (SPI) at 3, 6, 12, and 24 months. For the spatial analysis,

two parameters were tested, namely, the minimum initial area and the minimum overlap area. 

The results for the temporal sensitivity analysis, presented in Figure 25, show that

the drought characteristics vary with different SPI time scales. Specifically, drought duration

and centroid velocity increase with the time scale. Longer aggregated periods, such as SPI 12

and SPI 24, are associated with prolonged drought events and smaller centroid velocity. Longer
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time scales result in less abrupt changes in the time series, making it more difficult for small

precipitation events to end a prolonged drought event. Moreover, longer aggregated periods

conserve more information, resulting in smaller changes in area between consecutive months.

However, the signal for mean area and mean severity was not as clear. SPI 6 exhibited different

behavior than the other time scales, presenting a stronger variance. These findings can be

attributed to the strong interannual variation in the study area, that can present noise in the 6

months aggregated time scale. 

 

Figure 25: Boxplot of the temporal sensitivity analysis of drought characteristics by considering
different temporal time-scales (3, 6, 12 and 24 months). 

 
Source: Prepared by the author 
 

In the spatial sensitivity analysis, a threshold of 1.6% was initially used for both the

minimum initial area and the minimum overlap area. The 1.6% threshold was conserved for

one parameter while the other was changed for the sensitivity analysis, later the inversion

procedure was performed to analyze the other parameter. The sensitivity analysis of different

spatial thresholds (0.8%, 1.6%, 3.2%, 4.8%) was performed for SPI 12 for the two spatial
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parameters. For the studied area, these percentages correspond to 1, 7, 14, and 21 contiguous

pixels needed to start a drought event (minimum initial area) and to connect the event with the

following month (minimum overlap area). To understand whether these thresholds are too

restrictive or too permissive, the sensitivity analysis was performed (Table 8).  

 

Table 8: Spatial sensitive analysis of drought events captured at different spatial thresholds
(0.8%, 1.6%, 3,2% and 4,8%) for the two spatial parameters, minimal area and overlap area. 

Thresholds 

Minimal Area Overlap Area

Nº

events

Duration

(month)

Area

(km²)

Nº

events

Duration

(month)

Area

(km²)

0.8% 55 8 77.55 22 13 1149.72

1.6% 22 13 1149.72 22 13 1149.72

3.2% 17 20 2185.02 22 13 1149.72

4.8% 15 25 3487.91 22 13 1149.72
Source: Prepared by the author 

 

The minimum area parameter was found to have strong influence on the number of

drought events registered in the period. Lower values permitted the characterization of less

spread events and presented shorter duration and less widespread area. For instance, the less

restrictive threshold, 0.8%, registered 55 drought events, while the more restrictive, 4.8%,

registered only 15 events. The inverse effect was found in the duration and area variables. The

lower the thresholds, the shorter and less spread was the median event. On the other hand, the

overlap area parameter did not present any variation on the number of drought events registered,

accounting for 22 events for all thresholds. 

Therefore, the spatial sensitivity analysis showed that the thresholds of the two

parameters affect the characterization of drought events unevenly. The minimum area criterion

has an important effect, defining many events that are more isolated and end up off-setting

quickly, causing less damage to the environment. The area overlap criterion did not show any

change in the definition of drought events. 

Therefore, the temporal and spatial sensitivity analysis clearly demonstrated the

importance of carefully consider the threshold values of temporal and spatial parameters when

using the SPI to characterize drought in similar areas. 
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5.5 Discussion and conclusions 
 

The intra-event analysis of drought dynamics was divided into three stages: growth

curve, growth rate and acceleration. Although drought tracking spatio-temporal migration has

been evaluated in previous studies (DIAZ et al., 2020; ZHOU; LIU; LIU, 2019), the researchers

did not focus on how drought characteristics evolve during the event. In this study, I proposed

the use of growth curve, growth rate and acceleration to figure out how severity, area and

centroid path can change during each event. The proposed curves give insights on how droughts

evolve in time and space by showing when the event is accelerating and decelerating in each

drought characteristic. This is important to understand drought evolution by its different faces.

These curves were proposed by Utsunomiya et al (2020) to monitor COVID-19 spread. The

theorical model for COVID-19 spread was clear and provided a formulation that could be used

to forecast, but the same results were not found when analyzing drought characteristics. The

complex climatic variability and small amount of drought events make the intra-event analysis

difficult to find patterns. Therefore, we needed to migrate the analysis by looking at the mean

behavior of different drought characteristics.  

The northeastern region of Brazil is known for its long and severe and widespread

drought periods, which are a result of strong spatio-temporal climatic variability due to a

complex meteorological system that influence rainfall patterns in the region. Oceanic and

atmospheric factors, such as the Sea Surface Temperature (SST), theAtlantic dipole, and the El

Niño Southern Oscillation (ENSO), play important roles in the occurrence of droughts in the

region. The presence of the Atlantic dipole, which is characterized by a difference in SST

between the north and south tropical Atlantic ocean temperature, has been linked to drought in

the northeastern region of Brazil, especially in the northern part as it plays an important role in

the seasonal displacement of the ITCZ reaching its southernmost position from March to May

(HASTENRATH, 2012; UVO et al., 1998). Less precipitation in the region is associated with

warmer SST in the Tropical North Atlantic (TNA) and strong Southeast trade winds (Nobre &

Shukla, 1996). When analyzing the last two milenia precipitation in Northeast Brazil, Utida et

al. (2019) found consistent dry periods when the ITCZ was in a mean position northern than its

climatology. In contrast to the northern region, precipitation in the eastern coast is modulated

by breeze circulation and easterly waves disturbance (GOMES et al., 2015). In addition to these

Atlantic Ocean factors, the ENSO also plays an important role in influencing the precipitation

patterns in the northeast (HASTENRATH, 2012). During an El Niño event, the SST in the

central and eastern Pacific Ocean rises, causing a shift in the atmospheric circulation that results
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in reduced rainfall in the northeastern region of Brazil. The region is also affected by

multidecadal variability (KAYANO; ANDREOLI, 2004), highlighting the complexity in

understanding and forecasting drought behavior in the region. 

As the precipitation mechanisms that govern the northern and eastern regions of

northeast Brazil are different, it is plausible that drought events that started in each region face

different characteristics. However, this paper advanced the characterization of drought

dynamics as it reveals that droughts that start in the east do not develop to impact the whole

region. On the other hand, droughts that started in the central part of Northeast have more

probability to develop and impact the whole study area. This is because the ITCZ have more

difficulty to displace at most central regions, and this results in longer, more severe and more

widespread droughts that have their onset in this region.  

Due to no previous spatio-temporal study on using the 3D clustering algorithm in

Northeast Brazil was made, it is difficult to compare the results found in this study. However,

using different methodology, Brito et al. (2021) analyzed the spatio-temporal behavior of

drought events in Northeast Brazil using the official Drought Monitor as a data-source. The

authors found that from 2014 to 2019, over 75% of the Northeast region of Brazil (NEB) area

registered exceptional drought. The methodology used, however, dealt with duration and area

of events as singular characteristics, do not using an integration technique to understand their

relationships, such as the 3D cluster algorithm. Silva et al. (2019) found that more centralized

regions of Northeast Brazil were drought hotspots, which is in accordance with my results.  

Sensitivity analysis using SPI 3, 6, 12 and 24 found that different time scales

influence drought characteristics, particularly in terms of duration and centroid velocity. Longer

time scales were associated with prolonged drought events, with smaller centroid velocity and

less abrupt changes in the time series, making it difficult for small precipitation events to end

prolonged drought events. Moreover, longer aggregated periods conserved more information,

resulting in smaller changes in area between consecutive months. It also found similar results

to central area being more prone to prolonged, severe and widespread drought events and that

droughts that started at the eastern coast usually do not migrate to other more central or northern

areas of Northeast Brazil. The spatial sensitivity analysis showed that the minimum area

criterion significantly affects the number of drought events recorded, while the overlap area

criterion did not vary the number of drought events recorded. The threshold chosen in this study,

1.6% of the studied area for minimum initial area and for minimum overlap area was considered

adequate to characterize drought events that have more potential to cause impacts on

environment and society.  
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The results of this study will contribute to a better understanding of drought

dynamics, which can aid in improving drought monitoring and prediction. The intra-event

analysis can be used for ongoing monitoring of drought events and to give insights to cope with

adverse effects of droughts. Additionally, the findings of this study can provide valuable

information for decision-makers, such as water resource managers and policy-makers, in their

efforts to mitigate the impacts of drought in Northeast Brazil by knowing the region more prone

to develop drought with higher potential to provide socio-economic impacts. 
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6 CONCLUSIONSAND RECOMENDATIONS 

 

This thesis has significantly contributed to our understanding of drought events by

developing multivariate analysis frameworks that are useful for drought planning and

management. The main hypothesis was that multivariate drought analysis provides sufficient

gain of information to justify its use in drought planning andmanagement. This study has shown

that incorporating multivariate analysis in the study of droughts allows for the visualization and

integration of interdependent variables in the analysis, resulting in a sufficient gain of

information that justifies its use. However, incorporating this information in planning and

decision-making can be challenging due to the increased complexity involved. It is essential to

ensure that decision-makers can comprehend the new information effectively. Through the tools

created through this research, it is expected that these difficulties will be diminished and that

the incorporation of these multivariate analyses will be encouraged in the planning and

management of future droughts.  

This thesis aimed to achieve three specific objectives: (i) to develop a monitoring

and early warning system based on the persistence of droughts using conditional probability

theory; (ii) to provide a framework to include multivariate frequency analysis in drought

planning and management; and (iii) to develop a spatial-temporal drought analysis that

identifies patterns to aid in early warning and decision-making. Each of these objectives is

presented in this thesis as an independent paper in the form of chapters.

The first paper proposes an innovative framework for monitoring and early warning

of droughts using copula functions, which can model the complex dependence structures

between total and given precipitation. The resulting Continuous Drought Probability

Monitoring System (CDPMS) model calculates the likelihood of drought onset by the end of

the rainy season, based on the compounding effect of monthly rainfall. The concept of drought

thresholds is used to translate information from the drought index to absolute precipitation

values, which is easier for decision-makers to understand. The framework was assessed in

mainland Portugal and demonstrated its capacity to anticipate droughts and improve

performance as it gains more information over time. This approach has already been applied in

Pakistan, and the results show that CDPMS is a valuable tool for monitoring and early warning

of droughts, improving drought understanding and ability to cope with future droughts.

The second paper focuses on the importance of multivariate frequency analysis in

drought memory and proactive drought planning. This paper presents a framework for

multivariate frequency analysis at a territory scale that considers drought duration and severity
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simultaneously. The proposed framework was used to investigate the bivariate return period of

the 2012-2018 drought in northeast Brazil and found that analyzing drought duration and

severity together can improve risk assessment. The results showed that the 2012-2018 event

had the highest bivariate return period ever recorded, 240 years, and identified events with

similar duration but less severity. The proposed framework is already being used as a tool in

proactive drought plans for the region, demonstrating its institutional relevance.

The third paper explores the dynamics of spatio-temporal relationship between

drought events. While the second paper proposed a framework for regionalized analysis of

droughts, the third paper argues that droughts do not respect political or geographic borders and

another way to monitor and assess drought risk is to understand how it moves, connects, and

splits over time and space. Thus, the chapter provides a simple framework to visualize drought

evolution over time and space, which includes a 3D analysis of lat, long, and time. The chapter

proposes two different analyses: intra-event analysis of drought dynamics and searching for

patterns and relationships between mean drought characteristics. The results show that the

central part of the Northeast region developed longer, more severe, and more widespread

droughts than any other area, indicating the need for proactive drought plans in this region. 

In summary, the innovations presented in this thesis are: (i) the first paper

introduced a novel solution that utilized copula functions to predict drought occurrence; (ii) the

second paper provided a framework for incorporating multivariate information into drought

planning, making a technological contribution; and (iii) the third paper presented an innovative

approach to monitoring the spatiotemporal dynamics of droughts and identifying patterns that

can facilitate early warning and monitoring in Northeast Brazil.

Therefore, this thesis presents three different papers that use multivariate analyses,

and each present a framework to improve understanding of droughts. Each framework was

developed independently with its own specific purposes, but considering multiple variables,

and simplifying results for decision makers. These frameworks are independent and replicable

to other regions, but they were not created requiring the application of more than one at the

same time.

The results of this thesis demonstrate that multivariate analysis enhances

understanding of drought events and can effectively inform drought planning and management.

The developed monitoring and early warning system illustrated that it is possible to anticipate

and mitigate drought impacts by modeling complex dependence structures between total and

given precipitation. Moreover, the proposed multivariate frequency analysis framework

improved risk assessment by simultaneously considering drought duration and severity at the
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hydrographic region level, and is now used as a planning tool in new proactive drought plans

for the studied region. Finally, the proposed spatial-temporal drought analysis framework

revealed the central part of Northeast region to be more susceptible to prolonged, severe, and

widespread droughts compared to other areas, which is vital for preparing for future events that

originate in this region. 

For future work, each study has its own set of recommendations. In the first study,

the prediction of drought occurrence can be improved by explicitly incorporating climatic

indices, such as ENSO, and applying the model to different climatic zones. Additionally, the

copula-based model can compare its flexible advantages with other models to see whether this

capacity enhances performance. In the second study, further research can be conducted to

explore the impact threshold and analyze the dependence structure that correlates water

reservoirs with meteorological drought. For the third study, advancing the research can be

achieved by using clusterization for modes of climate variation from SPI to better select the

onset areas. Furthermore, using different precipitation databases can improve the confidence in

results. Finally, a prediction strategy can be developed using the statistical information obtained

from the study. 

Overall, this thesis has provided valuable strategies and frameworks to enhance our

understanding of drought events by considering multiple characteristics while keeping the

results simple and accessible for decision-makers. By bridging the gap between science and

management, this research has contributed to improving our knowledge of drought events and

our capacity to cope with future droughts.  
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APPENDICEA – MAIN DROUGHT EVENTS CHARACTERITICS 

In this section, figures of the main drought events detected by the spatio-temporal

drought characterization algorithm are presented.

The five main events selected were the 1950-1956, 1957-1961, 1980-1984, 2012-

2014, and 2015-2018 droughts. These events were selected for their temporal scope, all with

more than two years duration, and spatial, and the severity of the events.

The growth curves, growth rate, and acceleration of the severity characteristic was

brought in as an example for each of these events. In addition, the cumulative severity for each

grid point and the path taken by the centroid are also shown to facilitate understanding of the

displacement of drought in both time and space.

Figure A1: Growth curve, Growth rate and Acceleration of the severity characteristic of the
1950-1956 drought event in Northeast Brazil using SPI 12, threshold -1. 
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Figure A2: Aggregated severity for each grid cell and the centroid path (red is the onset and
blue the offset of the drought event) for the 1950-1956 drought event. 
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Figure A3: Growth curve, Growth rate and Acceleration of the severity characteristic of the
1957-1961 drought event in Northeast Brazil using SPI 12, threshold -1. 
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Figure A4: Aggregated severity for each grid cell and the centroid path (red is the onset and
blue the offset of the drought event) for the 1957-1961 drought event. 



 
116

Figure A5: Growth curve, Growth rate and Acceleration of the severity characteristic of the
1980-1984 drought event in Northeast Brazil using SPI 12, threshold -1. 
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Figure A6: Aggregated severity for each grid cell and the centroid path (red is the onset and
blue the offset of the drought event) for the 1980-1984 drought event. 
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Figure A7: Growth curve, Growth rate and Acceleration of the severity characteristic of the
2012-2014 drought event in Northeast Brazil using SPI 12, threshold -1. 
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Figure A8: Aggregated severity for each grid cell and the centroid path (red is the onset and
blue the offset of the drought event) for the 2012-2014 drought event. 
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Figure A9: Growth curve, Growth rate and Acceleration of the severity characteristic of the
2015-2018 drought event in Northeast Brazil using SPI 12, threshold -1. 
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Figure A10: Aggregated severity for each grid cell and the centroid path (red is the onset and
blue the offset of the drought event) for the 2015-2018 drought event. 

 


