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In this paper, we address the problem of determining the order of MISO channels by

means of a series of hypothesis tests based on scalar statistics. Using estimated 4th-

order output cumulants, we exploit the sensitiveness of a Chi-square test statistic to the

non-Gaussianity of a stochastic process. This property enables us to detect the order of a

linear finite impulse response (FIR) channel. Our approach leads to a new channel order

detection method and we provide a performance analysis along with a criterion to

establish a decision threshold, according to a desired level of tolerance to false alarm.

Afterwards, we introduce the concept of MISO channel nested detectors based on a

deflation-type procedure using the 4th-order output cumulants. The nested detector is

combined with an estimation algorithm to select the order and estimate the parameters

associated with different transmitters composing the MISO channel. By treating

successively shorter and shorter channels, it is also possible to determine the number

of sources.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Convolutive propagation channels are typical in wire-
less, satellite and radiocommunication systems. The
channel memory is known to be closely related to the
delay spread profile produced by the multipath propaga-
tion scenario and it indicates the length of the channel
impulse response. Long delay spread profiles characterize
highly frequency-selective channels and introduce inter-
symbol interference (ISI) in the sampling process. The
order of the radio mobile channel relates the length of the
channel impulse response with the symbol period by
indicating the number of past symbols being convolved
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with the impulse response. In practice, the channel order
is given by the number of symbol periods fitting the
(truncated) channel delay spread profile. Most of channel
parameter estimation algorithms require the knowledge
of the channel order or, at least an upper bound of it [31].
Channel order mismatches may have very costly con-
sequences, including bit error rate (BER) floors, signal-to-
noise ratio (SNR) penalties and numerical instabilities
[28,29,18,11].

In this paper, we address the problem of determining
the order of finite impulse response (FIR) channels in the
context of a multiple-input single-output (MISO) commu-
nication system, using only the 4th-order cumulants of
the received signal. Channel order estimation is a classic
model selection problem strongly related to determining
the number of signals embedded in noisy observations in
narrowband array processing. This has been often referred
to as the signal (or source) detection problem [4,11,10].
Classical procedures for model order determination are
based on multiple hypothesis testing and make use of the
eigenvalues of a sample correlation matrix. This is the case
of the well-known sphericity test [32,30], which estimates
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the number of model parameters by testing on adjacent
groups of eigenvalues, in the case of a Gaussian process
[37]. This approach has been widely used for solving the
signal detection problem in the context of passive arrays
[50,51]. Other traditional techniques are based on in-
formation theoretic criteria that minimize the information
lost due to the model approximation [44,47]. Akaike’s
information criterion (AIC) [1] as well as the Rissanen’s
minimum description length (MDL) [42], also known as
the Schwarz Bayesian criterion (SBC) [43], can both be
used to test the equality of the smallest eigenvalues of the
sample correlation matrix. Since AIC is not consistent [43],
it tends to overestimate the model order, even for high
SNR values [25]. In general, MDL performs better than AIC,
but it tends to an underestimation at low and medium
SNR [26]. Similar results have also been demonstrated in
the context of source detection in passive arrays [48,49].

Unlike previous works, the order detection method
proposed in this paper is based on a scalar Chi-square
test statistic that is sensitive to the non-Gaussianity of a
stochastic process, since it is derived from the multi-
variate estimator of the 4th-order output cumulants.
Exploiting this property enables us to detect the order of
a single-input single-output (SISO) communication chan-
nel. Making use of existing results on the asymptotic
variance of the test variable, we present a performance
analysis of the proposed detector. In addition, we
establish a criterion for fixing the decision threshold
based on a given level of tolerance to false alarm. Some
implementations of the proposed method are provided in
the context of radiocommunication channels demon-
strating very good fit between the empirical and the
theoretical results.

In the case of MISO communication channels, the
propagation scenario can be viewed as a highly under-
determined convolutive mixture (more sources than
sensors). Overdetermined mixtures have been exhaus-
tively studied in the literature, including instantaneous
[7,8,12] as well as convolutive mixtures (cf. [33–36,45,46]
and references therein). The case of underdetermined
mixtures, on the other hand, has only recently been
treated [3,16,17,21,52], and systems with one single output
sensor have received considerably less attention. In this
work, we introduce a deflation-type approach to solve the
MISO channel order detection and identification problem.
The proposed method is based on the use of a combined
procedure that jointly selects the order, detects the
number of sources and estimates the parameters of the
MISO channel. The so-called HOS-based nested detector
searches for the longest channel, determines its order and
estimates its coefficients. Then, based on the deflation
principle, it successively tests and detects the presence of
shorter and shorter channels. Our detector makes use of a
Chi-square test for the channel order selection and of
blind identification techniques for estimating the MISO
channel coefficients using 4th-order cumulants. A pre-
liminary version of this deflation approach was intro-
duced in [20], where only the case of 2� 1 MISO systems
has been considered and the order detection test statistics
were based on the eigenvalues of 4th-order output
cumulant matrices.
The main contributions of this work can be summar-
ized as follows: (i) determination of a Chi-square test
statistic based on 4th-order output cumulants; (ii)
introduction of a blind method for determining the order
of a SISO channel; (iii) proposition of a blind channel
identification method based on a rank-one approximation
of a 4th-order cumulant matrix; (iv) development of a
combined blind procedure for order detection and channel
identification in the context of MISO channels.

The rest of this paper is organized as follows: in
Section 2, we derive a Chi-square test statistic based on
4th-order output cumulant information; the principles
underlying our SISO channel order detector are introduced
and an asymptotic performance analysis is carried out.
Then, in Section 3, we introduce the concept of nested
detectors for combined order detection and blind identi-
fication in the context of convolutive MISO communica-
tion channels; this idea exploits the residual 4th-order
information remaining after subtraction of the recon-
structed cumulants of previously estimated sources. In
Section 4, computer simulation results are provided to
illustrate the performance obtained in terms of channel
order detection and identification. We finally draw our
conclusions in Section 5 along with some perspectives for
future works.

2. HOS-based Chi-square test for SISO channel order
detection

In order to introduce the main ideas behind our
channel order detector, we first consider the case of a
single source and a single receive antenna. In Section 2.1,
we present the SISO channel model and the associated
assumptions. Then, we define the 4th-order output
cumulants and give the expressions for the (circular and
noncircular) covariance matrices of the cumulant estima-
tors, which are important for the calculation of the Chi-
square test variable, introduced in Section 2.2. The SISO
channel order detection algorithm is presented in Section
2.3, under the form of a hypothesis test. A performance
analysis of the test is provided and the determination of
the decision threshold is addressed making use of the
probability distribution function of the test variable.

2.1. Channel model and 4th-order output cumulants

Let us consider the baseband representation of a
radiocommunication channel in which the output signal
yðnÞ, after sampling at the symbol rate, is written as
follows:

xðnÞ ¼
XL

‘¼0

hð‘Þsðn� ‘Þ,

yðnÞ ¼ xðnÞ þ uðnÞ, (1)

where hð0Þ ¼ 1 and the complex coefficients hð‘Þ represent
the equivalent discrete impulse response of the channel,
including pulse shape, transmit and receive filters.
Throughout the rest of this work, we denote the channel
order by L, and the superscripts ð�Þ�, ð�ÞT and ð�ÞH denote the
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complex-conjugate, matrix transpose and matrix conju-
gate-transpose (Hermitian), respectively. The following
assumptions hold:
A1:
 The nonobservable discrete input sequence sðnÞ is
complex-valued, ergodic, stationary, independent and
identically distributed (i.i.d.) with symmetric distri-
bution, zero mean, unit variance ðEfjsðnÞj2g ¼ 1Þ and
nonzero Kurtosis given by

g4;s ¼ EfjsðnÞj4g � jEfsðnÞ2gj2 � 2, (2)

where Ef�g denotes the expectation operator.

A2:
 The additive noise sequence uðnÞ is normally dis-

tributed with zero mean and unknown autocorrela-
tion function. It is assumed to be independent from
sðnÞ.
A3:
 The FIR filter representing the channel is assumed to
be causal with memory Lþ 1, i.e. hð‘Þ ¼ 0, 8‘e½0; L�,
and hð‘Þa0 for ‘ ¼ L and ‘ ¼ 0.
A4:
 The channel order is bounded by a known value K, i.e.
K4L.
The 4th-order output cumulants are defined as follows
(see [5] for a definition of cumulant):

c4;yði; j; kÞ9cum½y�ðnÞ; yðnþ iÞ; y�ðnþ jÞ; yðnþ kÞ�. (3)

Using the channel model (1), taking assumptions A1 and
A2 into account and making use of the multilinearity
property of cumulants, we get [6,5]

c4;yði; j; kÞ ¼ g4;s

XL

‘¼0

h�ð‘Þhð‘ þ iÞh�ð‘ þ jÞhð‘ þ kÞ, (4)

where g4;s, defined in A1, is nothing else but c4;sð0;0;0Þ. Let
us define the 4th-order output cumulant vectors
ck 2 C

P�1, for k 2 ½1;K�, with elements given by

½ck�p ¼ CðpÞk ; p 2 ½1; P�, (5)

where

CðpÞk 9c4;yðip � 1; jp � 1; k� 1Þ; ðip; jpÞ 2J, (6)

and each pair ðip; jpÞ is formed of strictly positive integer
numbers, with ip; jp � K , belonging to the index set

J ¼ fði1; j1Þ; . . . ; ðiP ; jPÞg, (7)

with cardinality P. The choice of the index set J is
postponed to Section 3.1, in the context of the blind
identification of MISO channels. Due to (4) and assump-
tion A3, we have

CðpÞk ¼ 0; 8ip; jp; k4Lþ 1. (8)

Hence, the 4th-order output cumulants are zero whenever
either ip, jp, or k is larger than the channel memory Lþ 1.
Furthermore, from the above definitions, we also note that
ck can include some purely real-valued components. More
precisely, we have

CðpÞk ¼ CðpÞ
�

k

if k ¼ 1 and jp ¼ ip; or;

if ip ¼ 1 and jp ¼ k; or:

8<: (9)
In most of the real-life situations, the true values of the
output cumulants are not available and have to be
estimated from the output signal samples yðnÞ, n ¼

0; . . . ;N � 1. Due to the ergodicity assumption, the 2nd-
and 4th-order moments can be estimated by means of
time averages. The cumulant estimators obtained using
the ergodic moment estimates are asymptotically un-
biased [5,27]. The cumulant estimators are also consistent,
since their variance is asymptotically zero.

We define the complex-valued estimator ĉk as

ĉk ¼ ½Ĉ
ð1Þ

k � � � Ĉ
ðPÞ

k �
T. (10)

Let Vk and Wk be the P � P complex-valued positive-
definite Hermitian and complex symmetric covariance
matrices of the estimator ĉk, defined as the so-called
circular and noncircular 2nd-order moments, respectively,
as follows:

Vk9Efðĉk � ckÞðĉk � ckÞ
H
g, (11)

Wk9Efðĉk � ckÞðĉk � ckÞ
T
g. (12)

Exact expressions for computing Vk and Wk in the case of
input signals with discrete probability distributions and
spatially uncorrelated Gaussian noise have been given in
[41]. Other expressions for the computation of these
covariance matrices are available in the literature for
symmetrically distributed sources and also in the general
case (cf. [2] for the former and [14] for the latter). These
expressions are very important for the theoretical analysis
of the estimator when the model parameters are assumed
known, but they have also found application in the
context of Gaussianity tests [15]. On the other hand, they
can be useful for algorithmic purposes when only output
measurements are available. In this case, moments and
cumulants can be estimated from time averages, assuming
ergodicity.

Let us now define the following real-valued vector:

zk ¼ ½ReðckÞ
T ImðckÞ

T
�T 2 R2P�1, (13)

where the operators Reð�Þ and Imð�Þ return the real and
imaginary parts of the vector argument, respectively.
Consider the estimator ẑk with covariance matrix
Rk 2 R

2P�2P , defined as

Rk9Efðẑk � zkÞðẑk � zkÞ
T
g, (14)

which can be readily deduced from (11) and (12), as
follows:

Rk ¼
1

2

ReðVk þWkÞ ImðVk þWkÞ
T

ImðVk þWkÞ ReðVk �WkÞ

 !
. (15)

We can now define the following scalar multivariate
function:

rk ¼ ðẑk � zkÞ
TR�1

k ðẑk � zkÞ, (16)

which depends, though omitted here, on the channel
coefficient vector h ¼ ½hð0Þ . . . hðLÞ�T. Porat and Friedlander
have been the first to use the above function in the context
of channel parameter estimation [39]. Actually, it has been
shown that if the estimated parameter vector ĥ corre-
sponds to a global minimum of rk, then ĥ asymptotically
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tends to the minimum variance estimate [40]. This
approach requires the calculation of the covariance matrix
Rk, which depends on h and involves knowledge of exact
output cumulants of order up to eight. Due to the huge
computational complexity involved in calculating Rk, a
simpler solution has been proposed in [22] based on an
estimated covariance matrix.

Finally, note that zk may have some zero elements
corresponding to the entries ½zk�Pþp for which p and k are
such that the conditions stated in (9) are satisfied. Each
zero element in zk induces a zero row and a zero column
in Rk. To avoid singularity of the covariance matrix, we
need to eliminate the element in position P þ p of the
vector zk for each triplet ðip; jp; kÞ satisfying (9). This yields
a reduced vector zk 2 R

2P�mk, where mk is the number of
purely real-valued elements in ck, which gives a ð2P �

mkÞ � ð2P �mkÞ covariance matrix. This is an important
step in order to ensure the nonsingularity of Rk.
Throughout the rest of this paper, we denote by zk and
Rk the reduced versions of these variables, thus assuming
that the covariance matrix is nonsingular.

2.2. A Chi-square statistic for channel order detection

Given a sample output data sequence yðnÞ, n ¼

0; . . . ;N � 1, it can be shown that, as N goes to infinity,
the estimator ĉk tends to a complex multivariate random
variable that follows an approximate Gaussian distribu-
tion with mean ck [5]. As a consequence, we have

ẑk�Nðzk;RkÞ as N!1. (17)

Hence, ẑk can be viewed as a realization of an asympto-
tically Gaussian random vector, which can be standar-
dized as follows:

xk ¼ R�1=2
k ðẑk � zkÞ (18)

so that xk 2 R
2P�mk is asymptotically normal with zero

mean and an identity covariance matrix, i.e. xk�Nð0; IÞ.
The scalar random variable rk defined in (16), can now be
rewritten as

rk ¼ xT
kxk. (19)

The above results enable us to conclude that rk asympto-
tically follows a Chi-square distribution with dk ¼ 2P �mk

degrees of freedom [37], i.e.

rk�w
2
ðdkÞ

. (20)

Therefore, its probability density function (pdf) is given by

f rðrkÞ ¼

1

2dk=2Gðdk=2Þ
rðdk=2Þ�1

k e�rk=2 for rk40;

0 for rk � 0;

8><>: (21)

where Gð�Þ denotes the well-known Gamma function,
defined as

GðzÞ ¼
Z 1

0
tz�1e�t dt. (22)

This yields

mrk
¼ Efrkg ¼ dk (23)
and

s2
rk
¼ Efðrk � mrk

Þ
2
g ¼ 2dk. (24)

2.3. Order detection algorithm

Contrary to the approach based on an exhaustive
search for the minimum variance, our proposition exploits
the fact that zk ¼ 0 if k4Lþ 1. Thus, replacing the
covariance matrix Rk by its estimate, Eq. (18) becomes

x̂k ¼ R̂
�1=2

k ẑk for k4Lþ 1, (25)

and we define

r̂k ¼ x̂T
k x̂k ¼ ẑ

T

k R̂
�1

k ẑk; k4Lþ 1. (26)

The above defined variable can be viewed as a measure of
the energy in the space of representation of the 4th-order
cumulants. It means that, since ẑk is a consistent estimator
with asymptotically zero bias, r̂k can be used to detect the
presence of source signals with nonzero 4th-order
cumulants when k � Lþ 1.

In the sequel, we formulate the problem of detecting
the channel order as a series of successive hypothesis tests
on the estimated variables r̂k; k 2 ½1;K�; K4L, aiming to
determine whether k4Lþ 1 or not. From definition (26),
we conclude that, as the output data sequence length goes
to infinity, r̂k tends to be X2

ðdkÞ
, if k4Lþ 1. In this case, the

pdf of r̂k is given by (21). However, for k � Lþ 1, the true
cumulant vector zk is unknown and we cannot center the
random vector xk, hence r̂k has a noncentral Chi-square
distribution, denoted by nCw2

ðdkÞ
ðlkÞ, with dk degrees of

freedom and lk ¼ zTkR
�1
k zk, related to the mean of the test

variable as follows:

Efr̂kg ¼ lk þ dk. (27)

From (26), we have

r̂k�nCw2
ðdkÞ
ðlkÞ with

lk ¼ 0; k4Lþ 1;

lka0; k � Lþ 1:

(
(28)

Remark on the number dk of degrees of freedom:
Situations may arise where the estimated covariance
matrix R̂k is ill-conditioned due, for instance, to negligible
values of the cross-correlation between the real and
imaginary parts of some of the 4th-order cumulants
composing the test statistic r̂k. Such situations are
difficult to predict and the literature lacks guidelines on
how to proceed in order to skip them. In spite of that,
numerical instabilities can be avoided by controlling the
condition number of R̂k, i.e. the ratio between its largest
and smallest eigenvalues. In practice, when the condition
number is high, we discard the smallest eigenvalues and
the associated eigenvectors, until the condition number
becomes smaller than a certain threshold. Thus, we get
the following reduced eigenvalue decomposition (EVD) of
R̂k 2 R

ð2P�mkÞ�ð2P�mkÞ:

R̂k ¼ UkDkUT
k , (29)

where Dk ¼ Diagðd1; . . . ; d2P�mk�mk
Þ and Uk 2

Rð2P�mkÞ�ð2P�mk�mkÞ is the matrix formed with the eigenvec-
tors of R̂k associated with its 2P �mk � mk largest
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eigenvalues, mk corresponding to the number of smallest
eigenvalues discarded in order to attain a moderate
condition number. Therefore, the number dk of degrees of
freedom of the test statistic r̂k ¼ x̂T

kx̂k is reduced by mk, i.e.

dk ¼ 2P �mk � mk. (30)

In order to show this, note from (29) that we have

R̂
�1=2

k ¼ D�1=2
k UT

k 2 R
dk�ð2P�mkÞ. (31)

Replacing the above equation in (25), we get

x̂k ¼ D�1=2
k UT

k ẑk 2 R
dk�1, (32)

and (30) follows from (26). The definition (30) will be used
throughout the rest of this paper.

2.3.1. Hypothesis test and performance analysis

Let us build our channel order test by defining the null
hypothesis H0ðkÞ and the alternative hypothesis H1ðkÞ as
follows:

H0ðkÞ : k4Lþ 1 ) r̂k�X
2
ðdkÞ

,

H1ðkÞ : k ¼ Lþ 1 ) r̂k�nCw2
ðdkÞ
ðlkÞ.

Under H0ðkÞ, we have Efr̂kg ¼ dk and hence we should
expect that r̂koZk, where Zk is a decision threshold
associated with the number dk of degrees of freedom of
the test statistic r̂k. Under H1ðkÞ, Efr̂kg ¼ lk þ dk, and we
should get r̂k 	 Zk. The test is successively performed for
k ¼ K;K � 1; . . . ;1. Our goal is to find the largest value of k

so that the null hypothesis H0ðkÞ is rejected, i.e. r̂k 	 Zk,
which implies L̂ ¼ k� 1. The nonrejection of H0ðkÞ for a
given k induces a new test on r̂k�1. If the null hypothesis is
rejected only when k ¼ 1, then L̂ ¼ 0 and the channel is
said to be memoryless. The rejection of H0ðkÞ for all k 2

½1;K� indicates that no source signal is present (only
Gaussian noise is observed at the antenna output).

Let us denote by pk and qk the probabilities of the event
r̂k 	 Zk under hypotheses H0ðkÞ and H1ðkÞ, respectively. In
other words, for each k 2 ½1;K�, pk and qk are the
probabilities of false alarm and detection of the associated
test, and are given by

pk9P½r̂k 	 ZkjH0ðkÞ�; k 2 ½1;K�, (33)

qk9P½r̂k 	 ZkjH1ðkÞ�; k 2 ½1;K�. (34)

In addition, we denote by PðkÞ the probability of getting
L̂ ¼ k� 1; k 2 ½1;K�, which is defined as the joint prob-
ability of the events r̂KoZK ; r̂K�1oZK�1; . . . ; r̂kþ1oZkþ1

and r̂k 	 Zk, i.e.

PðkÞ ¼

P½r̂K 	 ZK � for k ¼ K;

P½r̂KoZK ; r̂K�1oZK�1; . . . ;

r̂kþ1oZkþ1; r̂k 	 Zk� for 1 � koK:

8><>: (35)

For each k 2 ½1;K�, we have one of the two following
situations:
(i)
 r̂koZk ) L̂ok� 1. The test continues. This happens
with probability 1� pk (under hypothesis H0). The
next step is to test r̂k�1. In this case, if L 	 k� 1, we
underestimate the channel order (missed detection)
with unknown probability 1� qk.
(ii)
 r̂k 	 Zk ) L̂ ¼ k� 1. The test stops. This happens with
probability qk if L ¼ k� 1. In this case, the channel
order is correctly detected. Otherwise, if Lok� 1, we
overestimate the channel order with probability pk.
Theorem 1. The total probability of false alarm (over-

estimation of the channel order) is given by

PF ¼ pK þ
XK�1

k¼Lþ2

ð1� pK Þ . . . ð1� pkþ1Þpk. (36)

Proof. Overestimation happens when we get L̂ ¼ k� 1 for
any k4Lþ 1. Hence, the total probability of channel order
overestimation is given by

PF ¼
XK

k¼Lþ2

P½L̂ ¼ k� 1� ¼
XK�L�1

q¼1

PðK þ 1� qÞ. (37)

Assuming that the events r̂k4Zk, for all k 2 ½1;K�, are
mutually independent, the joint probability given in (35)
can be written as a product of the marginal probabilities
of the involved events. Hence, (35) yields

PðkÞ ¼
pK ; k ¼ K;

ð1� pK Þ . . . ð1� pkþ1Þpk; k ¼ K � 1; . . . ; Lþ 2:

(
(38)

Replacing (38) into (37), Eq. (36) follows straightfor-
wardly. &

Theorem 2. The probability of detection of the channel

order is given by

pD ¼ ð1� pK Þð1� pK�1Þ . . . ð1� pLþ2ÞqLþ1. (39)

Proof. In order to correctly detect the channel order, we
need

r̂KoZK ; r̂K�1oZK�1; . . . and r̂Lþ2oZLþ2 under H0ðkÞ and

r̂Lþ1 	 ZLþ1 under H1ðkÞ:

The marginal probability of each of these events can be
deduced from (33) for k ¼ Lþ 2; . . . ;K � 1;K and from (34)
for k ¼ Lþ 1. The joint probability of these events is the
product of their marginal probabilities, which yields
(39). &

Theorem 3. The probability of missing the channel order

detection (underestimation) is given as follows:

PM ¼ ð1� pK Þð1� pK�1Þ � � � ð1� pLþ2Þð1� qLþ1Þ. (40)

Proof. If the hypothesis H0ðkÞ is not rejected for k ¼ Lþ 1,
then the channel order is underestimated. This means that
PM ¼ P½r̂KoZK ; r̂K�1oZK�1; . . . ; r̂Lþ2oZLþ2; r̂Lþ1oZLþ1�,
which yields (40). &

The total probability of error in the order detection is
given by PE ¼ PF þ PM.

2.3.2. Decision threshold

According to the Neyman–Pearson criterion [47,38], a
decision rule can be established in order to maximize the
probability of detection PD while not allowing the
probability of false alarm PF to exceed a certain value.
However, in our case, PF and PD cannot be computed
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explicitly as in (36) and (39), respectively, because we do
not know the channel order L. We can nevertheless limit
the tolerance of each r̂k-test, by establishing a bound a for
an acceptable level of the probability pk, defined in (33), so
that a decision threshold Zk can be established in order to
ensure that P½r̂k 	 Zk� � a; k 2 ½Lþ 2;K�.

Considering definition (26), with dk defined in (30),
and under the null-hypothesis ðk4Lþ 1Þ, the test variable
r̂k is asymptotically Chi-square distributed with dk

degrees of freedom, since zk is theoretically zero for all
k4Lþ 1. Otherwise, r̂k follows a noncentral Chi-square
distribution, also with dk degrees of freedom, but with
mean equal to dk þ lk, where lk ¼ zTkR

�1
k zk is an unknown

parameter, the value of which depends on the true real-
valued vector zk. In other words, the distribution of the
test variable r̂k under the null hypothesis is given by (21),
for a given choice of the index set J. Thus, Eq. (33)
becomes

pk ¼

Z þ1
Zk

f r̂ðr̂kÞdr̂k; k 2 ½1;K�

¼
1

2dk=2Gðdk=2Þ

Z þ1
Zk

r̂ðdk=2Þ�1
k e�r̂k=2 dr̂k. (41)

Substituting r̂k ¼ 2t, we have

pk ¼
1

Gðdk=2Þ

Z þ1
Zk=2

tðdk=2Þ�1e�t dt

¼
Ḡðdk=2;Zk=2Þ

Gðdk=2Þ
, (42)

where Ḡðdk=2;Zk=2Þ is the upper incomplete Gamma
function [24], defined as

Ḡðz;nÞ ¼
Z 1

n
tz�1e�t dt. (43)

Eq. (42) enables us to plot the probability curves of the
marginal events r̂k 	 Zk for different values of the
parameter dk, as illustrated in Fig. 1.

The decision threshold Zk can now be established by
fixing an acceptable level of tolerance a for the probability
of false alarm pk at each k4Lþ 1, while allowing P½r̂Lþ1 	
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Fig. 1. Probability P½r̂k 	 Zk� as a function of the decision threshold Zk for

different degrees of freedom.
ZLþ1� to be as high as possible, depending on the value of
zk. In other words, we need pk � a for k4Lþ 1. Using (42)
we conclude that Zk can be chosen so that

Ḡðdk=2;Zk=2Þ � aGðdk=2Þ. (44)

In Fig. 1, we plot the probability pk as a function of Zk=2
using (42), for different values of the number dk of degrees
of freedom of the test variable r̂k. In this example, the
tolerance level a has been fixed at two values: a ¼ 1% and
0:5%. The decision threshold can be determined for a given
dk by taking the value of Zk at the point where the
corresponding curve crosses a given tolerance level.
Values of the decision threshold for the considered values
of dk and a are given in Table 1.

Notice from (37) that the probability of false alarm still
depends on a and K � L so that a bad choice of K may
reduce the power of the test (increased PF is expected for
KbL). Possible solutions to this drawback include the use
of the Benjamini–Hochberg procedure for controlling the
global level of false alarm (cf. [9–11] and references
therein). This approach will not be discussed here. The
proposed channel order detection algorithm is summar-
ized in Table 2.

2.3.3. Simulation example

Let us consider a channel with L ¼ 2 constant random
coefficients drawn from a complex Gaussian distribution.
Using N noiseless output data samples, we estimate the
4th-order output cumulants to form the vector ĉk, defined
in (10), for ðip; jpÞ 2J and k ¼ 1; . . . ;K. In this example, we
take J ¼ fð1;1Þ; ð1;2Þ; . . . ; ð1; PÞg and P ¼ K ¼ 4. After that,
we compose the vector ẑk by taking the real and
imaginary parts of ĉk, as in (13), and then we discard the
zero components corresponding to the imaginary part of
the purely real-valued cumulants. Any triplet ðip; jp; kÞ

satisfying the conditions given in (9) yields a purely real-
valued cumulant, and we denote by mk the number of
such components in the vector ĉk. For k ¼ 4 and 3, due to
our choice of J, we have m4 ¼ m3 ¼ 1 (since Cð3Þ3 and Cð4Þ4

are purely real-valued) and hence d4 ¼ d3 ¼ 7 (m3 ¼ m4 ¼

0 in this example).
In order to validate the test variable, we repeated the

above described experiment by performing 3000 Monte
Carlo simulations, varying the input data sequence sðnÞ

from one simulation to another, but keeping the same
channel parameters over all the simulations (time-invar-

iant channel scenario). In this case, we used N ¼ 10 000
and Fig. 2 shows the histogram curves for the test
variables r̂4 and r̂3 (solid lines). The figure on the right
consists of a zoom on the area of the r̂4 pdf curve on the
Table 1
Decision thresholds for two tolerance levels a.

a ¼ 1% a ¼ 0:5%

dk ¼ 3 Zk ¼ 11:35 Zk ¼ 12:86

dk ¼ 4 Zk ¼ 13:28 Zk ¼ 14:87

dk ¼ 5 Zk ¼ 15:09 Zk ¼ 16:75

dk ¼ 6 Zk ¼ 16:81 Zk ¼ 18:55

dk ¼ 7 Zk ¼ 18:47 Zk ¼ 20:29

dk ¼ 8 Zk ¼ 20:11 Zk ¼ 21:97
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left. Decision thresholds for a ¼ 1% and 5% are depicted.
The dotted lines correspond to the theoretical pdf curves
of the associated variables. The curves for ko3 have been
omitted from Fig. 2 because for k ¼ 1 and k ¼ 2 we have
lkbZk (none underestimation cases occurred).

3. Blind MISO channel order detection and parameter
estimation

In this section, we consider several source signals sharing
the same carrier frequency at the neighborhood of the
receive antenna. We are interested in estimating the number
of sources and the respective channel parameters. In this
context, the radiocommunication channel can be modeled
as a MISO system. First, we reformulate the cumulant vector
definitions for the MISO case, and then we show that the
SISO channel detection order method introduced in the last
section can be used to determine the order of the longest
channel in the MISO model. After that, we introduce two
channel parameter estimation algorithms that allow us to
reconstruct the output cumulants. Using a deflation-based
approach, the procedure iterates by restarting the order
Table 2
HOS-based channel order detection algorithm.

Define J and a and initialize the algorithm with k ¼ K:

1. Estimate the 8th-, 6th-, 4th-, and 2nd-order output cumulants

corresponding to the indices ðip ; jp ; kÞ,with ðip ; jpÞ 2J;

2. Form ĉk 2 C
P�1 as in (10) using the 4th-order cumulant estimates

obtained in step 1;

2. Determine mk as the number of real-valued cumulants in ĉk;compose the

real-valued vector ẑk 2 R
ð2P�mk Þ�1

3. Using all the cumulant estimates obtained in step 1, compute the

approximate circular and noncircular covariance matrices defined in (11)

and (12), respectively;

4. Deduce R̂k from (15), take its EVD and test its condition

number;determine mk as the number of discarded eigenvalues;

5. Determine the number of degrees of freedom dk ¼ 2P �mk � mk and

compute x̂k using (32);

6. Computer̂k ¼ x̂T
k x̂k and derive Zk from (44) using the value of dk

determined in step 5;

7. Test the hypotheses:


 if r̂koZk , repeat the procedure from step 1 with k k� 1.


 if r̂k 	 Zk , then L̂ ¼ k� 1 and the algorithm is stopped.
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Fig. 2. Histogram curves of r̂3 and r̂4 (left) in a noiseless SISO channel scenario

Solid lines correspond to the histogram curves, while dotted lined are the theo
detection method on the second longest channel in the
MISO model.

We assume that an unknown number Q of co-channel
users are located far apart from each other, hence utilizing
physically different channels. The signal measured at time
instant n at the receive antenna, is written as

xqðnÞ ¼
XLq

‘¼0

hqð‘Þsqðn� ‘Þ,

yðnÞ ¼
XQ

q¼1

xqðnÞ þ uðnÞ, (45)

where

hqð0Þ ¼ 1 (46)

and each channel q 2 ½1;Q � has memory Lq þ 1. Assump-
tions A1–A4 from Section 2 still hold for each source sqðnÞ

and their respective channel coefficients hqð‘Þ. Here, we
further assume that
A5:

 f ρ

 (ρ
k)

0.0

0.

0.1

with

retica
The input signals sqðnÞ are mutually (spatially and
temporally) independent with nonzero Kurtoses.
A6:
 The channel orders are not equal and all bounded by a
known K; without loss of generality, we consider that
K4L14 � � �4LQ , so that L1 ¼max1�q�Q ðLqÞ.
The case where some channels have the same length will
be briefly discussed in Section 3.3.

Taking the above assumptions into account and using
the multilinearity property of cumulants, the 4th-order
cumulant of the output signal yðnÞ, defined in (3), can be
expressed as the sum of the marginal cumulant contribu-
tions of each source, as follows:

c4;yði; j; kÞ ¼
XQ

q¼1

Cqði; j; kÞ (47)

in which Cqði; j; kÞ depends on the unknown channel
parameters hqð‘Þ and can be written as in (4):

Cqði; j; kÞ ¼ g4;sq

XLq

‘¼0

h�qð‘Þhqð‘ þ iÞh�qð‘ þ jÞhqð‘ þ kÞ,

q 2 ½1;Q �, (48)
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L ¼ 2; detail on the area associated with the null-hypothesis (right).
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where g4;sq
¼ c4;sq

ð0;0;0Þ. Since we assume that
hqð‘Þ ¼ 0; 8‘e½0; Lq�, we have

Cqði; j; kÞ ¼ 0; 8jij; jjj; jkj4Lq. (49)

Using (47), we can define the 4th-order output cumulant
vector, as follows:

ck9
XQ

q¼1

ck;q 2 C
P�1 for each k 2 ½1;K�, (50)

where

½ck;q�p9Cqðip � 1; jp � 1; k� 1Þ

with q 2 ½1;Q �; p 2 ½1; P�; and ðip; jpÞ 2J, (51)

the index set J ¼ fði1; j1Þ; . . . ; ðiP ; jPÞg being formed of
strictly positive integer numbers ip; jp � K. Note from
(49) that

ck;q ¼ 0P ; 8k4Lq þ 1. (52)

Hence, since we have assumed L14 � � �4LQ , we have

ck ¼

0P if k4L1 þ 1;

ck;1 if L2 þ 1ok � L1 þ 1;

ck;1 þ ck;2 if L3 þ 1ok � L2 þ 1;
cr..
. ..
.

ck;1 þ � � � þ ck;Q if k � LQ þ 1:

8>>>>>><>>>>>>:
(53)

In the sequel, we describe a deflation-type approach
based on the use of nested channel order detectors, in
which the test statistics are formed from the residual 4th-
order output cumulants, after subtracting the contribution
of the previously estimated channels. We remark that, in
the context of 2� 1 MISO systems, this deflation-based
technique was proposed in [20], using a different order
detection method, with test statistics obtained from the
eigenvalue decomposition of a cumulant matrix.
3.1. Nested MISO order-detectors and blind channel

identification

Eq. (53) shows that, for an appropriate range of k, the
output cumulant vector contains information on the
longest channel exclusively. More precisely, if k ¼ L1 þ 1,
ck can be written only in terms of the coefficients h1ð‘Þ. As
a result, if we can determine the order L1 of the longest
channel, then ĉL1þ1;1 ¼ ĉL1þ1 and we can estimate the
channel coefficients associated with the source q ¼ 1.
After that, using the estimated channel coefficients, the
marginal cumulants associated with the detected source
can be reconstructed approximately for all k 2 ½1; L1 þ 1�.
To this end, Kurtosis estimation is also needed. Then, by
subtracting the contribution ĉk;1 from ĉk, we get an
identical situation with Q � 1 sources and the same
processing can be repeated until the Q channels are
identified. The algorithm is stopped when no significant
residual information remains in the estimated output
cumulant vector.

The above suggested procedure summarizes the idea
behind the proposed nested MISO detectors. The three
following main steps are repeated for each user
q 2 ½1;Q �:
1.
 Channel order detection: determine Lq.

2.
 Blind channel identification: estimate channel coeffi-

cients ĥqð‘Þ, ‘ 2 ½0; Lq�.

3.
 Estimation of marginal cumulants: reconstruct ĉk;q for

all k 2 ½1; Lq þ 1� using the estimated channel coeffi-
cients.

Before proceeding to user qþ 1, the marginal contribution
of user q is subtracted from the estimated output
cumulant vector ĉk. Using the channel-order detection
method proposed in Section 2, we can solve the problem
of determining the channel order Lq by formulating a
multiple hypothesis test based on the variables r̂k that are
computed from the estimated MISO channel output
cumulant vectors, ĉk. Details about these test variables
(step 1) are postponed to Section 3.2. In the sequel, we
discuss the estimation of the channel coefficients ĥqð‘Þ

(step 2). Afterwards, we will show that the reconstruction
of the marginal cumulant vectors ĉk;q for all k 2 ½1; Lq þ 1�
(step 3) is straightforward.

3.1.1. MISO channel parameter estimation

In this section, we assume that the channel order Lq as
well as the marginal 4th-order cumulants Cqðip � 1; jp �

1; LqÞ are known, ðip; jpÞ 2J; q 2 ½1;Q �. In the following,
we present two methods for estimating the marginal
channel parameters ĥqð‘Þ associated with the source q,
‘ 2 ½0; Lq�.

3.1.1.1. Rank-1 approximation-based method. From (48),
taking ðip; jpÞ 2J and k ¼ Lq, we get

Cqðip � 1; jp � 1; LqÞ ¼ g4;sq
hqðip � 1Þh�qðjp � 1ÞhqðLqÞ,

q 2 ½1;Q �, (54)

where we have used (49) and the constraint (46). Hence,

cLqþ1;q9g4;sq
hqðLqÞg

ðqÞ 2 CP�1, (55)

where

½gðqÞ�p9hqðip � 1Þh�qðjp � 1Þ; p 2 ½1; P�. (56)

In order to recover the channel parameters, we need to
impose some minimal conditions on the index set J of
the cumulants utilized by the algorithm. Simple condi-
tions ensuring correct parameter estimation are as fol-
lows:

ip ¼ p; 8p 2 ½1; P�; P ¼ K;

jp ¼ 1; 8p 2 ½1; P�; P ¼ K:

(
(57)

Satisfying the above conditions leads to

½gðqÞ�p ¼ hqðp� 1Þ, (58)

and, for p 2 ½1; P�, (55) becomes

cLqþ1;q ¼ g4;sq
hqðLqÞh

ðqÞ, (59)
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with

hðqÞ ¼ ½1;hqð1Þ; . . . ;hqðLqÞ;0; . . . ;0�
T 2 CK�1. (60)

Thus we can construct the matrix Cq 2 C
K�K , as follows:

Cq9cLqþ1;qcHLqþ1;q ¼ g2
4;sq
jhqðLqÞj

2hðqÞhðqÞ
H

, (61)

which is clearly a rank-1 matrix. Assuming that we know
the channel order Lq, we can estimate the vector
hðqÞ 2 CK�1, up to a complex scaling factor, by computing
the eigenvector associated with the sole nonzero eigen-
value of Cq. The constraint hqð0Þ ¼ 1 imposed in (46) al-
lows us to avoid the trivial solution and eliminate the
intrinsic scaling ambiguity. In practice, we only need to
use the first Lq þ 1 elements of ĉLqþ1;q to compose Ĉq in
order to avoid the zero-padding at the estimated channel
tail.

By allowing for an increased set of 4th-order cumu-
lants, we can improve the quality of the channel
parameter estimates. It can be particularly interesting to
expand the index set J to the following:

J ¼ fð1;1Þ . . . ðK;1Þ . . . ð1;KÞ . . . ðK;KÞg (62)

so that P ¼ K2. Using the above index set, we get the
following equation from (55):

Bq9unvecðcLqþ1;q;KÞ ¼ g4;sq
hqðLqÞG

ðqÞ, (63)

with GðqÞ ¼ unvecðgðqÞ;KÞ ¼ hðqÞhðqÞ
H

, where the notation
unvecðx;nÞ stands for the unvectorization operator, which
builds a matrix X 2 Cm�n from the vector argument
x 2 Cmn�1. As a result, we can still use the rank-1
approximation solution to estimate the channel vector
hðqÞ by taking the singular vector associated with the
largest singular value of Bq.

3.1.1.2. Optimal solution in the total least squares sense.

Recalling (54), we notice that

½cLqþ1;q�p ¼ Cqðip � 1; jp � 1; LqÞ. (64)

Thus, another way to recover the channel coefficients
consists of solving the following linear system of equa-
tions, obtained from (54):

Cqðv� 1;u� 1; LqÞhqðw� 1Þ

� Cqðw� 1;u� 1; LqÞhqðv� 1Þ ¼ 0, (65)

with 1 � vow � Lq þ 1 and 1 � u � Lq þ 1. (66)

From (65) we can build a set of up to LqðLq þ 1Þ2=2 equa-
tions with Lq unknowns, which can be rewritten in a
matrix form as follows:

Tqhq ¼ 0, (67)

where 0 is an all-zero vector, hq ¼ ½1;hqð1Þ; . . . ;hqðLqÞ�
T and

matrix Tq is composed of the output cumulants with Lq þ

1 columns and up to LqðLq þ 1Þ2=2 rows, each row having
only two nonzero elements given by

½Tq�rv ¼ �Cqðw� 1;u� 1; LqÞ;

½Tq�rw ¼ Cqðv� 1;u� 1; LqÞ;

(
(68)
where r ¼ ðLq þ 1Þðvþw� 3Þ þ u is the row number with
v, w and u satisfying (66).

Eq. (67) can be solved by computing the right singular
vector of Tq associated with its smallest singular value.
Forming the index set J from (57), we have 1 � vow �

Lq þ 1 and u ¼ 1, and we may get up to LqðLq þ 1Þ=2
equations. The expanded index set given in (62) can also
be used to improve the estimation quality. This solution
has been originally proposed in [13] and is shown to be
optimal in the total least squares (TLS) sense.

In terms of computation burden, both MISO channel
parameter estimation methods presented in this section
have the cost of performing one SVD for each channel
q 2 ½1;Q �. For comparison purposes, consider in both cases
the index set J formed from (57). The Rank-1 approxima-
tion-based method performs the SVD of a Hermitian
matrix of dimensions ðLq þ 1Þ � ðLq þ 1Þ, while the TLS
approach computes the SVD of a complex-valued matrix
of dimensions ðLqðLq þ 1Þ=2Þ � ðLq þ 1Þ. Due to the larger
number of equations used, the TLS method may theore-
tically give better results at the cost of an increased
complexity (except for the cases Lq ¼ 1;2). Results shown
in Section 4 indicate that, for those particular cases, the
performance gap between these two methods may be
negligible.

3.1.2. Composition of marginal cumulants from estimated

channel coefficients

Rewriting (53) for k ¼ Lq þ 1, q 2 ½1;Q �, we have

ck ¼

cL1þ1;1 for k ¼ L1 þ 1;

cL2þ1;1 þ cL2þ1;2 for k ¼ L2 þ 1;

..

. ..
.

cLQþ1;1 þ � � � þ cLQþ1;Q for k ¼ LQ þ 1

8>>>>><>>>>>:
(69)

so that we can estimate the marginal cumulant contribu-
tion of source q as follows:

ĉLqþ1;q ¼ ĉLqþ1 �
Xq�1

i¼1

c̄Lqþ1;i, (70)

where c̄Lqþ1;i are the reconstructed cumulant vectors
obtained from (48) using the previously estimated
coefficient vectors ĥi, i 2 ½1; q� 1�. To achieve this step,
we need to know the Kurtosis of source q. Note that
½ĉL̂qþ1;q�p ¼ Ĉqðip � 1; jp � 1; L̂qÞ. From (54), using the index
set defined in (57) and imposing the constraint (46), we
get

½ĉL̂qþ1;q�p ¼ ĝ4;sq
ĥqðp� 1ÞĥqðL̂qÞ. (71)

Thus, an estimate of the source Kurtosis g4;sq
is given by

the least squares solution:

ĝ4;sq
¼

P
p ĥ
�

qðp� 1Þ½ĉL̂qþ1;q�p

ĥqðL̂qÞ
P

p jĥqðp� 1Þj2
; q 2 ½1;Q �. (72)

3.2. Test statistics for MISO order-detection

To start with the MISO channel detection procedure
proposed above, we must first determine the order of each
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Table 3
Nested MISO channel detection procedure.

1. Estimate the 4th-order MISO channel output cumulants; compose the

real-valued vectors ẑk , and compute Ŝk , k 2 ½1;K�;

2. Initialize q ¼ 1 and k ¼ K;

3. Compute the test variables r̂k , defined in (26) using ẑk and R̂k;

determine the decision threshold using the procedure described in

Section 2

4. Run the order-detection algorithm by testing the hypotheses:

if r̂koZk then take k k� 1 and start over from step 3.

if r̂k 	 Zk then L̂q ¼ k� 1. Go to step 5.

if L̂q ¼ 0, stop the procedure;

5. Compute ĥqð‘Þ,‘ 2 ½0; Lq�, from ĉLqþ1;q using one of the two blind

channel identification techniques described in Section 3.1;

6. From (48), compute the entries of c̄k;q , for all k 2 ½1; Lq þ 1�, using ĥqð‘Þ

and ĝ4;sq
, the latter being obtained from (72);

7. Update the output cumulant vector as ĉk  ĉk � c̄k;q;

8. Update q qþ 1 and repeat steps 3–8 until hypothesis r̂koZk is not

rejected in step 4.

C.E.R. Fernandes et al. / Signal Processing 90 (2010) 490–503 499
user channel, since all the subsequent steps depend on
this parameter. Here, we treat this problem as an FIR
channel order selection problem and show that we can
use the method proposed in Section 2 by computing the
test variables from the estimated cumulants obtained at
the output of the MISO channel.

Recalling definition (26), we can compute the test
variable r̂k from the real-valued vector ẑk, which is
defined in (13) and consists of the real and imaginary
parts of the vector ĉk of the estimated 4th-order
cumulants of the MISO channel output, defined in (50).
Hence, we can write

ẑk9
XQ

q¼1

ẑk;q (73)

and

ẑk;q9½Reðĉk;qÞ
T Imðĉk;qÞ

T
�T; q 2 ½1;Q �. (74)

Thus, from (53), we deduce that

ẑk ¼ ẑk;1 for k ¼ L1 þ 1. (75)

In addition, since zk ¼ 0dk
for k4L1 þ 1, we can use (26) to

construct our test variable from the vector ẑk, so that, for
k4L1 þ 1, r̂k follows a Chi-square distribution with dk

degrees of freedom, with dk given by (30).
On the other hand, as long as zk is nonzero for

k ¼ L1 þ 1, the variable r̂L1þ1 has a noncentral Chi-square
distribution with lL1þ1 ¼ zTL1þ1;1R

�1
L1þ1zL1þ1;1, related to the

mean of the test variable as follows: Efr̂L1þ1g ¼ lL1þ1þ

dL1þ1. We can hence denote

r̂k ¼ ẑTk R̂
�1

k ẑk

�w2
ðdkÞ
; k4L1 þ 1; N!1;

�nCw2
ðdkÞ
ðlkÞ; k � L1 þ 1; N!1:

8<: (76)

Using (15), we can deduce R̂k for k 	 L1 þ 1 from the
estimated circular and noncircular covariance matrices,
given in (11) and (12), respectively.

Eq. (76) shows that the test statistic r̂k enables us to
correctly detect the order of the longest channel asso-
ciated with the MISO mixture. After determining the order
L1, we can use one of the techniques described in Section
3.1 to estimate the channel coefficients ĥ1ð‘Þ. Then, by
replacing the estimated coefficients in (48), we recon-
struct the vectors c̄k;1 for all k 2 ½1; L1 þ 1�. Subtracting c̄k;1

from ĉk allows for the computation of new test statistics
leading to the detection of the next longest channel. This
deflation principle, discussed in Section 3.1, allows us to
successively extract the sources from the MISO mixture.
The algorithm continues until no significant residual
information is detected in the remaining cumulant vector.
The nested MISO channel detection method is summar-
ized in Table 3.
3.3. MISO channels with identical lengths

In the case where at least two channels, q1 and q2, have
the same order, Lq1

¼ Lq2
¼ L, the proposed MISO channel

detection method does not fully apply because the
residual cumulant ĉk for k ¼ Lþ 1 contains information
from both channels, i.e.

ĉLþ1 ¼ ĉLþ1;q1
þ ĉLþ1;q2

. (77)

As long as the marginal cumulants are not separable, the
deflation technique is no longer suitable to estimate the
channel parameters. Hence, the hypothesis test for q1

should lead to the same result as that of q2, i.e. L̂q1
¼ L̂q2

.
In this case, the estimated parameters should be
disregarded and the nested detection procedure termi-
nated. Therefore, the proposed approach can detect the
order and estimate the parameters of the channels
having order higher than Lþ 1. The procedure is not able
to identify the number of channels with the same length
Lþ 1, but can indicate that at least two sources are
present in the MISO mixture.

Nevertheless, cumulants are also sensitive to the
nonlinearity of a stochastic process, in the sense defined
in [23]. Yet, the process obtained by MISO linear filtering
of several i.i.d. sequences cannot be obtained by linear
filtering of a single i.i.d. sequence. This property will be
used in a future paper to detect the number of sources
when channels may have the same length.
4. Simulation results

In this section, we illustrate the performance of the
nested detectors described in Table 3 by means of some
simulation results. In order to evaluate the proposed
detection/identification method, we make use of the two
following criteria, which are defined for each signal source
q 2 ½1;Q �:
(i)
 The empirical probability of detection: it corresponds
to the ratio between the number of Monte Carlo
simulations in which the detector results are consis-
tent ðL̂q ¼ LqÞ and the total number R of realizations of
the experiment.
(ii)
 The normalized mean squared error (NMSE) of the
consistent results: this metric is computed for each
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channel q as follows:

NMSEðqÞ ¼
1

Rq

XRq

r¼1

kbhhriq � hqk
2

khqk
2

, (78)

where Rq is the number of consistent results obtained
for source q over R realizations and bhhriq is the
estimated channel vector associated with source q,
obtained for the (consistent) realization r.
Both blind channel identification algorithms described in
Section 3.1 have been implemented (rank-1 approxima-
tion and TLS) using the index set defined in (62), assuming
the input signal constellation is known (none Kurtosis
estimation needed). However, since the results are very
close, we omitted here the curves obtained with the rank-
1 approximation solution.

Nested algorithm for blind order detection and parameter

estimation of MISO channels: Let us consider a frequency-
selective MISO communication channel with Q ¼ 2 users
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. 4. Empirical probability of detection (left) and NMSE (right) versus the sa
and one single receive antenna. A static multipath
propagation scenario is assumed, which induces a delay
spread of the order of 3 symbol periods on the channel of
source 1 ðL1 ¼ 2Þ and of the order of 2 symbol periods on
the channel of source 2 ðL2 ¼ 1Þ. Channel coefficients have
been randomly generated with a continuous complex
Gaussian distribution. The figures in the sequel have been
obtained with the following coefficient vectors (where
j ¼
p
� 1):

h1 ¼ ½1:0;1:35� 0:57|;�0:72þ 1:49|�T,

h2 ¼ ½1:0;�1:14þ 0:23|�T. (79)

A known upper bound of K ¼ 5 is assumed for both
channel orders. The source signals have been QPSK
modulated and 200 input data blocks have been indepen-
dently generated, with N samples per block. The results
shown below have been averaged over the simulations for
all received data blocks, using the nested detection–esti-
mation procedure presented in Table 3.
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First, we fixed the SNR value at 40 dB and considered
an output sample data length (N) varying from 103 to 104.
At the left-hand side of Fig. 3, we notice a poor detection
performance for both sources when the sample data
length is smaller than N ¼ 2000. The overall channel
identification performance is improved as the number of
output data samples increases. This is an expected result
due to the fact that the cumulant estimators are biased,
but the bias is asymptotically zero. Increased cumulant
estimation variance implies worse channel parameter
estimation, specially for short data lengths. In addition, in
Fig. 3, we observe a performance loss between sources 1
and 2, suggesting that the proposed algorithm suffers
from error propagation, harming the identification of
shorter channels.

Afterwards, we considered a channel scenario with
Q ¼ 3 sources, where L1 ¼ 3, L2 ¼ 2 and L3 ¼ 1. Repre-
senting the randomly generated channel coefficient
vectors by g1, g2 and g3, we used:

g1 ¼ ½1:0;�0:5783þ 0:7291|;1:3820� 0:99|,

� 0:6140þ 1:3799|�T, (80)
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Fig. 5. SNR � NMSE with N ¼ 104 symbols (L1 ¼ 2, L2 ¼ 1 and K ¼ 5).
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Fig. 6. Left: NMSE versus the sample data length for SNR ¼ 40 dB with L1
g2 ¼ h1, and g3 ¼ h2. Again, the SNR value was fixed at
40 dB and the output sample data length (N) varied from
103 to 104. Fig. 4 (left) shows the empirical probability of
detection for each source, highlighting the fact that a too
small data length entails performance degradations. We
also verified an improvement of channel identification
performance as the sample data length increases, as it can
be seen at the right-hand side of Fig. 4. Here again, we can
observe the effects of error propagation on the estimation
of the shorter channel parameters. This behavior can be
explained from the fact that shorter channels are
estimated from the residual 4th-order cumulants, i.e. the
information remaining after the subtraction of the
reconstructed cumulants of longer channels, which are
themselves estimated and hence susceptible to errors.

In another simulation, we used channels h1 and h2

with a sample data length of N ¼ 104 for SNR values
ranging from 5 to 40 dB. As we can see in Fig. 5, the nested
detectors are quite robust with respect to additive
Gaussian noise, at moderate and high SNR levels. For
low SNR levels the channel estimation performance is
significantly degraded. Notice that, although the proposed
order detection technique is based on the 4th-order
output cumulants, the computation of r̂k involves the
estimation of the covariance matrix R̂k, which requires
computing 2nd-order moments estimates. The overall
detection performance is therefore expected to suffer with
increasing levels of Gaussian noise, as illustrated in Fig. 5.
We notice that error propagation also affects the perfor-
mance of the proposed method in a varying range of SNR.

Finally, we studied the case of two sources transmit-
ting data over channels that share one common zero, with
L1 ¼ 2, L2 ¼ 1 and K ¼ 5. In this case, the user channels
have been generated by randomly choosing a point within
a unit-sided square centered at the origin of the Real �
Imaginary plane, following a bidimensional uniform
distribution. The zero-pole plot of the channels used in
this simulation is shown in the right-hand side of Fig. 6.
The left-hand side of Fig. 6 shows NMSE versus the sample
data length for SNR ¼ 40dB. Looking at these results, we
notice a performance degradation with respect to the case
shown in Fig. 3. This observation suggests that the
proposed method performs better with channels that do
not share common zeroes.
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¼ 2, L2 ¼ 1 and K ¼ 5. Right: zero-pole plot for channels 1 and 2.
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5. Conclusion

In this paper, a new solution has been proposed to
jointly solve the problems of order detection and para-
meter estimation of FIR channels in the context of a
frequency-selective MISO communication system. We
have proposed a channel order detection algorithm based
on HOS hypothesis testing. A Chi-square test variable has
been introduced along with a discussion about the choice
of the decision threshold. The proposed detection algo-
rithm relies on some properties of the 4th-order output
cumulants. Exploiting the proposed order selection meth-
od, a combined detection–estimation procedure has been
introduced. The new algorithm successively detects the
source signals, determines the order of their individual
transmission channel and estimates the associated chan-
nel coefficients. The nested detectors are based on a
deflation approach, extracting from the output cumulants
the marginal contributions of the previously identified
channels and testing for the presence of shorter and
shorter channels. Using the residual cumulant vector, the
order-detection problem is treated separately for each
user. Computer simulations have shown the good perfor-
mance obtained for channel order detection and identifi-
cation.

One main drawback of the proposed technique is the
fact that it is based on a deflation technique, which entails
a high sensitiveness to cumulant estimation errors,
leading to cumulative parameter estimation errors. We
currently workout a possible solution to mitigate or
suppress the error propagation issue based on an adapted
deflation approach for referenced contrast optimization
[19].

The case of channels with the same order still needs
further investigation. Future works on this subject include
an implementation of the nested MISO detectors for the
case of a multiple-input multiple-output (MIMO) com-
munication channel. In such a MIMO approach more
information is available, which should allow us to treat
the case of same length channels, including the over-
determined as well as the underdetermined mixtures.
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