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Abstract This study describes the results of artificial neural
network (ANN) models to estimate net radiation (Rn), at
surface. Three ANN models were developed based on
meteorological data such as wind velocity and direction,
surface and air temperature, relative humidity, and soil
moisture and temperature. A comparison has been made
between the Rn estimates provided by the neural models and
two linear models (LM) that need solar incoming shortwave
radiation measurements as input parameter. Both ANN and
LM results were tested against in situ measured Rn. For the
LM ones, the estimations showed a root mean square error
(RMSE) between 34.10 and 39.48 Wm−2 and correlation
coefficient (R2) between 0.96 and 0.97 considering both the
developing and the testing phases of calculations. The
estimates obtained by the ANN models showed RMSEs
between 6.54 and 48.75 Wm−2 and R2 between 0.92 and
0.98 considering both the training and the testing phases.
The ANN estimates are shown to be similar or even better, in
some cases, than those given by the LMs. According to the

authors’ knowledge, the use of ANNs to estimate Rn has not
been discussed earlier, and based on the results obtained, it
represents a formidable potential tool for Rn prediction using
commonly measured meteorological parameters.

1 Introduction

Net radiation is the most significant energy exchange
quantity on Earth because it represents the limit to the
available energy source or sink for physical and biophysical
processes, thus constituting the fundamental parameter
governing the lower atmosphere climate (Oke 1987;
Iziomon et al. 2000). The surface net radiative energy
balance can be calculated by using:

Rn ¼ R#
s � R"

s þ R#
l � R"

l : ð1Þ
This equation represents the algebraic sum of both

shortwave Rs and longwave Rl radiation flux densities,
where the downward (↓) and upward (↑) arrows, respec-
tively, indicate incoming and outgoing radiation compo-
nents at the surface (Fig. 1). According to the arrows in
Eq. 1, the downward incident radiation is taken as positive,
while the upward emerging radiation is taken as negative.

The outgoing shortwave R"
s is the fraction of the

shortwave incoming solar radiation R#
s that is reflected by

the surface under consideration, i.e.,

R"
s ¼ a R#

s ; ð2Þ

where α is the surface albedo. Thus, Eq. 1 can be rewritten
as

Rn ¼ 1� að ÞR#
s þ R#

l � R"
l

� �
: ð3Þ
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For natural surfaces, the emission of longwave
radiative flux is given by the modified Stefan–Boltzmann
law, assuming a given emissivity for the Earth’s surface
(Arya 1988). Then, the net radiation flux at the surface is
given by

Rn ¼ 1� að ÞR#
s þ R#

l � "sT4
sfc

� �
; ð4Þ

where ε is the surface emissivity, Tsfc the surface
temperature (K), and σ the Stefan–Boltzmann constant
(σ=5.670×10−8 W m−2 K−4). Equation 4 shows that the
net radiative flux is the result of the radiation balance at
the surface and is influenced by the climate near the
ground and other properties such as surface temperature,
albedo, and emissivity. Since its magnitude is directly
related to the various radiative fluxes reaching or outgoing
from the surface, it is clear that Rn is a key parameter for
surface energy budget studies.

Despite its importance, Rn is measured routinely, with
net radiometers, only at very few climatological stations
around the world, or by scientists in short-term studies,
partly because of the problem of providing a standard
surface, but also because net radiation instruments are
cumbersome to maintain (Irmak et al. 2003; Monteith and
Unsworth 1990). As a consequence, a number of studies
have put major effort into the accurate determination of Rn

for a given location, considering its land cover and land
use, from meteorological data, like soil surface and air
temperature, fraction of the sky covered by clouds, relative

humidity, radiation emitted by the atmosphere, and incom-
ing solar radiation, giving origin to various models that
have been proposed or evaluated by Carrasco and Ortega-
Farías (2007), de Jong et al. (1980), Irmak et al. (2003),
Jegede et al. (2006), Kjaersgaard et al. (2007), Wang and
Liang (2008), etc. These models based on empirical
equations and coefficients either from the literature or
based on the physical principles of radiation balance differ
from each other in terms of the complexity of the required
meteorological data (Sentelhas and Gillespie 2008). How-
ever, looking more carefully, most of the Rn equations
utilized to estimate hourly, daily, or long-term Rn values
need incoming solar radiation as input parameter—not a
currently measured parameter in the majority of meteoro-
logical stations. Taking this into account, the objectives of
the present study are (1) the development of a new model
for estimating Rn over a vine crop employing artificial
neural networks (ANNs) from routinely observed meteoro-
logical data, (2) the application of the two most commonly
considered Rn linear estimation models using incoming
solar radiation and albedo as input parameters, and (3) the
analysis and comparison of the performance of the LMs
against the new proposed ANN model.

The estimated Rn values from both LM and ANN models
were compared to in situ Rn values measured during a field
campaign denominated FESEBAV-2007 (Field Experiment
on Surface Energy Balance Aspects over the Valencia
Anchor Station area) carried out between June 19th and
September 18th 2007. The Valencia Anchor Station is a
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Fig. 1 a Schematic summary of the fluxes involved in the radiation budget of an “ideal” site, b observed radiation budget over the Valencia
Anchor Station (latitude 39°34′15″ N and longitude 1°17′18″ W at the Utiel-Requena Plateau, Spain) under clear sky conditions on July 7, 2007
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reference meteorological station (39°34′15″ N, 1°17′18″ W,
elevation 813 m above sea level) that was mainly set up for
the validation of low spatial resolution satellite data and
products.

2 Material and methods

2.1 Description of the experimental site

In order to better achieve the objective of this study and
considering that several meteorological factors as well as land
cover and land use do affect the quantity of Rn that is
registered at any particular place, an automatic agrometeoro-
logical station was mounted inside a vineyard (39°31′23″ N,
1°17′22″ W, elevation 796 m above sea level), during the
FESEBAV-2007 field campaign mentioned earlier.

The area where FESEBAV-2007 took place is located
over the natural region of Utiel-Requena Plateau, Spain. It
represents a reasonably homogeneous area of about
50 km×50 km (NW −1.5734, 39.8045; NE −0.9897,
39.7958; SE −1.0026, 39.3455; SW −1.5826, 39.3541)
primarily dedicated to vineyard crops. The wines represent
about 70–80% of the vegetation cover in the region. The
land use of the remaining area is primarily dedicated to
dryland crops, almonds, and olives trees, and to a lesser
extent, pines and scrubs are also found. The climate in this
area is a typical Mediterranean semiarid climate with an
average monthly temperature varying between 5.6°C and
7.0°C in winter and between 21.2°C and 25°C in summer.
The total annual rainfall is about 461 mm and the average
monthly rainfall in the region is between 12 and 61 mm,
mainly falling during the autumn months, but spread evenly
throughout the year except in the summer dry period
between July (12 mm) and August (21 mm).

The area observed by the agrometeorological station
corresponds to an extensive plantation of vines distrib-
uted in northwest to southeast rows 2.9 m apart with
2.1 m between stumps. The grapevines belong to the
typical Spanish tempranillo variety and were trained in
vertical trellis with the main wire about 1 m above the
soil surface. The soil is sandy loam and the laboratory
analysis gave a composition of 67% sand, 13% silt, and
20% clay, with bulk density of 0.77 gcm−3, 70.9%
porosity, and volumetric heat capacity varying between
1.57×106 and 1.87×106 J m−2 K−1, depending on soil
moisture content, that at a depth of 5 cm, ranged between
0.066 and 0.290 m3 m−3, along FESEBAV-2007. During
the 92 days of the field campaign, mainly covering the
summer season and the full vineyard phenological cycle,
nine rainfall events were registered, with three of them
presenting a significant daily total rainfall of 35 mm
(day 48, August 5, 2007), 20 mm (day 49, August 6,
2007), and 51 mm (day 69, August 26, 2007). In the
other 6 days, the daily total rainfall varied between 1 and
7 mm.

Table 1 Description and arrangement of the sensors used for the measurements of the different meteorological and soil parameters during the
FESEBAV-07 field campaign

Parameter Instrument Manufacturer Elevation

Net radiation CN1 Net Pyrradiometer Middleton & Co.
Pty. Ltd.

2 m

Incident and reflected
solar radiation

Albedometer CM-14 Kipp and Zonen 2 m

Soil heat flux RIMCO HP3 Heat Flux Plate Middleton & Co.
Pty. Ltd.

−7.5 cm; −12.5 cm

Air temperature PT 100/3 Campbell Scientific Ltd. 2 m

Soil temperature PT 100/3 Campbell Scientific Ltd. Surface; −5 cm; −10 cm; −15 cm; −25 cm

Relative humidity HMP45C Campbell Scientific Ltd. 2 m

Wind speed/direction RM Young 05103 R. M. Young Company 2.10 m

Soil moisture content ThetaProbe Soil Moisture
Sensor-ML2x

Delta-T Devices Ltd. −5 cm; −35 cm horizontally

Fig. 2 Scheme of a neuron; xi are the inputs and wj are the neuron
weights
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2.2 Instrumentation and measurements

The agrometeorological station installed within the vine
field was operated continuously for almost 4 months,

during the 2007 vine growing season, collecting the
following parameters: air temperature (degree Celsius),
relative humidity (percent), wind direction (degrees), and
speed (meter per second); surface temperature and soil

Fig. 3 Scheme of a multilayer
perceptron
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Fig. 4 Average diurnal variation of measured net radiation (Rn) and incoming shortwave radiation (R#
s ) over a vineyard in the period June 19 to

September 18, 2007. a June 2007, b July 2007, c August 2007, and d September 2007
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temperature profile (degree Celsius); soil heat flux (watt per
square meter); incident, reflected, and net radiation (watt

per square meter); and soil moisture (cubic meter per cubic
meter). The different sensors (Table 1) were integrated into
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Fig. 4 (continued)

Table 2 Linear regression models obtained for Rn and statistical results of the comparison between observed and estimated values of Rn

Model R2 RMSE MAE ME N

Rn1 ¼ a1R#
s þ b1

Rn1 ¼ 0:657R#
s � 54:273 0.96/0.97 39.48/35.38 34.19/30.87 0.006/7.10 4,397/2,198

Rn2 ¼ a2 1� að ÞR#
s þ b2

Rn2 ¼ 0:791 1� að ÞR#
s � 54:161 0.96/0.97 37.85/34.10 32.94/30.15 −0.0097/8.21 4,397/2,198

R2 , RMSE, MAE, ME, and N (number of data utilized). The results are given both for the developing and the testing phases, respectively,
separated by /. RMSE, MAE, and ME are in units of watt per square meter
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two Campbell CR1000 dataloggers that were programmed
to collect the data every second for all sensors and average
it for 10 min.

2.3 Methods

Since Rn can be positive, negative, or even zero, in order to
better investigate its behavior during the field campaign, the
dataset was divided in three parts: The first one considers all
Rn in situ measured data, the second one considers only the
negative net radiation (Rn<0) values, and the third one

considers only the positive net radiation (Rn>0) values,
hereafter referred to as Rn±, Rn−, and Rn+, respectively. This
procedure allows to find a model for Rn± overall values and
more specific models for Rn− and Rn+. Besides this, each of
these datasets was divided into two subsets: the first one
comprising two thirds of the data and was used to develop the
LM and to train the ANN, and the remaining one third of the
data were used for testing the models. The accuracy of the Rn
estimated values using both the LM and the ANN models was
assessed through the mean value of the absolute error (MAE),
the mean error (ME), R2, and root mean square error (RMSE).
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Fig. 5 Observed and estimated Rn for cloudless conditions (days:
September 1, 2007 and August 15, 2007) and cloudy conditions (days:
August 23, 2007 and July 12, 2007). The linear models utilized to

estimate Rn were: Rn1 ¼ 0:657R#
s � 54:273 for a and b, and

Rn2 ¼ 0:791 1� að ÞR#
s � 54:161 for c and d
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2.3.1 Linear models

Models for calculating Rn from other climatic parameters
using regressions are widely used, including linear regres-
sion models, which are formal means of expressing the
relationship between two or more variables, and have the
power to empirically facilitate complicated relationships
among the considered quantities. According to Kjaersgaard
et al. (2007), the most commonly used equations to
estimate Rn are

Rn ¼ a1R
#
s þ b1 ð5Þ

Rn ¼ a2 1� að ÞR#
s þ b2; ð6Þ

where a1, a2, b1, and b2 are regression coefficients, α
represents the surface albedo, and R#

s is the incoming solar
radiation that is more commonly measured than Rn. The
investigations have shown that the regression coefficients in
those models are, among other things, dependent on the
type of surface and its conditions.

2.3.2 Multilayer perceptron

Artificial neural networks are mathematical models that
learn and establish nonlinear relationships between two
datasets. They have the ability to find complex relationships
in data (Bishop 1996; Haykin 1999). In this work, the ANN
used is the multilayer perceptron (MLP), a model that
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consists in a layered arrangement of individual computation
units known as artificial neurons. The neurons of a given
layer feed with their outputs the neurons of the next layer. A
single neuron is shown in Fig. 2.

The inputs xi to a neuron are multiplied by adaptive
coefficients wi, called synaptic weights which represent the
connectivity between neurons. The output of a neuron is

usually taken to be a sigmoid-shaped (sigmoid or hyper-
bolic tangent function) φ. The output of the jth neuron is
given by

Oj ¼ 8
Xm
i¼0

wijxi

 !
; ð7Þ

where 8 is a nonlinear function named activation function.
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Neurons from a specific network are grouped together in
layers that form a fully connected network. The first layer
contains the input nodes, which are usually fully connected to
hidden neurons, and these are, in turn, connected to the output
layer. Figure 3 shows a scheme of a fully connected multilayer
perceptron. In our case, only one output neuron is necessary,
since only one parameter is predicted at each time.

3 Results and discussion

The diurnal courses of Rn and R#
s observed during

FESEBAV-2007 are presented in Fig. 4. It can be seen that
the maximum values of these parameters are reached
around midday (UTC), and July is the month in which R#

s

is maximum over the vineyard, having more available Rn

for the soil–plant–atmosphere system and, consequently, for
physical and biophysical processes required by the vineyard
growth. The ratios between Rn and R#

s were in average 0.54,
0.58, 0.57, and 0.54 for June 19–31, July, August, and
September 1–18, respectively.

Based on Eqs. 5 and 6, hereafter called Rn1 and Rn2,
respectively, the estimated Rn values were obtained by
using R#

s measurements from the FESEBAV-2007 dataset.
The same dataset was utilized to estimate the local
regression coefficients a1, a2, b1, and b2, and the linear
models obtained are shown in Table 2. Figure 5 shows the
diurnal courses of the observed Rn values as well as the
estimated daytime values of Rn using Rn1 and Rn2, for four
different days, where two of these days were under
cloudless conditions (Fig. 5a, c) and the other two were
cloudy (Fig. 5b, d). For these days, both Rn1 and Rn2

models tend to overestimate Rn slightly after 1300 hours
and underestimate it slightly between 900 and 1300 hours
approximately. In both cases, cloudless (day August 15,
2007: RMSE=41.93 Wm−2 and MAE=37.74 Wm−2; day
September 1, 2007: RMSE=36.20 Wm−2 and MAE=
31.94 Wm−2) and cloudy (day July 12, 2007: RMSE=

37.72 Wm−2 and MAE=33.93 Wm−2; day August 23,
2007: RMSE=30.03 Wm−2 and MAE=25.71 Wm−2), the
estimates obtained are in good agreement with the
measured values.

According to the statistical results given in Table 2, the
obtained LMs showed a high accuracy in estimating Rn1

and Rn2, considering that these models do not take into
account the longwave component of net radiation which is
obviously more significant during nighttime. At night, net
radiation usually has a negative value (see Figs. 4 and 5)
because there is no incoming solar radiation and the net
longwave radiation is dominated by the outgoing terrestrial
longwave flux. Simple regression models such as Rn1 and
Rn2 do not contain any correction for longwave radiation
nor factors affecting the longwave radiation components
(Kjaersgaard et al. 2007).

During daytime, solar radiation dominates the diurnal
cycle and is almost always incident to the surface, while at
night, net radiation is much weaker and emerging from the
surface. As a result, the surface warms up during daytime,
while it cools down during evening and night hours,
especially under clear sky and undisturbed weather con-
ditions (Arya 1988). In Fig. 6, estimates of 10-min Rn

values, as obtained from the models presented in Table 2,
are plotted against the measured data showing high
correlation coefficients (0.96≤R2≤0.97), considering both
the developing and the testing phases.

Meteorological parameters Statistics

Min Max Mean Std

Wind velocity (m s−1) 0.0 5.05 1.22 0.73

Wind direction (deg) 0.0 359.90 158.98 92.81

Air temperature (°C) 8.81 39.92 21.83 6.45

Surface temperature (°C) 10.63 61.91 28.85 13.12

Soil temperature at 5 cm depth (°C) 14.16 41.70 25.84 6.12

Relative humidity (%) 6.89 99.30 54.74 25.87

Soil moisture at 5 cm depth (m3 m−3) 0.07 0.29 0.09 0.03

Soil heat flux at depth of 7.5 cm (W m−2) −22.54 50.68 −8.49 18.46

Net radiationa (W m−2) −73.33 741.30 144.94 231.24

Table 3 Statistical values
of the 10-min meteorological
parameters utilized as input
parameters in the ANN models
for the training and validation
set

Min minimum, Max maximum,
Std standard deviation
a Net radiation was considered
as output parameter in the ANN
models

Table 4 Statistical results for net radiation flux using neural networks
(training/validation sets)

Model R2 RMSE MAE ME

Rn− 0.92/0.92 6.23/6.54 4.59/4.76 0/0.089

Rn+ 0.97/0.96 42.9/48.75 26.81/29.29 −0.33/0.26
Rn± 0.98/0.98 38.09/39.26 21.67/22.60 0.0209/1.41

RMSE, MAE, and ME are in units of watt per square meter
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As mentioned earlier, the FESEBAV-2007 experiment
was carried out over a vine crop, which somehow may
be considered as sparse vegetation. During the experi-
ment, the vineyard canopy reflectance ranges and
monthly averages were respectively: 0.15≤α≤0.21, a=
0.18 (June); 0.10≤α≤0.22, a=0.17 (July); 0.11≤α≤0.25,
a=0.17 (August); and 0.11≤α≤0.30, a=0.18 (Septem-

ber). According to the results obtained by Alados et al.
(2003), Azevedo et al. (1997); Fritschen (1967), and
Kjaersgaard et al. (2007), the inclusion of the α term in
Eq. 6 improves only slightly the regression results as
compared to Eq. 5. In this study, the statistical analysis
also indicated that the inclusion of the α term in Eq. 6, as
compared to Eq. 5, leads to a slight improvement in Rn
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estimations (see R2 and RMSE on Table 2 for both models
represented by these equations).

The authors mentioned above carried out their studies
over irrigated field crops, European wine grape vineyard,
sparse clumped shrub-land of different species, and short
grass surrounded by agricultural fields, respectively. But
Alados et al. (2003) reported that the inclusion of surface
albedo, in the studies made by Kaminsky and Dubayah

(1997) in the boreal forest and northern prairie sites, led to a
general improvement in the determination coefficients. This
means that when estimating Rn at any particular place, land
cover and land use need to be considered as well as the
local adjustment of the model parameters.

Since R#
s and α are not so frequently measured in

meteorological networks, the LMs presented here and those
mentioned in the literature cannot be used, with reliable
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accuracy, in locations were R#
s and α are not measured. The

alternative presented here to estimate Rn is modeling it
using ANNs that use other meteorological parameters as
input parameters. Eleven of those have been selected in this
study for the estimation of Rn, namely month, day, hour,
wind velocity, wind direction, air temperature, surface
temperature, soil temperature, relative humidity, soil mois-
ture, and soil heat flux (see Table 3).

ANNs of different architectures and weight initializa-
tions have been proposed and the Levenberg–Marquardt’s
algorithm was selected as the procedure to adjust the neural
network parameters (Luenberger and Ye 2008). This
algorithm shows a better performance than other more

widely used algorithms, such as the classical backpropaga-
tion algorithm, for example. As far as hidden nodes are
concerned, only one hidden layer was taken into consider-
ation (the number of neurons ranged between 2 and 15).
The stopping criterion was based on cross-validation
(Bishop 1996; Haykin 1999). The results of this proposed
ANN model for the estimation of Rn±, Rn+, and Rn−, are
shown in Table 4. As frequently indicated earlier, the
calculations have been performed both for the training (they
are the patterns to adjust the parameters) and for the
validation (they are the patterns to avoid the overfitting)
datasets. The former is used to adjust the parameters, and
the latter is used to avoid overfitting.
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According to the results shown in Table 4, the proposed
ANN model provides similar results to those from the LMs
for Rn1 and Rn2 (see Table 2) when considering daytime
values, i.e., Rn+. When considering only Rn− (nighttime)
and Rn± (full diurnal cycle), high values of R2=0.92 and
0.98, respectively, for the training and the validation phases
are obtained for the proposed ANN model. ANN estimated
Rn± fitted well the measured data mainly over clear sky
conditions (Fig. 7). The advantage of the ANN model
presented here when compared to Rn1 and Rn2 LMs is that
the ANN can also be applied to estimate Rn during the
nighttime, when the sun is cutoff, and to the full diurnal

cycle of Rn, once the ANN does not use incoming solar
radiation as input parameter.

Figure 8 shows the diurnal courses of Rn± estimated by
the ANN model and of Rn measured at the agrometeoro-
logical station for the same 4 days presented in Fig. 5.
Thus, Fig. 8a, c shows the results for the clear sky days and
Fig. 8b, d for the two cloudy days. These case studies,
obtained from the complete time series presented in Fig 7,
show that for clear sky conditions (day August 15, 2007:
RMSE=17.80 Wm−2 and MAE=13.38 Wm−2; day Sep-
tember 1, 2007: RMSE=18.33 Wm−2 and MAE=13.38 W
m−2) the estimates are better than for cloudy conditions
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(day July 12, 2007: RMSE=31.45 Wm−2 and MAE=
18.28 Wm−2; day August 23, 2007: RMSE=63.51 Wm−2

and MAE=39.27 Wm−2).
Figure 1b introduced earlier clearly showed that all

radiation components are in phase under clear sky
conditions and that no abrupt variation is found in the
radiation components reaching the surface (Fig. 8a, c).

However, under cloudy conditions, abrupt and rapid
changes appear in solar radiation reaching the surface
leading to strong variations in Rn in short times (Fig. 8b, d),
depending on cloud cover fraction and types, thus gener-
ating outliers in the dataset, as registered by the net
radiometer (Figs. 7 and 8). These outliers are difficult to
model, causing over- or underestimations of Rn, depending
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on the period of the day, and also because the meteorolog-
ical parameters used in the ANN model reflect these abrupt
variations as well.

A scatter diagram between observed and estimated Rn is
also shown in Fig. 9 for the three ANN models Rn−, Rn+,
and Rn±. It can be seen that these three models present low
dispersion values.

Table 5 shows now the slope and intercept for LMs (Rn1

and Rn2) and ANN and the average values of measured Rn.
The slopes of the lines of observed Rn versus estimated Rn

are close to 1.0, varying between 0.95 and 0.98 for Rn+ and
Rn± (LMs and ANN). For Rn−, the slope for the ANN is
0.86. The intercepts for Rn+ and Rn± are about 5% or less of
the average measured Rn+ and Rn± (LMs and ANN). The
intercept of the ANN model for Rn− (nighttime) is
approximately 14% of the average measured Rn−, and the
RMSE is 16.8%. This means that the ANN improves the
accuracy of the LMs considering that the latter cannot be
applied for the estimation of Rn− or Rn±. Amarakoon and
Chen (1999) considered that an intercept and RMSE of
about 10% or less of the averaged measured Rn are
acceptable for the different types of conditions expressed
by the measured data (climate, seasons, land cover, surface
moisture, soil type, etc.). In this work, we obtain similar
percent values for the intercepts and RMSE when only
Rn+ values (daytime) are considered. For Rn± (diurnal
cycle), the intercept and the RMSE obtained are respec-
tively and approximately 2.7% and 21% of the averaged
measured Rn±. This difference observed in the RMSE

between the acceptable values and ANN can be explained
by the fact that the ANN proposed here does not use
incoming solar radiation as input parameter which is
directly linked to surface Rn.

As indicated earlier, R#
s was not used as an input to the

ANN, and the results clearly demonstrate that the ANN is a
helpful tool to estimate Rn from meteorological data such as
those mentioned in Table 3, given that parameters related to
radiation fluxes are not routinely measured.

According to Irmak et al. (2003), if Rn could be
predicted in an accurate manner from a minimum number
of climatological data, this would be a great improvement
and contribution for engineers, agronomists, climatologists,
and others who routinely use regular National Weather
Service climatological data such as rainfall, air temperature,
atmospheric pressure, relative humidity, wind velocity, and
direction. In this sense, the ANN introduced here has the
ability to predict Rn using a few common meteorological
parameters as input. The multilayer perceptron network
uses a learning algorithm to determine the best network
parameters to model the relationship between the input and
output variables, and the adjustment between these varia-
bles is done without any assumption on previous relation-
ships between parameters because they are actually related
per se and represent sufficiently well the problem (Haykin
1999). Therefore, the methodology developed here to
estimate Rn could be successfully transferred and applied
to other surfaces (for example, with different land cover and
land uses) and seasons.
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4 Conclusions

This paper presents an alternative and convenient
approach to estimate surface net radiation using an
artificial neural network model that uses as input
variables a limited number of operational meteorological
parameters currently measured in conventional agro-
meteorological stations. This also emphasizes the practi-
cal advantages of the method. By using the training and
validation datasets, the results obtained for Rn±, Rn+, and
Rn− show the good performance of the ANN model to
estimate surface Rn.

Without using R#
s as input parameter, the ANN presented

in this work demonstrates to be a helpful tool to estimate Rn

at the surface from operational meteorological parameters
such as those mentioned in Table 3, which is very useful for
sites where radiation flux-related parameters are not
currently measured.

Another practical advantage of the ANN in estimating Rn

in comparison to other physical, empirical, or semi-empirical
models, being linear or nonlinear, is that the majority of these
models require other geophysical parameters such as
downwelling and reflected shortwave radiation, downwelling
and upwelling longwave radiation, albedo, surface tempera-
ture, air vapor pressure, fraction of cloud cover, emissivity of
the surface and of the atmosphere, among others, as input to
the model (Amarakoon and Chen 1999; de Jong et al. 1980;
Iziomon et al. 2000; Jegede 1997; Ortega-Farias et al. 2000;
Sentelhas and Gillespie 2008). Usually, these parameters are
not routinely measured in agrometeorological stations, and
estimations made from them may lead to increasing errors in
Rn estimations.

A brief commentary should be made about the transfer-
ability of the method to other surface and seasons
conditions. In spite of the neural networks being a robust
tool to explore and define relationships between parameters
that presumably should exist out of empirical datasets, the
limitation of these models is precisely the empirical

character of the data used both for the training and for the
validation phases of the procedure. In our case, the
strongest variability of the data proceeds from cloudiness.
Fortunately, the long dataset employed in this study has
offered the possibility of seeing the behavior of the neural
network under cloudy conditions of very different intensity
and temporal and spatial distributions, and the model has
always produced good results. Therefore, we should expect
the method to be applicable to other land use conditions as
well. Moreover, the study applied covering the full vineyard
cycle has permitted to apply the same methodology to the
very heterogeneous situations from bare soil before the
beginning of the vine season to the full development of the
plants that have a very heterogeneous spatial distribution,
and the results are equally satisfactory.
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