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A B S T R A C T

In this paper, we study a variant of the customer order scheduling problem when sequence-dependent setup
times cannot be ignored. The performance measure adopted is the makespan minimization. The existence of
sequence-dependent setup times makes this problem to be NP-hard. Furthermore, the solution encoding usually
employed for other variants of the customer order scheduling problem does not guarantee finding optimal
solutions. For this problem, we present some properties and develop two Mixed Integer Linear Programming
(MILP) formulations to analyze the structure of the solutions. Using these properties and models, we propose
two matheuristics based on fixing some integer decision variables in the MILP models, denoted as Fixed
Variable List Algorithm (FVLA) and Clustering Sequence Algorithm (CSA), respectively. The computational
experiments carried out prove the ability of these matheuristics to find high-quality solutions in reasonable
CPU time. More specifically, the FVLA matheuristic stands out as the most efficient for the problem.
1. Introduction

Nowadays, the high exigency level of consumers coupled with the
fierce competition among companies is changing the existing produc-
tion paradigms in a continuous search for efficiency, thus allocating to
different facilities or production lines the manufacturing of components
of customized products, which are subsequently assembled in another
facility. As a result, in the last few years, researchers in the production
scheduling area are paying an increasing attention to assembly schedul-
ing problems (see e.g. Framinan, Perez-Gonzalez, & Fernandez-Viagas,
2019 for a survey of the state-of-the-art in the topic, together with a
unified notation for this class of problems).

Among the assembly problems, the so-called customer order schedul-
ing problem arises when there are 𝑛 customer orders – each one
consisting of different products – to be processed in 𝑚 dedicated parallel
machines. In this problem, the machines are capable to perform only a
single type of operation for a specific product but, since the products
belong to a single customer, the order is completed only when the man-
ufacturing of all the corresponding products has been completed. This
is tantamount to considering a final (zero processing time) assembly
operation for the completed orders and it is thus denoted 𝐷𝑃𝑚 → 0
according to the notation in Framinan et al. (2019). This schedul-
ing environment arises in several real-world applications, such as the
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paper industry, the pharmaceutical industry, as well as in assembly
operations (Leung, Li, & Pinedo, 2005).

In the existing literature on the customer order scheduling problem,
the setup times required to prepare the machinery are considered as
a part of the processing times. However, this may not be a realistic
assumption in many cases, as most automated and semi-automated
machinery presents some degree of flexibility in processing different
products, for which they usually require some set-up operations. Thus,
explicitly considering setup times is an important topic in the schedul-
ing literature (Abreu, Cunha, Prata, & Framinan, 2020; Allahverdi,
Ng, Cheng, & Kovalyov, 2008; Moccellin, Nagano, Pitombeira Neto,
& Prata, 2018). However, this has not been the case in the customer
order scheduling problem where, despite its theoretical and practical
importance, according to the recent literature survey (Framinan et al.,
2019), the problem with sequence-dependent setup times – denoted
as 𝐷𝑃𝑚 → 0|𝑆𝑇𝑠𝑑 |𝐶𝑚𝑎𝑥 – has not been addressed so far. Note that
this problem is substantially different than the same problem with-
out setups, which is known to be polynomial (see e g. Wagneur &
Sriskandarajah, 1993), and therefore requires an specific analysis.

In this paper we address the customer order scheduling problem
with sequence-dependent setup times. We first prove that the prob-
lem is NP-hard, and present two mixed-integer linear problem (MILP)
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models to solve it optimally. Furthermore, we analyze some prob-
lem properties and show that, in contrast to most related assembly
problems, maintaining the same order of jobs for all machines (i.e. a
permutation encoding of the solutions) does not guarantee reaching
the optimal solution. In view of these problem features, we develop
two matheuristics, and report an extensive computational experimen-
tation to show their efficiency, also by comparing them with the
state-of-the-art methods from related problems.

The remainder of this paper is organized as follows: in Section 2
the related literature is reviewed; in Section 3, the scheduling prob-
lem treated in this paper is stated together with some properties. In
Section 4, the MILP models are presented, while in Section 5, the
proposed algorithms are described; in Section 6, we discuss some results
from computational experiments; finally, in Section 7 we draw some
conclusions and suggestions for future works.

2. Literature review

As mentioned in Section 1, to the best of our knowledge, the order
scheduling problem considering sequence-dependent setup times for
makespan minimization has not been previously reported in the revised
literature. Therefore, we review the state-of-the-art looking for related
approaches, starting with the problem without setup considerations.
Julien and Magazine (1990) consider a flexible manufacturing en-
vironment in which customer requirements for each of the possible
product types are known in advance. The customer order scheduling
was formally described by Wagneur and Sriskandarajah (1993), as a
variant of the open shop scheduling problem with jobs overlaps. They
analyze the complexity of several objective functions, and show that,
for the objective of the makespan minimization, it is a trivial problem.

Leung et al. (2005) consider the customer order scheduling with
total weighted completion time minimization. They presented an im-
portant result: there exists an optimal solution consisting of a fixed
permutation in all dedicated parallel machines, an assumption that it
is either implicitly or explicitly made in most contributions on differ-
ent variants of the problem. Furthermore, two constructive heuristics
were proposed. For the same objective function, Shi, Wang, Liu, and
Shi (2017) propose a quadratic formulation, which can be converted
into a mixed-integer linear programming model. Also, a hybrid nested
partitions algorithm is developed to solve large-sized instances.

Lee (2013) addresses the order scheduling with total tardiness
minimization. In this case it is also shown that an optimal solution
can be found with the same sequence of the orders on all machines.
Four constructive heuristics, as well as a branch-and-bound algorithm,
are proposed. This problem is also studied by Framinan and Perez-
Gonzalez (2018), which propose a mixed-integer linear programming
formulation, a new constructive heuristic, as well as two matheuristics.
Xu et al. (2016) introduce a customer order scheduling environment
with a position-based learning effect, in which the objective function
is the total tardiness minimization. A lower bound, some dominance
relations, a branch-and-bound algorithm, as well as two metaheuristics
(simulated annealing and particle swarm optimization) are presented.

Xu, Ma, Zhou, and Zhao (2015) address the customer order schedul-
ing problem with unrelated parallel machines for the total completion
time minimization. A lower bound and three constructive heuristics
are developed for this problem. Framinan and Perez-Gonzalez (2017)
addressed the customer order scheduling environment for the total
completion time objective. A constructive heuristic with a look-ahead
mechanism is proposed. Furthermore, a greedy search algorithm is also
presented. For this same variant, Riahi, Newton, Polash, and Sattar
(2019) present eight dispatching rules, which constitute the initial solu-
tions of a constructive heuristic that evaluates several partial schedules.
Also, a perturbative search metaheuristic is proposed. Lin et al. (2017)
study a two-agent multi-facility customer order scheduling with ready
times for the total completion time minimization. A branch-and-bound
2

algorithm with dominance rules is proposed. Besides, two evolutionary
Table 1
Processing times for order scheduling example.
𝑖∖𝑘 𝑂1 𝑂2 𝑂3

𝑀1 3 4 2
𝑀2 4 1 2

Table 2
Setup times for the first machine of the order scheduling example.
𝑗∖𝑘 𝑂1 𝑂2 𝑂3

𝐽1 – 3 4
𝐽2 5 – 1
𝐽3 6 2 –

Table 3
Setup times for the second machine of the order scheduling example.
𝑗∖𝑘 𝑂1 𝑂2 𝑂3

𝐽1 – 5 8
𝐽2 2 – 10
𝐽3 1 3 –

algorithms (particle swarm optimization and opposite-based particle
swarm optimization) are developed.

Kung et al. (2018) address a customer order scheduling environment
with unequal order ready times for total completion time minimization.
Two lower bounds are developed, and some problem properties are
explored. Eight metaheuristics are proposed to solve the problem:
four simulated annealing (SA) algorithms, and four genetic algorithms
(GAs). Also, a Branch-and-Bound (B&B) algorithm is presented. The
computational results point out that the SA-based algorithms outper-
form the GAs. Lin et al. (2019) address a customer order scheduling
environment with release dates to minimize the weighted number
of tardy orders. Some dominance properties are shown and a lower
bound is presented together with a B&B algorithm. Regarding approx-
imate solution procedures, these authors present four standard bee
colony algorithms, followed by four hybrid bee colony algorithms for
finding near-optimal solutions within acceptable computational times.
Wu et al. (2019) introduce a customer order scheduling variant with
ready times. Several dominance rules are explored, and two lower
bounds are developed. These elements are considered to develop a B&B
algorithm. Furthermore, the authors adapt five existing constructive
heuristics to the problem under study and propose an Iterated Greedy
(IG) metaheuristic.

As it can be seen, the best of our knowledge, the explicit consid-
eration of setup times in the customer order scheduling environment
has not been considered so far in the revised literature. In the next
section, we formalize the 𝐷𝑃𝑚 → 0|𝑆𝑇𝑠𝑑 |𝐶𝑚𝑎𝑥 problem and present
some properties.

3. Problem statement and properties

Let 𝑛 be the number of customer orders to be produced in a set
of 𝑚 dedicated parallel machines. For each machine 𝑖, a permutation
𝛱𝑖 represents a feasible sequence, in which a given order 𝑘 can be
rocessed in position 𝑗 of this permutation. Each order 𝑘 presents
processing time 𝑝𝑖𝑘 on machine 𝑖, and requires a setup time 𝑠𝑖𝑗𝑘

if processed after order 𝑗, which is sequence-dependent. Given these
definitions, the problem under study is to find the best sequence for
each available machine aiming to minimize the maximal completion
time 𝐶𝑚𝑎𝑥 for all the orders, or makespan.

Consider an illustrative example with three orders and two ma-
chines. Processing and setup times are presented in Tables 1, 2, and 3,
respectively. The global optimal solution for this instance is obtained
by the sequences 𝛱1 = {1, 2, 3} in machine 𝑀1 and 𝛱2 = {3, 2, 1} in
machine 𝑀 , with a makespan of 16 time units, as illustrated in Fig. 1.
2
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Fig. 1. Gantt chart for the presented solution.
Table 4
Setup times for the first machine of the FVLA example.
𝑗∖𝑘 𝑂1 𝑂2 𝑂3 𝑂4

𝐽1 – 2 4 5
𝐽2 1 – 2 4
𝐽3 6 3 – 9
𝐽3 2 5 1 –

In the next theorem, we show that the optimization problem of
customer order scheduling with sequence-dependent setup times is
NP-hard.

Theorem 1. The customer order scheduling with sequence-dependent setup
times and makespan objective is NP-Complete.

Proof. The 𝐷𝑃𝑚 → 0|𝑆𝑇𝑠𝑑 |𝐶𝑚𝑎𝑥 is a special case of the 1|𝑆𝑇𝑠𝑑 |𝐶𝑚𝑎𝑥
when the number of machines is equal to one and all the processing
times are null. Since the 1|𝑆𝑇𝑠𝑑 |𝐶𝑚𝑎𝑥 problem is NP-complete, then it
follows that the latter is NP-Complete (Pinedo, 2018). □

Another interesting property of the problem under consideration
refers to the structure of the optimal solutions. In the following, we
denote as permutation to one solution of the problem where the se-
quence in which the orders are processed in all machines is given (i.e. all
orders are processed in the same sequence for all machine). The space
of solutions of the problem consisting of all possible permutations is de-
noted as permutation encoding. Note that, in principle, the permutation
encoding only represents a subset of all possible solutions for a problem
instance and, therefore, it does not necessarily contains its optimal
solutions. However, Leung et al. (2005) showed that, for the customer
order scheduling problem without setups (𝐷𝑃𝑚 → 0 ∥ 𝛴𝐶𝑗), there
exists at least one optimal solution where the production sequence of
the orders is the same on all the machines. This is also the case for other
objective functions within the customer order scheduling problem, such
as the weighted tardiness, and it is a property that greatly simplifies
the design of solution procedures, as there are many methods that use
naturally the permutation encoding and therefore can be adapted to the
problem in an straightforward manner. However, this property does not
hold for the problem under study, as shown in the following remark.

Remark 1. The space of solutions of a 𝐷𝑃𝑚 → 0|𝑆𝑇𝑠𝑑 |𝐶𝑚𝑎𝑥 problem
instance consisting of sequencing the jobs in the same order in all
machines (permutation encoding) does not necessarily contains its
optimal solutions.

To prove the remark, we present a counterexample. Taking into
consideration the test instance presented in Tables 1, 2, and 3, we
enumerate all the permutations with their respective makespan, as
presented below:

• 𝛱𝐴 = {1,2,3}, 𝐶𝑚𝑎𝑥 = 22.
• 𝛱𝐵 = {1,3,2}, 𝐶𝑚𝑎𝑥 = 22.
• 𝛱𝐶 = {2,1,3}, 𝐶𝑚𝑎𝑥 = 18.
• 𝛱𝐷 = {2,3,1}, 𝐶𝑚𝑎𝑥 = 23.
• 𝛱𝐸 = {3,1,2}, 𝐶𝑚𝑎𝑥 = 18.
• 𝛱 = {3,2,1}, 𝐶 = 16.
3

𝐹 𝑚𝑎𝑥
Since the optimal solution for this instance is obtained by the
sequences 𝛱1 = {1, 2, 3} in the machine 𝑀1 and 𝛱2 = {3, 1, 2} in
the machine 𝑀2, with a makespan of 13 time units, as illustrated in
Fig. 1, we prove by reduction to the absurd that considering only a
permutation encoding does not necessarily yield the optimal solution.
Thus, approaches taking into consideration different permutations on
all the machines could potentially lead to better results. However, given
the higher complexity of non using permutation encoding, this aspect
is further analyzed in Section 6.

Finally, one property can be derived to obtain a lower bound for
the problem, which can be stated as follows.

Proposition 1. A lower bound for the problem 𝐷𝑃𝑚 → 0|𝑆𝑇𝑠𝑑 |𝐶𝑚𝑎𝑥 is
given by

𝐿𝐵 = max
𝑖∈{1,…,𝑚}

{ 𝑛
∑

𝑗=1

(

𝑝𝑖𝑗 + min
𝑘∈{1,…,𝑛}

{𝑠𝑖𝑗𝑘}
)

− max
𝑗,𝑘∈{1,…,𝑛}

{𝑠𝑖𝑗𝑘}

}

(1)

Proof. Let 𝐶 be the (optimal) makespan for the problem 𝐷𝑃𝑚 →
0||𝐶𝑚𝑎𝑥. 𝐶 is given by the following expression (Wagneur & Sriskan-
darajah, 1993):

𝐶 = max
𝑖∈{1,…,𝑚}

𝑛
∑

𝑗=1
𝑝𝑖𝑗 (2)

For our problem with sequence-dependent setup times, for each
order 𝑘, the lowest contribution to the makespan is given by the
smallest setup time for each position 𝑗 and for each machine 𝑖. Since
we are assuming that all machines are prepared in the first position, we
exclude the maximal setup time for each position and for each machine.
Therefore, the estimate expressed by Eq. (1) is the lowest possible value
for a solution of the problem under study. □

4. Mixed-integer linear programming models for the problem

In view of the properties presented in Section 3, different solution
procedures can be devised. On the one hand, we have proved that
the space of solutions consisting on having the same sequence of jobs
across all the machines (permutation encoding) does not necessarily
yield the optimal solution. However, the permutation encoding is the
most-widely employed in approximate solution procedures for related
problems (including the customer order scheduling without setups), so
it might be that considering only permutations has advantages in terms
of finding good solutions with less CPU time requirements. With this
idea, we develop two different MILP models to assess the quality of the
solutions that the different encoding mechanisms can achieve.

In the first model – denoted in the following as M1 – we extend the
formulation by Framinan and Perez-Gonzalez (2018), which uses posi-
tional decision variables. Let 𝑥𝑖𝑗𝑘 be a binary decision variable equal
to 1 if order 𝑘 is scheduled in position 𝑗 of machine 𝑖. By taking into
account the sequence-dependent setup times 𝑠𝑖𝑙𝑘, the model determines
the setup time of position 𝑗 on each machine 𝑖 𝐷𝑖𝑗 , and consequently
the maximal completion time of the orders 𝐶𝑚𝑎𝑥. Hereafter, the notation
used for the M1 model is presented.

Indices and sets

𝑘: index for orders: 𝑘 ∈ 𝐾 ∶= {1, 2,… , 𝑛}.
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𝑗: index for positions: 𝑗 ∈ 𝐽 ∶= {1, 2,… , 𝑛}.
𝑖: index for machines: 𝑖 ∈ 𝐼 ∶= {1, 2,… , 𝑚}.

arameters

𝑝𝑖𝑘: processing time of the order 𝑘 in machine 𝑖.
𝑠𝑖𝑙𝑘: setup time of the order 𝑘 in position 𝑙 of machine 𝑖.

ecision variables

𝐶𝑚𝑎𝑥: completion time of project (makespan).
𝐷𝑖𝑗 : setup time of position 𝑗 in machine 𝑖.

𝑥𝑖𝑗𝑘 =

⎧

⎪

⎨

⎪

⎩

1, if the order 𝑘 is processed in the position 𝑗 of
machine 𝑖.

0, otherwise

The resulting MILP model is as follows.

minimize

𝐶𝑚𝑎𝑥 (3)
ubject to

𝑛
∑

𝑘=1
𝑥𝑖𝑗𝑘 = 1, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (4)

𝑛
∑

𝑗=1
𝑥𝑖𝑗𝑘 = 1, ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 (5)

𝐷𝑖𝑗 ≥ (𝑥𝑖,𝑗−1,𝑘 + 𝑥𝑖𝑗𝑙 − 1)𝑠𝑖𝑗𝑘, ∀𝑖 ∈ 𝐼, 𝑗 > 1,∀𝑘, 𝑙 ∈ 𝐾 (6)

𝐶𝑚𝑎𝑥 ≥
𝑗
∑

𝑟=1
𝐷𝑖𝑟 +

𝑛
∑

𝑘=1

𝑗
∑

𝑟=1
𝑝𝑖𝑘𝑥𝑖𝑘𝑟, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (7)

𝐶𝑚𝑎𝑥 ≥ 0, (8)

𝐷𝑖𝑗 ≥ 0, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (9)
𝑥𝑖𝑗𝑘 ∈ {0, 1}, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 , 𝑘 ∈ 𝐾

(10)

The objective function (3) is the maximum completion time
makespan) minimization. Constraints (4) ensure that an order is sched-
led only in one position of machine 𝑖. Set of constraints (5) enforces
hat a position is occupied only by a job from the order 𝑘 in machine
. Set of constraints (6) calculates the setup time of the machine 𝑖 in
osition 𝑗. We assume that all the machines are prepared in the first
osition (the setups times are only computed if 𝑗 is greater than 1).
et of constraints (7) compute the makespan, considering processing
nd setup times. Finally, constraint sets (8), (9), and (10) establish the
omain of the decision variables. The proposed model has 𝑚 ⋅𝑛2 binary
ecision variables, 𝑚⋅𝑛 +1 continuous decision variables and 𝑚⋅𝑛(4−𝑚)
nteger linear constraints.

Next, we present an alternative formulation for the problem under
onsideration in which the number of distinct permutations allowed for
he machines is a parameter defined by the user. In this second MILP,
he orders are allocated in positions of a given permutation. Consider-
ng a given number of specified permutations, the model determines the
est position for an order in a given permutation, and, consequently,
he allocation of permutations in the available machines. Taking into
ccount the notation for the first mathematical formulation, we present
he additional notation for this model (M2 in the following).

ndex

𝑤: index for the number of permutations in the machines: 𝑤 ∈
 ∶= {𝑝1,… , 𝑝𝑚𝑎𝑥}.

ecision variables

𝑥𝑗𝑘𝑤 =

⎧

⎪

⎨

⎪

1, if the order 𝑘 is processed in the position 𝑗
of permutation 𝑤.
4

⎩

0, otherwise
𝑧𝑖𝑤 =

{

1, if the order machine 𝑖 uses permutation 𝑤.
0, otherwise

min 𝐶𝑚𝑎𝑥 (11)
ubject to

𝑛
∑

𝑘=1
𝑥𝑗𝑘𝑤 = 1, ∀𝑗 ∈ 𝐽 ,∀𝑤 ∈  (12)

𝑛
∑

𝑗=1
𝑥𝑗𝑘𝑤 = 1, ∀𝑘 ∈ 𝐾,∀𝑤 ∈  (13)

∑

𝑝∈
𝑧𝑖𝑤 = 1, ∀𝑖 ∈ 𝐼,∀𝑤 ∈  (14)

𝑠𝑖𝑗𝑘(𝑥𝑗−1,𝑘𝑤 + 𝑥𝑗𝑙𝑤 + 𝑧𝑖𝑤 − 2) ≤ 𝐷𝑖𝑗 ,

∀𝑖 ∈ 𝐼, ∀𝑗 > 1, ∀𝑘 ∈ 𝐾, ∀𝑙 ∈ 𝐽 ,∀𝑤 ∈  (15)
𝑗
∑

𝑟=1
𝐷𝑖𝑟 +

𝑛
∑

𝑘=1

𝑗
∑

𝑟=1
𝑝𝑖𝑘 ⋅ (𝑥𝑟𝑘𝑤 + 𝑧𝑖𝑤 − 1) ≤ 𝐶𝑚𝑎𝑥,

∀𝑤 ∈  , ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽 (16)

𝐶𝑚𝑎𝑥 ≥ 0 (17)

𝐷𝑖𝑗 ≥ 0, ∀ ∀𝑖 ∈ 𝐼,∀𝑗 ∈ 𝐽 (18)

𝑥𝑗𝑘𝑤 ∈ {0, 1}, ∀ ∀𝑗 ∈ 𝐽 ,∀𝑘 ∈ 𝐾,∀𝑤 ∈  (19)

𝑧𝑖𝑤 ∈ {0, 1}, ∀𝑖 ∈ 𝐼,∀𝑤 ∈  (20)

Eq. (11) is the objective (makespan minimization). Set of constraints
(12) ensures that only one order is scheduled in the position 𝑗 of
permutation 𝑤. Set of constraints (13) imposes that each order 𝑘 is
scheduled in a single position of the permutation 𝑤. Set of constraints
(14) enforces each machine to select a permutation. Set of constraints
(15) calculates the setup time of machine 𝑖 of order 𝑘 before the
order 𝑙. Set of constraints (16) calculates the completion time of a
given order. Finally, constraint sets (17), (18), (19) and (20) determine
domain of the decision variables. The proposed model has 𝑝𝑚𝑎𝑥 ⋅ 𝑛2 +
𝑚 binary decision variables, 𝑚𝑛 +1 continuous decision variables, and
𝑝𝑚𝑎𝑥 ⋅ (2𝑛 + 3𝑚𝑛) + 3𝑚 integer linear constraints.

In this model, if 𝑝𝑚𝑎𝑥 = 1, the same permutation is used for all
machines. On the other hand, if 𝑝𝑚𝑎𝑥 = 𝑚, each machine can present
a different permutation. In this manner, the effect of the number of
permutations in the quality of the solutions obtained can be assessed, as
well as give some clues for the design of approximate procedures for the
problem. The results of the comparison of the models are presented in
Section 6.3.1, while the approximate procedures designed are presented
in the next section.

5. Approximate algorithms

In this section, we present two solution approaches for the problem
under study. These approaches can be classified as matheuristics since
they incorporate characteristics of heuristic algorithms and the MILP
models presented in the previous section. The first one is based on
the concept of the well-known Greedy Randomized Adaptive Search
Procedures (GRASP) metaheuristic (Feo & Resende, 1995), building
a list of decision variables in the M1 model to be fixed, taking into
account specific characteristics of the problem instance. The second
matheuristic clusters the machines considering the similarities in setup
times distributions, reducing the number of decision variables to be
solved by a MILP model. These algorithms are described in the next
subsections.

5.1. Fixed variable list algorithm

After the computational experiments with the MILP models pro-
posed in Section 4 –which are presented in detail in Section 6.3.1–,
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we have observed that the inclusion of sequence-dependent setup times
makes the problem substantially more difficult than its classical coun-
terpart without explicitly considering setup times. More specifically,
we have checked that the usage of the permutation encoding greatly
reduces the quality of the solutions so, in order to develop efficient
procedures, different processing sequences have to be considered for
each machine. We also observed that most positions associated with
high setups are hardly present in high-quality solutions (i.e. typically
orders are placed in positions incurring with small set-ups). Thereby,
our idea is to develop a procedure based on the MILP models that sets
to zero those decision variables that probably would not be selected in
optimal or near-optimal solutions, thus hopefully reducing the solution
space for the MILP models without removing good solutions from this
solution space. Note however that such procedure obtains approximate
solutions for the problem, as it is not possible to establish the optimality
of the so-obtained solutions. Therefore, the proposed procedure is based
on the GRASP metaheuristic introduced by Feo and Resende (1989),
originally for the well-known set covering problem. This semi-greedy
algorithm (Hart & Shogan, 1987) is composed of two main phases:
a construction phase and an improvement phase. In the construction
phase, a feasible solution is built using a constructive procedure that
combines greediness and randomness in order to avoid local optima and
migrate to other regions of the search space. In the improvement phase,
the solution generated in the construction phase is improved using a
local search procedure. In the GRASP, the two phases are repeated
iteratively until a stopping criterion is met, even if we do not use this
feature in our proposal.

The construction phase in GRASP is based on the concept of a
Restricted Candidate List (RCL), which can be limited by the number of
elements (cardinality-based) or by their quality (value-based) (Resende
& Ribeiro, 2016). In the cardinality-based RCL, the number of elements
is fixed without considering the quality of elements. In the value-based
RCL, the number of elements is variable, and the number of elements
inserted in the list is controlled by a parameter 𝛼. The solutions in the
RCL are randomly selected in each step of the constructive procedure,
combining greediness and randomness. As advantages of GRASP we
can emphasize that it shows a small dependency on its parameters;
it has an extremely simple computational implementation; due to the
concept of RCL, GRASP facilitates the construction of feasible solutions;
and the use of a randomized constructive heuristic in the first phase,
together with the local search in the second phase, allows combining
diversification and intensification.

In our proposal, we incorporate the ideas from GRASP into an
innovative matheuristic. Initially, we construct a list of decision vari-
ables taken from the MILP model that could be set to zero as they
probably would not be selected in an optimal or near-optimal solution.
We denote this set of variables as Fixed Variable List (FVL), similarly to
the RCL concept. By setting these variables to zero, a reduced (i.e. faster
to be solved) MILP model can be obtained and solved using a solver.
Note that this step is similar to the local search procedure in the second
phase of GRASP. More specifically, in our algorithm, for each decision
variable 𝑥𝑖𝑗𝑘 in M1, we calculate an indicator 𝛿𝑖𝑗𝑘 that evaluates the
impact of setup time, as expressed in Eq. (21):

𝛿𝑖𝑗𝑘 =
𝑠𝑖𝑗𝑘 − 𝑠𝑖𝑗𝑚𝑖𝑛
𝑠𝑖𝑗𝑚𝑎𝑥 − 𝑠𝑖𝑗𝑚𝑖𝑛

(21)

here 𝑠𝑖𝑗𝑚𝑖𝑛 = min𝑘 𝑠𝑖𝑗𝑘, and 𝑠𝑖𝑗𝑚𝑎𝑥 = max𝑘 𝑠𝑖𝑗𝑘.
As it can be seen, 𝛿𝑖𝑗𝑘 represents the normalized setup time if order

is processed in position 𝑗 in machine 𝑖. Therefore, if 𝛿𝑖𝑗𝑘 = 0, then 𝑗 is
he position for order 𝑘 in machine 𝑖 where the set-up time is minimum.
n the other hand, if 𝛿𝑖𝑗𝑘 = 1, this setup time is maximum. Intermediate
alues could present a trade-off between the computational effort and
he quality of generated solutions.

The parameter 𝛼 can be used to control the number of variables to
5

e inserted in the FVL. More specifically, decision variables with a 𝛿𝑖𝑗𝑘
alue higher than 𝛼 are set to zero (i.e. the corresponding position of
he order is not considered in the reduced MILP model to be solved).
f we set an 𝛼 value close to zero, the reduction is quite aggressive,
esulting in a MILP model with a drastically reduced number of decision
ariables. This reduction may have two effects: the first one is a drastic
eduction of the computational effort required to solve a given instance,
nd the second one is the unfeasibility to solve a given instance within a
pecified time limit. More specifically, commercial solvers usually apply
everal heuristics in the pre-solve process to improve the efficiency of
he solution process. For example, if several decision variables are fixed
s zero, the solver can fail to identify if the problem presents given
roperties, and the pre-solve procedure is not so efficient, increasing
he computational time required to solve the instance. In contrast,
f we adopt an 𝛼 value close to 1, the reduced subproblem is quite
imilar to the original problem, and the complexity of the model is
ot substantially reduced. Intermediate values for the parameter 𝛼 may
esult in a good trade-off between these aspects.

Thus, we define 𝛼 as a parameter that controls the greediness of
he matheuristic. We present here the concept of Fixed Variable List
𝐹𝑉 𝐿), which can be defined as expressed in Eq. (22):

𝑉 𝐿 ← {𝑥𝑖𝑗𝑘|𝛿𝑖𝑗𝑘 ≥ 𝛼} (22)

In this way, the decision variables inserted in 𝐹𝑉 𝐿 are fixed as zero.
ne can easily change this criterion to set decision variables in other
alues, taking into consideration the problem domain. Taking these
spects into account, the proposed algorithm consists of the following
teps. Firstly, we calculate the indicator 𝛿𝑖𝑗𝑘 aiming to determine which
ecision variables will be fixed. One can observe that, for 𝑗 = 𝑘, the

indicator must not be calculated since the setup times are sequence-
dependent. Thereafter, based on the values of 𝛿𝑖𝑗𝑘 and 𝛼, we construct
the list with the decision variables to be fixed. Next, we set as zero
the decision variables in the list previously generated. Finally, we run
the reduced model, which is a subproblem of the original problem.
Algorithm 1 describes the proposed Fixed Variable List Algorithm
(FVLA).

Algorithm 1: Fixed Variable List Algorithm
Step 1: For all 𝑖,𝑗, and 𝑘, with 𝑗 ≠ 𝑘, calculate 𝛿𝑖𝑗𝑘 as in Eq.
(21).
Step 2: Construct the list 𝐹𝑉 𝐿, as in Eq. (22).
Step 3: Set as zero the decision variables in the deter-
mined 𝐹𝑉 𝐿.
Step 4: Taking into account the decision variables fixed
in Step 3, solve the reduced problem.

Table 4 presents the setup times for the first machine of the FVLA
example. Using Eq. (21), we can calculate the following values: 𝛿112 =
(2 - 2) / (5 - 2) = 0, 𝛿113 = (4 - 2) / (5 - 2) = 2/3, 𝛿114 =(5 - 2) / (5 -
2) = 1, 𝛿121 = (1 - 1) / (4 - 1) = 0, 𝛿123 = (2 - 1) / (4 - 1) = 1/3, 𝛿124

(4 - 4) / (4 - 1) = 0, 𝛿131 = (6 - 3) / (9 - 3) = 1/2, 𝛿132 = (3 - 3) /
9 - 3) = 0, 𝛿134 = (9 - 3) / (9 - 3) = 1, 𝛿141 = (2 - 1) / (5 - 1) = 1/4,
142 = (5 - 1) / (5 - 1) = 1, and 𝛿143 = (1 - 1) / (2 - 1) = 0. Assuming
= 2/3, we can set as zero the decision variables associated 𝛿 values

greater than 2/3: 𝑥113 = 𝑥114 = 𝑥124 = 𝑥134 = 𝑥142 = 0.

5.2. Clustering sequence algorithm

After some preliminary experiments with the MILP models in Sec-
tion 4, we could observe that, in some test instances, one or more
machines presented the same permutation in the optimal solutions.
Since M2 allows formulating a problem with a limited number of
permutation sequences, the idea is to identify groups of similar ma-
chines so they may have the same sequence of orders. Thus, we
developed a matheuristic that applies the concept of cluster analysis
from multivariate statistics.
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Fig. 2. An illustrative example of the CSA matheuristic.
In the problem under study, we can observe a gradual improvement
in the value of the objective function values with the increasing of the
number of allowed permutations. An ideal situation is an approach
where the number of permutations is free; however, since we have
faced an NP-hard problem, we cannot guarantee that the method finds
the optimal solution within a given time limit. Furthermore, in the pre-
liminary computational results, we could observe that the setup times
distribution played a key role in the capability of solution procedures to
find high-quality solutions, since with the increasing of setup times also
increases the difficulty to solve a given instance. Thereby, the machines
can be clustered, taking into account the similarities in the setup
times. Once adopted this criterion, the machines in the same cluster
can present the same sequence, and several decision variables can be
reduced. Although this approach is not able to determine the bottleneck
machine, the proposed matheuristic presents an approximate procedure
for its determination.

Let 𝐺𝑖 be a vector with the cluster of each machine, which is the
output of a given clustering procedure. If two machines 𝑖′ and 𝑖′′ are
grouped in the same cluster, we can add the constraint set expressed
as in Eq. (23):

𝑥𝑖′𝑗𝑘 = 𝑥𝑖′′𝑗𝑘, 𝑖
′ = 1,… , 𝑚, 𝑖′′ = 𝑖,… , 𝑚 − 1, 𝑖′ ≠ 𝑖′′, 𝐺𝑖′ = 𝐺𝑖′′∀𝑗 ∈ 𝐽 ;

∀𝑘 ∈ 𝐾; (23)

In this way, the number of decision variables is drastically reduced,
depending on the number of clusters considered. As stated in the
previous matheuristic, the number of fixed variables plays a key role
in the quality of solutions found, as well as in the computational effort
required for the model resolution. Algorithm 2 describes the Clustering
Sequence Algorithm (CSA).

Algorithm 2: Clustering Sequence Algorithm
Step 1: For each machine 𝑖 and for each order 𝑘, with 𝑗 ≠ 𝑘,
calculate 𝛾𝑘 =

∑𝑛
𝑗=1 𝑠𝑖𝑗𝑘.

Step 2: Apply a clustering algorithm on the 𝛾𝑘 values to
determine  clusters.
Step 3: Considering the generated clusters,insert the con-
straint set (23).
Step 4: Taking into account the decision variables fixed
in Step 3, solve the reduced problem defined by Eqs.
(3)-(10).

Fig. 2 illustrates the behavior of the proposed CSA. In this example,
we consider five machines. A clustering algorithm can be executed,
taking into account the setup times of these machines. In this example,
two clusters were generated: the first one containing the machines
1 and 2, and the second one the remainder machines. Considering
the machines 1 and 3 as the centroids of each cluster, the sequence
𝛱1 = {3, 2, 1} is allocated in machines 1 and 2, and the sequence
𝛱3 = {1, 2, 3} is allocated in machines 3, 4, and 5. In this way, we adopt
the same sequence for each cluster, reducing the number of decision
variables of the problem.
6

6. Computational experiments

6.1. Experimental design

Initially, we tried to replicate the test instances generated by Fram-
inan and Perez-Gonzalez (2017), adding setup times. However, the
explicit consideration of sequence-dependent setup times makes the
problem even more complex. For values of 𝑛 greater than 30, the
model usually failed to solve the instances with the specified time limit
of 300 s. Furthermore, we had as an aim to study the effect of the
maximum number of permutations allowed, as defined in M2. After
some preliminary computational experiments, we could observe that
M2 increased the computational effort required to solve a given test
instance. Thereby, we generated two sets of instances: the first set
with small-sized test instances (Testbed 1), and the second set with
large-sized test instances (Testbed 2).

Testbed 1 is composed of instances with 𝑚 = {6, 8}, 𝑛 = {5, 6}, and
𝑠 ∈ {[1, 25], [1, 75], [1, 125]}. The purpose of this testbed is to evaluate
the effect of the allowed number of permutations in the quality of the
solutions obtained by the second mathematical formulation proposed,
in comparison with the global optimal solution. We adjusted these
parameters empirically until we found a testbed where the majority
of instances were solved for both models with the specified time limit.
Also, as we investigate the effect of the fixed permutations, the number
of machines would be greater than or equal to the number of orders.
Testbed 2 is composed of instances with 𝑚 = {10, 20}, 𝑛 = {20, 30},
and 𝑠 ∈ {[1, 25], [1, 75], [1, 125]}. The purpose of this testbed is to
evaluate the quality of the approximate methods under comparison.
Ten instances of each combination of machines orders and setups have
been generated. In both sets, the processing times were generated
according to a uniform [1, 99] distribution, as suggest by Framinan
and Perez-Gonzalez (2017). The proposed test instances are available
here.

6.2. Statistics used in the analysis of the computational experiments

We use as performance measures the relative percentage deviation
(RPD) and the success rate (SR). RPD is calculated for each instance as
in Eq. (24):

RPD =
𝑣METHOD − 𝑣BEST

𝑣BEST
× 100% (24)

where 𝑣METHOD denotes the best objective function value obtained by
a given method while 𝑣BEST denotes the best objective function value
obtained among all methods. To summarize the computational results,
we calculate average RPD (ARPD) for a given method taking several
runs of an instance, or even the runs in a given set of instances.

SR is calculated as the number of times that a given method results
in the best solution (with or without a draw) divided by the number of
test instances in a given instance class, is expressed as in Eq. (25):

SR =
𝑛BEST × 100% (25)

𝑛INST

https://www.researchgate.net/publication/342305477_Test_instances_-_Customer_order_scheduling_problem_to_minimize_makespan_with_sequence-dependent_setup_times
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Table 5
Computational results for small-sized test instances.
Set 𝑚 𝑛 s M1 M2(1) M2(2) M2(3) M2(4)

ARPD (%) 𝑡 (s) ARPD (%) 𝑡 (s) ARPD (%) 𝑡 (s) ARPD (%) 𝑡 (s) ARPD (%) 𝑡 (s)

1 6 5 [1,25] 0.0 0.2 1.1 0.2 0.0 2.0 0.0 1.8 0.0 4.9
2 6 5 [1,75] 0.0 0.5 9.2 0.2 2.8 1.2 0.8 8.4 0.2 34.5
3 6 5 [1,125] 0.0 0.6 20.0 0.2 5.2 1.3 1.6 5.7 0.6 39.7
4 8 5 [1,25] 0.0 0.4 1.5 0.5 0.1 15.6 0.0 5.4 0.0 8.2
5 8 5 [1,75] 0.0 1.2 11.7 0.5 3.2 15.4 0.0 107.5 0.0 58.0
6 8 5 [1,125] 0.0 10.4 20.1 0.6 7.6 27.3 2.8 149.3 1.4 168.6
7 6 6 [1,25] 0.0 0.3 1.2 0.2 0.0 2.7 0.0 4.4 0.0 3.6
8 6 6 [1,75] 0.0 0.3 6.8 0.3 1.4 1.0 0.0 3.9 0.0 12.1
9 6 6 [1,125] 0.0 0.5 19.5 0.3 5.7 1.3 2.0 5.1 1.3 58.7
10 8 6 [1,25] 0.0 0.8 1.7 0.6 0.0 28.5 0.0 11.5 0.0 48.3
11 8 6 [1,75] 0.0 1.2 10.3 0.8 3.0 59.5 0.2 39.1 0.0 50.7
12 8 6 [1,125] 0.0 4.3 22.1 0.8 8.0 46.8 3.4 106.5 2.5 243.7

Average 0.0 1.7 10.4 0.4 3.1 16.9 0.9 37.4 0.5 60.9
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i
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Fig. 3. Boxplot for ARPD values depending on the number of fixed permutations.

here 𝑛BEST is the number of instances in which a given method
chieved the best solution and 𝑛INST is the number of instances in the
iven instance set. Finally, we also used the computational time (𝑡),
xpressed in seconds, to evaluate the performance of the methods under
omparison.

.3. Results and discussion

We implement the matheuristics presented in Section 5, as well as
number of methods from related scheduling problems (see the list

f these methods in Section 6.3.2), using Julia with Atom IDE (https:
/atom.io/). For the mathematical programming models as well as the
roposed matheuristics, we use the commercial solver IBM ILOG CPLEX
https://www.ibm.com/products/ilog-cplex-optimization-studio) ver-
ion 12.10 with JuMP library (https://www.juliaopt.org/JuMP.jl/stab
e/) (Lubin & Dunning, 2015). We perform the computational expe-
ience on a PC with AMD Ryzen 3 3200U APU 3.5 GHz Dual-Core
nd 8GB memory, with the Ubuntu 20.04 LTS operating system. For
ll methods under comparison, we adopt a time limit 𝑡𝑙𝑖𝑚𝑖𝑡 = 300 s.

.3.1. Results for small-sized test instances
Aiming to evaluate the impact of the maximum allowed number

f permutations in the quality of the solutions, as well as in the
7

v

Fig. 4. Tukey confidence intervals for ARPD in small-sized instances.

omputational effort required to solve a given instance, we have care-
ully designed the small-sized test instances. After several preliminary
omputational experiments, we have found an experimental design that
nabled the evaluation of the above-mentioned characteristics. Table 5
llustrates the computational results for small-sized test instances. Re-
all that M1 is the model defined by Eqs. (3)–(10), and M2(𝑝𝑚𝑎𝑥) is the
odel defined by Eqs. (11)–(20), with  = {1, 2, 3, 4}.

Based on the results presented in Table 5, we can observe that M1
as the best method in terms of the quality of the solutions found. This
odel provides the optimal solution for all the test instances in this

estbed. Fig. 3 illustrates boxplots for ARPD values, also taking into
ccount the M2-type models.

These results speaks for the need of not restricting the search to
ermutation encoding schemes, as they do not generally lead to the best
olutions. We can emphasize that the increase in the number of allowed
ermutations improves the quality of the solutions. However, for the
maller distribution of setups, all the models can find optimal or near-
ptimal solutions. With the increase in setup times, the M2-type models
ave more problems to find high-quality solutions. Regarding the suc-
ess rate indicator, M1, M2(1), M2(2), M2(3), and M2(4) present SR
alues equal to 100.0%, 16.7%, 51.7%, 81.7%, and 90.0% respectively.

https://atom.io/
https://atom.io/
https://atom.io/
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Fig. 5. Boxplot for average computational times considering small-sized instances.

Aiming to achieve a pairwise comparison between the models eval-
uated in the small-sized instances, we perform an ANOVA procedure,
followed by a Tukey’s test (Montgomery, 2017). We obtained a 𝐹 -value
equal to 81.91 in ANOVA. Since the critical 𝑓 -value is 4.39, we could
observe a statistically significant difference between the evaluated
methods.

Fig. 4 illustrates the Tukey multiple comparisons of means with
95% family-wise confidence level. Based on the results obtained, we
can observe that M1 outperforms models M2(1) and M2(2), as well
as M2(2), M2(3), while M2(4) outperforms M2(1). Also, all other
differences among the models are not statistically significant.

Fig. 5 illustrates the boxplots for the computation times, considering
the five models under comparison. We can observe that M2(1) presents
the lowest computational times, followed by model M1. Besides, models
M2(2), M2(3), and M2(4) present much larger computational times as
compared to the above-mentioned models.

6.3.2. Results for large-sized test instances
After the preliminary computational experiments, we could observe

that M2-type models have failed to find integer solutions in several test
instances within the time limit specified. Thus, we have not considered
these methods in the computational tests for large-sized test instances.

With respect to the FVLA matheuristic, initially we have tried
following values of 𝛼: 𝛼 = {20, 40, 60, 80}. For 𝛼 = 20 and 𝛼 = 80,
FLVA failed to find integer solutions within the time limit in several
test instances. Consequently, we have considered only 𝛼 = 40 and 𝛼 =
60 in the definitive computational experiments.

The computational experiments with small-sized test instances pro-
vided an understanding of the impact of a given number of allowed
permutations in the quality of generated solutions. The number of 
allowed permutations is the input of the CSA matheuristic. Based on the
above-mentioned computational experiments, initially we have tried
the following values for the clusters:  = {⌈0.6 m⌉, ⌈0.8 m⌉}.

Since the value of ⌈0.6 m⌉ clusters failed to find integer solution
within the specified time limit in several test instances, we have consid-
ered only ⌈0.8 m⌉ clusters in the definitive computational experiments.
For the clustering procedure, we used the well-known -means algo-
rithm, with Clustering library (https://juliastats.org/Clustering.jl/dev/
kmeans.html).
8

Fig. 6. Boxplot for ARPD values on the large-sized test instances.

Furthermore, since the problem under study has not been addressed
before in the revised literature, we compare our matheuristics with
different approximate algorithms from related scheduling problems.
More specifically, we compare the proposed methods with others from
related problems using Non-Permutation Encoding (NPE) in addition
to the comparison with solution procedures using Permutation Encod-
ing (PE). It is to note that, even if the natural encoding of a given
scheduling problem is the NPE, this does not necessarily mean that a
solution procedure using NPE would yield better results than others
using PE. This is known e.g. for the parallel machine setting and for
the hybrid flowshop layout, where the differences in the performance
between NPE and PE procedures is so small that PE procedures are
overwhelmingly used as they are much faster and therefore can explore
more solutions in less CPU time (see in this regard Fernandez-Viagas,
Perez-Gonzalez, & Framinan, 2019 regarding the hybrid flow shop
layout). Therefore, the tested procedures are:

• Perturbative Search Algorithm (PSA) metaheuristic, proposed by
Riahi et al. (2019) for the customer order scheduling with total
completion time minimization. This heuristic is considered to be
the most efficient for this problem, and we adapt it to our prob-
lem as a proxy of the best available methods from the classical
customer order scheduling problem (recall that the classical order
scheduling problem with makespan objective is trivial).

• The hybrid Simulated Annealing and Tabu Search (SATS) pro-
posed by Lin and Ying (2009) for the non-permutation flow shop
with makespan minimization. Although different from our prob-
lem, the non-permutation flow shop problem allows for a similar
solution encoding (i.e. one sequence per machine, which results
in a NPE), therefore we adapt this state-of-the-art procedure to
our problem in order to include one feature – that of solution
encoding using a sequence per machine – which is not included
in the PSA.

• Variable Neighborhood Search (VNS) proposed by Kuo, Chen,
and Yeh (2020) for the single-machine scheduling problem with
sequence-dependent setup times and delayed precedence con-
straints to minimize the makespan. By considering this approxi-
mate procedure, we compare our proposals with a state-of-the-art
algorithm for a similar scheduling problem with setup consid-
erations, which is a feature not included either in PSA or in
SATS.

https://juliastats.org/Clustering.jl/dev/kmeans.html
https://juliastats.org/Clustering.jl/dev/kmeans.html
https://juliastats.org/Clustering.jl/dev/kmeans.html
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Fig. 7. Tukey confidence intervals for ARPD in large-sized instances.
Regarding the manner in which the above algorithms are adapted,
we note the following. We adapt the PSA for the objective of makespan
minimization, taking into consideration sequence-dependent setup
times. In the diversification procedure of the original PSA, the first
half of the list 𝐷 is taken from the list 𝐸, and the second half is
taken randomly. Since the criterion of sorting customer orders in non-
increasing order of extra time is not applicable in our variant (due to
the sequence-dependent setup times), we have constructed the entire
list randomly, such as in an standard iterated greedy algorithm. To
construct the list , we adopt the Total Weighted Processing Times
(TWPT) dispatching rule. This list is used for the Permutation Con-
struction and Explorations (PCE) heuristic to build the initial solution,
following Riahi et al. (2019). We consider the same original parameters
of PSA, as reported by Riahi et al. (2019): 𝐷 = 6, 𝑅 = 0.005, where 𝐷
controls the exclusion of customer orders from the input solution, and
𝑅 controls the acceptance of solutions with worse objective function
values.

Regarding SATS, we mimic the same steps from the original algo-
rithm, adapting the objective function and constraints to the problem
under study. The initial solutions is randomly generated and the algo-
rithm is repeated until the specified time limit. We consider the same
parameters of SATS, as reported by Lin and Ying (2009), i.e.: 𝑇0 = 100,
𝑇𝐹 = 0.5, 𝛼𝑇𝐸𝑀𝑃 = 0.95, 𝐼𝐼𝑇𝐸𝑅 = 200, 𝑚𝑖𝑛𝑇 = 3, and 𝑚𝑎𝑥𝑇 = 5.

Regarding VNS, we adapt the objective function and the problem
constraints to our variant. The initial solution is also generated ran-
domly, and we reproduce the parameters considered by Kuo et al.
(2020), i.e.: 𝑇𝑠 = – (𝑍𝑚𝑎𝑥 – 𝑍𝑚𝑖𝑛)/ loge 0.5, 𝑇𝑒 = – (𝑍𝑚𝑎𝑥 – 𝑍𝑚𝑖𝑛) ×
0.0001/ loge 0.05, 𝛼𝑇𝐸𝑀𝑃 = 0.99, 𝐾 = 1,000,000, and 𝑀 = 50. We
adapt the values of 𝑍𝑚𝑎𝑥 and 𝑍𝑚𝑖𝑛 to the problem under study: 𝑍𝑚𝑎𝑥 = 𝑛
× 𝑝𝑚𝑎𝑥 + (𝑛 – 1) × 𝑠𝑚𝑎𝑥 and 𝑍𝑚𝑖𝑛 = 𝑛 × 𝑝𝑚𝑖𝑛 + (𝑛 – 1) × 𝑠𝑚𝑖𝑛.

Finally, note that all the algorithms are allowed a time limit of
300 s. Table 6 presents the computational results for the large-sized test
instances. Computational times are not reported since all the methods
9

under comparison used the entire time limit of 300 s. We can observe
that M1 and CSA methods fail to find integer solutions in the sets
of instances 11 and 12. On the other hand, all other methods under
comparison returns feasible integer solutions in the evaluated testbed.
The FLVA0.4 matheuristic obtain the smallest ARPD value among the
evaluated methods. Also, PSA returns the largest ARPD value.

Table 7 illustrates the success rates for all the considered methods.
Based on the achieved results, we can observe that FVLA presents the
highest SR values. Although SATS returned the worse ARPD value, this
algorithm yields the third-highest SR value.

Fig. 6 illustrates the boxplot for ARPD values on large-sized test
instances. Once again, we perform an ANOVA procedure aiming to
evaluate the difference between the ARPD values found. ANOVA re-
turns a statistics 𝐹 = 85.9, a value much higher than the critical
value 𝑓 = 4.39. Since the difference among the methods is statistically
significant, we perform Tukey tests, for which the results are illustrated
in Fig. 7. On one hand, we can emphasize that FVLA0.4 and FVLA0.6
matheuristics outperform all other methods. On the other hand, the PSA
metaheuristic presents the greatest ARPD values for all sets of instances.

7. Concluding remarks

In this paper, a new variant of the customer order scheduling
problem has been investigated, taking into consideration explicitly
sequence-dependent setup times. The objective function is the
makespan minimization. Two mixed-integer linear programming
(MILP) formulations have been developed for the problem under study.
Furthermore, two matheuristics based on setting some of the decision
variables in the MILP models have also been proposed.

The computational experience carried out illustrates that the pro-
posed Fixed Variable List Algorithm outperforms the PSA metaheuristic
– which is the most efficient so far for the classical customer order
scheduling problem – as well as the SATS, and VNS metaheuristics from
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Table 6
Average relative percentage deviation for large-sized test instances.

Set 𝑚 𝑛 𝑠 M1 CSA FVLA0.4 FVLA0.6 PSA SATS VNS

1 10 20 [1,25] 2.7 2.6 3.2 2.6 5.9 1.6 6.0
2 10 20 [1,75] 1.7 4.3 4.5 1.3 15.7 18.7 16.0
3 10 20 [1,125] 1.4 10.8 3.0 4.5 26.1 31.7 26.5
4 10 20 [1,25] 3.1 3.7 0.6 0.8 4.3 1.0 4.5
5 10 20 [1,75] 8.8 14.3 0.8 4.1 13.2 16.0 13.4
6 10 20 [1,125] 14.6 18.2 0.4 5.9 18.8 23.7 19.4
7 20 30 [1,25] 1.6 1.3 1.1 0.9 4.5 4.0 4.6
8 20 30 [1,75] 2.7 7.6 1.5 0.5 15.8 19.8 16.1
9 20 30 [1,125] 6.3 16.5 0.6 4.5 25.1 30.4 25.5
10 20 30 [1,25] 3.7 3.7 0.0 1.8 3.9 4.3 4.1
11 20 30 [1,75] – – 0.2 6.0 9.6 13.0 9.9
12 20 30 [1,125] – – 0.0 7.7 11.1 15.0 11.4

Average 4.7 8.3 1.3 3.4 12.8 14.9 13.1

Table 7
Comparison of success rates for each method.

Method SR (%)

M1 4.2
CSA 2.5
FVLA_0.4 58.3
FVLA_0.6 27.5
PSA 0.0
SATS 7.5
VNS 0.0

related problems with the same computational effort. The proposed
Clustering Sequence Algorithm presents better ARPD values than the
M1 MILP as well as than the metaheuristics adapted from the related
problems, i.e. PSA, SATS and VNS. However, this method fails to find
feasible solutions in the test instances with 20 machines, 30 orders, and
setup distributions 𝑠 ∈ {[1, 75], [1, 125]}.

As extensions of this work, other possibilities for the clustering
algorithm required in the CSA matheuristic can be explored. In the
proposed FVLA, we did not check if the construction of the list leads to
the infeasibility of a given model, so perhaps more sophisticated, non-
trivial, modifications of the FVLA could take this aspect into account.
Another possibility is the consideration of different objective functions
for the proposed variant, such as the total completion time or total
tardiness.
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