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ABSTRACT
In this paper, we investigate a new variant of the multi-commodity network flow problem, taking into 
consideration multiple transport lines and time windows. This variant arises in a city logistics environment, 
more specifically in a long-haul passenger transport system that is also used to transport urban freight. We 
propose two mixed integer programming models for two objective functions: minimization of network 
operational costs and minimization of travel times. Since the problems under study are NP-hard, we propose 
three size reduction heuristics. In order to assess the performance of the proposed algorithms, we carried out 
computational experiments on a set of synthetic problem instances. We use the relative percentage 
deviation as performance criterion. For the cost objective function, a LP-and-Fix algorithm outperforms 
other methods in most tested instances, but for the travel time, a hybrid method (size reduction with LP-and- 
Fix algorithm) is, in general, better than other approaches.

KEYWORDS 
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Introduction

In general terms, network flow problems aim to enhance the opera
tion of logistic systems, by moving some objects from a set of 
origins to a set of destinations, subject to constraints such as ware
house and vehicle capacities, time windows, etc.

In particular, multi-commodity flow problems consist in trans
porting goods, from suppliers to customers, aiming to optimize 
some network attributes. These problems have applications in var
ious types of systems, such as in communication, urban traffic, 
railways, multiproduct production-distribution systems, or military 
logistics (see e.g. Wang 2018).

Many variants of these models can be found in the literature, 
such as linear and non-linear models, capacitated and uncapaci
tated networks, or fixed-charge network flows. The practical impor
tance of these problems is clearly demonstrated by early surveys, 
such as Kennington (1978), Assad (1978) or Ouorou, Mahey, and 
Vial (2000). More recently, Wang (2018) presented a literature 
review of multi-commodity network flows problems covering 
applications and solution methods.

Some initial research has shown that the passenger vehicles 
baggage compartments generally have significant empty spaces. 
Therefore, the transport efficiency can increase by filling these 
spaces with loads that have the same destination of the vehicle. 
This feature will be the basic principle for the design of the solutions 
proposed in this work. Moreover, the passenger’s services consid
ered here are intercity passengers transport.

We expect that the system developed in this work will directly 
contribute to a decrease of the transport operations costs of some 
stakeholders (shippers and carriers) and, indirectly, to a traffic 
reduction in intercity highways and inside cities, with positive 
environmental and social impacts. This new transport system will 
be designed around the following elements:

● bus stations (that will provide small storage areas for goods);

● passenger vehicles (that will transport freight between origin 
and destination bus stations);

● suppliers (enterprises that will use the transport services and 
provide storage areas for their products);

● and customers (enterprises that will pick up goods from the 
destination bus stations).

The approach developed in this work is based on a new multi
commodity network flow model with time windows, multiple 
transport lines, and a heterogeneous fleet (MCFPTWHF), to trans
port freight in long-haul passenger vehicles (buses). This approach 
will contribute to increase transport efficiency and reduce costs, 
while decreasing the environmental and social impacts resulting 
from transport traffic. These results will be mainly achieved by the 
reduction of vehicles circulation around and between cities.

Another contribution for increasing transport efficiency is the 
maximization of the use of vehicles, since they are already going 
from an origin point to a destination point, carrying passengers. In 
this way, allocating freight to these vehicles can contribute to dilute 
the operating cost of travels. Therefore, this work contributes to the 
Operations Research field by developing a new problem idea and 
a methodology to support its resolution (mixed integer linear pro
gramming). Finally, the developed heuristic techniques are 
expected to find satisfactory solutions to the problem in low, accep
table computational times. According to our thorough literature 
review, the problem variant addressed in our work has not been 
reported yet in the literature, despite its theoretical and practical 
importance.

In order to optimize the system performance, the problem will 
be modeled in a way similar to one well known mixed integer model 
from the literature, the multi-commodity network flow problem 
(Wang, 2018).

The capacitated multicommodity network flow problem with 
multiple transport lines, a heterogeneous fleet and time windows 
is a NP-hard problem, since it is a generalization of the classical 
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capacitated multicommodity network flow problem, where produ
cing an integer flow satisfying all demands is NP-hard (Even et al. 
1976). This obviously justifies the development of heuristic techni
ques as part of this work.

The main contributions of this paper are, first, two mixed integer 
programming (MIP) formulations for the problem under study 
and, second, three MIP-based heuristics for finding near-optimal 
solutions with an acceptable computational effort. Moreover, 
a comprehensive set of computational tests was performed to eval
uate the robustness of the proposed approaches.

The remainder of this paper is organized as follows: in Section 2, 
a literature review is presented; in Section 3, the multicommodity 
network flow problem treated in this paper is described; in Section 
4, the heuristic algorithms proposed to solve the problem are pre
sented; in Section 5, computational results are discussed; and, 
finally, in Section 6, some conclusions are drawn and suggestions 
for future work presented.

Literature review

Several approaches have been developed to deal with the multi- 
commodity network design problem and its variants. In this sec
tion, a brief literature review on this problem is presented, and the 
associated solution techniques are briefly described. The references 
are presented in chronological order.

Kirby, Hager, and Wong (1986) presented an approach that 
deals with natural resource and transportation network invest
ments, represented by two models for multiple commodities and 
periods: a transshipment model with fixed-charge arcs and a land 
allocation model. To solve this problem, the authors use two dif
ferent approaches. When the size of the mixed-integer program is 
relatively small, they use exact methods with state-of-the-art opti
mization software packages. For large instances, a heuristic proce
dure based on solving an LP relaxation of the problem with 
successive improvement attempts was developed.

Helme (1992) developed a computer-based decision tool to deal 
with the reduction of air traffic delay in a space-time network. The 
problem consists in evaluating the impact of airway capacities upon 
traffic, from multiple origins to multiple destinations. The problem 
was modeled as a multicommodity minimum cost flow problem, 
over a network in space-time.

Farvolden, Powell, and Lustig (1993) developed an approach 
based on both primal partitioning and decomposition techniques 
to solve the multicommodity network flow problem. This approach 
involves simplifying the computations normally required by the 
simplex method.

Barnhart and Sheffi (1993) developed a network-based primal- 
dual heuristic solution approach for large-scale multicommodity 
network flow problems. The authors found out that primal-dual 
and price directive algorithms (exact solution strategies) are unable 
to achieve even an initial solution for this problem, due to excessive 
memory requirements. However, network-based heuristics can find 
optimal solutions. Barnhart et al. (1994) present a partitioning 
solution procedure for large-scale multicommodity flow problems, 
using a cycle-based problem formulation, and column generation 
techniques to solve a series of reduced-size linear programs in 
which a large number of constraints are relaxed.

Farvolden and Powell (1994) present a local-improvement heur
istic for a service network design problem. The scheduled set of 
vehicles departures are modeled as a multi-commodity network 
flow problem. In this way, the heuristics are structured in two 
steps: one for dropping a scheduled service, and another for intro
ducing a new service. Both are based on subgradients derived from 
the optimal dual variables, by the shipment routing subproblem.

Cruz, Smith, and Mateus (1998) developed a branch-and-bound 
algorithm to solve optimally the uncapacitated fixed-charge net
work flow problem. Frangioni and Gallo (1999) describe a cost 
decomposition approach for the linear multicommodity min-cost 
flow problem, where the mutual capacity constraints are dualized, 
and the resulting Lagrangian dual is solved with a dual-ascent 
algorithm, belonging to the class of bundle methods. Gabrel, 
Knippel, and Minoux (1999) developed an exact solution procedure 
for the multicommodity network design problem with general 
discontinuous step-increasing cost functions, including single- 
facility and multiple facilities capacitated network loading pro
blems. The procedure is a specialization of the general Benders 
decomposition procedure.

Crainic, Gendreau, and Farvolden (2000) present an efficient 
procedure to solve the fixed-charge capacitated multicommodity 
network design problem, using a tabu search framework that 
explores the space of the continuous flow variables, by combining 
pivot moves with column generation, while evaluating a mixed 
integer objective. In this way, they determine tight upper bounds 
on the optimal solution of realistic size problem instances.

Barnhart et al. (2002) developed an approach to solve 
a particular service network design, the express shipment delivery 
problem. They developed models and a solution technique designed 
specifically for large-scale problems with time windows. The solu
tion approach consists of dividing the service network into two 
subproblems: route generation and shipment movements. The first 
problem is solved using a branch-and-price-and-cut algorithm. The 
shipment movement subproblem is a large-scale integer multicom
modity network flow model, with side constraints, and is solved 
using a branch-and-price algorithm to find the network shortest 
paths.

Holmberg and Yuan (2003) present an efficient column gen
eration approach for solving the multicommodity network 
design problem with side constraints on paths. In this approach, 
the solutions are built up successively by path generation, and 
the objective is to find the set of shortest paths. Alvarez, 
González-Velarde, and de-Alba (2005) developed a grasp 
embedded scatter search, to solve the multicommodity capaci
tated fixed charge network design problem. Topaloglu and 
Powell (2006) present a stochastic and time-dependent version 
of the minimal cost multicommodity flow problem. The authors 
propose an interactive, adaptive dynamic-programming-based 
methodology, making use of linear and nonlinear approxima
tions of the value function.

Lim and Smith (2007) deal with a network interdiction problem 
as a multicommodity flow network. According to the authors, an 
attacker disables a set of network arcs to minimize the maximum 
profit that can be obtained from shipping commodities across the 
network. The interdiction can be discrete (concerning the choice of 
each arc) or continuous (related to the capacities of the arcs). To 
deal with the discrete problem, a linearized model for the optimized 
network was developed and compared to a penalty model that does 
not require linearization constraints. In the continuous case, 
a heuristic algorithm for optimal partitioning was developed, used 
to estimate the objective function value.

Oimoen (2009) presents three contributions for solving highly 
dynamic capacitated multicommodity network flow problems. 
First, he develops an ant colony algorithm to solve the static pro
blem with weak constraints. Then, another algorithm is used to 
adjust the exploration parameter of the solution space dynamically. 
Finally, a distributed approach is proposed, replacing the previously 
centralized solver.

Aloise and Ribeiro (2011) present heuristics based on the short
est path and maximum flow algorithms, combined with adaptive 
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memory, to obtain an approximate solution to the multicommodity 
network design problem in the framework of a multi-start algo
rithm. Guardia and Lima (2010) designed a numerical implementa
tion of a primal-dual interior-point method to solve the linear 
multicommodity network flow problem. In this approach, at each 
iteration, the corresponding linear problem, expressed as an aug
mented indefinite system, is solved by using the AINV algorithm, 
combined with an indefinite preconditioned conjugate gradient 
algorithm.

Kim, Jun, and Kim (2011) considered the fixed-charge capaci
tated multicommodity network design problem with turn penalties, 
and proposed a mixed integer programming model and a two- 
phase heuristic algorithm to solve the problem. The approach con
sisted in building an initial flow path network by a constructive 
method, that was then improved with an iterative approach.

Kleeman et al. (2012) developed a multiobjective evolutionary 
algorithm to solve the multicommodity capacitated network design 
problem. According to the authors, this variation represents 
a hybrid communication network with multiple objectives includ
ing costs, robustness, vulnerability, delays, and reliability. They 
used a modified and extended nondominated sorting genetic algo
rithm with a novel initialization procedure and mutation method, 
to deal with the highly constrained problem features. The obtained 
results were good, and the algorithm seems to perform very 
efficiently.

Abdulhakim (2013) presented heuristic algorithms for multi
commodity flow problems in computer networks engineering, aim
ing to minimize shipping costs. Malairajan et al. (2013) worked 
with the multicommodity network flow problem and with a variant 
referred to as the bi-objective resource allocation problem, with 
bound and varying capacity. To solve both problems, the authors 
developed a recursive function inherent genetic algorithm, thus 
achieving good quality solutions. Tadayon and Smith (2014) devel
oped two linearization techniques to solve the min-cost 

multicommodity network flow problem, proposing an integer pro
gramming approach and cutting plane techniques. Lagos et al. 
(2014) developed a hybrid metaheuristic approach combining 
tabu search and genetic algorithms, to deal with a capacitated multi
commodity network flow problem. While the tabu search acts as the 
main algorithm, the genetic algorithm is used to select the best 
option among the neighbors of the current solution.

Masri, Krichen, and Guitouni (2015) presented a multi-start 
variable neighborhood search to solve a capacitated single path 
multicommodity flow problem. Wei et al. (2014) worked on the 
multi-source single-path multicommodity network flow problem 
and developed a simulated annealing metaheuristic, to minimize 
the network total transportation cost. Lin and Kwan (2017) pre
sented a class of multicommodity flow problems with commodity 
compatibility relations among commodities used at each network 
node. To solve this problem, the authors use a node-family branch
ing technique, that removes incompatible commodities at nodes, by 
a branch-and-bound algorithm.

Table 1 shows an overview of the multi-commodity network 
flow problem approaches briefly presented in this section, their 
variants, the solution methods (classified as exact or heuristic 
approaches), objective function type (minimization or maximiza
tion), arc type (capacitated or uncapacitated) and finally, the pro
blem features (fixed charge costs and time windows).

The majority of the surveyed works addresses the multicom
modity network flow problem and its variations by heuristics tech
niques. Probably this is due to the complexity of the problem when 
large, real-size instances are considered. We can also notice that the 
multicommodity network flow problem has many variations and it 
is used to help modeling many real problems. This is due to the fact 
that the model is very flexible and easily adaptable to different real 
situations.

In a large majority of these studies, the objective function is 
a cost minimization, instead of a maximization of the flows in the 

Table 1. An overview of the multi-commodity network flow problem approaches.

Reference

Solution Approach Objective Arc Type Problem Features

Exact Method Heuristic Method Min Max Capacitated Uncapacitated Fixed Charge Time Windows

Kirby, Hager, and Wong (1986) X X X X
Helme (1992)*** X X X X
Farvolden, Powell, and Lustig (1993) X X ** **
Barnhart and Sheffi (1993) X X X ** **
Barnhart et al. (1994) X X ** **
Farvolden and Powell (1994) X X ** **
Cruz, Smith, and Mateus (1998) X X X X
Frangioni and Gallo (1999) X X X
Gabrel, Knippel, and Minoux (1999) X X X
Crainic, Gendreau, and Farvolden (2000) X X X X
Barnhart et al. (2002) X X ** ** X X
Holmberg and Yuan (2003) X X X
Alvarez, González-Velarde, and de-Alba 2005 X X X
Topaloglu and Powell (2006)**** X X ** **
Lim and Smith (2007) X X X X ** **
Oimoen (2009) X X X
Aloise and Ribeiro (2011) X X ** **
Guardia and Lima (2010) X X X
Kim, Jun, and Kim (2011) X X X X X
Kleeman et al. (2012) X X X X X
Abdulhakim (2013) X X X ** **
Malairajan et al. (2013) X X X
Tadayon and Smith (2014) X X X X
Lagos et al. (2014) X X X X
Masri, Krichen, and Guitouni (2015) X X X
Wei et al. (2014) X X X X
Lin and Kwan (2017) X X ** **
TOTAL 12 16 27 4 14 3 10 4

** This information is not available in the paper.

86 L. R. GUIMARÃES ET AL.



arcs. We can also notice that in a majority of the cases, capacitated 
arcs were used instead of uncapacitated arcs, showing the need for 
approaches that are closer to reality.

Finally, it should be noted that from the 28 studies reported in 
this literature review, only 10 consider fixed charge costs, and only 4 
deal with time windows. It seems therefore that these two features 
of multicommodity design flow problems have still been explored 
in in a quite limited way.

Problem statement

In this problem, more specifically, we will decide how freights are 
going to be transported from one point in the network (origin) to 
another point (destination). Hence, for each cargo, we must be able 
to choose one specific path from all possible paths, and determine 
the goods associated with each flow.

The main purpose of our work is to develop a framework for 
managing urban freight flows in a network, minimizing total costs 
and time, and satisfying all the demand. The goods considered for 
transportation in this context are products with no risk character
istics. Using an already existing (bus) network (with their associated 
transportation lines) is surely an interesting alternative, as trans
portation costs can be significantly decreased, since vehicles are 
already going to the specific required destinations, transporting 
passengers, independently of having or not having freight allocated.

As in practice transport companies operate individually, to make 
this idea a realistic approach, it is necessary to consider a ‘broker’ 
that will mediate the relationship between the bus companies and 
the suppliers/demanders of goods to be transported. The role of this 
broker can be operationalized using the algorithm approach pro
posed in this work.

Mathematical model

In general terms, the problem can be represented by the following 
mathematical models, that can be viewed as a mono-objective 
MCPTWHF (multicommodity network flow model with time win
dows, multiple transport lines, and a heterogeneous fleet). The first 
model (Equations (1), (3)–(14)) minimizes costs; while the second 
model (Equations (2), (3)–(14)) minimizes travel times – the two 
models have the same set of constraints.

In this approach, the extensions of the original model are based 
on considering a graph G = (E, V), that accommodates the follow
ing problem features. Each vertex in V is a physical node (that can 
be viewed as an origin or a destination) and has an offer/demand 
freight value for each kind of product.

Each edge e in E is associated to a set of indices (tovqkij) – from 
origin i to destination j (the ‘physical’ arc), the flow starts on line t, 
vehicle v, and can continue in line o, vehicle q. Each edge in E has: 
a variable cost related to the specific transported product amount; 
a lower bound and an upper bound for volume per freight and per 
product; a departure time, a travel duration and an arrival time, for 
the vehicle from the transport line.

Most of the details of the problem are reflected in the developed 
data structures, and are briefly described here to facilitate the 
understanding of the model parameters. The notation adopted in 
this work is presented in Table 2.

Using this notation, the two variants of the MCPTWHF model 
can be formulated as follows:

Model 1: 

min
X

t;o;v;q;k;i;jð Þ2E

ctovqkijytovqkij (1) 

Model 2: 

min
X

t;o;v;q;k;i;jð Þ2E
wtovqkij (2) 

subject to: 
X

j: t;o;v;q;k;i;jð Þ2E

ytovqkij �
X

j: t;o;v;q;k;i;jð Þ2E

ytovqkji ¼ bik;"i; k 2 V (3) 

X

j: t;o;v;q;k;i;jð Þ2E

ytovqkij � aoqij;" o; q; i; jð Þ 2 E (4) 

ltovqkij � ytovqkij � utovqkij;" t; o; v; q; k; i; jð Þ 2 E (5) 

ytovqkij �
X

i;kð Þ2V;b> 0

bik

0

@

1

Axtovqkij;" t; o; v; q; k; i; jð Þ 2 E (6) 

xtovqkij � ytovqkij;" t; o; v; q; k; i; jð Þ 2 E (7) 

xtovqkij � dtovqkij � wtovqkij;" t; o; v; q; k; i; jð Þ 2 E (8) 

ytovqkij � 0;" t; o; v; q; k; i; jð Þ 2 E (9) 

wtovqkij � 0;" t; o; v; q; k; i; jð Þ 2 E (10) 

xtovqkij 2 0; 1f g;" t; o; v; q; k; i; jð Þ 2 E (11) 

Pre-processing conditions: 

wtovqkij ¼ ptovqkij þ htovqkij;" t; o; v; q; k; i; jð Þ 2 E (12) 

aoqij <
X

t;o;v;q;k;i;jð Þ2E

utovqkij � ltovqkij
� �

;" o; q; i; jð Þ 2 E (13) 

X

i;kð Þ2V

bik ¼ 0 (14) 

Objective function (1) aims at minimizing the total transport 
costs of the network, thus reducing the distance covered by the 
cargo, since the cost is proportional to the distance. Objective 
function (2) minimizes the total travel time.

Constraint set (3) guarantees the flow conservation on the ver
tices, preventing the moved items from standing in the vertices of 

Table 2. Parameters used in the models.

Notation Description

ce unit variable cost in edge e � E (i.e. from origin i to destination j, 
starting on line t, vehicle v, and continuing in line o, vehicle q)

le lower bound of the flow in edge e
ue upper bound of the flow in edge e
pe departure time for edge e
he duration time for edge e
de arrival time for edge e
aoqij the capacity of arc (i,j) and transport line o, vehicle q. (these values are 

the total load capacities for each vehicle, from the different 
transport lines).

bik demand from node i by product k.
ye flow in edge e � E (i.e. from origin i to destination j, starting on line t, 

vehicle v, and continuing in line o, vehicle q)
xe binary decision variable that edge e is active/used (=1) or not (=0)
we total displacement time on edge e
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the transport network. Constraint set (4) guarantees that the flow in 
the arc does not exceed its total capacity. Constraint set (5) defines 
the upper and lower bounds on the arc flows. These limits represent 
the maximum (ue) and minimum (le) quantities of cargo (k) that 
can be moved in the arc (i,j) by a specific vehicle on a transport line. 
Constraint set (6) guarantees the inexistence of flow in arcs where 
vehicle time windows are incompatible, since the binary variable xe 
is associated with time compatibility, (see Equations (8) and (11)) 
while the constraint set (7) assures that the binary variable xe will 
take the value ‘1’ just when the arc is being used (i.e. non-zero ye 
variables). Constraint sets (8) assures the time compatibility 
between vehicles from different transport lines.

The final three sets of equations are pre-processing conditions. 
Equations (12) define the time spent in the arcs. Equations (13) 
consider the vehicle’s capacities for each arc, and Equations (14) 
guarantee that the total offer will be sufficient to satisfy all the 
demand.

Proposed algorithms

The next sections describe the heuristics developed in this work to 
solve the MCPTWHF, namely the size-reduction (SR) heuristic, the 
“LP-and-fix (LPF) heuristic, and a hybrid algorithm (HA) that 
combines the two previous heuristic approaches. The first step of 
both heuristics is to read the data structured in the three matrices 
edges, capacities, and vertices.

Size-reduction heuristic

According to Fanjul-Peyro and Ruiz (2011), a reduction heur
istic explores the topology of the problem and reduces some 
problem attributes, without making its solution infeasible. These 
authors obtained good results applying a set of metaheuristics 
based on a size-reduction of the original assignment, in the 
unrelated parallel machines scheduling problem. The method 
produced solutions of very good quality, in a short computa
tional time.

The reduction heuristic described here has a very simple 
operating mechanism. As presented in section 3, the number 
of possible edges significantly increases the complexity of the 
data structure. Therefore, the size reduction heuristic will 
reduce the number of edges, as a way to reduce the number 
of available options to move the goods along the transport 
network. Figure 1 presents a flowchart with the size-reduction 
heuristic procedure.

This procedure can worsen the value of the solution depending 
on the reduction size (given by a pre-defined reduction percentage), 
but it is expected that it also reduces computational times, this 
being the purpose of the procedure.

Therefore, the developed approach makes reductions analyzing 
the pairs of origin (i)/destination (j) nodes that are repeated 
throughout the data structure. In this way, the procedure does not 

impair the functioning of the network. The number of nodes 
analyzed by the algorithm will depend on the given reduction 
percentage.

The reduction criteria are based on first analyzing the cost and 
then the time. The algorithm traverses all the edges of the network 
and creates a list containing the edges with repeated pairs (i, j) of 
origin and destination nodes, so that the edges in the list are 
ordered decreasingly, in terms of costs and time. The reductions 
are made using the given reduction percentage, starting with the 
edges in the top of the list.

It should be noted that, to be efficient, the edge reductions in 
the heuristic procedure need to be made in a rather smart way, 
as the multi-transport line with transshipment possibilities 
increases a lot the complexity of the problem. This is due to 
the increase in the number of choices to move goods between 
the origin and destination nodes, as each edge is a new possi
bility to make the freight between the same nodes, but using 
different transport lines and vehicles, with or without 
transshipment.

For instance, we can have various ways to move the same cargo 
from a given node i to another node j, e.g., using different transport 
lines with different vehicles, costs, capacities, time windows, and 
possibly making a transshipment between two transport lines. I.e., 
each new edge represents a new possibility for this choice.

Therefore, the size reduction heuristic will list all the origin and 
destination nodes that are repeated over the network (creating a list 
of repetitions that stores the edges positions in the matrix edges), 
and eliminating from this matrix, those that have the largest costs 
and times. Thus, the chances of making the network operation 
unfeasible through reductions of its edges decreases. In this way, 
the procedure allows larger reduction percentages without making 
the problem unfeasible.

At this time, it should be noted that in the repetitions list, we are 
only considering the repetition of the origin and the destination 
nodes inside the edges matrix (which has 13 indices), all other 
elements of the various listed edges being different themselves. 
Figure 2 presents the pseudocode of the proposed size-reduction 
algorithm.

Figure 1. Size-reduction heuristic procedure. Figure 2. Size-reduction heuristic.

88 L. R. GUIMARÃES ET AL.



LP-and-fix heuristic

According to Maes, Mcclain, and Van Wassenhove (1991) and 
Toledo et al. (2015), heuristics based on mathematical program
ming are, in general, an efficient way to solve mixed integer pro
blems. As the above procedure, the relaxation and fixation heuristic 
described in this section has a very simple operating mechanism. It 
consists in relaxing some integer or binary decision variables, 
(easily) solving the relaxed model, then fixing the values of those 
variables according to some rule or criterion and finally, solving the 
resulting problem. Figure 3 presents a flowchart of our LP-and-fix 
heuristic procedure.

In our context, the LP and fix heuristic was implemented relax
ing the value of the binary decision variables x (that indicate the 
presence of a flow in a given edge), letting those variables have 
values between 0 and 1, and then solving the resulting relaxation 
using the CPLEX optimization environment. Then, the algorithm 
fixes the values of variables with a 0 value to 0, and those with a 1 
value to 1, and then solves the resulting problem, using the same 
optimization tool.

This relaxed problem is easily solved, as it has more freedom in 
terms of allocation levels between the network edges. Then, by 
fixing the variables to 0 or 1, we significantly reduce the search 
procedure, making the optimization easier.

The two other sets of decision variables, y (the amount of goods 
moved in each edge) and w (the amount of time spent by each edge) 
are already continuous variables. Figure 4 presents the pseudocode 
of the proposed LP-and-fix algorithm.

Hybrid algorithm: combining the SR and the LP-and-Fix 
heuristics

We have developed a third approach to solve the MCPTWHF 
problem, by hybridizing the SR heuristic and the LP-and-Fix heur
istic. Figure 5 presents a flowchart with this hybrid heuristic 
procedure.

In a simple way, this approach starts by reducing the number of 
arcs by a pre-established percentage of the edges matrix. Then, the 
algorithm takes into consideration the obtained matrix, jointly with 
other data structures (capacities and vertices) and apply the LP-and- 
fix approach to solve the problem with the relaxed binary decision 
variables x. Afterward, the value of these variables are fixed to 1 or 0, 
according to the above criterion, and the problem is solved again (as 
described in section 5.2 above).

The algorithm is developed using the C++ language and its inter
face with CPLEX is made using the Concert technology (see Figure 6).

Computational results

In this section we present the computational results obtained by 
a comprehensive set of tests, performed using the four methods 
described below, and applied to 60 instances randomly created by 
a specially designed generator. Such preliminary assessment was 
performed with the IBM ILOG CPLEX software, with the main 
purpose of validating the model and checking whether there were 
bugs or inconsistencies. These tests were run in a CPU Intel Core 
i7-4710 HQ 3.5 GHz and 8 GB memory.

Instances generator

We have generated 3 classes of instances in order to test the 
performance of the developed solution methods, when applied to 
the MCPTWHF. The problem classes vary according to the number 
of suppliers and nodes, which will significantly impact the number 
of arcs in the network. For each class, 4 variants were established, 
with different number of nodes and suppliers. So, each class has 20 

Figure 3. LP-and-fix heuristic procedure.

Figure 4. LP-and-fix heuristic.

Figure 5. Hybrid algorithm heuristic procedure.

Figure 6. Hybrid algorithm.

TRANSPORTATION LETTERS 89



instances, and there are 3 classes (small, medium and large 
instances), totalizing 60 problem instances. In Table 3 we present 
the characteristics of the generated test instances.

We generated the instances using an algorithm developed in 
C++ (on the Microsoft Visual Studio IDE), using guidelines 
proposed by Alvarez, González-Velarde, and de-Alba (2005), 
in order to produce feasible problems, especially considering 
the arcs capacity relative to the network demand. These guide
lines include some rules to determine the demand for the 
products by node (values between 1 and 100), for the arc 
costs (values between 1 and 100) and for the vehicle capacities. 
For these capacities, we have considered values between 24% 
and 28%, as the values proposed by Alvarez, González-Velarde, 
and de-Alba (2005) – between 12% and 16% of the total 
demand of each product – lead to a high number of infeasible 
instances). The pseudocode of the instance generator is pre
sented in Figure 7.

In order to better analyze the efficiency of the heuristics, the 
CPLEX presolve configurations were turned off. Tests were made 
for the 60 instances, with each of the previously described methods, 
and considering both objective functions (cost and time). 
Therefore, the total number of tests was 480 (60 x 4 × 2).

Analysis of results

In this section, computational results are presented and analyzed. 
As referred, four ‘methods’ were used and compared, as follows:

● MILP: solving the problem with mixed-integer linear pro
gramming, without pre-solve heuristics;

● SR: using the Size Reduction heuristic to reduce the problem 
size, and then solve the resulting problem with mixed-integer 
linear programming;

● LPF: using the LP and Fix heuristic and mixed-integer 
linear programming (relax the binary variables x, solve 
the resulting problem using mixed-integer linear program
ming, fix the value of variables to ‘0’ or ‘1’, and solve the 
problem again);

● HA: hybrid algorithm that combines the two heuristics (first, 
problem data is reduced by the Size Reduction procedure, and 
then the problem is solved with mixed-integer linear pro
gramming, using the LPF heuristic).

As performance measure, we used the relative percentage deviation 
(RPD) which is calculated as follows: 

RPD ¼
vMETHOD � vBEST

vBEST
� 100 (18) 

where vMETHOD denotes the best objective function value obtained 
by a given method, while vBEST denotes the best objective function 
value obtained. To summarize the computational results, we have 
calculated the average RPD (ARPD) for a given method, taking into 
account the runs in a given set of instances.

Objective function cost
Considering the objective function cost for the small instances, in 
general the MILP and LPF methods achieved results slightly better 
than the SR and HA methods. This happens because, when the 
edges structure is reduced by a size-reduction procedure, the algo
rithm has to deal with fewer arcs. The same occurs in the medium 
and large instances.

Regarding the execution times for small instances, the LPF 
method achieved the best results, but closely followed by the HA 
method. The SR method, for the first 5 instances, obtained results 
a little bit worse than the LPF and HA methods. The execution 
times of the SR method worsened a little in relation to the LPF and 
HA methods, from instance 7 to instance 16, getting worse again at 
instances 19 and 20.

The same effect happens with the MILP method, but, in 
general, with worse execution times. We can observe yet the 
presence of an outlier value at instance 11. In relation to the 
medium-size instances category, we can observe more diversi
fied results, with the LPF method achieving the best results of 
execution time, followed by the MILP method and by the HA 

Table 3. Instances classes.

Problem class
class I: 
Small

class II: 
Medium

class III: 
Large Total

Nodes 6 8 10 12 10 12 14 16 12 16 18 20 60
Suppliers 10 6 4 2 8 6 4 2 10 6 4 2
Instances 5 5 5 5 5 5 5 5 5 5 5 5
Total 20 20 20

Figure 7. Instance generator.
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method, and with the SR method in the last position. The same 
occurs for the large-size instances.

It should be noted that, for large instances, the size- 
reduction procedure, present in the SR and HA methods, used 
almost 50% of the total algorithm time in the SR method and 
approximately 90% of the time in the HA method. We can 
therefore conclude that the procedure is not so good (in terms 
of computational time) when we have a lot of arcs to analyze. 
Table 4 summarizes these results..

In terms of the average values of the objective function, we 
can observe (Table 4) that the MILP and LPF methods achieved 
results slightly better than the SR and HA methods, for the 
small instances. For the medium-size instances, the LPF method 
presented the best result, followed by the MILP method, with 
the SR and HA methods staying close to each other. The same 
occurs to the large instances, with the difference that the SR 
average value was significantly better than the HA average 
value.

However, standard deviations were high for all the instances, 
this meaning a high level of dispersion among the values.

In what concerns the average execution times, we can see that, 
for small instances, the LPF method achieved the best value, fol
lowed by the HA method. For medium-size instances, the LPF 
method keeps the first position. followed by the HA method. For 
the large instances, we have, from the best performance to the 
worst: LPF, MILP, HA and SR.

The standard deviations in average were larger for the large 
instances (specially for the LPF and the SR methods) and 
medium-size instances (except for the LPF method), featuring 
a high level of data dispersion. For small instances standard 
deviations were low, except for the MILP method, probably 
because of the outlier value of instance 11. Table 5 summarizes 
these results.

From this analysis, we can see that, in general, the best perfor
mance for the objective function cost was achieved by the LPF 
method, followed by the HA method.

Objective function time
Considering the objective function time for the small instances, 
in general, the MILP and LPF methods achieved results slightly 

Table 4. Execution times and average values/standard deviations for the cost objective function.

Statistical measure Instance type

Objective value Execution time

MILP SR LPF HA MILP SR LPF HA

Average Small 52728.97 60449.91 52728.755 60450.41 251.31 58.23 14.92 17.38
Medium 52454.71 55905.31 47223.95 55906.28 312.24 482.99 54.62 273.64

Large 73656.70 81820.79 56492.75 83388.57 879.73 2229.48 719.81 1414.08
Standard deviation Small 29799.19 31038.18 29798.84 31038.28 790.57 20.98 6.41 5.88

Medium 24960.75 26590.14 21980.35 26589.22 154.28 233.09 25.64 227.42
Large 54329.96 64369.08 55629.69 62427.47 467.13 929.74 1280.65 609.11

Average Relative Percentage Deviation Small 0.00% 14,64% 0,00% 14,64% 1584% 290% 0% 16%
Medium 11,08% 18,38% 0,00% 18,39% 472% 784% 0% 401%

Large 30,38% 44,83% 0,00% 47,61% 22% 210% 0% 96%

Table 5. Summary of the best and worst performance for the objective function 
cost.

Feature

Best method Worst method

Small 
instances

Medium 
instances

Large 
instances

Small 
instances

Medium 
instances

Large 
instances

less infeasible 
instances

equals MILP and 
LPF

HA equals SR MILP and 
LPF

total less 
infeasible 
instances

HA SR

less GAP 
values 
different 
from zero

MILP, SR 
and 
HA

MILP, 
and 
LPF

MILP SR SR SR

maximum 
execution 
time

HA LPF LPF MILP SR SR and 
HA

minimum 
execution 
time

LPF LPF LPF MILP and 
SR

SR SR

general 
objective 
function 
results

MILP and 
LPF

MILP and 
LPF

MILP and 
LPF

SR and 
HA

SR and 
HA

SR and 
HA

general 
execution 
time 
results

LPF LPF LPF MILP SR SR

average 
values 
objective 
function

MILP and 
LPF

LPF LPF HA HA HA

average 
values 
execution 
time

LPF LPF LPF MILP SR SR

Table 6. Execution times and average values and standard deviations for the time objective function.

Statistical measure Instance type

Objective value Execution time

MILP SR LPF HA MILP SR LPF HA

Average Small 1073.7 1241 1283.2 1442.2 3600.00 3600.00 49.82 45.50
Medium 429.8 472.4 500.8 558.6 3600.00 3600.00 154.47 200.69

Large 55626 44515.2 568.8 627.8 3600.00 3600.00 569.33 1578.04
Standard deviation Small 618.18 711.91 722.35 797.74 0.00 0.00 20.38 24.59

Medium 185.29 207.86 216.19 259.91 0.00 0.00 45.89 168.11
Large 56598.34 43524.63 303.37 364.85 0.00 0.00 214.02 616.70

Average Relative Percentage Deviation Small 0.00% 15,58% 19,51% 34,32% 7812% 7812% 9% 0%
Medium 0,00% 9,91% 16,52% 29,97% 2231% 2231% 0% 30%

Large 9679,54% 7726,16% 0,00% 10,37% 532% 532% 0% 177%
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better than SR and HA. Again, this happens because, due to the 
size reduction procedure, the algorithm now has to deal with 
fewer arcs.

The same can be observed in the medium-size instances (with an 
advantage of SR in relation to HA). For the large instances, the best 
results were obtained by the LPF and HA methods, with worse 
results for MILP and SR.

In what concerns execution times, for small instances, LPF and 
HA obtained the best results (execution times of MILP and SR were 
equal to the pre-defined time limit). Moreover, for the medium 
instances, the execution times of LPF were a little better than HA in 
instance 38. For the large instances, execution times of LPF were the 
best. Table 6 summarizes these results.

For small and medium-size instances, regarding the average 
objective values, MILP obtained the best results, followed by the 
SR method, For the large instances, the LPF method was the best, 
being slightly better than HA.

Moreover, SR and MILP obtained very bad results, when com
pared to the other two methods. As in the cost case, standard 
deviations were quite high for all instances.

In Table 6, we can also observe that for the execution times, in 
the case of the MILP and SR methods, the time limit values were 
reached for the overall instance categories. In relation to the com
parison between the LPF and HA methods, for the small instances, 
the HA method presented better results. For medium-sized and 
large-sized instances, the LPF method performed better than the 
others.

In all instance categories, standard deviations for MILP and SR 
do not suggest any relevant common behavior. For small instances, 
LPF and HA presented a small dispersion. In the case of medium- 
size instances, the dispersion was smaller for LPF and moderated 

for HA. And for the large instances, it was moderated in LPF, and 
high in HA. Table 7 presents a summary of these results.

From the previous analysis, we can conclude that, in general, the 
best performance for the time objective function, was achieved by 
the HA method, followed by the LPF method.

Conclusions

In general terms, we can conclude that the model and the resolution 
methods presented good, promising results, when applied to 
a representative set of randomly generated problem instances.

Based on this analysis, we can state that the cost objective func
tion is easier to handle than the time objective function. This 
happens because time seems to be more restrictive than cost.

For the cost objective function, the method that presented the 
best performance, in general terms, was the LPF method (with the 
LP and fix heuristic). But when we consider the number of instances 
with a feasible solution found (a possibly more important evalua
tion dimension), the HA method becomes the best. This happens 
because the HA method incorporates the size reduction heuristic, 
which helps to reduce the number of arcs from the edges structure, 
thus decreasing the total number of arcs to be analyzed. However, 
this comes with a cost: the quality of the solution is slightly reduced.

The LP-and-Fix heuristic seems to be a good technique for 
solving the problem, because when the binary decision variables 
are relaxed, the resulting problem becomes easier to solve. Then, 
variable fixing reduces the number of arcs, making the problem 
much easier to solve.

The SR method (with the size reduction heuristic) did not 
present good solutions when applied to the cost objective function, 
but has a much better performance when applied to the time 
objective function, when compared to the MILP method (based 
on mixed integer linear programming). This happens because the 
time objective function increases the complexity of the problem, 
making it more dependent on the use of heuristic techniques.

However, when combined with the LP-and-Fix technique, the size 
reduction heuristic presented very good results for the time objective 
function (as seen in the HA method). Therefore, we can conclude 
that, in general, when considering both objective functions, the HA 
method presented the best results (followed by the LPF method).

In terms of computational times, the SR heuristic presented good 
results for small instances, but when the number of arcs increases, the 
number of possible options to the exclusion of arcs (decision variables) 
is exponential, making the computational cost higher. The LP-and-Fix 
heuristic presented the highest efficiency in terms of computational 
costs, along with the value of solutions. This is, therefore, the heuristic 
procedure with the best performance for the multi-commodity net
work flow problem with time windows and multiple transport lines.

However, one significant weakness (limitation) of the model is the 
need of rather complex data structures. The high number of ‘indices’ 
increased the number of possibilities a lot, especially on the ‘edges’ data 
structure. We can, therefore, conclude that it would be particularly 
difficult to develop a heuristic/metaheuristic approach to deal directly 
with the problem (as modeled), without the use of an optimization 
tool.

This research naturally generated several ideas for future work:

● since the problem studied here is a new variant of the multi- 
commodity network flow problem, an important additional 
contribution would be to apply other heuristics/metaheuris
tics for the resolution of the model;

● it would be interesting to develop a multi-objective approach, 
integrating the objective functions cost and time, in order to 
find trade-off, practically interesting solutions;

Table 7. Summary of the best and worst performance for the objective function 
time.

Feature

Best method Worst method

Small 
instances

Medium 
instances

Large 
instances

Small 
instances

Medium 
instances

Large 
instances

less infeasible 
instances

HA HA and 
LPF

HA MILP and 
SR

MILP MILP

total less 
infeasible 
instances

HA

less GAP 
values 
different 
from zero

LPF HA LPF MILP and 
SR

MILP and 
SR

MILP and 
SR

maximum 
execution 
time

LPF LPF LPF MILP and 
SR

MILP and 
SR

MILP, SR 
and 
HA

minimum 
execution 
time

HA HA LPF MILP and 
SR

MILP and 
SR

MILP and 
SR

general 
objective 
function 
results

MILP and 
LPF

MILP and 
LPF

LPF and 
HA

SR and 
HA

HA MILP

general 
execution 
time 
results

LPF and 
HA

LPF LPF MILP and 
SR

MILP and 
SR

MILP and 
SR

average 
values 
objective 
function

MILP MILP LPF HA HA MILP

average 
values 
execution 
time

HA LPF LPF MILP and 
SR

MILP and 
SR

MILP and 
SR
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● another important contribution would be to apply some var
iant of the tridimensional bin packing problem to optimize the 
use of the vehicles’ baggage pack; and finally

● it seems there would be a considerable potential in designing 
a decision support system to integrate the information related 
to urban freight origins/destinations, thus improving network 
management in practice.
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