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Abstract
In the last years, researchers have been paying special attention to scheduling 
problems with scarce resource consumption and periodic maintenance activities with 
a view to the adoption of more realistic assumptions. This paper aims at presenting 
heuristics to a single-machine scheduling environment with periodical resource 
constraints. In this new variant of the single-machine scheduling problem, in each 
production period, there are resource consumption constraints. To the best of our 
knowledge, the proposed variant has not been addressed in the revised literature. An 
integer linear programming model is presented based on a bin packing formulation 
taking two packing constraints into consideration. The objective function adopted is 
makespan minimization, and relative deviation is used as a performance criterion. 
Since the problem under study is NP-hard, heuristic algorithms are proposed 
to obtain high-quality solutions in acceptable computational times. Eighteen 
constructive heuristics, two local search heuristics, and a hybrid matheuristics, based 
on the size reduction and simulated annealing algorithms, have been presented. The 
extensive computational experience carried out shows that the proposed local search 
algorithms, as well as the proposed matheuristics, are promising tools to solve large-
sized instances.
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1  Introduction

In the manufacturing environment, the production processes are limited not only 
by the capacity of the machines but also by additional scarce resources. Several 
practical examples of this assumption in the electronic industry, as well as in the 
operations management, are presented by Ventura and Kim (2003).

Another example is observed in the construction industry. The production 
process of precast beams is constrained by the capacity of forms (molds) as well 
as materials and labor. In the production of large-sized precast elements, the 
occurrence of a single track of large dimensions is usually verified, characterizing 
a single-machine environment. Another issue is resource consumption, which is 
characterized by each production period (Prata et al. 2015).

The consideration of resource consumption in the parallel machine production 
environment has been studied in the last few years, given its theoretical and 
practical importance.

Ventura and Kim (2003) introduce a parallel machine environment with 
earliness–tardiness penalties and resource constraints. Edis and Ozkarahan 
(2012) present a real-world problem in an injection molding of an electrical 
appliance plant. This production environment is a resource-constrained parallel 
machine with eligibility restrictions. Ji et al. (2013) and Yeh et al. (2015) address 
the uniform parallel machine scheduling with resource consumption constraints. 
On the other hand, Zheng and Wang (2016), as well as Zheng and Wang (2018), 
address the resource-constrained unrelated parallel machines environment. 
Afzalirad and Rezaeian (2016) study an unrelated parallel machine scheduling 
problem with resource constraints, sequence-dependent setup times, different 
release dates, machine eligibility, and precedence constraints. Afzalirad and 
Shafipour (2018) address a resource-constrained unrelated parallel machine 
scheduling problem with eligibility constraints. Fanjul-Peyro et  al. (2017) 
introduce a parallel machine scheduling problem in which the job processing 
requires a given amount of a scarce resource. The resources are limited and fixed 
over the production horizon. Villa et  al. (2018) address the unrelated parallel 
machine scheduling problem with one scarce additional resource.

Although the resource-constrained parallel machine environment offers 
several contributions, studies addressing single-machine problems with resource 
consumption are still quite limited. Wang and Wang (2012) introduce a single-
machine scheduling problem where the processing time of a given job is 
calculated using a resource consumption function. The objective function is the 
minimization of resource consumption. Wang and Wang (2013) approach a single-
machine variant with resource-dependent processing times and deteriorating jobs. 
The aggregated objective function considers makespan, total completion time, 
total absolute differences in completion times and total resource cost, and a cost 
function. Zhu et al. (2013) present a single-machine scheduling problem in which 
the processing time of the current job is determined, among other factors, by a 
resource allocation function. Since the production times are usually dependent 
on the available resources, this is a realistic assumption. Wu and Cheng (2016) 
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present a single-machine problem with resource constraints. The proposed variant 
arises in cloud computing applications. For each job, the processing time is a 
function of the assigned resources for its production. This assumption leads to a 
nonlinear combinatorial optimization problem. Karhi and Shabtay (2018) address 
a single-machine scheduling environment in a flexible framework, in which the 
job processing times and due dates are decision variables.

Recent studies have presented the consideration of periodic maintenance 
activities for single-machine scheduling. Ji et al. (2007) consider a single-machine 
problem with multiple maintenance periods in which each maintenance operation is 
performed after a periodic time interval. The performance measure is the makespan 
minimization and the well-known LPT priority rule is applied as a solution 
method, with a worst-case ratio equal to 2. Low et  al. (2010a) present a particle 
swarm optimization (PSO) metaheuristics for the single-machine scheduling with 
periodical maintenance. The objective function is the makespan minimization. 
The above-mentioned authors have shown that the problem is NP-hard using a 
conversion in the 3-partition problem. Hsu et  al. (2010) present an integer linear 
programming modeling for the single-machine scheduling problem with periodic 
maintenance activities to minimize makespan. Two heuristics based on the well-
known best-fit algorithm for cutting and packing problems are proposed. Perez-
Gonzalez and Framinan (2018) address the single-machine scheduling problem with 
cyclical machine availability periods for the makespan minimization. These authors 
performed extensive computational experimentation, comparing several constructive 
algorithms with the proposed integer programming model.

Ángel Bello et  al. (2011) introduce the single-machine scheduling problem 
with programmed preventive maintenance and sequence-dependent setup times. 
A mixed-integer linear programming model, as well as a GRASP metaheuristics, 
are presented to tackle the problem. Pacheco et al. (2013) present a multi-start tabu 
search that outperforms the GRASP proposed by Ángel Bello et al. (2011).

Although the single-machine scheduling problem has been widely studied in the 
last decades, works addressing this environment, taking the resource consumption 
constraints per period into consideration, are rather limited. However, this paper 
introduces a variant of a single machine, taking resource consumption with a 
periodical availability into account. In the problem under study, there is a single-
machine environment with multiple production periods in which each period 
presents a duration of T time units. Furthermore, in each production period, there 
is also a resource constraint R that restricts resource consumption. This resource 
constraint is fixed by each production period so that the resource is fully available 
in the next one. This situation arises in many real-world problems related to the 
molding of products, such as plastic or precast concrete production.

In this paper, heuristics for the single-machine scheduling problem with 
periodical resource constraints (SMPRC) are proposed. There are four main 
contributions in this study. First, a mixed-integer programming formulation for 
the SMPRC is presented. According to the literature review, this variant has 
not been modeled yet, despite its theoretical and practical importance. From a 
practical point of view, the proposed variant is important because there are 
several production problems in which a single machine with periodical constraints 
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appears, for instance, in the production of molded items. From a theoretical point 
of view, the proposed variant combines a scheduling environment with a bin 
packing problem, which is similar to the bin packing presented by Fanjul-Peyro 
et al. (2017), in which there are two types of packing. Secondly, some problem 
properties, such as the NP-hardness proof and a lower bound, are presented. 
Third, a set of eighteen constructive heuristics for the problem under study, as 
well as two local search heuristics, are proposed. Thereafter, a matheuristics is 
proposed to find near-optimal solutions in acceptable computational times.

This paper is organized as follows: in Sect.  2, the mixed-integer linear 
programming (MILP) model is described; in Sect.  3, a hybrid size reduction 
and simulated annealing algorithm is proposed; in Sect. 4, some outcomes from 
computational experiments are discussed; finally, in Sect.  5, some conclusions 
and suggestions for future works are presented.

2 � Problem statement and MILP model

2.1 � Problem definition

Let a single machine that produces n jobs in which each job has an associated 
processing time as well as resource consumption. There is a resource consumption 
constraint for each production period; thus, the production planning is divided 
into periods, such as a workday. In the variant under study, the following 
assumptions are considered: (1) each job is processed by a single machine; 
(2) each machine can process a single job at the same time; (3) preemption of 
jobs is forbidden; (4) each job presents associated processing times and a fixed 
amount of resources per period; and (5) each production period presents a time 
constraint as well as a resource consumption constraint. The objective function 
is the makespan minimization, taking the processing times and the resource 
consumptions for each job into account. The problem is similar to a bin packing 
problem with two characteristics: processing times and resource consumption. In 
each production period, the jobs must be processed considering both time and 
resource constraints. A period could be viewed as a bin with two capacities: 
duration T, as well as an amount of available resources R.

It is assumed that p is the processing time vector, r is the resource consumption 
vector, T is the duration of the production periods, and R is the maximal amount 
of resources available per period. It is possible to observe that the periods have 
the same maximum amount of resources and these resources are not renewable. 
In addition, the periods organized a posteriori in non-increasing order not to 
unnecessarily increase the makespan.

An illustrative example with five jobs, p = {2, 1, 5, 4, 3} , r = {3, 3, 4, 1, 1} , 
T = 5 , and R = 4 is considered. A feasible solution for this instance is the 
sequence � = {1, 5, 2, 4, 3} , with three periods with a makespan of 15 time units, 
as illustrated in Fig. 1.
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2.2 � Proposed mixed‑integer programming model

Let a set of n jobs with a resource consumption to be processed in a machine 
subjected to two constraints: a period constraint and a resource constraint. In the 
problem under study, the jobs in the single machine are scheduled, minimizing the 
number of required periods. Hereafter, the notation used for the problem modeling 
is presented.

The proposed mixed-integer programming model is presented as follows.

(1)

minimize

T ⋅

t
∑

i=1

yi − z

Fig. 1   Gantt chart for the presented solution
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Objective function (1) is the makespan minimization. Constraint set (2) ensures that 
a job is processed only in period i. Constraint set (3) enforces the time constraint 
of each period. Constraint set (4) determines that the jobs produced in a given 
production period do not exceed the period’s available resource. Constraint set (5) 
determines that the jobs are produced only in the selected periods. Constraint (6) 
states that a given period provides the maximum slack. Constraint set (7) states that, 
if a period is not used, it does not provide the maximum slack. Constraint set (8) 
used periods. Finally, constraint sets (9), (10), (11) and (12) determine domain of 
the decision variables. Taking constraint set (6) into consideration, it is possible to 
relax the integrality of the decision variables yi . Regarding constraint set (8), it is 
valid to emphasize that only one period will be wi = 1, so the rest will always be 
z ≤ M . For that period wi = 1 (the last one), z is the difference between the total fixed 

(2)

subject to:

t
∑

i=1

xij = 1, ∀j

(3)
n
∑

j=1

pjxij ≤ T , ∀i

(4)
n
∑

j=1

rjxij ≤ R, ∀i

(5)xij ≤ yi ∀i, j

(6)
t

∑

i=1

wi = 1

(7)wi ≤ yi ∀i

(8)z ≤ M(1 − wi) + Tyi −

n
∑

j=1

pjxij, ∀i

(9)yi ≥ 0 ∀i

(10)xij ∈ {0, 1}, ∀i, j

(11)wi ∈ {0, 1} ∀i

(12)z ≥ 0.
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time of a period (T) and the sum of the processing times of the jobs of that period. 
The proposed model presents t(n + 1) binary decision variables, t + 1 continuous 
decision variables, and n + 4t + nt + 1 integer linear constraints.

2.3 � Problem properties

In this subsection, three properties for the SPMRC are presented. First, the NP-hardness 
of the proposed problem. Second, a lower bound for the SPMRC. Finally, an upper 
bound for the number of periods.

Theorem 1  The SPMRC is NP-hard.

Proof  Taking constraint sets (3) or (4) into consideration , if pj = 0 ∀j or if rj = 0 
∀j , the problem is a particular case of the bin packing problem, which is NP-hard 
(Martello 1990). 	� ◻

Proposition 1  A lower bound for SPMRC is given by

Proof  If there is no loss in the productive capacity, the minimal number of periods 
is given by the greatest whole number among the following ratios: summation 
of processing times divided by maximum duration of the planning periods and 
summation of required resources divided by the maximum amount of resource for 
each period. 	�  ◻

To sequence problems with multiple periods, a key issue for the model behavior is 
the determination of an estimate for the number of planning periods (Pitombeira-Neto 
and Prata 2019). On the one hand, the greater the planning horizon, the more variables 
there are in the model. It is important to highlight that if there is an excessive amount  
of decision variables, they will not be a part of the global optimal solution and the 
performance of the model resolution solver will decrease. On the other hand, a small 
number of time periods will lead to model unfeasibility.

As an upper bound for the number of periods, the concept of the well-known 
next-fit (NF) algorithm (Scheithauer 2017) was adopted. Let NFP be the number of 
periods taking only the processing times into account and NFR , the number of periods 
considering only resource consumption, an upper bound for the number of periods is 
given by

(13)LB =

�

max

�∑n

j=1
pj

T
,

∑n

j=1
rj

R

��

.

(14)UB = max{NFT , NFR}.
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3 � Proposed algorithms

3.1 � Constructive heuristics

Constructive heuristics present great practical importance since they are able 
to provide good solutions within fast (usually insignificant) computation times. 
Considering the single-machine environment, the application of constructive 
heuristics which exploit specific characteristics of the problem to improve its 
performance plays a key role (Birgin and Ronconi 2012). The constructive 
algorithms proposed by Perez-Gonzalez and Framinan (2018) have been extended, 
for the single-machine scheduling problem with cyclical machine availability 
periods and makespan minimization, in the problem under study. One can observe 
that resource consumption is not treated in Perez-Gonzalez and Framinan (2018).

All the developed heuristics present three construction phases. Phase 1 
consists of the aggregation of criteria for each job. In this study, two criteria 
were considered: processing times and resource consumption for each job. Three 
possibilities for this aggregation were considered, with the measures: the sum, the 
average, and the maximal value of the two criteria. A sequence s with the results 
of the aggregation of values of two criteria was created with one measure, where 
sj is the result of the aggregation of job j.

Phase 2 of the constructive heuristics sorts the vector with the criteria aggregation 
for each job, following some sorting algorithm proposed by Perez-Gonzalez and 
Framinan (2018). In the problem under study, two criteria were considered for each 
job: the resource consumed for its production and the processing time.

For the execution of the sorting algorithm, a vector s was created in which sj is 
the result of the criteria aggregation of resource consumption and processing time 
for job j, following the measure adopted in Phase 1 of the constructive heuristics. 
Next, vector s is organized in a non-decrescent way taking the aggregate value 
of the considered criteria into account, as presented by Perez-Gonzalez and 
Framinan (2018).

Let a given aggregate criterion for each job be sj , generated in phase 1. The 
sequence of aggregate criteria are organized in a non-decreasing order without 
loss of generality, sj ≤ sj+1, j = 1..., n − 1 . The methods used for sequencing the 
jobs are described as follows.

•	 Decreasing (D), sorting the jobs in a non-crescent order, as the well-known 
LPT dispatch rule (Ji et al. 2007; Yu et al. 2014): sn,… , s1;

•	 A-Sharp (A), sorting the jobs inserting the largest job in the middle of the 
sequence (Low et al. 2010a, b): s2, s4,… , sn−1, sn, sn−2,… , s3, s1;

•	 Inserting Low and High criteria (HILO), sorting the jobs always 
inserting the largest and the smallest jobs in alternation (Hsu et  al. 2010): 
sn, s1, sn−1, s2, sn−2, s3,….

Phase 3 consists of the job allocation previously sequenced in the machine 
using criteria related to the bin packing problem. However, differently from 
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the classical algorithms which consider a single criterion, in our approach, the 
resource consumption and the processing times are concomitantly considered. 
The bin packing policies are described as follows.

•	 First fit (FF): always insert a job that fits in a given production period, taking 
processing times as well as resource consumption into consideration. If a 
job cannot be allocated in the existent periods, a new period is created. The 
algorithm is finished when all the jobs are scheduled.

•	 Best fit (BF): always insert a job that results in the smaller accumulated slack, 
concomitantly considering the processing times and resource consumption. If 
a job cannot be allocated in the existent periods, a new period is created. The 
algorithm is finished when all the jobs are scheduled.

Figure  2 illustrates the considered bin packing policies, as well as an illustrative 
example with the allocation of the jobs shown in a Gantt chart. The first method, 
denoted as None, solely consists in the allocation of the jobs according to the first-
in-first-out rule. FF policy allocates the job whenever practicable, and the BF policy 
is committed to allocating the jobs leading to a minor slack in each planning period. 
Table  1 describes the eighteen proposed constructive heuristics for the problem 
under study.

Fig. 2   Bin packing policies for an illustrative example
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3.2 � Proposed constructive heuristics with local search

For the single-machine and other scheduling problems, usually constructive 
heuristics lead to promising areas of search space and the generated solutions can be 
improved by local search procedures (Valente 2007). In this paper, two constructive 
heuristics followed by local search algorithms are proposed.

The proposed local search procedure is based on a neighborhood structure of a 
random insertion movement of a job in a solution sequence. Each job in the solution 
sequence is inserted in another random position. Figure 3 illustrates an example of a 
random insertion with 10 jobs in a given sequence.

If a new solution obtained after a random insertion is better than the best solution 
which was previously found, the current solution is replaced, and the remaining 
solutions of the previous neighborhood are not visited since the search restarts. If all 
solutions in a given neighborhood are evaluated, and there is no improvement, the 
search is finished, and the best solution is returned.

The local search procedure is described in detail by Framinan et al. (2014). The 
steps of the proposed local search heuristics are described as follows. The proposed 
heuristics are local search with first fit bin packing policy (LSFF) and local search 
with best fit bin packing policy (LSBF). 

Step 1	 : calculate the aggregate value of criteria (resource consumption and process 
time) using the max measure for each job;

Step 2	 : sort the jobs according to the LPT rule applying this initial solution in the 
sequence of the aggregate value of criteria;

Table 1   Proposed constructive 
heuristics

Phase 1 Phase 2 Phase 3 Description Notation

pi + ri LPT FF Sum first fit decreasing SFFD
(pi + ri)∕2 LPT FF Avg first fit decreasing AFFD
max(pi, ri) LPT FF Max first fit decreasing MFFD
pi + ri A-Sharp FF Sum first fit A-Sharp SFFA
(pi + ri)∕2 A-Sharp FF Avg first fit A-Sharp AFFA
max(pi, ri) A-Sharp FF Max first fit A-Sharp MFFA
pi + ri HILO FF Sum first fit HILO SFFHILO
(pi + ri)∕2 HILO FF Avg first fit HILO AFFHILO
max(pi, ri) HILO FF Max first fit HILO MFFHILO
pi + ri LPT BF Sum best fit decreasing SBFD
(pi + ri)∕2 LPT BF Avg best fit decreasing ABFD
max(pi, ri) LPT BF Max best fit decreasing MBFD
pi + ri A-Sharp BF Sum best fit A-Sharp SBFA
(pi + ri)∕2 A-Sharp BF Avg best fit A-Sharp ABFA
max(pi, ri) A-Sharp BF Max best fit A-Sharp MBFA
pi + ri HILO BF Sum best fit HILO SBFHILO
(pi + ri)∕2 HILO BF Avg best fit HILO ABFHILO
max(pi, ri) HILO BF Max best fit HILO MBFHILO
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Step 3	 : utilize FF or BF bin packing policies in the job sequence;
Step 4	 : apply random insertion local search with the first improvement procedure.

Figure  4 presents the flowchart of constructive heuristics with local search for 
FF or BF bin packing polices. The three first processes describe steps 1–3, and 
the next processes describe the random insertion local search with the first 
improvement procedure.

Fig. 3   Example of the random insertion procedure

Fig. 4   Flowchart of LSFF and LSBF constructive heuristics
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3.3 � Proposed matheuristics

In the last years, mathematical programming solvers have presented a substantial 
improvement in their efficiency. The proposition of algorithms that hybridize features of 
mixed-integer programming and heuristics (also called MIP heuristics or matheuristics) 
is a promising research area.

Fanjul-Peyro and Ruiz (2011) proposed a simple and powerful MIP heuristics 
named size-reduction (SR) algorithm. The basic idea of this method is to consider 
only a subset of the original set of decision variables, aiming to achieve high-quality 
solutions in a reduced amount of time. This paper approaches the well-known unrelated 
parallel machine scheduling problem, and the reduction of decision variable criterion is 
based on the processing times. In general, the decision variables related to the longest 
processing times in the available machines are set as equals zero. The SR algorithm has 
been applied to other scheduling problems achieving excellent results (Fanjul-Peyro 
et al. 2017).

For the problem under study, there is a single machine, and there is no choice for 
excluding decision variables according to the processing times. However, since UB is a 
pessimistic upper bound for the number of required planning periods, decision variables 
in the last periods could be excluded without significant losses in the achieved solution. 
As the objective function is the makespan minimization, the model will allocate the 
jobs in the first planning periods.

A probabilistic criterion to fix decision variables has been adopted based on the 
well-known simulated annealing algorithm (Kirkpatrick 1984). The probability of 
fixing decision variables as zero is calculated by the difference between the upper 
bound, expressed by Eq. (14), and the lower bound expressed by Eq. (13) divided by 
the number of the current planning period. The probability for the reduction of the 
problem increases with the number of periods because solutions with high quality will 
hardly present several jobs in the last planning periods, taking the pessimistic upper 
bound UB into consideration.

The reduced subproblem obtained by the fixed decision variables tends to be solved 
with a computational effort which is lower than the pure MILP model. However, there 
is no guarantee that the optimal solution for the reduced problem is the global optimal 
solution for the original problem.

Algorithm  1 presents the pseudocode for the proposed matheuristics. For each 
binary decision variable xij , a uniform random number between 0 and 1 (RN) is 
generated. If this value is lower than the difference between the upper bound and the 
lower bound divided by the number of the current planning periods, and if the exclusion 
of decision variable xij still produces a feasible solution, decision variable xij is fixed as 
zero. Finally, the reduced model is solved by a commercial solver. 
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Algorithm 1 Proposed matheuristics
1: procedure SR(t,n,UB,LB)
2: for i≤= t do
3: for j ≤= n do
4: RN←U(0,1)
5: if RN≤ e−P×(UB−LB)/i and resultant solution is feasible then
6: xi j ← 0
7: end if
8: end for
9: end for
10: solve the problem with commercial solver
11: end procedure

4 � Computational results

4.1 � Statistics used in the analysis of the computational experiments

The statistic used in the analysis of the computational experiments is the relative 
percentage deviation (RPD), which is the gap between the evaluated method ( solik ) 
and the lower bound solution ( LBi ), as presented in Eq. (15). Value solik means the 
solution obtained by method k run on instance i, and LBi denotes the lower bound 
solution for instance i. For each class of instances, the average relative percentage 
deviation (ARPD) is calculated, among all instances of each class.

In this work, the average computational times for the eighteen constructive 
heuristics are not reported since the characteristics of the proposed algorithms 
should not imply differences with statistical significance. For these algorithms, the 
computational times are negligible (less than 1 second for all the evaluated tested 
instances). For the two local search algorithms, the matheuristics and the MILP 
model, the computational times are observed.

4.2 � Proposed test instances

As the SMPRC was not previously reported in the observed literature, a set of test 
instances is proposed, taking similar variants of the single-machine scheduling 
problem, presented by Low et al. (2010b) as well as Perez-Gonzalez and Framinan 
(2018), into consideration.

The number of jobs (n) was used as a parameter for the computational 
experiments. Test instances were generated for the following values: 
n ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300} , as presented by 

(15)RPDik =
solik − LBi

LBi

⋅ 100.
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Perez-Gonzalez and Framinan (2018). 10 instances were randomly generated 
for each type of instance. The maximum duration of periods P and the maximum 
amount of resources for each production period R were generated with random 
values uniformly distributed between 150 and 200. The processing times and the 
resource consumption were generated with random values uniformly distributed 
between 50 and 100. The test instances are available in the following link.

4.3 � Effect of phases on constructive heuristics

With the purpose of presenting which are the main effects of the phases in the 
obtained values of the objective function, a full factorial design (Montgomery 2017) 
was performed with the results of constructive heuristics, taking three factors into 
consideration. The first phase is composed of three factors (Sum, Avg, and Max), 
the second phase is also composed of three factors (LPT, A-SHARP and HILO) and 
the third phase is composed of two factors (FF and BF).

Figure 5 illustrates the main effects of the phases in the proposed constructive 
heuristics. It is possible to observe that the performance of the constructive 
heuristics is most strongly affected by phase 2 with the LPT priority rule.

Therefore, the optimal experimental design for the three considered phases in 
the constructive solution is described as follows. In the first phase, the jobs should 
be aggregated by the maximum value between p and r. In the second phase, the 
jobs should be sequenced with the LPT rule. Finally, in phase 3, the best allocation 
policy is the first fit. It is a good first approximation, although it is not known if there 

Fig. 5   Effect plots for ARPD in the phases for the constructive heuristics

https://www.researchgate.net/publication/340755543_Test_instances_for_the_single_machine_scheduling_problem_with_periodical_resource_constraints?channel=doi&linkId=5e9beea992851c2f52ae66da&showFulltext=true
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will be significant differences, especially in phase 3, between FF and BF, as it can be 
observed as follows.

4.4 � Results and discussion

All the constructive heuristics, the local search heuristics, as well as the 
matheuristics, were implemented using Python with Spyder IDE (https​://www.anaco​
nda.com/). For the pure MILP model, as well as the proposed matheuristics, the 
commercial solver used was the IBM ILOG CPLEX (https​://www.ibm.com/produ​
cts/ilog-cplex​-optim​izati​on-studi​o) version 12.8. The computational experience was 
performed on a PC with Intel Core i7-8700 CPU 3.20 GHz × 12 and 32 GB memory. 
The operating system is Ubuntu 18.04.1 LTS. For the MILP and matheuristics, a 
time limit of 1800 s was adopted.

Table 2 describes the results for all the evaluated methods for each instance class. 
One can observe that the local search approaches, the matheuristics, and the MILP 
model present the best average RPD. Figure 6 graphically summarizes the results of 
Table 2 in a heat map. Dark tones represent minor ARPD values.

The constructive heuristics SFFA, AFFA, MFFA, SFFHILO, AFFHILO, 
MFFHILO, SBFA, ABFA, MBFA, SBFHILO, ABFHILO, and MBFHILO return 
the worst results, with ARPD values between 30 and 40%. The constructive 
heuristics SFFD, AFFD, MBFD, SBFD, and ABFD return ARPD values lower than 
30%. Finally, the priority rule MFFD returns an ARPD value slightly larger than 
22.0%. The local search algorithms LSFF and LSBF return ARPD values of 20.97% 
and 21.35%, respectively. The proposed MILP model returns an ARPD of 24,71%. 
Finally, the proposed matheuristics returns an ARPD of 19.55%, the best average 
results for all the evaluated methods.

To validate the results, it is important to verify whether the previous differences 
in the RPD values are statistically significant. An analysis of variance (ANOVA) 
(Montgomery 2017) has been applied. The p value is very close to zero. It is possible 
to see in Fig. 7 the mean plots with confidence intervals ( � = 0.05) of all methods 
proposed. It has been verified that there are statistically remarkable differences 
between the average RPD values and some methods proposed.

Figure 7 presents the 95% confidence interval for ARPD in each method. Figure 8 
illustrates the same results for the 4 best methods. To evaluate the distribution of the 
results for the main considered methods for each instance class, the 95% confidence 
interval for ARPD values in Fig. 9 has been summarized.

One can observe that the matheuristics, in general lines, returns better or equal 
results than the MILP model in the evaluated instances. This evidence indicates 
that the utilization of random criteria embedded with exact methods can lead to 
improvements in the deterministic method. In addition, the local search methods are 
better than MIP and MILP methods in the small-sized test problems and worse in 
the large-sized test problems.

Concerning the computational times, the following results can be observed. Since 
the constructive heuristics are deterministic and their computational times were 
negligible (less than 1 s), they were not considered in this analysis. The two local 

https://www.anaconda.com/
https://www.anaconda.com/
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio
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Fig. 6   Heat map for results for each method in each instance size

Fig. 7   95% confidence interval for ARPD for each method
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Fig. 8   95% confidence interval for ARPD for the best methods

Fig. 9   95% confidence interval for the ARPD variable for the best methods for each instance size
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search approaches, as well as the matheuristics, are run ten times for each instance. 
The MILP model, as a deterministic method, is run a single time. Table 3 presents 
the average computational times for each class of instances. In this table, the column 
“Total” indicates the general average of computational times for each considered 
method.

The local search algorithms present a computational effort which is significantly 
lower than the MIP and MILP methods. With regard to the matheuristics, this 
algorithm, in general, returns better results than the MILP model with a lower 
computational effort. Figure  10 presents a confidence interval ( � = 0.05 ) for the 
average computational times in each class of instances. The above-mentioned figure 
is divided into two parts illustrating the local search algorithms and the exact-based 
approaches. One can observe that the difference between scale is significant between 
the two charts.

For the local search algorithms, the computational time growth is exponential. 
There is no significant difference between FF and BF strategies. The single  
difference between the two local search methods occurs in the class of instances 
higher than 150 jobs, in which the LSFF algorithm presents slightly lower values 
for the computational times than the LSBF method. Such similar behavior can be 
explained by the construction phase based on the LPT rules, as illustrated in Fig. 5.

Taking the exact-based approaches into consideration, it is possible to observe 
a remarkable discrepancy in the presented results, mainly in the medium-sized 
instances. In the majority of evaluated instances, the matheuristics returned 
the solutions with lower computational times than the proposed MILP model. 
Furthermore, the matheuristics returned solutions with better objective function 
values, outperforming the MILP model.

5 � Final remarks

In this paper, a new variant for the single-machine scheduling problem has been 
investigated considering processing times and resource consumption. The objective 
function is the makespan minimization. Eighteen constructive heuristic algorithms 
based on priority rules and bin packing policies have been developed. Two local 
search algorithms and a matheuristics based on the size-reduction heuristics and the 
simulated annealing algorithm have also been proposed.

Computational experiments have been carried out to evaluate the performance 
of the proposed algorithms as well as the developed MILP model. The relative 
deviation statistic has been used as the performance measure. In general lines, for 
the most tested problem instances, the constructive algorithms based on first fit 
A-Sharp strategies generate the worst solutions. On the other hand, the constructive 
algorithms based on the best fit decreasing policies outperformed all other tested 
priority rules in most cases. In practical terms, the LSFF and LSBF heuristics can be 
used in an industrial environment because they present a good trade-off between the 
quality of the achieved solutions and the computational effort.

The two local search heuristics, the MILP model, and the matheuristics 
present similar average results, although the local search algorithms present a 
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lower computational effort. Concerning the quality of the generated solutions, the 
matheuristics presents better average results, although the difference between LSFF, 
LSBF, and MILP methods is not significant.

As extensions of this work, the use of metaheuristics is recommended to improve 
the solutions generated by the constructive heuristics. In addition, the mathematical 
formulation, as well as the proposed heuristics, could be generalized for any quantity 
of criteria. Another possibility is the consideration of different objective functions 
for the variant under proposition. Finally, considering the practical interest of 
resource consumption in scheduling problems, periodical resource constraints could 
be extended to other production environments such as parallel machines, flow shop, 
job shop, and open shop.
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