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ARTICLE INFO ABSTRACT

Keywords: The objective of this work is to evaluate the effect of the addition of N,N’-di-sec-butyl-p-phenylenediamine (PDA),
FUKUI index IONOL, and hydrogenated cardanol (HC) (500 mg/kg, each) on the oxidative stability and corrosivity of biodiesel
DFT

obtained from babassu oil (BB) and from residual frying oil (BRFO). Oxidative stability was assessed by induction
period (IP) using the Rancimat method (EN 14112), while the corrosivity was assessed by the mass losses of
copper coupons immersed in the biodiesel samples (ASTM TM0169/G31-12a (2010)). The most severe corrosion
was observed for the fresh biodiesel samples without any additives (4.85 mpy for BB, and 5.00 mpy for BRFO).
Using PDA, IONOL, and HC as additives inhibited the copper corrosion in both biodiesel samples (between 0.61
and 3.09 mpy for BB, and between 2.19 and 4.69 mpy for BRFO). The use of IONOL and PDA as additives, besides
showing a decrease in corrosion rates, also improved the oxidative stability (IP values) for both biodiesel samples
(by 66 and >100 h, for BB; and by 3.31 and 7.23 h, for BRFO, respectively), demonstrating that these additives
have bi-functionality in these biodiesel samples. Conversely, the use of HC increased the oxidative stability for BB
(by 10.82 h) but also presented a pro-oxidant effect on biodiesel obtained from residual frying oil, decreasing its
IP value by ca. 18%. Finally, theoretical studies were carried out based on the formalism of the functional density
theory, which confirmed that PDA has indeed the highest anti-corrosion potential among the studied additives.

PDA
IONOL
Hydrogenated cardanol

Considered environmentally friendly because it is sulfur-free, non-
toxic, and derived from renewable sources, biodiesel is however sus-
ceptible to oxidation, and this represents one of the biggest challenges in
its production and commercialization [3]. In the production of biodiesel,
triacylglycerols are converted into esters by transesterification to obtain
a fuel that has properties similar to petrodiesel [4]. Among the main
advantages, it possesses higher flash point than petrodiesel, which fa-
cilitates its transport [5], is biodegradable, and generates fewer emis-
sions [6].

However, due to its chemical structure and the presence of double

1. Introduction

The gradual depletion of fossil fuel reserves, the increase of oil prices,
and environmental concerns have accelerated the need to find fuels that
meet technical and sustainable requirements given the consequences of
the greenhouse effect on human health. In this perspective, based on the
principles of green chemistry for the use of renewable energies, biodiesel
has stood out as an alternative to petrodiesel. This fuel is biodegradable
and may be produced from different fatty raw materials [1,2].
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Nomenclature

A Electron affinity

ABNT NBR Brazilian Association of Standard Techniques
(Portuguese acronym)

ASTM  American Society for Testing and Materials

BB Babassu Biodiesel

BRFO Biodiesel produced from Residual Frying Oil

CNSL Cashew Nut Shell Liquid

CR Corrosion Rate (mpy)

D Density (kg/n13)

DFT Functional Density Theory

EN European Standards

FAME  Fatty acid methyl esters

fi Condensed Fukui Functions

HC hydrogenated cardanol

HOMO Highest Occupied Molecular Orbital

I Ionization potential

P Induction Period (h)

Paq Induction Period of the doped samples with antioxidants
(h)

IPoyig Induction Period of samples without antioxidants (h)
LUMO  Lowest Occupied Molecular Orbital

PDA N,N’-di-sec-butyl-p-phenylenediamine

Qi Atomic Hirshfeld charge

RANP Resolution of the National Agency of Petroleum, Natural
Gas and Biofuels

S exposed area (m?)

SF Stabilization Factor

t immersion time (h)

TAN Total Acid Number

w weight loss (kg)

AE Energy gap (eV)

Af dual descriptor

AN transferred electron fraction

Aw net electrophilicity (eV)

u electronical chemical potential
n global hardness (eV/mol)
® global electrophilicity index (eV)
o electrodonating (eV)
[0) electroaccepting (eV)
X electronegativity (eV)

bonds in the carbon chains, biodiesel is susceptible to oxidation that
happens without the need of external factors [2]. Its degree of degra-
dation and corrosivity depends on a set of variables that include the fatty
acids composition, storage conditions, and external factors such as light,
heat, oxygen, humidity, and contact with metals [7].

In addition, the presence of unsaturated compounds, water, and free
fatty acids may impact the oxidative stability of biodiesel. Unsaturated
esters with bis-allylic methylene groups adjacent to the double bond are
very unstable under elevated temperature and/or pressure conditions in
the presence of oxygen [8]. Consequently, the original fatty acids con-
tent in the feedstock shall impact the stability of the obtained biodiesel,
i.e., more saturated feedstocks will yield more stable biodiesel products,
as observed in several previous reports [1,3,7,8]. High water content in
biodiesel may also intensify the oxidation rate and microbial growth in
storage tanks, which could lead to the corrosion of metals [9]. As bio-
diesel oxidation propagates, there is an increase in properties like acidity
index, peroxide value and viscosity, while iodine value and content of
methyl esters decrease thus affecting the quality of the final biodiesel
product [10].

The initial stage of the oxidation process promotes the formation of
primary products, and in sequence, by the reaction of hydroperoxides,
the secondary products such as ketones, acids, polymers, volatile prod-
ucts, and species of high molecular weight are formed [11]. These acid
compounds accelerate the oxidative degradation of biodiesel, and
consequently, the corrosion of metal surfaces [12].

Several studies indicate that the corrosivity of biodiesel can be
reduced by using antioxidants [13,14]. These additives act inhibiting
the oxidative degradation of biodiesel samples, and consequently, the
formation of acid compounds. In addition, these compounds have other
applications such as support for fluidity, reduction of NOx emissions,
and increasing of lubricity [15-17].

Antioxidants may be classified in natural and synthetic groups. In
substitution or associated with synthetic antioxidants, the natural ad-
ditives may be a sustainable and affordable alternative to increase the
oxidative stability of biodiesel [17-26]. Rodrigues et al. (2020) [27]
reported that the natural ethanolic extract of turmeric (Curcuma longa
Linn) showed the best response in the control of the oxidative process of
biodiesel of Tilapia oil compared to three synthetic antioxidants that
were studied (butylated hydroxyl anisole, butylated hydroxyl toluene,
and propyl gallate). Rial et al. (2020) [28] also reported the effect of the
addition of an ethanolic extract of cagaita leaf on soybean biodiesel and

confirmed its antioxidant potential.

Besides the experimental procedures, theoretical studies were car-
ried out based on the formalism of the functional density theory to
simulate the anti-corrosion effects of the investigated antioxidant mol-
ecules. These computational tools have gained reliability and applica-
bility with the use of more comprehensive and robust mathematical
models [29-31] and were used in this study to correlate the calculated
molecular properties of the antioxidants with the experimental results
obtained for oxidative stability and corrosion. The use of simulation
models would allow reduction in production costs and support the
development of strategic scenarios for optimal addition of antioxidants
in the biodiesel industry.

In this study, the oxidative stability and corrosivity of biodiesel
samples obtained from babassu oil and from residual frying oil were
evaluated by the Rancimat method (EN 14112) and by the ASTM
TMO0169/G31-12a (2010) method, respectively. The effects of the
addition of three antioxidants in both samples were also evaluated by
the same techniques, aiming to observe the bi-functionality of these
additives. Furthermore, the reactivity of those additives was assessed
through molecular modeling using functional density theory (DFT).

2. Experimental section
2.1. Pre-treatment and characterization of raw materials

The residual frying oil was collected in a polyethylene container from
alocal market in Fortaleza, Brazil. The pre-treatment of the raw material
was carried out in four steps: first, the oil was filtered to remove solid
particles; second, the liquid phase was heated to 65 °C and washed with
5% g/g of distilled water under continuous stirring; third, the sample
was dried under vacuum at 100 °C, for 30 min, using a rotatory evap-
orator (Buchi, Switzerland); finally, the oil phase was filtered using
NaySO4 to remove any residual water.

The babassu coconut oil was acquired in the central market in Ter-
esina, Brazil. The acidity indexes of both oil samples were determined
following the titration method EN 14104:2003.

2.2. Biodiesel production

Both biodiesel samples were obtained through the transesterification
reaction of the original oils with analytical grade methanol (99.8%) at
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Fig. 1. Molecular structures of PDA (A), IONOL (B), and hydrogenated cardanol (C).

1:6 (oil/alcohol) molar ratio, using potassium hydroxide (KOH, 85%) as
a catalyst. The experimental apparatus consisted of a three-neck round-
bottom flask connected to a reflux condenser. The temperature of the
reaction systems was kept at 60 + 5 °C, under continuous stirring,
following a procedure reported by Serrano et al. (2014) [32].

The biodiesel from the residual frying oil (BRFO) was obtained by
transesterification of the pre-treated sample for 60 min using 1.73 wt%
of KOH. After the reaction, the ester phase and glycerol were separated
in a funnel at room temperature. The ester phase was washed three times
with 10% vol. of distilled water, at 60 °C. Additional washing steps were
carried out with distilled water at room temperature until the washing
water reached neutral pH. Finally, the ester phase was dried by heating
to 90 + 5 °C for 20 min, under continuous stirring, and filtered with
sodium sulfate anhydrous to remove any water residue.

For the synthesis of babassu biodiesel (BB), a two-step trans-
esterification was applied following a previously reported methodology
[33]. At the first step, the babassu oil was reacted with methanol, using
0.5 wt% of KOH, for 60 min. Then, the fatty acid methyl esters (FAME)
and glycerol were separated in a funnel at room temperature. At the
second step, the ester phase reacted with methanol, using 0.26 wt% of
KOH, for 30 min, totalizing 0.76 wt% of catalyst. After that, the products
were transferred to a funnel, separating the glycerol from the ester
phase, also at room temperature. The washing and filtering processes
were carried out exactly as for the synthesis of BRFO.

2.3. Physicochemical characterization of the obtained biodiesel samples

Density at 20 °C was determined using a digital densimeter (Anton
Paar DMA 4500, USA) with an accuracy of 1 x10° g/cm? following
Brazilian method NBR14065:2013. The kinematic viscosity was
measured using a glass capillary kinematic viscometer according to
Brazilian method ABNT NBR 10441:2014. The moisture content was
performed using a Karl-Fischer coulometric equipment following ASTM
D6304:2007 (831 KF Coulometer, Metrohm, Switzerland). The Total
Acid Number (TAN) was measured according to EN 14104:2003.

2.4. Additives

The additives used in this study were hydrogenated cardanol (HC),
IONOL and N,N’-di-sec-butyl-p-phenylenediamine (PDA). HC (3-penta-
decylphenol), a natural phenolic antioxidant derived from the process-
ing of Cashew Nut Shell Liquid (CNSL), was supplied by Sigma-Aldrich
(technical grade, 90% wt.). A further purification, using a chromato-
graphic column with silica gel (average pore size 60 A (52-73 A),
70-230 mesh) and hexane (99% wt.) as eluent, was carried on to obtain
a powder with purity >99% wt. IONOL is a mixture of phenolic com-
pounds, mainly 2,6-ditert-butylphenol (57.5% wt.), 2,4,6-tris-

tertbutylphenol (18.7% wt.) and other phenolic molecules, supplied
by Sigma-Aldrich (>99% wt.). PDA (98% wt.) was kindly provided by
Chemtura (USA).

2.5. Oxidative stability measurements

The oxidative stability was evaluated using a Rancimat apparatus
(Metrohm, model 873, Switzerland) according to EN 14112. The
effluent air from the sample was bubbled through a vessel containing
deionized water, where the absorption of oxidation volatile products
causes an increase in conductivity. The change in conductivity values
are used to estimate the induction period (IP), which is determined by
the maximum of the second derivative of the curve of conductivity versus
time. The stabilizing factor (SF) is used to report the effectiveness of an
antioxidant in retarding the oxidation of biodiesel and is calculated
using Equation (1) [7,34].

SF = IPpg /1P, 1)

where IPyq is the IP of the biodiesel sample doped with antioxidant, and
IPoyig is the IP of the fresh biodiesel sample (without antioxidant).

2.6. Corrosion tests

The corrosion immersion tests were performed following ASTM
TM0169/G31-12a, at room temperature (=2 30 °C) for 720 h, by im-
mersion of copper coupons (rectangular cubic shape (1.97; 0.91; 0.47
cm)) in both biodiesel samples, with and without additives. The samples
of babassu oil biodiesel (BB) and biodiesel of residual frying oil (BRFO)
were doped with HC, IONOL, and PDA (500 mg/kg, each).

Before use, each copper coupon was polished using silicon carbide
papers, then rinsed in distilled water and degreased with acetone. For
the tests, the coupons were immersed in beakers containing 210 mL of
biodiesel samples. The weight loss of the coupons after the immersion
for 720 h was used to calculate the corrosion rate with Equation (2),
according to Fazal et al. (2018) [2]:

CR = 8.76x10°w/DtA @)

In this equation, CR is the corrosion rate in mils-per-year (mpy); w is
the weight loss of the Cu coupon in kg; D is the density of the copper in
kg/m?>; A is the exposed area of the coupon, in m? and t is the immersion
time in h.

2.7. Gas chromatography

The ester content was measured using gas chromatography (Varian,
GC 450 model, Palo Alto, CA), according to Brazilian method ABNT
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15764. Summary of Test Method: capillary column CP-Wax 52 CB (30 m,
0.25 pm film thickness, 0.32 mm i.d.); injection volumes of 0.5 pL and
1.0 pL; temperatures (injector, oven, and detector) of 250, 170, and
390 °C, respectively; nitrogen flow rate of 28 mL/min and methyl
nonadecanoate (C19:0) as an internal standard.

2.8. Molecular modeling

The structures of the molecules (PDA, IONOL and HC, see Fig. 1)
were optimized at the DFT level, with the functional and basic set M06-
2X / 6-311 + G (d, p), respectively [35]. All quantum calculations were
performed in the Gaussian 09 program package in vacuum at 298.15 K
[36]. All frequencies were checked for the absence of negative vibra-
tional frequencies. The chemical reactivity of the PDA, IONOL and HC
molecules were predicted by the following parameters: HOMO energy,
LUMO energy, energy gap (AE), ionization potential (I), electron affinity
(A), electronical chemical potential (p), electronegativity (x), global
hardness (n), global electrophilicity index (®), electroaccepting "),
electrodonating (@), Net electrophilicity (Aw) (Eqs. (3)-(12)) [37-39].

The transferred electron fraction (AN) between the copper and the
antioxidants molecules were calculated according to Equation (13),
where ycu and ngy are electronegativity and hardness of copper,
respectively, while y¥inn and nign are the corresponding molecular prop-
erties for the antioxidant molecules.

AEg,, = Erumo — Enomo 3)
I = — Enomo )
A= —Emo ®)
I1+A
p="—5- 6)
I1+A
= —p= 72 @
I—A
n=-5- ®)
vz
0= 4n  4n ®
~ (31+A)
T 16(1 — A) (10)
. (1434
T 16(I — A) 1)
Aw=0"—w (12)
AN — Acu — Xinh (13)

B 2('7Cu + ”inh)

To complete the local reactive characterization, the dual descriptor
(Af), (Egs. (14)—(17)) were computed at the same level of theory [40].
The isosurface of the Electronic Fukui functions was computed in the
Multiwfn software and visualized using the VESTA program [41,42].

£ =a(N+1) —qi(N) (14)
fi =a(N)—aq(N —1) (15)
k,,:'h(N+1);f1k(N—l) 16)
Af =fF —f 17)
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Table 1

Physicochemical properties of BB and BRFO.
Property BB* BRFO**  Limits***  Method
Acidity index (mg KOH/g), max 0.20 0.28 0.50 EN 14104
Density, 20 °C (kg/ma) 871 885 850-900 ASTM 4052
Kinematic viscosity, 40 °C (mm2/s) 2.8 4.8 3.0-6.0 EN 3104
Moisture content (mg/kg), max 0.3 0.2 200 EN 12937
Ester content (%), min 98.0 96.6 96.5 EN 14103
Induction period (h), min 4.4 4.1 12 EN 14112

* Babassu biodiesel, ** Biodiesel of Residual Frying Oil, *** RANP 45/2014
[43].

:

BB + HYDROGENATED
CARDANOL BB + IONOL

BB + PDA

(L] BRFO + HYDROGENATED

CARDANOL BRFO + 10NOL

Fig. 2. Photographic images of (A) BB without antioxidants, BB + hydroge-
nated cardanol, BB + IONOL, and BB + PDA; and (B) BRFO without antioxi-
dants, BRFO + hydrogenated cardanol, BRFO + IONOL, and BB + PDA. All
doped samples have the same concentration of antioxidant (500 mg/kg, each).

3. Results and discussion
3.1. Physicochemical properties

The acidity indexes of the oil samples were 0.68 mg KOH/g for
babassu oil and 1.1 mg KOH/g for residual frying oil. The main physi-
cochemical properties of the obtained biodiesel samples (BB and BRFO)
are shown in Table 1, along with the Brazilian specifications [43]. Most
properties met the regulatory limits, except for the kinematic viscosity at
40 °C of BB and the induction period (IP) for both BB and BRFO. It is also
possible to highlight that BB presented a higher ester content, lower
acidity index, and lower kinematic viscosity when compared to BRFO.

3.2. Effect of the additives on oxidative stability of BB and BRFO

The photographic images of fuel samples, including all doped sam-
ples, at 500 mg/kg, are presented in Fig. 2. The effect of the addition of
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[BB: Babassu biodiesel
BRFO: Biodiesel of residual frying oil
o0 >100 Maximum limit

70332024
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Fig. 3. Effect of hydrogenated cardanol (HC), IONOL, and PDA (500 mg/kg,
each) on the oxidative stability of BB and BRFO.

HC, IONOL, and PDA (500 mg/kg, each) on the oxidative stability of
babassu biodiesel (BB) and biodiesel of residual frying oil (BRFO) is
shown in Fig. 3. It was observed that, for the babassu biodiesel, all ad-
ditives promoted increments in the induction period (IP), with PDA
showing the best antioxidant performance. For the biodiesel produced
from residual frying oil, HC acted as a pro-oxidant, its addition reduced
the induction period of BRFO by 17.7% (0.73 h), whereas IONOL and
PDA increased the IP by 80.1% and 175.1%, respectively. In general, it
may seen in Fig. 3 that all additives had better performance when added
to the BB sample than when added to the BRFO sample.

The higher oxidative stability of the BB and the effectiveness of the
additives in this biodiesel might be attributed to the high content of
saturated fatty acids (>85%), especially lauric acid (C12:0), associated
to the presence of a-tocopherol, the predominant natural antioxidant in
the babassu oil [17,44-48]. Since the chemistry of biodiesel depends on
the fatty oil from which it is derived, its stability increases with
increasing content of saturated fatty acid of the feedstock [17]. HC,
IONOL, and PDA increased the induction period of BB by 250% (10.82
h), 1500% (66 h), and >2200% (>100 h), respectively. These results
proved the remarkable potential of PDA, an antioxidant of the class of
secondary amines [43], to improve the oxidative stability of babassu
biodiesel.

The stages involved in an oxidation process are initiation, propaga-
tion, and termination. According to the oxidation stage in which anti-
oxidants act, they might be classified as primary or secondary
antioxidants. Primary antioxidants act as chain breaking, interrupting
the propagation stage of the oxidation through hydrogen atom donation
(O-H or N-H) to free radicals. This group includes HC, IONOL, and PDA.
Secondary antioxidants act on the elimination of free radicals and
decomposition of hydroperoxides, transforming them into stable prod-
ucts [17,49].

The PDA molecule contains two NH groups (see Fig. 1) that may
react with peroxy radicals, while both IONOL and HC have only one OH
group. The number of donating groups influences the antioxidant ac-
tivity. Compounds with two donating groups shall be more effective
than a compound with only one. This characteristic might explain the
better performance of PDA [33].

In contrast, the BRFO sample and its formulations (BRFO + additive)
showed much lower induction periods (none of them reaching the
Brazilian regulatory limit of 12 h), which might be attributed to the
significant presence of free fatty acids. The frying process in cooking oil
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BRFO: Biodiesel of residual frying oil
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Fig. 4. Corrosion rate of copper coupons immersed in BB and BRFO with and
without hydrogenated cardanol, IONOL, and PDA (500 mg/kg, each). All test
samples were maintained at room temperature (2230 °C) for 30 days.

takes place at high temperatures (~160-220 °C), in which natural or
synthetic antioxidants might be degraded. Besides, the factors oxygen,
temperature, and humidity favour the oxidation of the oil contributing
to the break of carbon chains, and increased viscosity, acidity index, and
peroxide value. Also, its direct interaction with food and metals might
further increase the degradation process of the oil that is submitted to
frying [50-52].

The high acidity index of the residual frying oil (1.1 mg KOH/g)
might also have contributed to the low efficiency of the additives with
the BRFO sample, because this index may interfere on the result of
Rancimat, since this method monitors the increase in conductivity of the
deionized water, which absorbs acid compounds [7,46,50-52].

3.3. Corrosion tests

The corrosion rates obtained calculated from the copper coupons
immersed in the babassu biodiesel (BB) and in the biodiesel of residual
frying oil (BRFO), with and without additives (HC, IONOL, and PDA,
500 mg/kg each), are shown in Fig. 4.

It may be seen that the copper coupons immersed in BRFO showed a
higher corrosion rate than those immersed in BB (5.00 and 4.85 mpy,
respectively). It was also observed that all additives reduced the corro-
sion rates of the coupons. In the BB sample, HC, IONOL, and PDA
reduced the corrosion rate by 36% (1.8 mpy), 66% (3.2 mpy), and 87%
(4.2 mpy), respectively. On the other hand, for the BRFO samples, the
addition of HC, IONOL, and PDA reduced the corrosion rate by 6% (0.3
mpy), 40% (2.0 mpy), and 56% (2.8 mpy), respectively. Thus, the
effectiveness of the additives in both biodiesel samples followed the
order: PDA > IONOL > HC.

Amine inhibitors protect against corrosion mainly through adsorp-
tion on the metal surface and nitrogen bonding via pi electrons [53]. The
antioxidant effect of phenolic compounds is related to the electron
donating nature and the steric effect of the substituent, in which the
steric effect prevents the coupling of the phenoxy radicals and increases
the number of peroxyl radicals retained. The electron donor effect may
increase the electron density in the phenol oxygen, resulting in a high
rate of radical retention [54].

According to some authors [2,11], copper acts as a catalyst in
reducing monounsaturated esters when it interacts with biodiesel
forming different acid compounds and short chain molecules. This is due
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Fig. 5. HOMO and LUMO images, and E (gap) of the neutral structures of PDA (A), IONOL (B), and hydrogenated cardanol (C), calculated at the M06-2X/6-311 + G

(d, p) level of theory.

to double bonds of the original fatty acid, which provide reaction sites
for the metal ions. Thus, since BRFO is composed mainly of short and
monounsaturated chains [46,50,55], higher degradation, and conse-
quent corrosivity to copper, can be expected, which is clearly evident
from the higher corrosion rates observed for the samples evaluated using
this biodiesel.

3.4. Modeling results

3.4.1. Global reactivity

The concepts of Koopman’s Theorem are associated with the energy
of the boundary orbitals to describe the chemical reactivity of the
molecule, and it is observed that this is related to the adsorption
experiment of molecules on metallic surface [56,57]. In global chemical

reactivity, electronic affinity is addressed with the LUMO orbital (empty
orbital with less energy). In the ionic potential, it is described as the
energy to remove the electron, in which it can be seen the relationship
with the HOMO orbital, which is the occupied orbital with the highest
energy [37].

The energy needed to excite the electron from the HOMO orbital to
the LUMO orbital is namely, gap energy. Fig. 5 shows the HOMO, LUMO,
and E (gap) of the neutral structures of PDA (A), IONOL (B), and HC (C)
in mediums at M06-2X/6-311 + G (d, p). The PDA obtained the lowest
index of AE = 6.684 eV, which indicates a great advantage in terms of
global reactivity. The IONOL and HC obtained AE = 7.556 eV and AE =
7.698 eV, respectively. The higher electronegativity of HC (y = 3.724
eV) indicates the greatest tendency to attract electrons [39]. In the
electrophilicity, indicates the tendency of molecular stabilization when

Table 2

Quantum reactivity chemical parameters for PDA, IONOL, and HC using the DFT methods M06-2X/6-311 + G (d, p).
Molecule I A n AE 1 ® W+ - Aw AN
PDA 6.564 -0.120 3.342 6.684 3.222 1.553 0.360 3.582 3.942 0.188
IONOL 7.375 -0.182 3.779 7.557 3.597 1.712 0.386 3.982 4.368 0.117
HC 7.573 —0.125 3.849 7.698 3.724 1.802 0.421 4.145 4.565 0.098
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Fig. 6. The isosurface density of the Fukui function from Af for PDA (A), IONOL (B), and hydrogenated cardanol (C).

receiving external electrons [58], with HC showing a higher value of ®
=1.802 eV.

The quantum reactivity chemical parameters for PDA, IONOL, and
HC using the DFT methods M06-2X/6-311 + G (d, p) are shown in In
Table 2. HC obtained the highest @ (1.802 eV), which represents its
susceptibility to accept electrons, and thus, is the best electrophile in
comparison to PDA and IONOL. In contrast, PDA showed the lowest ®
(1.553 eV) being the best nucleophile.

In the AN index, the fraction of electrons transferred to the surface
(Equation (13)) [59], the copper electronegativity can be defined as ycy
= 4.48 eV and the copper hardness as 1¢, = 0 eV/mol. According to
results, PDA presented the higher AN (0.188) being the best electron
donor for the surface compared to the other additives. The data indicate
that due to the global reactivity, the PDA presents the greatest reactivity
in comparison to HC and IONOL.

The molecules were also compared through of the electroaccepting
and electrodonating powers described by the indices o' and @,
respectively. A high value of @' indicates a greater tendency for the
molecule to accept charge, while a lower value of w- indicates a greater
tendency to donate charge [60]. Therefore, HC with a value of 0.421 eV,
showed a better tendency to receive charge, while with a value of 3.582
eV in o, PDA showed to have the best tendency in charge donation.
And to ascertain the liquid electrophilicity, the descriptor Aw was used,
which indicates the general trend between donation and reception of
charge, following Eq. (12), thus indicating that HC has greater liquid
electrophilicity.

3.4.2. Mathematical correlations between quantum descriptors and
experimental data

After obtaining the experimental results (Fig. 4), and data from the
molecular descriptors in Table 2, mathematical correlations between
calculated and experimental data were performed on linear, exponen-
tial, and logarithmic scales, to ascertain what molecular properties of
the additives are related with the corrosion inhibition of the copper. The
R? is the parameter used to ascertain the effectiveness of each
correlation.

For BB, the best correlations were obtained in Net electrophilicity Aw
R = 0.9932), Electrophilicity @ (R? = 0.999), and Electroaccepting @'

(R? = 0.9999). On the other hand, electrophicility descriptor displayed
the best in linear scale, while the others two best descriptors obtained a
better trend in exponential scale. For (BRFO), the best descriptors were
Net electrophilicity Aw(R? = 0.9078), Electrophicility o(R% = 0.9349),
and Electroaccepting @' (R% = 0.9998), where all descriptors obtained
the best trends described in exponential scale (see Supplementary ma-
terial: Fig. S1 and Table S1).

The BB molecules showed the best mathematical correlations be-
tween the quantum descriptors and the corrosion rate when compared to
the trends in BRFO. The data show that corrosion rate has in its nature a
connection with the descriptor @™, following an directly proportional
trend, with a linear scale, in which, the lower the molecule’s charac-
teristic in receiving the charge, the greater its characteristic tendency to
be a good anticorrosive.

For correlations with the induction period, the best trends in BB were
Net Electrophilicity Aw (R = 0.8622), Electrophilicity ®(R? = 0.8951),
Electroaccepting @' (R? = 0.9928). In BRFO, the descriptor Net elec-
trophilicity Aw (R? = 0.9535), Electrophilicity (@, R? = 0.9724) and the
best index, Electroaccepting @™ R? = 0.9968), were obtained (Sup-
plementary material Fig. S2, Table S2, and Table S3). The correlations of
the quantum descriptors in correlation with the induction period ob-
tained a better trend (R?) on a linear scale except for the descriptor "
which obtained the best mathematical correlation on the logarithmic
scale. As well as the correlations of the corrosion rate, the data show that
" follows as the best quantum descriptor, in which there is an inversely
proportional logic, wherein this case on the logarithmic scale. Showing
that the lower your tendency to receive electrons, the better your
characteristic tendency to be a good antioxidant.

3.4.3. Local reactivity

Based on the local Fukui functions, it possible to obtain the nucleo-
philic (f) and electrophilic (") sites indicated in Equations (14) and
(15), respectively (see Supplementary Material: Tables S4, S5, and S6,)
[61]. In the study of the anticorrosive properties of the additives, it was
observed a tendency more nucleophilic, which favors adsorption in the
metal surface due to the donation of electrons to the surface [62].

Using the electronic density difference, based on the ratio of the
variation of the electronic density by the variation of electrons, it can be
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calculated the condensed Fukui function of each molecule, obtaining the
densities Af (Fig. 6). Hirshfeld charges were used for the Fukui index.

Therefore, the Af index was used, which indicates the general trend
between donation (Af < 0) and electron reception (Af > 0) of the atoms.
According to the index Af (see Tables S4, S5, and S6), the atoms 2C, 4C,
and N7 for PDA; 3C, 6C, and O7 for IONOL, and 2C, 4C, and 057 for HC
contribute significantly to the nucleophilic character of these additives
(Fig. 6).

4. Conclusions

Babassu oil and residual frying oil may be used as feasible feed stocks
to produce biodiesel, since most of their physicochemical properties
have complied with the requirements of the Brazilian standard (RANP
45/2014). Additives, initially evaluated as antioxidants, may also be
used to reduce the corrosion rate on copper coupons exposed to babassu
biodiesel and to biodiesel of residual frying oil. All copper coupons
exhibited a high corrosion rate in the absence of the additives. PDA was
the most effective additive, increasing the oxidative stability and miti-
gating the corrosion rate of the coupons for both biodiesel samples.

The presence of IONOL also showed a positive effect in reducing the
corrosion rate and increasing the oxidative stability of the biodiesel
samples. However, HC presented an anti-corrosive effect on the copper
coupons immersed in the BRFO but a pro-oxidant effect reducing the
oxidative stability of this biodiesel. Along with the experimental results,
theoretical data were obtained by DFT. Based on reactivity parameters,
PDA showed the best performance as antioxidant and anti-corrosive,
followed by IONOL and HC. This same trend had been observed in the
experimental studies. These results confirm the bi-functionality of PDA
and IONOL as antioxidants and anticorrosive agents in biodiesel.
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