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A B S T R A C T

This paper deals with the so-called Open Shop Scheduling Problem (OSSP) with makespan objective, which
consists of scheduling a set of jobs that must visit a set of machines in no established order so the maximum
completion time among the jobs is minimized. This problem is known to be NP-hard, and the absence of specific
routes for the processing of the jobs makes its solution space extremely large. In this work we propose several
efficient constructive heuristics that exploit some specific properties of the OSSP. We carry out an extensive
computational experience using problem instances taken from the related literature to assess the performance
of the proposed algorithms as compared to existing ones with respect to the quality of the solutions and
the CPU time required. The extensive computational tests show the excellent performance of the heuristics
proposed, resulting in the best-so-far heuristics for the problem.
1. Introduction

Shop scheduling problems are widely studied optimization problems
because of their many industrial applications. In the last decades,
variants of the flow shop scheduling problem and job shop schedul-
ing problem have received a lot of attention by researchers (see e.g.
Fernandez-Viagas et al., 2017; Fan et al., 2018; Zhang et al., 2019
for recent reviews on permutation flowshop, hybrid flowshop, and job
shop scheduling, respectively). However, this has not been the same for
the Open Shop Scheduling Problem (OSSP), which has received much
less attention (Anand and Panneerselvam, 2016; Adak et al., 2020;
Ahmadian et al., 2021). This problem is first described by Gonzalez
and Sahni (1976), and consists of scheduling a set of jobs on a set of
machines, in which each job operation has an associated processing
time. However, unlike flow shop and job shop scheduling problems, in
the OSSP there are no predefined routes for the jobs in the machines.
The OSSP has several industrial applications such as plastic molding,
chemical processes, oil industry, and food production, while in the
service sector, it is used to model medical care services, vehicle mainte-
nance, telecommunications, and museum visit schedules (Gonzalez and
Sahni, 1976; Lin et al., 2008; Naderi et al., 2010, 2012; Vincent et al.,
2010; de Abreu et al., 2021; Abreu et al., 2021).

When the objective considered is the minimization of the maximum
completion times of the jobs (makespan) and there is only one machine,
the OSSP can be reduced to a single machine problem and every
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schedule is optimal. For the case of two machines, there are poly-
nomial algorithms with optimally proof (Gonzalez and Sahni, 1976;
Pinedo, 2016). However, for problems with three or more machines,
the OSSP with makespan objective is NP-Complete (Garey and Johnson,
2012). Therefore, although some branch-and-bound algorithms have
been proposed for this problem (Bruckner et al., 1997; Guéret and
Prins, 1999; Guéret et al., 2000), exact methods are quite limited for
solving realistic-size problem instances.

In view of the aforementioned hardness of the OSSP with makespan
objective, different approximate algorithms have been proposed. These
can be broadly classified as either constructive heuristics, or local
search/metaheuristic approaches. Regarding constructive heuristics,
several contributions have been presented: Pinedo (2016) proposed
two dispatching rules: Longest Alternate Processing Times (LAPT) and
Longest Total Remaining Processing Times on Other Machines first
(LTRPOM). LAPT schedules first the jobs with the longest processing
time in other machine and the LTRPOM allocates a job first with
the greater sum of processing times in other machine. Liaw (1998)
presented a dispatching rule called Dense Schedule/Longest Total
Remaining Processing (DS/LTRP), which is an improvement of the
LTRPOM applying the well-known label correction algorithm (Skriver
and Andersen, 2000).

Ramudhin and Marier (1996) adapted to the OSSP the shifting
bottleneck procedure heuristic, originally used to solve the job shop
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scheduling problem. The heuristic iteratively attempts to select the
bottleneck job or machine to re-optimize the jobs’ processing sequence.
Strusevich (1998) proposed a greedy heuristic for the open shop, con-
sidering job priorities. The results for the three-machine case showed
that the method obtains solutions with a maximum deviation of 3

2
from the optimal solution. Guéret and Prins (1998) presented two
constructive heuristics, the first based on dispatching rules and the
second based on the construction of matchings in a bipartite graph. Bai
and Tang (2011) proposed a modified rotation scheduling heuristic for
the problem, with relevant theoretical contributions, such as proof of
optimally when the number of jobs tends to infinity.

Regarding the application of local search methods for the OSSP, Co-
lak and Agarwal (2005) proposed a neural network algorithm that uses
ten heuristic rules and local search procedures, González-Rodríguez
et al. (2010) proposed a heuristic local search with neighborhood
procedure based on graph theory to solve OSSP with triangular fuzzy
processing times. Finally, Naderi et al. (2010) presented new efficient
constructive algorithms with a local search that outperforms other
existing algorithms such as LAPT.

For the OSSP it is clear that, since the space of solutions is extremely
large due to the absence of a predefined routing of the jobs, the solution
encoding scheme plays a key role (Ahmadian et al., 2021). Three
different encoding schemes have been used in the literature, i.e.: the
disjunctive graph representation, the rank matrix, and the permutation
list. The disjunctive graph representation can be used exclusively for
the makespan objective, and it was introduced by Liaw in a series
of papers (see Liaw (1999b,a) and Liaw (2000)). The rank matrix
encoding was first proposed by Bräsel et al. (1993), and it consists of a
matrix in a data structure in which each row represents the sequence
of operations for a given job on the machines, and each column
represents the sequence of jobs on each machine. The permutation list
encoding consists of a sequence of the operations (i.e. each tuple job,
machine is given a number so a solution is represented by a sequence).
Clearly, the permutation encoding scheme is much simpler, however
its main disadvantage is its redundancy, as different sequences may
indeed represent the same schedule. Naderi et al. (2010) presented four
theorems to drastically reduce the redundancies in the permutation list
encoding. They also propose four local search algorithms (IRH1, IRH2,
IRH3 and IRH4) using these properties.

With respect to the application of metaheuristics for the OSSP,
the aforementioned references by Liaw presented a tabu search (Liaw,
1999b), a simulated annealing (Liaw, 1999a), and a genetic algorithm
(Liaw, 2000). Prins (2000) proposed a Genetic Algorithm (GA) using
the permutation list encoding with two special features: a population
with individuals with different makespan values and a procedure for re-
ordering the generated chromosomes. This algorithm outperformed the
then-existing heuristics and metaheuristics. Blum (2005) proposed hy-
bridized beam-search algorithm with ACO (Ant Colony Optimization)
using the permutation list encoding. Sha and Hsu (2008) presented a
new Particle Swarm Optimization (PSO) algorithm using the permu-
tation list scheme with an innovative encoding for the particles and a
particle movement based on an insertion operator. Their computational
results include several new best known solutions for the unsolved prob-
lems, and it is shown to outperform the algorithms by Liaw (1999b),
Prins (2000), and Blum (2005).

Also using the permutation list encoding, Ahmadizar and Hossein-
abadi Farahani (2012) proposed a hybrid genetic algorithm with a
local search optimization procedure which outperforms the previously
reported metaheuristics for the OSSP. Ghosn et al. (2016) proposed
a parallel genetic algorithm using deterministic and random moves.
Pongchairerks and Kachitvichyanukul (2016) proposed a two level
PSO that performs very well on the benchmark instances. Finally, an
extended genetic algorithm was proposed by Rahmani Hosseinabadi
et al. (2018) to solve OSSP.

As it can be seen from the above review, there are several meth-
2

ods to provide approximate solutions for the OSSP with makespan
objective. However, we think that there is room for improving the
state-of-the-art of the problem by proposing new efficient constructive
heuristics which incorporate some knowledge of the problem domain.
More specifically, in this paper we first suggest using a look-ahead
mechanism to estimate the contribution to the makespan of a partial
solution in order to discard less-promising solutions, as well as some
reasoning about the machines idle-time between operations. We be-
lieve that the development of efficient constructive heuristics for the
OSSP is important for (at least) two reasons: (1) efficient constructive
heuristics may provide high quality solutions in reduced computation
times, which is required in many manufacturing environments and
that allows to tackle problems of realistic size – particularly for the
OSSP as the space of solutions grows very quickly with the problem
size –, and (2) most metaheuristics and local search techniques use
some constructive heuristic(s) as a starting solution, so designing more
efficient constructive heuristics also boosts the performance of these
procedures. These two aspects will be checked when developing our
proposals. Once these fast constructive heuristics are developed, we
combine them with a beam search algorithm and a cheapest insertion
procedure. Finally, these are embedded in a local search (LS) procedure
which uses the permutation list encoding but takes into consideration
the four redundancy theorems proposed by Naderi et al. (2010) to
overcome the disadvantages of the chosen encoding. All the algorithms
proposed in the paper are compared with the existing constructive
heuristics and local search approaches (i.e. LAPT, LTRPOM, DS/LTRP,
EGA, IRH1, IRH2, IRH3 and IRH4) in an exhaustive computational
experience.

The remainder of this paper is organized as follows: in Section 2,
the scheduling problem treated in this paper is formally stated and
a Mixed-Integer Linear Programming (MILP) model that will be used
to obtain the optimal solutions for small-sized instances is presented.
In Section 3, the proposed algorithms are described; in Section 4, we
discuss some results of the computational experiments and statistical
tests. Finally, in Section 5 we draw some conclusions and suggestions
for future works.

2. Problem statement and MILP model

The problem considers n jobs that must be processed in m machines.
Each job has a processing time on each machine and can visit the
machines in any order. Furthermore, the usual hypotheses in schedul-
ing apply: The processing of operations on the machines occurs at
different times, i.e., a particular job cannot be processed at the same
time on more than one machine. In addition, we deal with the non-
preemptive case of the OSSP, hence the processing of the jobs cannot be
interrupted, i.e., the job once started on a machine, it must be processed
until the end of the task. The objective of the decision problem is to
minimize the maximum completion time among the jobs (makespan).

If we use the permutation list as an encoding scheme (see e.g. Khuri
and Miryala (1999)), a solution of the problem is given by a sequence
𝑠 containing all the operations to be performed in the shop. The
schedule corresponding to solution 𝑠 consist in scheduling operation
𝑘 corresponding to job 𝑗 in machine 𝑖 in order to start as earliest as
possible but not before any previous job in the schedule. A pseudo-code
of this active scheduler decoding scheme is given in Fig. 2.

As an example, we present the classic instance GP03-01 of Guéret
and Prins (1999) in Table 1. The instance has three jobs and three
machines. Using the permutation list encoding, the operations to be
performed in an instance with 3 jobs and 3 machines are presented
in Table 2, Taking into account also the processing times in Table 1, it
can be seen that the sequence 𝑠 = (9, 3, 5, 6, 4, 8, 7, 2, 1) returns a solution
with a makespan of 2064 time units, as shown in Fig. 1.

There are several ways to model the OSSP problem using mathe-
matical programming, being different regarding to the way in which
the decision variables are defined. More specifically, three types of

notations can be used, i.e. positional notation, sequential notation and
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Fig. 1. Gantt chart for the presented solution.
𝐶

𝑌

𝑋

Table 1
Processing times for open shop example.
𝑖∖𝑗 1 2 3

1 661 168 171
2 70 489 505
3 333 343 324

Table 2
Operations for the presented instance.

Operation 1 2 3 4 5 6 7 8 9

Machine 1 1 1 2 2 2 3 3 3
Job 1 2 3 1 2 3 1 2 3

Fig. 2. Active schedule decoding scheme procedure.

time-indexed notation. In the study by Naderi et al. (2011a) it is
illustrated that models with sequential notation perform better in OSSP
problems due to their smaller number of variables and constraints, as
compared to positional and time-indexed notation. Therefore, we have
used the sequential notation in the MILP model developed.

Although MILP models are not efficient to solve medium and large
size instances of many production scheduling problems due to their NP-
hard nature, we find useful to present a MILP model for the problem
with the aim of assessing in Section 4 the quality of the constructive
heuristics proposed for small instances where the optima can be found.
3

To do so, we adapt the formulation proposed by Naderi et al. (2011b)
with sequential notation for the open shop with sequence-dependent
setup times and total completion time minimization. We consider a
dummy job 0 preceding the first job on each machine. Hereafter, the
notation used for the problem is presented.

Indices and sets
𝑗: index for jobs {1,2, . . . , 𝑛}.
𝑘: index for jobs (including the dummy job 0) {0,1,2, . . . , 𝑛}.
𝑖, 𝑙: indices for machines {1,2, . . . , 𝑚}.

Parameters
𝑝𝑗𝑖: processing time of job 𝑗 in machine 𝑖 (operation 𝑂𝑗𝑖).
𝑀 : a large and positive number.

Decision variables
𝐶𝑗𝑖: completion time of job 𝑗 in machine 𝑖.
𝑚𝑎𝑥: makespan

𝑗𝑖𝑘 =

{

1, if operation 𝑂𝑗𝑖 is processed immediately after 𝑂𝑘𝑖

0, otherwise

𝑗𝑖𝑙 =

{

1, if operation 𝑂𝑗𝑖 is processed after 𝑂𝑗𝑙

0, otherwise
The proposed MILP model is as follows.

min𝐶𝑚𝑎𝑥 (1)
subject to

𝑛
∑

𝑘=0,𝑘≠𝑗
𝑌𝑗𝑖𝑘 = 1, ∀𝑗, 𝑖 (2)

𝑛
∑

𝑗=1,𝑗≠𝑘
𝑌𝑗𝑖𝑘 ≤ 1, ∀𝑖, 𝑘 > 0 (3)

𝑛
∑

𝑗=1,𝑗≠𝑘
𝑌𝑗𝑖0 = 1, ∀𝑖 (4)

𝑌𝑗𝑖𝑘 + 𝑌𝑘𝑖𝑗 ≤ 1, ∀𝑖, 𝑗 < 𝑛, 𝑘 > 𝑗 (5)

𝐶𝑗𝑖 ≥ 𝐶𝑘𝑖 + 𝑝𝑗𝑖 − (1 − 𝑌𝑗𝑖𝑘) ×𝑀, ∀𝑗, 𝑖, 𝑘, 𝑘 ≠ 𝑗 (6)

𝐶𝑗𝑖 ≥ 𝐶𝑗𝑙 + 𝑝𝑗𝑖 − (1 −𝑋𝑗𝑖𝑙) ×𝑀, ∀𝑗, 𝑖 < 𝑚, 𝑙 > 𝑖 (7)

𝐶 ≥ 𝐶 + 𝑝 −𝑋 ×𝑀, ∀𝑗, 𝑖 < 𝑚, 𝑙 > 𝑖 (8)
𝑗𝑙 𝑗𝑖 𝑗𝑙 𝑗𝑖𝑙
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𝐶𝑚𝑎𝑥 ≥ 𝐶𝑗𝑖, ∀𝑗, 𝑖 (9)

𝐶0𝑖 = 0, ∀𝑖 (10)

𝐶𝑚𝑎𝑥, 𝐶𝑗𝑖 ≥ 0, ∀𝑗, 𝑖 (11)

𝑌𝑗𝑖𝑘 ∈ {0, 1}, ∀𝑗, 𝑖, 𝑘 ≠ 𝑗 (12)

𝑋𝑗𝑖𝑙 ∈ {0, 1}, ∀𝑗, 𝑖 < 𝑚, 𝑙 > 𝑖 (13)

The objective function (1) is the minimization of the makespan. Set
f constraints (2) ensures that all the jobs are scheduled only once on
ach machine. Set of constraints (3) enforces that each job present at
ost one successor on each machine. Set of constraints (4) guarantees

hat the dummy job is preceding any other job on each machine. Set
f constraints (5) avoids that a given job is simultaneously the prede-
essor and successor of another job. Constraints sets (6), (7), and (8)
uarantee that the jobs are processed in the machines according to the
reviously defined processing times. Set of constraints (9) determines
he makespan (maximum among all completion times). Constraint set
10) determines the completion time of dummy job. Finally, constraint
ets (11), (12), and (13) determine the domain of the decision variables.
he proposed model includes 𝑛2𝑚 binary decision variables, 𝑛 ⋅ 𝑚 + 1

continuous decision variables and 𝑛 ⋅ 𝑚( 12 + 3
2 𝑛 + 𝑚) + 𝑛 constraints.

. Proposed algorithms

This section is devoted to present the new algorithms proposed
or the problem under consideration. More specifically, in Section 3.1
e present three constructive heuristics for the problem using a beam

earch and cheapest insertion procedure, while in Section 3.2 we
resent an efficient local search procedure with reduction of the search
pace which can be initialized with any of the aforementioned con-
tructive heuristics. The constructive heuristics start from the initial
olutions obtained by an adaptation to our problem of the methods
y Abreu et al. (2020) for the problem with setups, and are combined
ith an efficient beam search strategy and cheapest insertion. Beam

earch algorithms have been successfully applied to other scheduling
nvironments (Ruiz and Stützle, 2008; Dong et al., 2008; Kizilay et al.,
019). However, to the best of our knowledge, beam search algorithms
ave not been tested in the open shop environment.

.1. Constructive heuristics

In this section we present six constructive algorithms to solve the
SSP for makespan minimization. These heuristics adapt the algorithms
roposed by Abreu et al. (2020) that presented high-quality results for
he OSSP with sequence-dependent setup times to minimize the total
ompletion time. In Section 3.1.1 we propose the Bounded Insertion
onstructive Heuristic + Beam Search (BICH-BS) algorithm, which uses
projection of the makespan of the complete sequence for each step

f the construction procedure to select the most promising partial se-
uence. The rationale of this heuristics is to reduce the solution search
pace by discarding sequences that would increase the lower bound
nd, consequently, the makespan of the solution in the short term. In
ection 3.1.2 we present Minimal Idleness Heuristic + Beam Search
MIH-BS), a new constructive procedure that takes into consideration
he minimization of the idleness of the machines in the production envi-
onment under study. The rationale of this heuristic is the following: the
nsertion of operations with less (local) idleness provides an increase
n the utilization of the machines and consequently, it can potentially
educe the makespan at the end of the solution. In Section 3.1.3
e propose a method combining the two above-mentioned strategies.
ll these constructive methods presented are embedded in a beam-
earch procedure to explore the potential of using the constructive
euristics as a starting point of a local search procedure. Finally, in
ection 3.1.4 we propose a hybridization of three proposed constructive
euristic by Abreu et al. (2020) with adaptation of cheapest insertion
4

s improvement heuristic for OSSP. 𝑚
.1.1. Bounded Insertion Constructive Heuristic + Beam Search (BICH-BS)
The BICH-BS algorithm that we proposed for the OSSP is the result

f the hybridization of two general approximate procedures (i.e. BICH
nd BS) adapted for the problem under consideration with a new
rocedure for the search space reduction based on the machine released
arlier. We first give a brief description of these procedures and how
hey have been hybridized, and secondly we provide the pseudo-code
ith a detailed explanation.

The BICH procedure was first proposed by Fernandez-Viagas and
raminan (2015) for the permutation flowshop scheduling problem
ith makespan minimization (PFSP) subject to a maximum tardiness,
nd it can be considered a state-of-the-art algorithm for this prob-
em. The BICH algorithm starts with an empty solution, and then,
or each unscheduled operation, an estimation of the lower bound if
he unscheduled operation is inserted is obtained. The operation with
he best expected lower bound is selected and inserted in the current
olution, and the algorithm continues constructing the solution until all
perations have been inserted.

As it can be seen, the main idea of the BICH heuristic is to employ
mechanism to limit the number of solutions to be explored in the

olution space, hence it seems particularly well-suited for combinatorial
ptimization problems with an extremely large number of feasible so-
utions, such as the problem under consideration. An adaptation of the
ICH for the open-shop scheduling problem with sequence-dependent
etups has been proposed by Abreu et al. (2020). Therefore, for our
roblem we propose a procedure that uses this heuristic (where setup
imes are considered to be zero) as initial solution and then the so-
btained solution is improved using a beam search (BS) strategy. The
S is a search algorithm based on nodes search, very similar to Branch
nd Bound, but only the best 𝛽 nodes are selected for expansion, thus
onsuming less computational time as only a subset of nodes from the
et of all possible solutions to the problem are explored (Birgin et al.,
020).

The main elements of both BICH and BS are adapted to our prob-
em. For the BICH, the operation returning the lowest expected lower
ound is selected. For the BS, for each iteration, several operations
re considered to be inserted in the solution. The domain knowledge
f the problem is the insertion of operations based on the expected
ower bound of the problem. This hedge prevents placing operations
n positions that contribute negatively to the expected lower bound.

The lower bound for the open shop required by BICH is calculated
sing the well-known Eq. (14) (Pinedo, 2016):

𝐵 = max

{

max
𝑗∈{1,…,𝑛}

𝑚
∑

𝑖=1
𝑝𝑖𝑗 , max

𝑖∈{1,…,𝑚}

𝑛
∑

𝑗=1
𝑝𝑖𝑗

}

(14)

One can observe that this lower bound can be computed with low
omputational effort. In addition, the computation of the expected
ower bound required for BS can be also performed in a fast manner.
irst, we must calculate the expected contribution to the makespan
𝐸𝑀𝐶) with the addition of the operation of job 𝑗 in machine 𝑘 (𝜋𝑘𝑗)
n a partial solution 𝛱 , using a matrix of processing times 𝑃 where
he processing times of the operations previously inserted in the partial
olution 𝛱 are equal to zero, and also that of the operation 𝜋𝑘𝑗 for the
𝐸𝑀𝐶 calculation (𝑃𝑘𝑗 = 0). Eq. (15) presents 𝐸𝑀𝐶 calculation.

𝑀𝐶(𝜋𝑘𝑗 , 𝑃 ) = max

{

max
𝑙∈{1,…,𝑛}

𝑚
∑

𝑖=1
𝑃𝑖𝑙 , max

𝑖∈{1,…,𝑚}

𝑛
∑

𝑙=1
𝑃𝑖𝑙

}

,with𝑃𝑘𝑗 = 0

(15)

Therefore, using 𝐸𝐶𝑀 , the expected lower bound can be calculated
ith the makespan of the operations presented in the partial solution 𝛱
ith the operation 𝜋𝑘𝑗 , adding in the value of the makespan, the 𝐸𝐶𝑀

onsidering the insertion of the operation 𝜋𝑘𝑗 in the partial solution.
inally, we present the expected lower bound of insertion of operation
𝑘𝑗 in the partial solution 𝛱 in Eq. (16).
𝑎𝑘𝑒𝑠𝑝𝑎𝑛(𝛱 ∪ {𝜋𝑘𝑗}, 𝑝) + 𝐸𝐶𝑀(𝜋𝑘𝑗 , 𝑃 ) (16)
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where 𝛱 is a (partial) sequence of operations, 𝜋𝑘𝑗 is the operation of
job 𝑗 in machine 𝑘, 𝑝 is a default processing time matrix, and 𝑃 is a
processing time matrix with the processing time of the operation 𝜋𝑘𝑗
nd all other allocated in 𝛱 equal to zero. The main feature regarding
he hybridization of BS and BICH is the fact that the best 𝛽 operations
re tested concerning the expected lower bound in each iteration.
owever, in the classic BICH, a single solution is constructed for each

teration through the selection of the best operation; thereby, this
lgorithm does not evaluate solutions with the insertions of different
perations. In contrast, in BICH-BS, the search tree adds the new nodes,
nd in the next iterations, the insertion of 𝛽 operations in each of the
enerated nodes is tested. At the end of the algorithm, the so-built node
ith the lowest makespan is returned.

Note that, since forcing the BICH-BS algorithm to select the best 𝛽
odes from all the existing set may demand a high computational cost,
e propose a new local search mechanism (LS) that performs an initial

ilter. More specifically, the filter chooses only operations that contain
he machine that is released earlier. We considered the operation 𝜋𝑘𝑗 to
alculate the expected lower bound, where 𝑘 is the index of the machine
eleased earlier. In this manner, the search is improved by reducing the
umber of operations whose expected lower bound has to be computed.

The complete pseudo code of the proposed algorithm BICH-BS is
hown in Fig. 3. In the pseudocode, 𝐸𝑀𝐶 is a function that calculates
he expected makespan contribution, with a processing times matrix 𝑃
nd considering the time of candidate operation 𝜋𝑘𝑗 equal to zero so
he time of this operation in the partial lower bound is not considered.
f BICH selects this operation, it is inserted in the solution, and its
rocessing time in the 𝑃 matrix will be equal to zero. Therefore, this
peration will not be considered in the next iterations. Finally, 𝑝 is an
xample of an instance as presented in Table 1. The algorithm returns
sequence of operations 𝛱 ∶= {𝜋11, 𝜋13,… , 𝜋𝑚𝑛} as a solution for the
SSP.

In lines 1–8 of the pseudo-code, the main parameters are initialized,
ncluding the  tree with the starting node with the empty parameters.

is a list of tuples where each tuple represents a node of a partial
olution constructed in each iteration with the insertion of an operation
nto the sequence 𝛱 . 𝑁𝑖 denotes a node of a partial solution with
n index of 𝑖, 𝑧 is a counter for the number of nodes created in
ach iteration of BS, and 𝑁𝑧 is the node of the last partial solution
reated. Line 9 corresponds to the main loop of the algorithm, while
ll operations are not allocated to the last created node, the algorithm’s
teps must be executed. Lines 15–16 select the operations to be tested
or the expected lower bound, consider only the possible operations
o be programmed on the machine released earlier, with jobs still
vailable for programming in this machine.

Lines 17–19 creates the new nodes for each candidate operation to
e inserted into the solution in the current node of the for loop in line
1. The best node operation is inserted in the current node on lines 30–
3. In lines 35–40, the best new nodes found are selected to be added
o the  tree. Line 42 selects the best solution found from all the nodes

that have been created by BICH-BS.

3.1.2. Minimal Idleness Heuristic + Beam Search (MIH-BS)
In this section we propose the MIH-BS algorithm, which is the

esults of hybridizing the MIH heuristic (Abreu et al., 2020) for the
pen-shop problem with setups with the BS strategy. First we describe
he MIH heuristic and then we describe its adaptation and hybridization
ith the BS.

MIH is a heuristic procedure which relies in the idea that classical
ispatching rules for the OSSP are largely based on LPT algorithms
o sort operations in descending order of their processing times. In
iew of the similarities of the open-shop with the parallel machine
nvironment, the allocation of jobs with the longest processing times
sing LPT might be an interesting strategy. However, this may cause a
igh idleness time when applied to the open shop: While in the parallel
5

achine environment this idleness is zero, in the open shop it can
increase the waiting time of a given solution. The idea of the MIH is
that partial solutions with low values of cumulative processing times
would usually present a low makespan in final solution. Therefore,
an indicator for idleness can be calculated by the accumulated times
for jobs and machines in the production system over the execution
of operations in the scheduling sequence. If the cumulative time for
a given job in the system is greater than the accumulated time for a
given machine, it means that the machine will wait until the job is
finished, and consequently, it can be allocated to the current machine.
If the cumulative time of this job is lower than the cumulative time of a
given machine, this job was already processed in another machine and
its processing in the current machine will not result in idleness (Abreu
et al., 2020). 𝛷𝑖𝑗 represents the idleness generated by the allocation of
job 𝑗 to machine 𝑖. 𝑀 and 𝐽 store The cumulative processing times for
each machine and job are stored in 𝑀𝑖 and 𝐽𝑗 respectively, and both
are updated every time a new operation is inserted into the sequence.
Eq. (17) presents the procedure to calculate idleness.

𝛷𝑖𝑗 =

{

𝐽𝑗 −𝑀𝑖, if 𝐽𝑗 > 𝑀𝑖

0, otherwise
(17)

The MIH algorithm starts with an empty solution, and all un-
scheduled operations are inserted and their idleness is computed. The
operation that results in the lowest idleness is inserted, and the algo-
rithm continues constructing the solution until all the operations have
been inserted. In the case of a tie, the decision is arbitrary. When
operations have the same idleness, for tie-breaking, the operation with
the lowest index is selected.

For our problem, the MIH originally proposed for the open-shop
with setups is adapted. The main difference with the BS hybridization
presented before is that the best 𝛽 operations are tested with respect to
their idleness in each iteration. The new nodes are added to the search
tree, and in the next iterations, the insertion of 𝛽 operations in each
of the generated nodes is tested. At the end of the algorithm, the node
with the lowest makespan is returned.

Furthermore, for the MIH-BS algorithm selecting the best 𝛽 nodes
from all the existing sets may demand a high computational cost. To
overcome this problem we suggest the same mechanisms of the BICH-
BS algorithm in Section 3.1.1, i.e. the operations selected to calculate
the expected idleness are only the operations present in the machine
released earlier in order to optimize the search by reducing the number
of operations in which the expected idleness has to be computed.

Fig. 4 shows the complete pseudo code for MIH-BS. In the algorithm,
𝛷𝑖𝑗 the idleness of operation 𝜋𝑖𝑗 , and 𝑝 is a example of instance like
in Table 1. As it can be seen, the structure of the algorithm is similar
to that of BICH-BS. The main differences refer to lines 15–16 (where
the operations to be tested are selected based on the expected idleness,
considering only the possible operations programmed in the machine
released earlier), and line 42 where the best solution found among all
nodes that have been created by MIH-BS is selected.

3.1.3. A combined approach + Beam Search (BICH-MIH-BS)
Framinan and Perez-Gonzalez (2017) present a constructive heuris-

tic in which there is a look-ahead procedure for measure the potential
contribution of the candidate operations to the objective function and
an estimation of the contribution to the objective function of the
non-scheduled operations in the sequence solution. This look-ahead
mechanism is the main feature in our combined approach, taking into
account the makespan lower bound, the machine’s idleness, as well as
the BS scheme.

On the basis of such reasoning, we develop a constructive heuristic
that adapts MIH and BICH taking into consideration the contribution
of an operation for the makespan objective as well as the idleness in-
dicator with a beam-search procedure. We adopt a weight aggregation
function for combining the two objectives, i.e. idleness minimization

and makespan minimization.
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Fig. 3. Pseudocode of the BICH-BS heuristic.
Let 𝛹𝑖𝑗 be a performance indicator for the insertion of the operation
𝑖𝑗 in the permutation, 𝛼 the weight of the expected contribution

for the idleness minimization, 𝛷𝑖𝑗 the expected contribution for the
idleness minimization, 𝑝 is a default processing time matrix, and 𝑃 is

processing time matrix with the processing time of the operation 𝜋𝑖𝑗
nd all other allocated in 𝛱 equal to zero. The performance indicator
𝑖𝑗 can be computed as follows:
6

𝑖𝑗 = (1 − 𝛼) × (𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛(𝛱 ∪ {𝜋𝑖𝑗}, 𝑝) + 𝐸𝑀𝐶(𝜋𝑖𝑗 , 𝑃 )) + 𝛼 ×𝛷𝑖𝑗 (18)
If 𝛼 = 1 the combined approach is equal to MIH and if 𝛼 = 0 the
combined approach is equal to BICH. This heuristic need finding the
best empirical 𝛼 to solve the proposed problem.

As it can be seen, the algorithm is similar to the ones presented
in Sections 3.1.1 and 3.1.2, just changing the selection criteria to
Eq. (18) in order to select the operation to be inserted in the solution.

Therefore, BICH-MIH starts with an empty solution, and all unsched-
uled operations are considered by calculating their hybrid indicator.
The operation resulting in the smallest 𝛹 is inserted, and the algorithm
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Fig. 4. Pseudocode of the MIH-BS heuristic.
m
e

continues the construction of the solution until all the operations have
been inserted.

The main difference with the BS hybridization is that, in each
iteration, the best 𝛽 operations are tested with respect to the hybrid
criterion in Eq. (18). The new nodes are added to the search tree
and, in the next iterations, the insertion of 𝛽 operations in each of the
generated nodes is tested. At the end of the algorithm, the node with
the lowest makespan is returned.

For the MIH-BS algorithm selecting the best 𝛽 nodes from the
7

ntire existing set may require a high computational cost. To overcome a
this problem we use the same mechanisms of the BICH-BS and MIH-
BS algorithms proposed in Sections 3.1.1 and 3.1.2, respectively. The
operations selected to calculate the hybrid indicator 𝛹 are only opera-
tions present in the machine released earlier to optimize the search by
reducing the number of operations to be computed.

Fig. 5 shows the complete pseudo code for BICH-MIH-BS. In the
pseudo code, As discussed previously, 𝐸𝑀𝐶(.) calculates the expected

akespan contribution of instance, 𝛹𝑖𝑗 is the indicator combining the
xpected makespan and the idleness of inserting operation 𝜋𝑖𝑗 , and 𝑝 is

example of instance like in Table 1.
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Fig. 5. Pseudocode of the BICH-MIH-BS heuristic.
The algorithm is similar to BICH-BS and MIH-BS. The main dif-
erences are in lines 15–16, where the operations to be tested is
elected based on the combined indicator of makespan and the expected
dleness, considering only the possible operations to be programmed on
he machine released earlier, with jobs still available for programming
n this machine. Line 42 selects the best solution found among all the
odes that have been created by BICH-MIH-BS.
8

3.1.4. Constructive heuristics with Cheapest Insertion(IST)
The cheapest insertion heuristics is a constructive heuristic used in

many production scheduling problems (see e.g. Wu and Che (2020),
or Rossi and Nagano (2020)). It starts with a pre-established sequence
of operations and it constructs a solution by inserting the unscheduled
operations one by one in an iterative manner. Each operation is inserted
in the position where it obtains the best value of the objective function
(cheapest insertion). IST is a greedy constructive heuristic, being of
simple implementation in the most diverse scheduling problems.
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Here we propose hybridizing the BICH, MIH, and BICH-MIH de-
cribed above with the improvement of the solutions through the IST
euristics, with the calculation of the makespan using a decoding
cheme, explained in Fig. 8.

More specifically, the algorithm starts with a list of operations
orted according to one of the three criteria: BICH, MIH, or BICH-
IH. Then, the operation not yet allocated in the solution, present in

he list of ordered operations, is tested in each possible positions in
he solution. The chosen position is that where the best makespan is
btained. The algorithm finishes when all the operations have been
nserted into the solution.

The complete pseudo-code of the cheapest insertion heuristics
dapted for the OSSP is shown in Fig. 6 where 𝑊 is the list of

operations sorted by some criteria and 𝑝 is a sample instance as in
Table 1. The Algorithm returns a solution 𝛱𝑏𝑒𝑠𝑡 ∶= {𝜋11, 𝜋12,… , 𝜋𝑚𝑛}.

Lines 1–4 set the parameters for the execution of the algorithm.
Line 5 corresponds to the algorithm’s main while loop: while the list of
ordered operations is not empty, the algorithm runs. Lines 6–7 select
the operation to be tested in the current iteration. In lines 8–14, the
operation is tested in all possible positions in the 𝛱 solution. In lines
15–16, the operation is inserted in the best position found.

3.2. Local search

As already mentioned, since the search space of the OSSP is very
large, neighborhood search algorithms play a key role for finding high-
quality solutions, mainly for large-sized instances. The local search ap-
plied is the well-known 2-opt algorithm, with a best improvement strat-
egy. This local search procedure includes the search space reduction
mechanisms based on the theorems proposed by Naderi et al. (2010)
aiming to reduce the movements that generate redundant solutions.

The search consists in the pairwise exchange (swap) of a given
operation and the rest, respecting the redundancy constraints. When
all feasible exchanges are performed, there are two possibilities: (a) if
there is no improvement, the next operation in the sequence is selected;
(b) otherwise, the swap that generates the best makespan is selected.
Thereafter, the search is restarted so the procedure stops when all the
feasible swaps are evaluated.

In Fig. 7 the proposed local search is presented. In this figure,
makespan refers to the objective function, redundancy is a function that
returns whether a swap between two operations is redundant or not
9

based in Naderi et al. theorems (Naderi et al., 2010), 𝛱 is a solution
that will receive a local search and 𝑝 is a example of instance such as
llustrated in Table 1.

The solution decoding used for the algorithms with local search
rocedures is different from the previous one used in constructive algo-
ithms. The main change is the consideration of a non-delay schedule
n makespan calculation, which consists in the minimization of the idle
ime of machines. With this type of decoding, a given machine is not
ept idle if there are still jobs to be processed, thus no machine is kept
dle at a time when it could start processing other operations (Sha and
su, 2008). The decoded solutions with non-delay have an equal or
etter makespan than solutions decoded without non-delay. With non-
elay decoding, multiple permutations get the same makespan value,
hich can reduce the search space of the solutions, improving the ef-

iciency of the local search algorithms (Naderi et al., 2010). Therefore,
his decoding scheme prioritizes the processing of the operations with
he earliest starting time in each iteration of the makespan calculation.
his decoding is not used in the iterations of constructive heuristics due
o its high computational requirements.

This decoding always prioritizes scheduling first the operations with
ower start time 𝑠𝑖𝑗 . Where there is more than one operation with the
ame start time, the operation 𝜋𝑧𝑑 with the earliest relative position is
rioritized. Fig. 8 presents the decoding scheme used in the proposed
ocal search.

. Computational results

The proposed constructive heuristics are evaluated using the lit-
rature test problems proposed by Taillard (1993), Guéret and Prins
1999) and Bruckner et al. (1997), which are the usual testbeds em-
loyed in OSSP. In the test problems by Guéret and Prins a fixed
nterval for the processing times is considered, with random values
niformly distributed between 1 and 1000, and a constant value for the
ower bound equal to 1000. Different problem sizes are considered with
, 𝑚 ∈ {3, 4, 5, 6, 7, 8, 9, 10}. For each class we have randomly generated
0 test instances, totaling 80 instances. Brucker et al. test problems are
enerated with random values between 1 and 500 uniformly distributed
nd 6 sets of problem sizes 𝑛, 𝑚 ∈ {3, 4, 5, 6, 7, 8}, totaling 60 instances.
aillard test problems were generated with random values uniformly
istributed between 1 and 100, without a lower bound constraint.
roblem classes were considered according to the combination of the 6
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Fig. 7. Local search with reduction of search space.
Fig. 8. Non-delay schedule decoding scheme procedure.
sets of problem size 𝑛, 𝑚 ∈ {4, 5, 7, 10, 15, 20}. For each size, 10 instances
are randomly generated, totaling 60 instances. The complete instances
set has 192 instances.

The above mentioned algorithms were implemented in the Intel®
Distribution for Python* integrated development environment https:
//software.intel.com/content/www/us/en/develop/tools/distribution-
10
for-python.html and were run in C with Cython library http://cython.
org/ (Behnel et al., 2011). The computational experience was per-
formed on a PC with Intel Core i7-4771 CPU 3.50 GHz and 12 GB
memory. The results of all computational tests and statistical analyzes
are available in https://bit.ly/34OUhVg.

https://software.intel.com/content/www/us/en/develop/tools/distribution-for-python.html
https://software.intel.com/content/www/us/en/develop/tools/distribution-for-python.html
https://software.intel.com/content/www/us/en/develop/tools/distribution-for-python.html
https://software.intel.com/content/www/us/en/develop/tools/distribution-for-python.html
https://software.intel.com/content/www/us/en/develop/tools/distribution-for-python.html
http://cython.org/
http://cython.org/
http://cython.org/
https://bit.ly/34OUhVg
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Fig. 9. Benchmark of constructive heuristics for each set of instances proposed by Guéret and Prins (1999).
Fig. 10. Benchmark of constructive heuristics for each set of instances proposed by Taillard (1993).
The parameter 𝛼 of the proposed algorithm was tuned after several
imulations. For each instance size, a value of 𝛼 contained in the set
𝐴 = {0.00,0.11,0.22,0.33,0.44,0.56,0.67,0.78,0.89,1.00} was tested.
The best 𝛼 values for BICH-MIH are presented in the Table 3 for each
problem size. In the small-sized instances, the 𝛼 value is close to 1
and the combined constructive heuristic allocates operations prevailing
the reduction of idleness. In the large-sized instances, the 𝛼 value is
close to 0 and the constructive heuristic allocates operations prevailing
bounded insertion. The parameter 𝛽 is set as 𝛽 = 4 after preliminary cal-
ibration experiments with 𝛽 = {1, 2,…10}, since this value was found to
11
Table 3
The 𝛼 values used for constructive heuristics BICH-MIH in each problem size.

Problem size 3 4 5 6 7 8 9 10 15 20

𝛼 0.89 0.89 0.56 0.11 0.22 0.22 0.67 0.67 0.89 0.22

be a good trade-off between solution quality and computational times
in all problem sizes tested.

The statistic used in the analysis of the computational experiments is
the gap between the evaluated method (sol ) and best known solution
ik
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Fig. 11. Benchmark of constructive heuristics for each set of instances proposed by Bruckner et al. (1997).
Fig. 12. Boxplot and Tukey HSD groups at the 95% confidence level for the constructive heuristics in all sets of instances.
𝐵𝐾𝑆𝑖), as presented in Eq. (19). The value 𝑠𝑜𝑙𝑖𝑘 meaning the solution
obtained by method 𝑘 run on instance 𝑖, and 𝐵𝐾𝑆𝑖 denotes the best
known solution for instance 𝑖.

𝑅𝑃𝐷𝑖𝑘 =
𝑠𝑜𝑙𝑖𝑘 − 𝐵𝐾𝑆𝑖

𝐵𝐾𝑆𝑖
⋅ 100 (19)

4.1. Computational results for constructive heuristics

Initially, we consider in our analysis constructive algorithms for
the OSSP. The considered algorithms are listed below. All constructive
12
algorithms used the decoding scheme procedure for the computation of
the makespan of the final solution.

• Longest Processing Time (LPT): sort operations in decreasing
order of their processing times

• Shortest Processing Time (SPT): sort operations in non-decreasing
order of their processing times.

• Longest Alternate Processing Times (LAPT): The priority rule
developed by Pinedo (2016) for the OSSP.
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Fig. 13. Dependence between solution time and problem size for the constructive heuristics.
Fig. 14. Average computation times for the constructive heuristics.
• Longest total processing time (LTPT): a variant of the LAPT rule
proposed by Naderi et al. (2010).

• Longest Total Remaining Processing Times on Other Machines
first (LTRPOM): a priority rule developed by Pinedo (2016). It
is a more general rule than LAPT.

• Dense Scheduling/Longest Total Remaining Processing (DS/
LTRP) developed by Liaw (1998).

• Dense Scheduling/Longest Total Remaining Processing Time (DS/
LTRPAM) developed by Colak and Agarwal (2005).

• Modified Rotation Scheduling (MRS) a constructive heuristic de-
veloped by Bai and Tang (2011).

• Cheap Insertion Heuristic with LPT initial solution (ISTH) adapted
for OSSP.

• Bounded Insertion Constructive Heuristic (BICH) developed by
Abreu et al. (2020).

• Minimal Idleness Heuristic (MIH) developed by Abreu et al.
13

(2020).
• Combined algorithm approach (BICH-MIH) developed by
Abreu et al. (2020).

• Bounded Insertion Constructive Heuristic with Beam Search pro-
cedure (BICH-BS).

• Minimal Idleness Heuristic with Beam Search procedure (MIH-
BS).

• Combined algorithm with Beam Search procedure (BICH-MIH-
BS).

• Bounded Insertion Constructive Heuristic with Cheap Insertion
procedure (BICH-IST).

• Minimal Idleness Heuristic with Cheap Insertion procedure (MIH-
IST).

• Combined algorithm with Cheap Insertion procedure (BICH-MIH-
IST).

For comparison purposes, we are also considering the results of the
MILP model expressed by Eqs. (1)–(13), which was modeled and run

on IBM ILOG CPLEX version 12.7, with 3600 s of time limit.
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Fig. 15. Pareto chart for average computational times and ARPD of proposed constructive heuristics.
Fig. 16. Benchmark of constructive heuristics with local search for each set of instances proposed by Guéret and Prins (1999).
A summary of the computational results is presented in Table 4. It
can be highlighted that the computational times for the constructive
heuristics (without the BS or IST procedure) are negligible (less than
1 s). The results of Average RPD (ARPD) in each set of instance of
Guéret and Prins, Taillard and Brucker are presented in Figs. 9–11
respectively.

In order to validate the results, it is important to verify whether
the previous differences in the RPD values are statistically significant.
We apply an analysis of variance (ANOVA) (Montgomery, 2017). The
𝑝-value is very close to zero. We can see in Fig. 12 the ARPD boxplot
for all constructive heuristics tested with HSD Tukey group (𝛼 = 0.05)
14
of the similar mean result. We can see that there are statistically
significant differences between the ARPD values among the construc-
tive heuristics proposed. The combined approach with IST and the
constructive heuristics with BS gets the best results.

According to the results for the 80 Guéret and Prins test problems,
the following comments can be highlighted. The MILP model returns
the best solutions for small and medium sizes classes of instances
and BICH-MIH-BS returns the best solutions for large instances sizes
with 9 and 10 problems size. The LPT and SPT rules are the worst
algorithms for the instances analyzed. ISTH outperforms BICH-IST and
MIH-IST, showing that the LPT initial sequence gives better results, but
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Fig. 17. Benchmark of constructive heuristics with local search for each set of instances proposed by Taillard (1993).
Fig. 18. Benchmark of constructive heuristics with local search for each set of instances proposed by Bruckner et al. (1997).
BICH-MIH-IST gets better results than ISTH. Therefore, the combined
approach as the initial sequence indicates an improvement in the
construction procedure of IST. The BS algorithms give the best results
with ARPD less than 2%. Considering only the constructive heuristics,
the proposed BICH-MIH-BS algorithm presented the best average results
for all the eight classes of instances.

With regard the results for the 60 Taillard test problems, the fol-
lowing comments can be made. The MILP model returns the best
average results only for the 4, 5 and 7 problems sizes. In general,
the LTPT, BICH and SPT rules are the worst algorithms for this set of
problems. For large problems size, the MILP model returns the worst
results. The behavior of all other constructive heuristics is similar to
the results for the Guéret and Prins test problems. The combined BICH-
MIH-BS presents the best results for the largest instances (tai_10 × 10,
tai_15 × 15 and tai_20 × 20).

With respect to the results for the 80 Brucker et al. test problems,
the following comments can be done. The MILP model finds the optimal
solution within the time limit for the test instances with 4, 5, and 7 jobs.
15
However, for instances with size 8 the MILP model returns solutions
of average quality within the allowed time limit. The LTPT presents
the worst results compared to all others methods. Considering only the
constructive heuristics, the proposed BICH-MIH-BS algorithm presents
the best average results for all the eight classes of instances. For largest
instances, (size 8) the BICH-MIH-BS presents the best results.

Taking into consideration the three sets of instances, the proposed
approach BICH-MIH-BS presents the lower ARPD for all the analyzed
constructive heuristics as well as lower than the MILP model within
the time limit. With respect to the ARPD, the difference among BICH-
MIH-BS and MILP methods is significant because they are clustered
in different groups (with h and fg letters, respectively). Also, they
are represented in different color groups that indicate groups with
different ARPD. Therefore, the BICH-MIH-BS outperforms MILP (within
the given time limit) in terms of ARPD.

Regarding computational times, Table 5 shows the average compu-
tational times of constructive heuristics in each set of instances.
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Fig. 19. Boxplot and Tukey HSD groups at the 95% confidence level for the constructive heuristics with local search in all sets of instances.
Fig. 20. Dependence between solution time and problem size for the constructive heuristics with local search.
Fig. 13 illustrates the dependence between solution time and prob-
em size for the constructive heuristics. This figure presents the average
omputational for each evaluated solution procedure for each size of
nstance. In the smaller test instances we have 3 machines and 3 jobs
9 operations), and in the larger test instances we have 20 machines
nd 20 jobs (400 operations).

We can observe that the computation time increases exponentially
hen the number of machines and jobs is greater than 10. This trend

s even more evident for the solution procedures based on IST and
S. For instance sizes with 15 or more machines and jobs, the IST-
ased algorithms present smaller computation times than the BS-based
lgorithms. Thus, the IST-based algorithms still are competitive with
omputation times less than 1700 s. The increase of the problem size
16
does not imply a substantial augment in the computation times for the
IST and BS algorithms.

Fig. 14 illustrates the average computation times with a 95% con-
fidence interval for each constructive heuristic. For the test instances
with less than 5 machines and jobs, the BS-based algorithms have
lower computation times than the IST-based algorithms. Concerning
larger instance sizes, IST-based algorithms present lower computation
times than the BS-based algorithms. We can observe that this trend
becomes more evident with the increase of instance sizes. In summary,
we can conclude that the constructive heuristics based on IST and BS
algorithms can treat problems presenting less than 15 machines and

jobs with adequate computation times (approximately 10 min).
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Fig. 21. Average computation times for the constructive heuristics with local search.
Fig. 22. Pareto chart for average computational times and ARPD of proposed constructive heuristics with local search.
The Pareto Chart of average computational times and ARPD of our
roposed methods is presented in Fig. 15. As it can be seen, the pro-
osed IST approach presents a better combination of solution quality
nd computational efficiency. The constructive heuristics proposed by
breu et al. (2020) present the best computation times, while the
ybridization of BICH-MIH with BS proposed in this paper gives the
est ARPD results.

The hybridization of the heuristics with BS and IST procedure
utperforms the BICH and MIH algorithms, being the differences statis-
ically significant as they are in different groups in Fig. 12. Therefore,
17

he BICH-MIH-BS turns out to be the best constructive heuristic for the
OSSP with a good trade-off between solution quality and computational
times.

4.2. Computational results for local search heuristics

In this section, we evaluate the performance of the following lo-
cal search/metaheuristic algorithms (in addition, the MILP model is
considered for comparison purposes):

• Insertion and Reinsertion Heuristic 1–4 (IRH1 to IRH4): local

search algorithms proposed by Naderi et al. (2010).
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Table 4
Results of constructive heuristics and mixed integer programming for each set of instances.

Benchmark MILP LPT SPT LAPT LTPT LTRPOM DS/LTRP DS/LTRPAM MRS ISTH BICH MIH BICH-MIH BICH-BS MIH-BS BICH-MIH-BS BICH-IST MIH-IST BICH-MIH-IST

Guéret and Prins
GP-03 0.00 0.45 14.30 8.77 17.60 7.29 14.30 7.29 7.29 0.00 12.95 7.29 7.02 0.00 0.00 0.00 0.00 0.00 0.00
GP-04 0.00 24.54 5.24 1.67 1.54 9.35 1.54 9.35 9.35 0.20 4.51 9.35 2.25 0.20 0.23 0.17 0.93 1.56 0.35
GP-05 0.00 25.99 5.84 7.24 27.66 7.91 7.27 7.91 7.65 1.26 7.20 7.91 2.39 1.12 0.76 0.71 4.63 2.73 1.68
GP-06 0.00 26.58 10.04 3.16 27.64 10.44 4.52 8.24 4.89 0.67 7.51 7.77 2.72 0.43 0.48 0.27 2.76 1.36 0.71
GP-07 0.09 26.71 12.46 9.42 31.43 12.48 14.03 11.45 10.80 2.30 11.09 11.51 4.83 1.46 1.35 0.85 5.25 5.43 0.92
GP-08 2.29 27.65 16.64 15.09 34.31 16.39 17.90 17.06 14.53 4.16 15.09 17.04 11.01 3.50 3.19 2.56 6.87 7.36 3.66
GP-09 4.40 28.43 14.12 17.76 37.38 14.44 18.53 13.41 12.05 5.10 17.96 14.54 11.00 4.03 3.85 2.77 9.09 6.90 4.26
GP-10 8.90 25.30 16.92 16.62 38.35 16.43 22.95 18.22 15.36 5.82 17.68 18.19 14.06 5.09 5.52 3.77 8.55 10.36 5.68

Taillard
tai_4 × 4 0.00 10.47 15.37 10.27 27.87 10.78 10.74 9.76 10.00 4.65 14.92 12.86 7.45 3.08 2.26 2.22 5.80 5.68 4.22
tai_5 × 5 0.00 14.93 14.07 14.42 27.91 15.12 19.37 16.79 10.05 7.41 16.06 14.31 10.42 3.38 3.30 3.01 8.33 9.89 6.06
tai_7 × 7 1.28 10.98 11.94 10.26 22.46 11.94 15.05 11.37 11.03 7.46 13.18 11.86 6.80 2.81 3.03 1.86 6.46 7.81 4.06
tai_10 × 10 3.44 7.06 8.95 8.77 14.02 7.01 17.24 6.34 7.12 5.14 9.17 6.96 5.48 1.48 1.01 0.74 5.27 4.74 2.63
tai_15 × 15 17.10 4.03 4.00 3.96 – 5.37 – 5.60 4.05 2.17 6.99 6.13 3.28 0.77 0.68 0.33 2.59 2.36 1.39
tai_20 × 20 38.25 1.99 3.52 4.19 8.11 2.77 18.15 1.98 2.83 1.67 4.06 3.86 1.57 0.53 0.44 0.22 1.51 2.05 0.61

Brucker
j3 0.00 5.80 15.77 13.93 17.05 15.68 15.68 7.66 5.75 3.56 19.10 10.94 4.01 2.63 2.63 2.63 12.10 6.81 4.12
j4 0.00 10.89 10.99 12.10 18.16 10.36 9.36 7.96 8.82 5.47 8.78 11.28 4.62 2.43 2.41 2.20 4.55 7.18 3.68
j5 0.00 14.19 14.57 16.52 28.31 16.24 13.64 13.86 9.31 5.36 17.23 13.87 8.28 1.86 3.16 1.86 10.33 8.53 5.91
j6 0.00 12.94 13.60 14.20 22.72 13.23 17.93 11.73 10.82 6.98 19.89 14.98 8.98 4.62 3.80 2.89 14.63 9.74 4.74
j7 2.92 10.13 13.56 13.56 35.51 15.26 14.79 15.09 10.20 8.69 14.42 17.37 12.68 4.07 5.06 3.91 12.25 9.31 5.72
j8 7.09 14.92 14.60 12.22 32.01 14.01 17.07 12.89 9.34 7.14 13.70 12.28 11.09 4.59 4.90 4.07 8.88 10.02 6.03

Min 0.00 0.45 3.52 1.67 1.54 2.77 1.54 1.98 2.83 0.00 4.06 3.86 1.57 0.00 0.00 0.00 0.00 0.00 0.00
Average 4.29 15.20 11.83 10.71 24.74 11.62 14.21 10.70 9.06 4.26 12.57 11.51 7.00 2.40 2.40 1.85 6.54 5.99 3.32
Max 38.25 28.43 16.92 17.76 38.35 16.43 22.95 18.22 15.36 8.69 19.89 18.19 14.06 5.09 5.52 4.07 14.63 10.36 6.06
Table 5
Computational times of constructive heuristics for each set of instances.

Benchmark LPT SPT LAPT LTPT LTRPOM DS/LTRP DS/LTRPAM MRS ISTH BICH MIH BICH-MIH BICH-BS MIH-BS BICH-MIH-BS BICH-IST MIH-IST BICH-MIH-IST

Guéret and Prins
GP-03 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 0.07 0.04 0.04 0.02 0.02 0.02
GP-04 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 0.64 0.64 0.58 0.07 0.06 0.05
GP-05 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 7.85 7.81 6.95 0.16 0.15 0.14
GP-06 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 52.39 52.75 46.96 0.45 0.44 0.44
GP-07 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 318.57 314.98 290.10 1.27 1.27 1.26
GP-08 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 598.94 597.44 528.89 3.67 3.44 3.25
GP-09 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 868.45 871.00 829.78 7.88 7.71 7.12
GP-10 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 1284.96 1324.42 1127.94 17.33 17.39 16.28

Taillard
tai_4 × 4 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 0.62 0.61 0.57 0.04 0.04 0.04
tai_5 × 5 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 7.85 7.81 7.18 0.16 0.16 0.15
tai_7 × 7 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 294.73 300.38 273.18 1.35 1.27 1.25
tai_10 × 10 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 1111.83 1132.63 1002.33 18.24 17.97 16.59
tai_15 × 15 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 1504.02 1511.32 1422.52 388.13 380.79 349.85
tai_20 × 20 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 1933.77 1951.65 1852.64 1234.93 1222.78 1170.42

Brucker
j3 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 0.05 0.04 0.04 0.01 0.01 0.01
j4 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 0.67 0.67 0.60 0.04 0.04 0.04
j5 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 8.35 8.21 7.71 0.14 0.14 0.14
j6 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 51.52 54.03 46.94 0.44 0.44 0.44
j7 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 297.71 302.14 273.28 1.26 1.26 1.25
j8 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 545.49 560.42 483.02 3.27 3.27 3.25

Min <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 0.05 0.04 0.04 0.01 0.01 0.01
Average <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 444.42 449.95 410.06 83.94 82.93 78.60
Max <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 1933.77 1951.65 1852.64 1234.93 1222.78 1170.42
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• Bounded Insertion Constructive Heuristic followed by local search
(BICH-LS).

• Minimal Insertion Heuristic followed by local search (MIH-LS).
• Combined algorithm followed by local search (BICH-MIH-LS).
• Bounded Insertion Constructive Heuristic with Beam Search pro-

cedure followed by local search (BICH-BS-LS).
• Minimal Idleness Heuristic with Beam Search procedure followed

by local search (MIH-BS-LS).
• Combined algorithm with Beam Search procedure followed by

local search (BICH-MIH-BS-LS).
• Bounded Insertion Constructive Heuristic with Cheap Insertion

procedure followed by local search (BICH-IST-LS).
• Minimal Idleness Heuristic with Cheap Insertion procedure fol-

lowed by local search (MIH-IST-LS).
• Combined algorithm with Cheap Insertion procedure followed by

local search (BICH-MIH-IST-LS).
• The genetic algorithm EGA proposed by Rahmani Hosseinabadi

et al. (2018).

A summary of the computational results is presented in Table 6. The
esults for the test instances of Guéret and Prins, Taillard and Brucker
re presented in Figs. 16–18 respectively.

In order to validate the results, as in the previous experiments, an
NOVA is applied in order to verify if the observed differences in the
esults of the local search algorithms are statistically significant. The
18

-value is very close to zero. We can see in Fig. 19 the ARPD boxplot t
or all constructive heuristics with local search tested with HSD Tukey
roup (𝛼 = 0.05) of the similar mean result. We can see that there are
tatistically significant differences between the ARPD values among the
ocal search algorithms tested. The combined approach with IST and
he constructive heuristics with BS gets the best results with medians
ery close to zero.

According to the results obtained for the eighty Guéret and Prins
est problems, the following comments can be highlighted: The MILP re-
urns the best solutions for small and medium sizes classes of instances
nd BICH-MIH-BS-LS returns the best solutions for large instances sizes
ith 8, 9 and 10 problems size. The IR1 method is the worst algorithm

or the analyzed instances. The methods with beam search procedure
utperforms BICH-LS, MIH-LS and BICH-MIH-LS, showing that the new
pproach to construct solutions gives better results. The BS algorithms
ive the best results with ARPD less than 1%. Considering only the
onstructive heuristics with local search, the proposed BICH-MIH-BS-
S algorithm presented the best average results for all the eight classes
f instances.

With respect to the results for the sixty Taillard test problems, the
ollowing comments can be made. The MILP model returns the best
verage results only for the 4 and 5 problems sizes. In general, the IR1,
R2 and EGA are the worst algorithms for this set of problems. For large
roblems size, the MILP model returns the worst results. The behavior
f all other constructive heuristics with local search is similar to the
esults for the Guéret and Prins test problems. The combined BICH-
IH-BS-LS presented the best results for the largest instances (tai_7 × 7,

ai_10 × 10, tai_15 × 15 and tai_20 × 20).
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Table 6
Results of constructive heuristics with local search, meta heuristics and mixed integer programming for each set of instances.

Benchmark MILP IRH1 IRH2 IRH 3 IRH 4 EGA BICH-LS MIH-LS BICH-MIH-LS BICH-BS-LS MIH-BS-LS BICH-MIH-BS-LS BICH-IST-LS MIH-IST-LS BICH-MIH-IST-LS

Guéret and Prins
GP-03 0.00 0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GP-04 0.00 1.54 0.17 0.17 0.17 0.10 0.24 0.16 0.16 0.16 0.16 0.16 0.20 0.24 0.17
GP-05 0.00 1.28 1.22 0.65 0.60 0.10 0.89 1.35 0.63 0.53 0.53 0.53 0.87 1.30 0.54
GP-06 0.00 3.20 0.67 0.52 0.45 0.09 0.50 0.47 0.28 0.21 0.21 0.21 0.62 0.44 0.31
GP-07 0.09 6.13 2.37 0.92 0.81 0.96 1.24 1.42 0.47 0.19 0.20 0.19 1.60 1.67 0.42
GP-08 2.29 9.46 3.97 2.81 2.26 4.39 2.36 3.52 1.85 1.16 1.17 1.15 3.66 2.95 1.76
GP-09 4.40 12.11 4.60 3.76 2.54 6.52 3.67 3.61 1.86 1.13 1.12 1.03 3.38 3.35 1.92
GP-10 8.90 11.71 5.64 4.48 4.31 14.51 4.50 5.41 2.68 1.35 1.44 1.12 4.66 4.82 3.07

Taillard
tai_4 × 4 0.00 6.68 4.65 3.43 3.67 0.70 6.08 2.84 2.12 2.09 2.09 2.09 3.08 2.84 2.52
tai_5 × 5 0.00 9.11 8.52 5.42 4.24 1.30 3.89 4.24 2.38 1.94 1.94 1.94 3.14 4.43 2.38
tai_7 × 7 1.28 8.07 6.43 3.02 4.12 3.98 3.04 3.52 1.63 0.43 0.47 0.27 3.05 2.50 1.56
tai_10 × 10 3.44 7.89 4.92 1.67 1.96 5.00 1.56 1.93 0.95 0.25 0.16 0.02 1.08 1.49 0.41
tai_15 × 15 17.10 – – – – 7.59 0.67 0.42 0.21 0.25 0.28 0.09 0.26 0.28 0.09
tai_20 × 20 38.25 6.06 1.40 0.39 0.80 13.57 0.35 0.32 0.10 0.10 0.08 0.02 0.10 0.08 0.02

Brucker
j3 0.00 0.80 3.56 3.56 3.56 0.01 15.92 4.73 2.62 2.50 1.89 0.88 8.95 4.73 2.62
j4 0.00 3.92 5.47 3.06 2.65 0.00 3.09 2.54 2.01 1.82 1.82 1.82 2.94 1.99 1.82
j5 0.00 9.00 3.37 2.17 4.44 1.14 5.10 4.03 2.09 1.27 1.27 1.27 4.76 3.71 2.36
j6 0.00 10.00 6.05 3.40 3.21 4.56 8.99 5.38 2.74 3.87 1.41 1.39 8.88 6.22 2.04
j7 2.92 12.40 7.78 3.83 4.58 6.87 7.19 5.80 3.55 3.71 2.09 1.95 6.01 5.39 3.02
j8 7.09 12.27 7.16 5.31 5.10 8.97 6.11 5.85 4.19 2.63 2.04 1.83 5.11 5.02 3.37

Min 0.00 0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Average 4.29 6.94 4.10 2.56 2.60 4.02 3.77 2.88 1.63 1.28 1.02 0.90 3.12 2.67 1.52
Max 38.25 12.40 8.52 5.42 5.10 14.51 15.92 5.85 4.19 3.87 2.09 2.09 8.95 6.22 3.37
Table 7
Computational times of constructive heuristics with local search and meta heuristics for each set of instances.

Benchmark IRH1 IRH2 IRH 3 IRH 4 EGA BICH-LS MIH-LS BICH-MIH-LS BICH-BS-LS MIH-BS-LS BICH-MIH-BS-LS BICH-IST-LS MIH-IST-LS BICH-MIH-IST-LS

Guéret and Prins
GP-03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.08 0.07 0.02 0.02 1.64
GP-04 0.00 0.00 0.01 0.01 36.76 0.01 0.01 0.01 1.21 1.22 1.11 0.09 0.09 1.47
GP-05 0.00 0.01 0.03 0.05 108.36 0.04 0.03 0.04 15.06 14.87 13.07 0.55 0.49 1.27
GP-06 0.00 0.02 0.11 0.15 134.51 0.15 0.12 0.16 99.52 99.49 89.42 1.06 1.14 1.73
GP-07 0.01 0.06 0.37 0.47 196.41 0.43 0.38 0.46 607.42 599.72 556.41 3.15 3.16 3.86
GP-08 0.02 0.15 1.14 1.20 300.01 1.17 1.02 1.24 1140.86 1139.38 1005.18 6.20 6.37 6.85
GP-09 0.03 0.35 2.77 2.72 300.01 2.41 2.92 2.72 1655.42 1669.84 1560.10 15.75 18.35 17.42
GP-10 0.05 0.66 4.19 5.43 300.01 4.61 4.82 5.54 2439.32 2507.13 2139.55 39.68 39.62 40.19

Taillard
tai_4 × 4 0.00 0.00 0.01 0.01 192.29 0.01 0.01 0.01 1.18 1.16 1.08 0.07 0.06 1.40
tai_5 × 5 0.00 0.01 0.04 0.05 254.16 0.04 0.04 0.04 14.99 14.73 13.81 0.26 0.23 1.51
tai_7 × 7 0.01 0.06 0.39 0.49 300.01 0.32 0.38 0.37 563.31 572.50 517.97 2.16 2.56 3.09
tai_10 × 10 0.05 0.68 4.47 5.54 300.01 4.59 3.90 5.26 2140.05 2146.40 1885.65 37.98 37.17 38.15
tai_15 × 15 – – – – 300.03 73.27 66.62 81.98 2849.63 2880.84 2702.72 706.82 739.87 702.76
tai_20 × 20 1.18 79.46 517.91 707.79 300.06 449.55 378.03 395.84 3660.44 3755.26 3506.56 3731.02 3619.92 3616.29

Brucker
j3 0.00 0.00 0.00 0.00 37.50 0.00 0.00 0.00 0.10 0.08 0.07 0.02 0.02 1.39
j4 0.00 0.00 0.01 0.01 67.73 0.01 0.01 0.01 1.27 1.26 1.15 0.09 0.08 1.54
j5 0.00 0.01 0.04 0.05 222.09 0.04 0.03 0.04 15.85 15.73 14.60 0.35 0.34 1.58
j6 0.01 0.02 0.13 0.16 300.00 0.16 0.13 0.18 97.82 101.85 89.28 1.31 0.96 1.97
j7 0.01 0.06 0.37 0.46 300.01 0.37 0.33 0.47 569.31 571.65 516.13 2.85 2.95 3.66
j8 0.02 0.15 0.94 1.10 300.01 0.85 0.82 1.06 1031.35 1060.00 904.93 7.31 8.19 8.52

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.08 0.07 0.02 0.02 1.27
Average 0.08 4.63 30.46 41.08 212.50 26.90 22.98 24.77 845.21 857.66 775.94 227.84 224.08 222.81
Max 1.18 79.46 517.91 707.79 300.06 449.55 378.03 395.84 3660.44 3755.26 3506.56 3731.02 3619.92 3616.29
For the Guéret and Prins instances, as well as for the Taillard
nstances, the proposed algorithms with beam search and cheapest
nsertion procedure present better results than IRx and EGA. In general,
he MILP method obtains the better results for the small-sized instances
nd the BICH-MIH-BS-LS present the best results for the large-sized
nstances.

Finally, for the Brucker instances, the MILP method outperforms
he other evaluated methods, with the exception of the j7 and j8 sets
f instances, in which the BICH-MIH-BS-LS algorithm returns the best
esults.

On average, the MILP method yields poor results, because the
odel returned low-quality results for the large-sized test problems

n the allotted CPU time. The proposed BICH-MIH-BS-LS algorithm
utperforms all the other evaluated methods, showing that the com-
ined approach with a weighted aggregation function is more efficient.
verall, the proposed approach BICH-MIH-BS-LS presented the lower
RPD for all the analyzed constructive heuristics as well as lower than

he MILP model. Furthermore, the differences among BICH-MIH-BS-
S, EGA, MILP and methods proposed by Naderi et al. (2010) and
breu et al. (2020) are significant because they are in different groups
ith different letters. The methods with beam search procedure and
ICH-MIH-IST-LS present the lowest mean values for ARPD.

Regarding computational times, Table 7 shows the average compu-
ational times of constructive heuristics and metaheuristics in each set
19

f instances.
With respect to computational times for the constructive heuristics
with local search, Fig. 20 illustrates the dependence between solution
time and problem size for the constructive heuristics with local search.
We can observe that the BS-based algorithms have started to increase
their computation times from the instances with 8 or more machines
and jobs. For problem sizes with 15 or more machines and jobs, we can
observe that all the constructive heuristics with local search increased
their computation times.

Fig. 21 illustrates the average computation times with a 95% con-
fidence interval for each constructive heuristic with local search. In
contrast with the constructive heuristics without local search, in this sit-
uation, the IST-based heuristics present computation times substantially
smaller than the BS-based heuristics. The two classes of algorithms can
deal with problems with less than 15 jobs and machines (around 2000
s).

As a conclusion of the computational time analysis, IST- and BS-
based constructive heuristics can handle 20 × 20 instances in less than
one hour while their local search counterpart would require more than
double of the time. Since the computation times around this instance
size grow rapidly, we believe that 20 × 20 (which represents a total
of 400 operations in the shop) represents the limit in the problem size
that, for many decision scenarios, can be realistically addressed in a
standard computer.

The Pareto Chart of average computational times and ARPD is pre-
sented in Fig. 22. On the basis of the above, the proposed IST approach

presents a better combination of solution quality and computational
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efficiency. The constructive heuristics proposed by Abreu et al. (2020)
with local search and IRx algorithms presents best computation times
and BS approach presents the best ARPD results.

The constructive heuristics with BS and IST procedure outperforms
the classic approach of BICH and MIH algorithms proposed by Abreu
et al. (2020), IRx algorithms proposed by Naderi et al. (2010) and
EGA proposed by Rahmani Hosseinabadi et al. (2018). The BICH and
MIH with BS procedure gives the best results than BICH and MIH with
IST procedure, but the algorithms with IST procedure gets good com-
putational times, becoming a good choice for industrial applications
with operational level of scheduling problems. The BICH-MIH-BS-LS
becoming the best constructive heuristic with local search for OSSP.

As a summary of the performance of the BS-based algorithms, note
that this family of algorithms obtains very low ARPD values at the costs
of requiring more CPU time. As illustrated in Fig. 15, the inclusion
of beam search procedures resulted in a substantial improvement in
the quality of the solutions found when compared to the algorithms
considering cheap insertion procedures, even if it is to note that this
increases the computation times. In Fig. 15, we can also observe that
the BICH-MIH-BS dominated the MIH-BS and BICH-BS algorithms.

Concerning the local search versions of the proposed algorithms, it
can be seen in Fig. 22 that, when compared to IR3 and IR4 – the best
versions of IRx algorithms – the BICH-MIH-LS presented lower ARPD
values with a similar average computational time. With respect to the
ARPD values, the BICH-MIH-BS-LS algorithm presented the best results,
dominating the MIH-BS-LS and BICH-BS-LS algorithms.

5. Concluding remarks

In this paper, we focus on the classical variant of the OSSP. The
objective function is to minimize the total time to complete the sched-
ule (makespan). We develop new beam search and cheapest insertion
procedures hybridized with constructive heuristics adapted from the
problem with setup considerations. Finally, an efficient local search
algorithm (LS) that leads to excellent results within an admissible
computational effort is proposed.

A number of computational experiments were carried out in order
to evaluate the performance of the proposed algorithms. The results
of the proposed approaches are presented considering the literature
benchmark instances proposed by Guéret and Prins (1999), Taillard
(1993) and Bruckner et al. (1997). We used the relative percentage
deviation statistics as performance measure. Taking into consideration
the above mentioned literature benchmark instances, the proposed con-
structive algorithm BICH-MIH-BS outperforms the existing constructive
heuristics, the BICH-MIH-BS-LS algorithm outperforms the four local
search algorithms proposed by Naderi et al. (2010) and the genetic
algorithm proposed by Rahmani Hosseinabadi et al. (2018).

As extensions of this work, we suggest the consideration of explicit
travel times and resource utilization in the OSSP to address more
realistic environments. In addition, future studies could also investigate
the behavior of the proposed approaches considering different objective
functions, such as total tardiness minimization with due dates of jobs
or total completion time minimization.
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