
Expert Systems With Applications 189 (2022) 116097

A
0

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

A differential evolution algorithm for the customer order scheduling problem
with sequence-dependent setup times
Bruno de Athayde Prata a,∗, Carlos Diego Rodrigues b, Jose Manuel Framinan c

a Department of Industrial Engineering, Federal University of Ceara, Ceara, Brazil
b Department of Statistics and Applied Mathematics, Federal University of Ceara, Ceara, Brazil
c Industrial Management/Laboratory of Engineering for Environmental Sustainability, University of Seville, Seville, Spain

A R T I C L E I N F O

Keywords:
Customer order scheduling
Production sequencing
Assembly scheduling problems
Total completion time
Metaheuristics

A B S T R A C T

Although the customer order scheduling problem to minimize the total completion time has received a lot of
attention from researchers, the literature has not considered so far the case where there are sequence-dependent
setups between jobs belonging to different orders, a case that may occurs in real-life scenarios. For this NP-
hard problem we develop a novel efficient approximate solution procedure. More specifically, we develop
an innovative discrete differential evolution algorithm where differential mutations are performed directly
in the permutation space and that uses a novel, parameter-free, restart procedure. The so-obtained solutions
are improved by two proposed local search mechanisms that employ problem-specific, heuristic dominance
relations. We carry out an extensive computational experience with randomly generated test instances to
compare our proposal with existing algorithms from related problems. In these experiments, the proposed
algorithm obtains the best results in terms of their average relative percentage deviation and success rate.
Furthermore, an analysis of variance test, followed by a Tukey’s test, confirms the excellent performance of
the algorithm proposed.
1. Introduction

A lot of attention has been paid to assembly scheduling problems
in the last few years (Framinan et al., 2019). Amongst the differ-
ent assembly scheduling environments, the customer order scheduling
arises in several real-world applications, such as the paper industry, the
pharmaceutical industry, as well as assembly operations (Leung et al.,
2005). In the customer order scheduling environment, a given number
of customer orders, each of them composed of different products or
services (jobs in the following), has to be processed in a set of dedicated
parallel machines. The order is completed once its corresponding jobs
have been completed, thus it can be seen as an special case of assembly
scheduling with zero assembly processing time.

In most real-life settings, the machines in the shop cannot pro-
cess different types of jobs without tool changes, adjustments in their
settings, etc. More specifically, our work is inspired by the case of a lab-
oratory for quality control in the pharmaceutical industry. The routine
of the laboratory is to analyse raw materials, products in process, and
finished products. Each order is usually composed of several products
that require a specific type of chemical analysis. Depending on the
sequence of the products to be analysed, the corresponding equipment
requires a different setup, hence the need of explicitly considering

∗ Corresponding author.
E-mail addresses: baprata@ufc.br (B.A. Prata), diego@lia.ufc.br (C.D. Rodrigues), framina@us.es (J.M. Framinan).

the setup times, which in general constitutes an important topic in
the scheduling literature (Abreu et al., 2020; Allahverdi et al., 2008;
Moccellin et al., 2018). However, studies tackling the customer order
scheduling problems including setup times are scarce, being (Prata
et al., 2021a) the only contribution addressing the problem, in that case
for makespan minimization. Therefore, to the best of our knowledge,
the order scheduling problem with sequence-dependent setup times
with the objective of minimizing the total completion time has not been
previously researched.

Therefore, our paper addresses the customer order scheduling with
sequence-dependent setup times to minimize total completion time.
The main contributions of this paper are threefold. First, we present
a mixed-integer linear formulation to tackle this problem. Second,
we develop a discrete differential evolution (DDE) metaheuristic to
provide high-quality solutions within feasible computational times. The
proposed algorithm applies a new parameter-free restart procedure, a
chaotic mechanism to self-adjust the crossover rate, and it incorporates
two novel elements i.e. (1) two local search procedures based on
dominance relations and (2) a novel restart procedure based solely on
the fitness of the solutions. The extensive computational experiments
carried out show that the proposed DDE algorithm yields excellent
vailable online 24 October 2021
957-4174/© 2021 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.eswa.2021.116097
Received 26 March 2021; Received in revised form 21 August 2021; Accepted 13 O
ctober 2021

http://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa
mailto:baprata@ufc.br
mailto:diego@lia.ufc.br
mailto:framina@us.es
https://doi.org/10.1016/j.eswa.2021.116097
https://doi.org/10.1016/j.eswa.2021.116097
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2021.116097&domain=pdf


Expert Systems With Applications 189 (2022) 116097B.A. Prata et al.

c
1
u
p
d
𝑘
c
d
t

r
e
m
a
c
p
t
c
&

o
o

𝐶

𝐶

a

t
p
P
f
c
t
a
m
t

s
d
p
p
p

I

results for the problem and that the novel elements embedded in the
DDE substantially improves its performance.

The remainder of the paper is organized as follows: in Section 2, we
discuss the problem background. In Section 3, we present the Mixed-
Integer Linear Programming (MILP) model for the problem, while in
Section 4 we describe the proposed algorithm. In Section 5, the results
from the computational experiments are presented and discussed and,
finally, in Section 6 we draw some conclusions and suggestions for
future works.

2. Literature review

As discussed in Section 1, to the best of our knowledge, the problem
under consideration has not been addressed in the literature, even if the
customer order scheduling problem is becoming a major topic for pro-
duction scheduling researchers (Wu, Yang et al., 2019). Therefore, we
here discuss related problem in order to investigate whether their solu-
tion procedures can be adapted to our problem. More specifically, we
review the customer order scheduling problem with total completion
time minimization and no setups, and the customer order scheduling
problem with set ups and makespan minimization as objective.

Regarding the customer order scheduling problem with total com-
pletion time as objective, Wagneur and Sriskandarajah (1993) were
the first to discuss this problem as a particular case of the open-
shop with job overlapping. They proved that, for the total completion
time objective, it is unary NP-hard for 𝑚 ≥ 2. Later, Roemer and
Ahmadi (2001) showed that this problem is NP-hard in the strong
sense. For the objective of minimizing the total weighted completion
time, Sung and Yoon (1998) proposed two constructive heuristics,
namely the Shortest Total Processing Time first (STPT) and the Shortest
Maximum Processing Time first (SMPT). Other constructive heuristics
for the problem are due to Wang and Cheng (2007) (Smallest Maximum
Completion Time or SMCT heuristic), and to Leung et al. (2005) (the
SMCT heuristic, the Earliest Completion Time or ECT dispatching rule,
and a Tabu Search metaheuristic). Shi et al. (2017) proposed two math-
ematical models for the weighted case, being the first one a quadratic
formulation, and the second one a linearization of the first model.
Furthermore, they proposed a hybrid nested partitions algorithm. Fram-
inan and Perez-Gonzalez (2017) proposed a constructive heuristic for
the unweighted case with a look-ahead mechanism that estimates the
contribution to the objective function of the non-scheduled orders.
Furthermore, a Greedy Search Algorithm (GSA) metaheuristic is pro-
posed. Finally, Riahi et al. (2019) extended the look-ahead mechanism
presented in Framinan and Perez-Gonzalez (2017) to all positions in
the sequence, called Permutation Construction and Exploration (PCE)
algorithm. Besides, they propose a Perturbative Search Algorithm (PSA)
metaheuristic. According to their computational experience, their PSA
can be considered the state-of-the-art algorithm for this problem and
hence its adaptation to our problem will be used in the subsequent ex-
perimentation in Section 5. Finally, some special cases of the customer
order scheduling problem with stochastic considerations or including
a learning effect can be found in Wu et al. (2021) and Wu, Lin et al.
(2019), respectively.

Regarding the customer order scheduling problem with setups and
makespan as objective, this problem is first introduced by Prata et al.
(2021a). Two mixed-integer linear programming models are developed
for this problem, along with two matheuristics that reduce the number
of decision variables. Their so-called Fixed Variable List Algorithm
(FVLA) is shown to outperform all other methods under comparison,
being the state-of-the-art solution procedure for the problem. This
procedure will be adapted for the total completion time as objective
in the experiments in Section 5. Note that the corresponding problem
without setups (the customer order scheduling problem with makespan
objective) is a trivial decision problem and therefore there are no
2

procedures that can be adapted to our case.
As a summary, despite the relevance of the problem and the exis-
tence of solution procedures for related problems, we are not aware
of contributions dealing with the customer order scheduling problem
with setups and total completion time minimization as objective. This
problem is formalized in the next section, together with the proposal
of a MILP model.

3. Problem statement and MILP formulation

The problem under consideration can be described as follows: There
are 𝑛 customer orders, each one composed of 𝑚 jobs, that must be
ompleted in a shop. Each job 𝑖 (𝑖 = 1,… , 𝑚) in the order 𝑗 (𝑗 =
,… , 𝑛) has to be processed on a dedicated machine requiring 𝑝𝑖𝑗 times
nit to be completed. In addition, job 𝑘 requires a setup time 𝑠𝑖𝑗𝑘 if
rocessed after job 𝑗, which is sequence-dependent (since these are
edicated machines, we can also say that 𝑠𝑖𝑗𝑘 is the setup time of order
in machine 𝑖 if processed after order 𝑗). An order can be considered

ompleted whenever all the jobs in the order have been processed in the
edicated machines. The objective is to minimize the total completion
imes of the orders.

It is clear that, for each machine 𝑖, a permutation 𝛱𝑖 ∶= (𝜋𝑖
1,… , 𝜋𝑖

𝑛)
epresents a feasible sequence in which the customer order 𝜋𝑖

𝑗 (or,
quivalently, the 𝑖th job in the customer order 𝑗) is processed in
achine 𝑖 in position 𝑗. The decision problem can be then formulated

s finding a sequence for each dedicated machine so the sum of the
ompletion times of the orders is minimized. This problem is NP-hard
roblem since it can be reduced, if all setup times are equal to zero,
o the canonical customer order scheduling problem to minimize total
ompletion time, which is known to be an NP-hard problem (Wagneur
Sriskandarajah, 1993).
Given 𝛱1,… ,𝛱𝑚 a set of 𝑚 permutations indicating the precedence

f the processing of each order on a given machine, the completion time
f each order in the dedicated machines can be computed as follows:
𝑖
𝜋𝑖𝑗

= 𝐶 𝑖
𝜋𝑖𝑗−1

+ 𝑠𝑖,𝜋𝑖𝑗−1 ,𝜋𝑖𝑗
+ 𝑝𝑖,𝜋𝑖𝑗 𝑗 = 1,… , 𝑛 𝑖 = 1,… , 𝑚 (1)

Then, 𝐶𝑗 the completion time of order 𝑗 is:

𝑗 = max
𝑖=1,…,𝑚

{

𝐶 𝑖
𝑗

}

(2)

nd the total completion time is simply ∑

𝑗 𝐶𝑗 .
In order to better understand the problem under consideration and

o be able to solve small instances to compare the efficiency of the
roposed approximate methods, we develop a Mixed Integer Linear
rogramming (MILP) model of the problem. This model extends the
ormulation presented by Framinan and Perez-Gonzalez (2018) for the
orresponding problem without setups. Note that the extension is not
rivial as in the problem without setups it can be assumed that exists
n optimal solution where the sequence is the same in all dedicated
achines, which is not true, in general, if there are non-zero setup

imes.
Let 𝑥𝑖𝑗𝑘 be a binary decision variable equal to 1 if order 𝑘 is

cheduled in position 𝑗 of machine 𝑖. Taking into account the sequence-
ependent setup times 𝑠𝑖𝑙𝑘, the model determines the setup time of
osition 𝑗 on each machine 𝑖 (𝐷𝑖𝑗), and consequently the total com-
letion time of all orders. Hereafter, the notation used for the model is
resented.

ndices and sets

𝑘: index for orders: 𝑘 ∈ 𝐾 ∶= {1, 2,… , 𝑛}}.
𝑗: index for positions: 𝑗 ∈ 𝐽 ∶= {1, 2,… , 𝑛}}.
𝑖: index for machines: 𝑖 ∈ 𝐼 ∶= {1, 2,… , 𝑚}}..

Parameters

𝑝𝑖𝑘: processing time of the job corresponding to order 𝑘 in machine

𝑖.



Expert Systems With Applications 189 (2022) 116097B.A. Prata et al.
Fig. 1. Flowchart of the proposed Discrete Differential Evolution algorithm.
𝑠𝑖𝑗𝑘: setup time of order 𝑘 in machine 𝑖 if processed after order 𝑗.

Decision variables

𝐶𝑗 : completion time of the order processed in position 𝑗.
𝐶𝑖𝑗 : completion time of the (job corresponding to the) order pro-

cessed in position 𝑗 of machine 𝑖.
𝐷𝑖𝑗 : setup time of order processed in position 𝑗 in machine 𝑖.

𝑥𝑖𝑗𝑘 =

{

1, if order k is processed in machine i in position j.
0, otherwise

The resulting MILP model is the following:

minimize
𝑛
∑

𝑗=1
𝐶𝑗 (3)

subject to
𝑛
∑

𝑘=1
𝑥𝑖𝑗𝑘 = 1, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (4)

𝑛
∑

𝑥𝑖𝑗𝑘 = 1, ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 (5)
3

𝑗=1
𝐷𝑖𝑗 ≥ (𝑥𝑖,𝑗−1,𝑘 + 𝑥𝑖𝑗𝑙 − 1)𝑠𝑖𝑘𝑙 , ∀𝑖 ∈ 𝐼,∀𝑗 > 1,∀𝑘, 𝑙 ∈ 𝐾 (6)
𝑗
∑

𝑟=1
𝐷𝑖𝑟 +

𝑛
∑

𝑘=1

𝑗
∑

𝑟=1
𝑝𝑖𝑘𝑥𝑖𝑘𝑟 ≤ 𝐶𝑖𝑗 , ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (7)

𝐶𝑗 ≥ 𝐶𝑖𝑗 , ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (8)

𝐶𝑗 ≥ 0, ∀𝑗 ∈ 𝐽 (9)

𝐶𝑖𝑗 ≥ 0, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽

(10)
𝐷𝑖𝑗 ≥ 0, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽

(11)
𝑥𝑖𝑗𝑘 ∈ {0, 1}, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 , 𝑘 ∈ 𝐾

(12)

The objective function (3) is the total completion time minimiza-
tion. Constraint set (4) ensures that an order 𝑘 is scheduled only in a
position 𝑗 of the machine 𝑖. Constraint sets (5) enforces that a position
𝑗 receives only a order 𝑘 in machine 𝑖. Constraint sets (6) calculates
the setup time of machine 𝑖 in position 𝑗. We are assuming that all the
machines are prepared in the first position i.e the setups times are only
computed if 𝑗 is greater than 1. Constraint sets (7) and (8) calculate the



Expert Systems With Applications 189 (2022) 116097B.A. Prata et al.

1

2

3

4

5

6

7

8

9

10

11

12
total completion times. Finally, constraint sets (9), (10), (11), and (12)
define the scope of the model variables.

4. A new discrete differential evolution algorithm

Differential Evolution (DE) is a well-known metaheuristic origi-
nally proposed by Storn and Price (1997) for continuous optimization
problems. In the last few years, several extensions of the standard
DE algorithm have been proposed for discrete optimization problems,
including manufacturing scheduling problems (Bai et al., 2017; Liu
et al., 2020; Pan et al., 2008; Wang et al., 2010; Zhao et al., 2020;
Zhou et al., 2021). DE algorithms are usually classified as evolutionary
algorithms since they use a population of solutions, even if they are
not bio-inspired algorithms, as their behaviour is not based on natural
systems such as the evolution of species, or the behaviour of social
animals.

In view of the successful application of DE to other scheduling
problems, we decided to analyse this metaheuristic to solve the problem
under study. The main characteristics of this algorithm that led us
to select it are the low dependency of parameters and the facility of
hybridization with other solution procedures.

We present here a variant of the DE algorithm (hereinafter re-
ferred to as Discrete Differential or DDE), which, according to the
classification in Storn and Price (1997) is a DE/rand/1/bin algorithm.
The pseudocode outlining the main components of DDE are shown in
Algorithm 1, whereas in Fig. 1 we present a flowchart of the algorithm.
Firstly, we generate an initial population with a random permutation
for each machine, and these sequences are improved using the well-
known NEH algorithm (Nawaz et al., 1983). The NEH algorithm is a
constructive heuristic based in the iterative insertion of jobs (orders
in our case) in a partial solution, and it yields excellent results for a
wide range of scheduling problems, such as e.g. the permutation flow-
shop (Nawaz et al., 1983). Then, the value of the objective function
for each element in the current population (hereinafter referred to as
fitness) is calculated. Next, we improve the entire population using two
innovative local search mechanisms – denoted as L1 and L2 –, which
employ specific heuristic dominance relations for the problem to reduce
the computational effort.

After this initial build up of a population of size 𝑝𝑜𝑝𝑖𝑣 (described
in detail in Section 4.1), a number of iterations are carried out until a
given time limit is reached. More specifically, in each iteration, three
elements from the current population are randomly selected and a
crossover operator is applied to them. Furthermore, mutant solutions in
the current population are generated if a number randomly generated
for each position 𝑗 is less than or equal to the crossover rate (both
crossover and mutation mechanisms are described in Section 4.2).
Then, we compute the fitness of each solution in the so-obtained popu-
lation. If the best and worst fitness are equal, then the entire population
is composed of solutions with the same fitness and we perform a restart
procedure to introduce diversity of solutions in the population (the
restart procedure is described in Section 4.4). Otherwise (if the best
and worst fitness are different), we apply the local search mechanisms
L1 and L2 to all solutions, updating the entire population. In Section 4.5
we describe these mechanisms in detail.

Since the proposed metaheuristic runs until a specified time limit,
it is difficult to determine the overall complexity of the algorithm.
Nevertheless, we can emphasize the complexity of some of its parts, in-
cluding the main loop. The first step presents the complexity (𝑁𝐸𝐻),
i.e. the complexity of the NEH heuristic for the problem under study.
Furthermore, assuming that the local search procedures are applied in
all elements of the population, we have the complexity (𝑁𝑃𝑚𝑛2),
since L1 presents complexity (𝑁𝑃𝑚𝑛), and L2 presents complexity
(𝑁𝑃𝑚𝑛2) (that dominates L1). The complexity of the main loop is
dominated by the case where the local search procedures are executed.
Thus, its complexity is (𝑁𝑃𝑚𝑛2).
4

Fig. 2. Encoding for the proposed Discrete Differential Evolution algorithm.

Based on the above considerations, the overall complexity of the
proposed DDE algorithm is given by: (𝑁𝐸𝐻) + (𝑁𝑃𝑚𝑛2) + (𝑇𝑚𝑛2),
where 𝑇 is the number of iterations until the time limit is reached.

Algorithm 1 Discrete Differential Evolution algorithm
Result: Return a permutation matrix
Generate an initial population 𝑝𝑜𝑝𝑖𝑣 with the NEH algorithm.
Apply local search mechanisms L1 and L2.
while 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡𝑖𝑚𝑒 ≤ 𝑡𝑖𝑚𝑒_𝑙𝑖𝑚𝑖𝑡 do

Randomly select 𝑟1,𝑟2,𝑟3 ∈ {1, 2,… , 𝑁𝑃 }.
Evaluate the following test for each position 𝑗
if ( )[0, 1] ≤ 𝐶𝑅 then

𝜔𝑖
𝑣 ← 𝜋𝑖

𝑟1
⊕ (𝜋𝑖

𝑟2
⊖ 𝜋𝑖

𝑟3
)

else
𝜔𝑖
𝑣 ← 𝜋𝑖

𝑣
end
Evaluate each solution according to the fitness function.
if 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑀𝐴𝑋 = 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑀𝐼𝑁 then

Perform restart procedure
else

Apply local search mechanisms L1 and L2.
Update current population

end
end

In the following sections we describe the main elements of DDE in
detail.

4.1. Problem encoding and generation of the initial population

To represent a feasible solution, we use a permutation list of the
orders in each machine. In this manner, all the solutions generated are
feasible. Fig. 2 illustrates the problem encoding, for an element of the
population with 𝑚=2 and 𝑛=3. For the fitness evaluation, we calculate
the total completion time using the recursive Eqs. (1)–(2).

Since we are not aware of an existing constructive heuristic for
the problem, we tried to adapt some algorithms available to related
problems. For each individual of the population, we generate a random
permutation for each machine. Then we apply the well-know NEH
heuristic on each machine to improve the total completion time on this
machine, without considering the rest of the machines.

4.2. Selection, crossover and update of the population

Usually, in the discrete differential evolution algorithms, the popu-
lation of solutions is modelled as a set of float numbers, in which the
standard operators are performed. Next, the float numbers are decoded
into permutations aiming to calculate the fitness of the current popu-
lation (Onwubolu & Davendra, 2009). After preliminary computational
experiments, we could observe that this approach did not lead to good
results. Thus, we decided to perform the standard operators directly in
the permutation space, as also suggested in Santucci et al. (2016).

As the selection operator, we adopt the standard selection procedure
where three distinct solutions are randomly chosen from the current
population (Storn & Price, 1997). The crossover operator combines the



Expert Systems With Applications 189 (2022) 116097B.A. Prata et al.

𝜔

𝜔

(

a
e
i
i
t
𝜋
𝜋
𝜋
d
𝜋

f
i
p
s
T
t

4

f
e
m
(
o

𝐶

w
g
u
3

4

r
s
R
t
n
i

s
a

t
i
e
w
p
a
r
t
o

4

s
p
m
2
𝑁
l

d
i
w
n
t
r
q

t
𝑠
o
t
t
b
(
N
l
t
2
c
2

4
b

three selected permutations 𝜋𝑖
𝑟1

, 𝜋𝑖
𝑟2

, and 𝜋𝑖
𝑟3

to create a mutant solution
𝑖
𝑣 as in Eq. (13):

𝑖
𝑣 =

{

𝜋𝑖
𝑟1
⊕ (𝜋𝑖

𝑟2
⊖ 𝜋𝑖

𝑟3
) if  [0, 1] ≤ 𝐶𝑅

𝜋𝑖
𝑣 otherwise

(13)

Let 𝜋1 and 𝜋2 be two permutations, the analogous operators for sum
and difference of permutations can be defined as follows.

𝜋1 ⊕ 𝜋2 = 𝜋1◦𝜋2 (14)

𝜋1 ⊖ 𝜋2 = 𝜋−1
2 ◦𝜋1 (15)

Aiming to illustrate the operations with permutations, consider the
following permutations 𝜋1 = {3, 2, 1, 5, 4}, 𝜋2 = {3, 4, 2, 1, 5}, and 𝜋3 =
{4, 3, 5, 2, 1}. The inverse permutation 𝜋−1

3 can be obtained as follows:

4 3 5 2 1
1 2 3 4 5

)(

1 2 3 4 5
5 4 2 1 3

)

In positions 1, 2, 3, 4, and 5 of 𝜋3, we have the values 4, 3, 5, 2,
nd 1, respectively. If we consider each initial value as a position and
ach initial position as a value, we have the values 5, 4, 2, 1, and 3
n the positions 1, 2, 3, 4, and 5. Thereby, the inverse permutation
s 𝜋−1

3 = {5, 4, 2, 1, 3}. Two permutations can be composed by tracing
he destination of each element. Taking into consideration 𝜋−1

3 and 𝜋2,
−1
3 ◦𝜋2 can be found as follows: 𝜋−1

3 (𝜋2(1)) = 𝜋−1
3 (3) = 2, 𝜋−1

3 (𝜋2(2)) =
−1
3 (4) = 1, 𝜋−1

3 (𝜋2(3)) = 𝜋−1
3 (2) = 4, 𝜋−1

3 (𝜋2(4)) = 𝜋−1
3 (5) = 3, and

−1
3 (𝜋2(5)) = 𝜋−1

3 (5) = 3. Finally, the composition between 𝜋1 and the
ifference of 𝜋2 and 𝜋3 can be found as follows: 𝜋1(2) = 2, 𝜋1(1) = 3,
1(4) = 5, 𝜋1(5) = 4, and 𝜋1(3) = 1. Hence, 𝜋1 ⊕ (𝜋2 ⊖𝜋3) = {2, 3, 5, 4, 1}.

A mutant solution 𝛺𝑖𝑣 will replace its basic solution 𝑝𝑜𝑝𝑖𝑣 if the
itness of the mutant solution is less than or equal to the fitness of
ts basic solution. This selective strategy incurs in an evolutionary
ressure, leading to high-quality solutions. However, with this selective
trategy, a premature convergence of the population can be observed.
o mitigate the population convergence, we used a restart procedure
o guarantee diversity in the search process.

.3. Self-adjustment of 𝐶𝑅 values

In our proposal, we adopt a dynamic parameter control mechanism
or the self-adjustment of 𝐶𝑅 values, based on a chaotic system (Lu
t al., 2011). Tavazoei and Haeri (2007) evaluated 10 one-dimensional
aps in chaos optimization algorithms and concluded that the Tent

triangular) function presented better results. The dynamic adjustment
f parameter 𝐶𝑅 is determined as in Eq. (16):

𝑅𝑔+1 =

{

2𝐶𝑅𝑔 , 0 < 𝐶𝑅𝑔 < 0.5
2(1 − 𝐶𝑅𝑔), 0.5 < 𝐶𝑅𝑔 < 1

𝑔 = 1, 2,… , 𝑔𝑚𝑎𝑥. (16)

here 𝑔 is the current generation and 𝑔𝑚𝑎𝑥 is the maximum number of
enerations. In the first generation, the initial value 𝐶𝑅0 is generated
sing a uniform distribution excluding the values 1/4, 1/2, 2/3, and
/4, as suggested by Tavazoei and Haeri (2007).

.4. Restart procedure

Traditionally, the restart procedure is based on a parameter that
eflects the number of iterations without improvement in the best
olution found (Abreu et al., 2020; Alcaraz et al., 2003; Prata, 2015;
uiz et al., 2006; Sales et al., 2018). In our view, this approach presents

wo main disadvantages: the first one is the necessity to calibrate a
ew parameter, and the second one is the uncertainty of the moment
n which the convergence of the current population occurs.

Here we propose a restart procedure based only on the fitness of the
olutions. Let 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑀𝐴𝑋 be the worst fitness in the current population,
5

nd 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑀𝐼𝑁 be the best fitness in the current population, we restart
he current population if the maximum fitness of the population equals
ts minimum fitness, i.e. if 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑀𝐴𝑋 = 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑀𝐴𝑋 . Thereby, we
liminate the necessity of a parameter for the restart procedure, and
e restart the population in the exact iteration in which the current
opulation lost all diversity. We can emphasize that we randomly select
n element from the current population to be maintained after the
estart, such as in the elitism practice. In other words, all solutions in
he population are replaced by random solutions with the exception of
ne, which is maintained.

.5. Local search mechanisms

We face a non-permutation scheduling problem with a large search
pace. Thus, a local search procedure would present a high com-
utational effort since we must investigate the permutations for all
achines and solutions in the current population. Using a well-known
-opt local search that presents a complexity 𝑂(𝑛2), for 𝑚 machines and
𝑃 solutions during a specified number of generations or a given time

imit could be prohibitive to large-sized instances.
With the aim of reducing the number of evaluated solutions, we

evelop two local search mechanisms that employ concepts of dom-
nance relations heuristically. The first one explores a neighbourhood
ith adjacent orders and the second one explores a neighbourhood with
on-adjacent orders. We can observe that there is no guarantee that
he dominance relations are verified. However, this hybrid procedure
educes the computational effort as well as improved substantially the
uality of the solutions found.

The local search L1 can be described as follows. Let 𝑎 and 𝑏 be
wo adjacent orders in 𝛱𝑖 ∶= (𝜋𝑖

1,… , 𝑧, 𝑎, 𝑏,… , 𝜋𝑖
𝑛). If 𝑠𝑖𝑧𝑎 + 𝑝𝑖𝑎 + 𝑠𝑖𝑎𝑏 <

𝑖𝑧𝑏+𝑝𝑖𝑏+𝑠𝑖𝑏𝑎, we swap the above-mentioned orders so order 𝑎 precedes
rder 𝑏 in 𝛱𝑖. The rationale of this heuristic dominance condition is
hat, if two sequences for a given machine 𝑖 differ only with respect
o two adjacent jobs 𝑎 and 𝑏, then it is more likely that we obtain a
etter solution by placing these jobs so the additional operating time
processing times plus setup times) induced in this machine is lower.
ote however that this is just a heuristic rule, as it is not true that this

ocal (i.e. in machine 𝑖) reduction of the completion time necessarily
ranslates in a reduction of the order completion time. In Algorithm
, we summarize the proposed local search procedure L1, in which
ondition 1 is given by 𝑝𝑖,𝜋𝑖𝑘 +𝑠𝑖,𝜋𝑖𝑘 ,𝜋𝑖𝑘+1

> 𝑝𝑖,𝜋𝑖𝑘+1
+𝑠𝑖,𝜋𝑖𝑘+1 ,𝜋𝑖𝑘

, and condition
is given by 𝑠𝑖,𝜋𝑖𝑘 ,𝜋𝑖𝑘+1

+ 𝑝𝑖,𝜋𝑖𝑘 + 𝑠𝑖,𝜋𝑖𝑘−1,𝜋𝑖𝑘 > 𝑠𝑖,𝜋𝑖𝑘+1 ,𝜋𝑖𝑘
+ 𝑝𝑖,𝜋𝑖𝑘+1

+ 𝑠𝑖,𝜋𝑖𝑘−1 ,𝜋𝑖𝑘+1
.

Algorithm 2: Local Search L1

for 𝑖 := 1 to 𝑚 do
for 𝑘 := 1 to 𝑛-1 do
if 𝑘 = 1 then

if condition 1 is true then
Swap orders 𝑘 and 𝑘+1

end
else

if condition 2 is true then
Swap orders 𝑘 and 𝑘+1

end
end

end
end

In the local search L2, if the summation of setup times before and
after 𝑎 and 𝑏 are smaller than the summation of setup times before
and after 𝑏 and 𝑎, after pairwise interchange for a given machine 𝑖,
we swap the orders 𝑎 and 𝑏 in 𝛱𝑖. In Algorithm 2, we summarize the
proposed local search procedure L1, in which the condition 3 is given
by 𝑠𝑖,𝜋𝑖𝑘 ,𝜋𝑖𝑘+1

+𝑠𝑖,𝜋𝑖𝑗−1 ,𝜋𝑖𝑗
+𝑠𝑖,𝜋𝑖𝑗 ,𝜋𝑖𝑗+1

< 𝑠𝑖,𝜋𝑖𝑗 ,𝜋𝑖𝑘+1
+𝑠𝑖,𝜋𝑖𝑗−1 ,𝜋𝑖𝑘

+𝑠𝑖,𝜋𝑖𝑘 ,𝜋𝑖𝑗+1
, condition

is given by 𝑠𝑖,𝜋𝑖𝑘 ,𝜋𝑖𝑘+1
+𝑠𝑖,𝜋𝑖𝑗−1 ,𝜋𝑖𝑗

< 𝑠𝑖,𝜋𝑖𝑗 ,𝜋𝑖𝑘+1
+𝑠𝑖,𝜋𝑖𝑗−1 ,𝜋𝑖𝑘

, condition 5 is given
y 𝑠 𝑖 𝑖 +𝑠 𝑖 𝑖 +𝑠 𝑖 𝑖 +𝑠 𝑖 𝑖 < 𝑠 𝑖 𝑖 +𝑠 𝑖 𝑖 +𝑠 𝑖 𝑖 +
𝑖,𝜋𝑘−1 ,𝜋𝑘 𝑖,𝜋𝑘 ,𝜋𝑘+1 𝑖,𝜋𝑗−1 ,𝜋𝑗 𝑖,𝜋𝑗 ,𝜋𝑗+1 𝑖,𝜋𝑘−1 ,𝜋𝑗 𝑖,𝜋𝑗 ,𝜋𝑘+1 𝑖,𝜋𝑗−1 ,𝜋𝑘



Expert Systems With Applications 189 (2022) 116097B.A. Prata et al.

f
b
h
T
d
t

h
M

R

𝑠𝑖,𝜋𝑖𝑘 ,𝜋𝑖𝑗+1
, and condition 6 is given by: 𝑠𝑖,𝜋𝑖𝑘−1 ,𝜋𝑖𝑘 + 𝑠𝑖,𝜋𝑖𝑘 ,𝜋𝑖𝑘+1

+ 𝑠𝑖,𝜋𝑖𝑗−1 ,𝜋𝑖𝑗
<

𝑠𝑖,𝜋𝑖𝑘−1 ,𝜋𝑖𝑗
+𝑠𝑖,𝜋𝑖𝑗 ,𝜋𝑖𝑘+1

+𝑠𝑖,𝜋𝑖𝑗−1 ,𝜋𝑖𝑘
. Conditions 3 and 4 are applied if the order

to be swapped is in the first position of the sequence, and conditions 5
and 6 are applied otherwise.

Algorithm 3: Local Search L2

for 𝑖 ∶= 1 to 𝑚
for 𝑘 ∶= 1 to 𝑛-2
for 𝑗 ∶= 𝑘 + 2 to 𝑛

if 𝑘 == 1 then
if 𝑗 < 𝑛 then
if condition 3 is true then
Swap orders 𝑗 and 𝑘.

end
else
if condition 4 is true then
Swap orders 𝑗 and 𝑘.

end
end
elseif 𝑗 < n
if condition 5 is true then
Swap orders 𝑗 and 𝑘.

end
end
if condition 6 is true then
Swap orders 𝑗 and 𝑘.

end
end

end
end

end

5. Computational experiments

In order to establish the efficiency of the proposed algorithm, we
conduct a comprehensive computational experience. In Section 5.1 we
discuss the design of the experimentation, including the generation
of the testbed instances and the indicators employed to evaluate the
algorithms. Section 5.2 is devoted to the calibration of the proposed
DDE, analysing its parameters and the contribution to its efficiency of
the different local search mechanisms proposed. Next, we present in
Section 5.3 the algorithms that we will use as a benchmark. Finally, in
Section 5.4 we show the results obtained along with the corresponding
discussion.

5.1. Experimental design

Regarding the generation of test instances of the problem, we use
𝑚 = {5, 10, 20}, 𝑛 = {20, 30, 40}, and 𝑠 ∈ {[1, 25], [1, 75], [1, 125]} red
or the number of machines, orders and jobs respectively, as suggested
y Prata et al. (2021a). For combination of orders and machines we
ave generated 10 instances, making a total of 270 test instances.
he processing times were generated according to a uniform [1, 99]
istribution, as suggested by Framinan and Perez-Gonzalez (2017). The
est instances proposed by Prata et al. (2021b) are available here.

The Relative Percentage Deviation (RPD) and the Success Rate (SR)
ave been used as performance measures. The RPD of the heuristic
ETHOD for a given instance is calculated as in Eq. (17):

PD =
𝑣METHOD − 𝑣BEST

𝑣BEST
× 100 (17)

where 𝑣METHOD denotes the best objective function value obtained by
METHOD while 𝑣BEST denotes the best value of the objective function
obtained. To summarize the computational results, we calculate the
6

average RPD (ARPD) for a given method by grouping the RPD obtained
across a given set of instances.

SR is calculated as the number of times that a given method finds
the best solution (with or without a draw) divided by the number of
test instances in a given instance set, as expressed as in Eq. (18):

SR =
𝑛BEST
𝑛INST

× 100 (18)

where 𝑛BEST is the number of instances in which a given method
achieved the best solution and 𝑛INST is the number of instances in the
given instance set.

5.2. Calibration of the proposed DDE

A standard DE algorithm basically has three parameters: 𝑁𝑃 : popu-
lation size; 𝐹 : scaling factor; and 𝐶𝑅: crossover rate. Pan et al. (2011)
highlighted that the 𝑁𝑃 parameter highly relies on the complexity of
a given optimization problem and should be a user-specific parameter.
Since we are working directly with permutations, we can suppress the
scaling factor 𝐹 , reducing the number of parameters of the proposed
DDE.

As it can be seen, the only parameter in our algorithm is the popula-
tion size. In order to study the influence of this parameter, we evaluate
three levels, i.e.: 𝑁𝑃 ∈ {1∕2 × 𝑛, 𝑛, 2 × 𝑛}, where 𝑛 is the number of
jobs. We run the DDE algorithm for these three levels and compare the
ARPD and the SR values. Regarding ARPD, the values for the above-
mentioned population sizes were 2.0%, 1.0%, and 0.1% respectively.
Considering the SR performance indicator, the values obtained were
respectively 3.0%, 15.1%, and 81.9%. Thus, we adopt the population
size 𝑁𝑃 = 2 × 𝑛 in the subsequent computational experiments.

In order to analyse the effectiveness of the local search mechanisms
presented in Section 4.5, we have compared four variants of DDE: (i)
DDE1 (using local search strategies L1 and L2); (ii) DDE2 (without L1
and with L2); (iii) DDE3 (with L2 and without L1); and (iv) DDE4
(without L1 and L2). More specifically, we performed an ANOVA
test to evaluate if the difference in the ARPD values was statistically
significant, see the results in Fig. 3. Furthermore, we performed a Tukey
test (Montgomery, 2017) to evaluate the statistical significance of the
differences among the variants, and show the confidence intervals in
Fig. 4. As it can be seen in both Figs. 4 and 3, it is the addition
of the specific local search mechanisms that produces a significant
improvement in the performance of the DDE, particularly when both
mechanisms are combined. In view of these results, we adopt DDE1 (the
DDE variant including both local search mechanisms) in the subsequent
computational experiments.

Besides, we also evaluate with experiments the benefits of our
proposed restart procedure as compared to a standard restart operator.
More specifically, we use the procedure employed by Ruiz et al. (2006),
where the population is restarted after 𝐺𝑟 generations without im-
provement in the best solution. After a full-factorial design taking into
account three values of 𝐺𝑟 (25, 50, and 75), the value of 25 returned the
best results. Thereby, we compare our parameter-free restart procedure
with a standard restart procedure with 𝐺𝑟 = 25. More specifically, we
compare the best DDE obtained in the calibration process with our
proposed restart procedure (DDE1) with the same algorithm using the
standard restart procedure, as presented by Ruiz et al. (2006) (DDE5).
Fig. 5 shows the boxplot in terms of ARPD values for both DDE variants.
The ANOVA test shows that there are statistically significant differences
between the two algorithms. More specifically, DDE1 returns an ARPD
value of 0.0% and SR equal to 100%, whereas DDE5 returns an ARPD
value of 13.3%, and SR equals 0.0%. It is then clear that our proposal
yields significant benefits in terms of the quality of the solutions found
as compared with a standard restart procedure.

https://www.researchgate.net/project/Models-and-algorithms-for-the-order-scheduling-problems-considering-setup-times-2/update/602fa42a02cee400014ae143


Expert Systems With Applications 189 (2022) 116097B.A. Prata et al.
Fig. 3. Boxplot of average percent relative deviation for each DDE variant.

Fig. 4. Tukey confidence intervals for ARPD.

Fig. 5. Boxplot of average percent relative deviation for evaluation of the restart
procedure.

5.3. Algorithms under comparison

In the computational experiments we considered the following
methods:

• MILP model, defined as in Eqs. (3)–(12). In the MILP model, a
different permutation is considered for each machine.

• An adaptation to the problem of the Fixed Variation List Algo-
rithm (FVLA) (Prata et al., 2021a), the state-of-the-art algorithm
for the customer order scheduling problem with makespan objec-
tive and non-zero setup times. In the FVLA matheuristic, distinct
permutations are considered for each machine.

• An adaptation to the problem of the Perturbative Search Algo-
rithm (PSA) (Riahi et al., 2019), the state-of-the-art algorithm
for the customer order scheduling problem with total completion
7

time as objective and zero setup times. In the PSA metaheuristic,
a single permutation is considered for the machines.

• An adaptation to the problem of the Variable Neighbourhood
Search (VNS) (Kuo et al., 2020). Since the problem under study
may be regarded as related to the single-machine environment,
it would be interesting to adapt algorithms for single-machine
scheduling with related objectives and constraints. However,
to the best of our knowledge, there are no contributions to
the single-machine scheduling problem with sequence-dependent
setup times to minimize the total completion time. Thus, we have
considered a similar variant, as addressed by Kuo et al. (2020).
Here also a single permutation is considered for the machines.

• Discrete Differential Evolution (DDE) (our proposal).

Regarding the manner in which the above algorithms are adapted,
we note the following. Concerning the FVLA, we adopt 𝛼 = 0.4 since
this value conducted to better results in Prata et al. (2021a). Concerning
the PSA, to construct the list , we adopt the Total Weighted Processing
Times (TWPT) used for the Permutation Construction and Explorations
(PCE) heuristic to build the initial solution, following Riahi et al.
(2019). We consider the same original parameters of PSA, as reported
by Riahi et al. (2019): 𝐷 = 6, 𝑅 = 0.005, where 𝐷 controls the
exclusion of customer orders from the input solution, and 𝑅 controls
the acceptance of solutions with worse objective function values.

Regarding VNS, we adapt the objective function and the problem
constraints to our variant. The initial solution is also generated ran-
domly, and we reproduce the parameters considered by Kuo et al.
(2020), i.e.: 𝑇𝑠 = − (𝑍𝑚𝑎𝑥 − 𝑍𝑚𝑖𝑛)/ log𝑒 0.5, 𝑇𝑒 = − (𝑍𝑚𝑎𝑥 − 𝑍𝑚𝑖𝑛)
×0.0001∕ log𝑒 0.05, 𝛼𝑇𝐸𝑀𝑃 = 0.99, 𝐾 = 1, 000, 000, and 𝑀 = 50. We adapt
the values of 𝑍𝑚𝑎𝑥 and 𝑍𝑚𝑖𝑛 to the problem under study: 𝑍𝑚𝑎𝑥 = 𝑛 ×𝑝𝑚𝑎𝑥
+ (𝑛 − 1) ×𝑠𝑚𝑎𝑥 and 𝑍𝑚𝑖𝑛 = 𝑛 ×𝑝𝑚𝑖𝑛 + (𝑛 − 1) ×𝑠𝑚𝑖𝑛.

5.4. Results and discussion

We implemented all the methods using Julia with Atom IDE (https:
//atom.io/). For the mathematical programming model as well as the
matheuristic, we used the commercial solver Gurobi (https://www.
gurobi.com/) version 9.0.2 with JuMP library (Lubin & Dunning,
2015). We perform the computational experience on a PC with AMD
Ryzen 3 3200U APU 3.5 GHz Dual-Core and 8 GB memory, with the
Windows 10 LTS operating system. For all methods under comparison,
we adopt a time limit 𝑡𝑙𝑖𝑚𝑖𝑡 = 𝑚𝑛/2, expressed in seconds. The compu-
tational times were not reported since all evaluated methods used the
specified time limit.

Fig. 6 and Table 1 illustrate the ARPD values obtained for the
methods under comparison for each instance category. Furthermore,
Table 2 describes SR values for each method. Regarding Fig. 6, it can
be noted that the methods with fixed permutations in the machines
(i.e. PSA and VNS where the same permutation for all machines is
used) presented the worst results, as they yield the highest ARPD
values. It can be then concluded that, although these methods presented
good solutions for the makespan criterion in Prata et al. (2021a), their
adaptation to the total completion time does not seem to be equally
competitive.

We can also emphasize that the method with a controlled fixing
of decision variables (FVLA) presents better results than the methods
with fixed permutations. Finally, it is to note that the proposed DDE
metaheuristic presented better values of ARPD and SR than the rest of
the other methods under comparison. We can observe that our proposal
obtains the lowest ARPD values in 23 (out of 27) sets of instances.
Besides, the proposed DDE yields ARPD values equal to zero in 12 of
these sets, which means that it finds the best solution in all instances
in these sets.

Aiming to achieve a pairwise comparison between the evaluated
methods, we perform an ANOVA procedure, followed by a Tukey’s

https://atom.io/
https://atom.io/
https://atom.io/
https://www.gurobi.com/
https://www.gurobi.com/
https://www.gurobi.com/


Expert Systems With Applications 189 (2022) 116097B.A. Prata et al.
Fig. 6. Comparison of average percent relative deviation for each method by instance category.
Table 1
Average percent relative deviation and standard deviation for each method by instance category.

Set 𝑚 𝑛 𝑠 MILP FVLA PSA VNS DDE

ARPD 𝜎 ARPD 𝜎 ARPD 𝜎 ARPD 𝜎 ARPD 𝜎

1 5 20 [1,25] 0.3 0.5 6.2 1.6 26 6.2 26.5 5.4 1.3 1.1
2 5 20 [1,75] 2 2.4 10.6 4.9 36.9 5.8 38.9 5.1 0.5 0.8
3 5 20 [1,125] 6.7 4.4 12.6 4.8 40.7 8.2 42.8 6.9 0.6 1.9
4 5 30 [1,25] 0.3 2.8 2.4 2.6 28.2 4.4 30.4 3.4 0.7 2.7
5 5 30 [1,75] 4.1 2.0 5.2 3.5 37.6 3.1 39.5 1.7 0 0.0
6 5 30 [1,125] 8 4.6 9.6 5.9 42.2 6.4 43.7 7.0 0 0.0
7 5 40 [1,25] 1 1.5 2.3 1.5 30.5 5.7 31.4 5.2 0.3 0.8
8 5 40 [1,75] 6.6 2.3 10.2 4.5 34.1 6.5 36.6 5.2 0 0.0
9 5 40 [1,125] 14.8 3.5 22.2 5.6 46.9 6.8 48.7 4.7 0 0.0
10 10 20 [1,25] 0 0.0 4.9 1.8 49.5 50.3 25 4.9 1.3 0.9
11 10 20 [1,75] 2.8 2.6 9 3.7 37.2 10.4 38.2 8.3 0.1 0.4
12 10 20 [1,125] 6.4 4.6 15.5 4.6 48.5 7.0 50.1 6.3 0 0.0
13 10 30 [1,25] 1 1.0 3.3 1.8 30.4 6.4 32.1 5.8 0.1 0.3
14 10 30 [1,75] 3.3 2.2 4.8 3.2 39 7.5 40.7 5.4 0.2 0.4
15 10 30 [1,125] 11 3.1 13.3 4.1 50.1 5.3 51.8 4.3 0 0.0
16 10 40 [1,25] 0.7 1.2 3.2 1.4 30.6 5.0 31.5 4.3 0.4 0.5
17 10 40 [1,75] 5.5 2.2 11.5 4.4 36 6.6 37.6 5.0 0.5 1.6
18 10 40 [1,125] 14.8 4.4 22.5 4.4 49.3 4.6 50.9 3.5 0 0.0
19 20 20 [1,25] 0 0.0 5.4 1.9 53.1 50.7 28.2 4.6 1.3 0.7
20 20 20 [1,75] 3.3 2.2 11.7 3.3 41.9 5.2 43.6 5.1 0.3 0.8
21 20 20 [1,125] 8 3.5 18.5 4.3 54.4 7.9 56.2 6.7 0 0.0
22 20 30 [1,25] 0.7 0.8 2.2 0.9 31 6.2 32.6 4.7 0.1 0.2
23 20 30 [1,75] 5.3 1.6 10.4 3.5 42.7 1.8 44.8 2.8 0 0.0
24 20 30 [1,125] 12.2 1.8 13.9 4.7 52.4 6.4 54.2 4.9 0 0.0
25 20 40 [1,25] 1 0.9 2.3 1.4 31.9 4.3 32.4 4.0 0.4 0.6
26 20 40 [1,75] 7.7 3.0 8.6 2.8 40 3.3 41.7 2.9 0 0.0
27 20 40 [1,125] 20.9 8.4 19.1 2.9 51.6 4.1 53.1 3.4 0 0.0
test. Fig. 7 illustrates the boxplots for ARPD values, and Fig. 8 illus-
trates the Tukey multiple comparisons of means with 95% family-wise
confidence level. From these results, it can be seen that there are
statistically significant differences among most procedures (see Fig. 7
where the 95% confidence intervals of ARPD are illustrated). Based on
the results obtained, we can conclude that the proposed DDE algorithm
outperforms all the other methods under comparison with statistical
significance.

Fig. 9 illustrates an example of convergence graph for the proposed
DDE, considering the test instance 270 (𝑚 = 20, 𝑛 = 40, 𝑠 ∈ 1, 125 ).
Taking this figure into account, we can observe that the DDE algorithm
was able to improve the best solution found during the generations.
These improvements were more substantial in the first generations, and
more gradual in the next ones. Furthermore, it can be observed that the
8

Table 2
Success rate for each method.

Method SR (%)

MILP 20.4
FVLA 9.6
PSA 0.0
VNS 0.0
DDE 70.0

DDE algorithm has not presented an asymptotic convergence. Thereby,

with a greater time limit, the algorithm could potentially find better

solutions for large-sized test instances.



Expert Systems With Applications 189 (2022) 116097B.A. Prata et al.
Fig. 7. Boxplot of average percent relative deviation for each method.

Fig. 8. Tukey confidence intervals for ARPD.

Fig. 9. Convergence graph for the test instance p270.

6. Final remarks and perspectives

In this paper, we have addressed the customer order scheduling
problem with sequence-dependent setup times using the total comple-
tion time as objective function. To the best of our knowledge, this
problem has not been dealt with in the previous literature.

Since the problem considered is NP-hard, we have developed a
Discrete Differential Evolution (DDE) algorithm to solve it. The opera-
tors work directly with the permutation space so the operations with
float numbers – characteristic in Differential Evolution algorithms – are
not necessary. A new, parameter-free, restart procedure is introduced,
and we propose two novel local search mechanisms based on heuristic
9

dominance relations aiming to reduce the search space. Furthermore,
the calibration of the DDE shows the effectiveness of these local search
mechanisms. The extensive computational experimentation carried out
indicates that the proposed DDE clearly outperforms all other methods
under comparison.

As suggestion for future works, we are interested in expanding our
research along different lines. One of them is the consideration within
our customer order scheduling problem with sequence-dependent se-
tups of other performance measures. Particularly, we are interested in
due-date related criteria widely used in industry, such as total tardiness
minimization. Other line refers to improving the proposed DDE so the
only remaining parameter (i.e. the population size in each generation),
can be removed, thus making the algorithm more robust. Finally, it
would be interesting to further analyse the similarities between the
problem under consideration and other scheduling layouts where there
are numerous contributions considering sequence-dependent setups, so
further problem-specific properties (similar to the ones successfully em-
ployed here to derive the local search mechanisms) could be potentially
derived.

CRediT authorship contribution statement

Bruno de Athayde Prata: Conceptualization, Investigation, Soft-
ware, Formal analysis, Writing – original draft, Visualization, Funding
acquisition. Carlos Diego Rodrigues: Formal analysis, Methodology,
Writing. Jose Manuel Framinan: Conceptualization, Writing – review
& editing, Supervision, Project administration, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

This study was financed in part by the Coordination for the Im-
provement of Higher Education Personnel (CAPES), Brazil and the
National Council for Scientific and Technological Development (CNPq),
Brazil, through grant 303594/2018-7. The support of the Spanish Min-
istry of Science and Innovation, Spain via the ASSORT grant with
reference PID2019-108756RB-I00, and the Andalusian Regional Gov-
ernment, Spain via grants DEMAND and EFECTOS with references
P18-FR-1149 and US-1264511 respectively is acknowledged and appre-
ciated.

References

Abreu, L. R., Cunha, J. O., Prata, B. A., & Framinan, J. M. (2020). A genetic algorithm
for scheduling open shops with sequence-dependent setup times. Computers &
Operations Research, 113, Article 104793.

Alcaraz, J., Maroto, C., & Ruiz, R. (2003). Solving the multi-mode resource-constrained
project scheduling problem with genetic algorithms. Journal of the Operational
Research Society, 54(6), 614–626.

Allahverdi, A., Ng, C., Cheng, T., & Kovalyov, M. Y. (2008). A survey of scheduling
problems with setup times or costs. European Journal of Operational Research,
187(3), 985–1032.

Bai, D., Zhang, Z., Zhang, Q., & Tang, M. (2017). Open shop scheduling problem to
minimize total weighted completion time. Engineering Optimization, 49(1), 98–112.

Framinan, J. M., & Perez-Gonzalez, P. (2017). New approximate algorithms for the
customer order scheduling problem with total completion time objective. Computers
& Operations Research, 78, 181–192.

Framinan, J. M., & Perez-Gonzalez, P. (2018). Order scheduling with tardiness objective:
Improved approximate solutions. European Journal of Operational Research, 266(3),
840–850.

Framinan, J. M., Perez-Gonzalez, P., & Fernandez-Viagas, V. (2019). Deterministic
assembly scheduling problems: A review and classification of concurrent-type
scheduling models and solution procedures. European Journal of Operational
Research, 273(2), 401–417.

http://refhub.elsevier.com/S0957-4174(21)01430-5/sb1
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb1
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb1
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb1
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb1
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb2
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb2
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb2
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb2
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb2
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb3
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb3
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb3
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb3
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb3
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb4
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb4
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb4
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb5
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb5
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb5
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb5
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb5
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb6
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb6
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb6
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb6
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb6
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb7
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb7
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb7
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb7
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb7
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb7
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb7


Expert Systems With Applications 189 (2022) 116097B.A. Prata et al.

L

L

L

L

M

M
N

Z

Kuo, Y., Chen, S.-I., & Yeh, Y.-H. (2020). Single machine scheduling with sequence-
dependent setup times and delayed precedence constraints. Operational Research,
20(2), 927–942.

eung, J. Y.-T., Li, H., & Pinedo, M. (2005). Order scheduling in an environment with
dedicated resources in parallel. Journal of Scheduling, 8(5), 355–386.

iu, W.-L., Gong, Y.-J., Chen, W.-N., Liu, Z., Wang, H., & Zhang, J. (2020). Coordinated
charging scheduling of electric vehicles: A mixed-variable differential evolution
approach. IEEE Transactions on Intelligent Transportation Systems, 21(12), 5094–5109.

u, Y., Zhou, J., Qin, H., Wang, Y., & Zhang, Y. (2011). Chaotic differential evolution
methods for dynamic economic dispatch with valve-point effects. Engineering
Applications of Artificial Intelligence, 24(2), 378–387.

ubin, M., & Dunning, I. (2015). Computing in operations research using Julia.
INFORMS Journal on Computing, 27(2), 238–248.

occellin, J. V., Nagano, M. S., Pitombeira Neto, A. R., & Prata, B. A. (2018). Heuristic
algorithms for scheduling hybrid flow shops with machine blocking and setup times.
Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(2), 40.

ontgomery, D. C. (2017). Design and analysis of experiments. John wiley & sons.
awaz, M., Enscore Jr, E. E., & Ham, I. (1983). A heuristic algorithm for the m-machine,

n-job flow-shop sequencing problem. Omega, 11(1), 91–95.
Onwubolu, G., & Davendra, D. (2009). Differential evolution for permutation—

based combinatorial problems. In Differential evolution: A handbook for global
permutation-based combinatorial optimization (pp. 13–34). Springer.

Pan, Q.-K., Suganthan, P., Wang, L., Gao, L., & Mallipeddi, R. (2011). A differential
evolution algorithm with self-adapting strategy and control parameters. Computers
& Operations Research, 38(1), 394–408, Project Management and Scheduling.

Pan, Q.-K., Tasgetiren, M. F., & Liang, Y.-C. (2008). A discrete differential evolution
algorithm for the permutation flowshop scheduling problem. Computers & Industrial
Engineering, 55(4), 795–816.

Prata, B. A. (2015). A hybrid genetic algorithm for the vehicle and crew scheduling in
mass transit systems. IEEE Latin America Transactions, 13(9), 3020–3025.

Prata, B. A., Rodrigues, C. D., & Framinan, J. M. (2021a). Customer order scheduling
problem to minimize makespan with sequence-dependent setup times. Computers &
Industrial Engineering, 151, Article 106962.

Prata, B. A., Rodrigues, C. D., & Framinan, J. M. (2021b). Test instances - customer
order scheduling with sequence-dependent setup times to minimize the total
completion time objective.

Riahi, V., Newton, M. H., Polash, M., & Sattar, A. (2019). Tailoring customer order
scheduling search algorithms. Computers & Operations Research, 108, 155–165.

Roemer, T., & Ahmadi, R. (2001). The complexity of scheduling customer orders.
Ruiz, R., Maroto, C., & Alcaraz, J. (2006). Two new robust genetic algorithms for the

flowshop scheduling problem. Omega, 34(5), 461–476.
10
Sales, L. P. A., Melo, C. S., Bonates, T. O., & Prata, B. A. (2018). Memetic algorithm
for the heterogeneous fleet school bus routing problem. Journal of Urban Planning
and Development, 144(2), 1–12.

Santucci, V., Baioletti, M., & Milani, A. (2016). Solving permutation flowshop schedul-
ing problems with a discrete differential evolution algorithm. AI Communications,
29(2), 269–286.

Shi, Z., Wang, L., Liu, P., & Shi, L. (2017). Minimizing completion time for order
scheduling: Formulation and heuristic algorithm. IEEE Transactions on Automation
Science and Engineering, 14(4), 1558–1569.

Storn, R., & Price, K. (1997). Differential evolution–a simple and efficient heuristic for
global optimization over continuous spaces. Journal of Global Optimization, 11(4),
341–359.

Sung, C. S., & Yoon, S. H. (1998). Minimizing total weighted completion time at
a pre-assembly stage composed of two feeding machines. International Journal of
Production Economics, 54(3), 247–255.

Tavazoei, M. S., & Haeri, M. (2007). Comparison of different one-dimensional maps as
chaotic search pattern in chaos optimization algorithms. Applied Mathematics and
Computation, 187(2), 1076–1085.

Wagneur, E., & Sriskandarajah, C. (1993). Openshops with jobs overlap. European
Journal of Operational Research, 71(3), 366–378.

Wang, G., & Cheng, T. E. (2007). Customer order scheduling to minimize total weighted
completion time. Omega, 35(5), 623–626.

Wang, L., Pan, Q.-K., Suganthan, P., Wang, W.-H., & Wang, Y.-M. (2010). A novel
hybrid discrete differential evolution algorithm for blocking flow shop scheduling
problems. Computers & Operations Research, 37(3), 509–520, Hybrid Metaheuristics.

Wu, C.-C., Bai, D., Zhang, X., Cheng, S.-R., Lin, J.-C., Wu, Z.-L., & Lin, W.-C.
(2021). A robust customer order scheduling problem along with scenario-dependent
component processing times and due dates. Journal of Manufacturing Systems, 58,
291–305.

Wu, C.-C., Lin, W.-C., Zhang, X., Chung, I.-H., Yang, T.-H., & Lai, K. (2019). Tardiness
minimisation for a customer order scheduling problem with sum-of-processing-
time-based learning effect. Journal of the Operational Research Society, 70(3),
487–501.

Wu, C.-C., Yang, T.-H., Zhang, X., Kang, C.-C., Chung, I.-H., & Lin, W.-C. (2019).
Using heuristic and iterative greedy algorithms for the total weighted completion
time order scheduling with release times. Swarm and Evolutionary Computation, 44,
913–926.

Zhao, F., Zhao, L., Wang, L., & Song, H. (2020). An ensemble discrete differential evo-
lution for the distributed blocking flowshop scheduling with minimizing makespan
criterion. Expert Systems with Applications, 160, Article 113678.

hou, S., Xing, L., Zheng, X., Du, N., Wang, L., & Zhang, Q. (2021). A self-adaptive
differential evolution algorithm for scheduling a single batch-processing machine
with arbitrary job sizes and release times. IEEE Transactions on Cybernetics.

http://refhub.elsevier.com/S0957-4174(21)01430-5/sb8
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb8
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb8
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb8
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb8
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb9
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb9
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb9
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb10
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb10
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb10
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb10
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb10
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb11
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb11
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb11
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb11
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb11
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb12
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb12
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb12
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb13
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb13
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb13
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb13
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb13
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb14
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb15
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb15
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb15
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb16
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb16
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb16
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb16
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb16
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb17
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb17
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb17
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb17
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb17
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb18
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb18
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb18
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb18
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb18
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb19
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb19
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb19
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb20
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb20
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb20
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb20
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb20
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb21
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb21
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb21
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb21
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb21
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb22
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb22
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb22
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb23
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb24
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb24
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb24
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb25
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb25
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb25
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb25
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb25
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb26
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb26
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb26
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb26
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb26
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb27
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb27
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb27
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb27
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb27
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb28
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb28
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb28
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb28
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb28
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb29
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb29
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb29
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb29
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb29
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb30
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb30
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb30
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb30
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb30
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb31
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb31
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb31
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb32
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb32
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb32
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb33
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb33
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb33
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb33
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb33
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb34
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb34
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb34
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb34
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb34
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb34
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb34
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb35
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb35
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb35
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb35
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb35
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb35
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb35
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb36
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb36
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb36
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb36
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb36
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb36
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb36
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb37
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb37
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb37
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb37
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb37
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb38
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb38
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb38
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb38
http://refhub.elsevier.com/S0957-4174(21)01430-5/sb38

	A differential evolution algorithm for the customer order scheduling problem with sequence-dependent setup times
	Introduction
	Literature review
	Problem statement and MILP formulation
	A new discrete differential evolution algorithm
	Problem encoding and generation of the initial population
	Selection, crossover and update of the population
	Self-adjustment of CR values
	Restart procedure
	Local search mechanisms

	Computational experiments
	Experimental design
	Calibration of the proposed DDE
	Algorithms under comparison
	Results and discussion

	Final remarks and perspectives
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References


