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ABSTRACT

The competition between two different collective states and their interplay are standing ques-
tions in solid-state physics. The discovery of high-temperature superconductivity in materials
brought a new spectrum of compounds that exhibit competition between superconductivity and
another collective state, such as density waves (charge/spin density waves). In recent studies,
transition-metal dichalcogenides (TMDs) show emergent superconductivity when doped. It was
suggested the fluctuations of their charge density wave (CDW) order, in the form of discom-
mensurations, are closely related to enhancing the superconductor’s critical temperature. With a
novel technique based on scanning tunneling microscopy, it became possible to measure distinct
amplitude and phase images of CDW with high spatial resolution. Such analysis in TMDs pro-
vides evidence that their charge density wave consists of three individual charge modulations.
Phase images revealed topological defects and discommensurations in a nearly-commensurate
state that was predicted by the McMillan theory. Recently, a Ginzburg-Landau-McMillan model
was used to describe the CDW in TMDs, specifically in TiSe2. In this thesis, first, we theo-
retically examine the behavior of superconductivity at parallel interfaces with other dominant
collective excitation, such as charge density waves or spin density waves. Due to their competi-
tive coupling in a two-component Ginzburg-Landau model, suppression of the prevailing order
parameter at the interfacial planes allows for nucleation of the (hidden) superconducting order
parameter at those planes. Then, we investigate the role of the different parameters within the
Ginzburg-Landau-McMillan theory on the phase distribution, discommensurations, and critical
temperatures of CDW in 2D materials and how these parameters influence the superconduc-
tivity. We employ an imaginary time evolution method on the Ginzburg-Landau-McMillan
equations to obtain first the CDW discommensuration distributions and then the superconduc-
tivity.

Keywords: superconductivity; charge density waves; Ginzburg-Landau theory; competi-
tion; condensed matter.



RESUMO

A competição entre dois estados coletivos diferentes e sua interação são questões recorrentes na
física do estado sólido. A descoberta da supercondutividade em materiais de alta temperatura
trouxe um novo espectro de compostos que apresentam competição entre a supercondutividade
e outro estado coletivo, como ondas de densidade (de carga ou spin). Em estudos recentes,
em dichalcogenetos de metais de transição (TMDs) apresentam um estado supercondutor emer-
gente quando dopados. Foi sugerido que as flutuações de sua ordem de onda de densidade de
carga (CDW), na forma de descomensurações, estão relacionadas ao aumento da temperatura
crítica do supercondutor. Utilizando uma nova técnica de microscopia de varredura por tunela-
mento, experimentos recentes conseguiram obter imagens distintas de amplitude e fases de
CDW com alta resolução espacial, e esta análise em TMDs fornece evidências de que sua onda
de densidade de carga consiste de três modulações de carga individuais. As imagens de fases
revelaram defeitos topológicos e descomensurações em um estado quase-comensurável que foi
previsto pela teoria de McMillan. Recentemente, um modelo Ginzburg-Landau-McMillan foi
usado para descrever a CDW em TMDs, especificamente em TiSe2. Nesta tese, primeiramente,
examinamos teoricamente o comportamento da supercondutividade em interfaces paralelas que
separam os domínios de outra excitação coletiva dominante, como ondas de densidade de
carga ou ondas de densidade de spin. Devido ao seu acoplamento competitivo em um mod-
elo Ginzburg-Landau de duas componentes, a supressão do parâmetro de ordem dominante nas
planos interfaciais permite a nucleação do parâmetro de ordem supercondutor (oculto) nesses
planos. Em seguida, investigamos o papel dos diferentes parâmetros dentro da teoria Ginzburg-
Landau-McMillan na distribuição de fases, descomensurações e temperaturas críticas da CDW
em materiais 2D e como esses parâmetros influenciam a supercondutividade. Empregamos um
método de evolução no tempo imaginário nas equações Ginzburg-Landau-McMillan para obter
primeiro as distribuições de descomensurações da CDW e depois da supercondutividade.

Palavras-chave: supercondutividade; ondas de densidade de cargas; teoria de Ginzburg-
Landau; competição; matéria condensada.
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1 INTRODUCTION

The Ginzburg-Landau (GL) theory for superconductors is one of the most influential

and powerful theories of the mid-20th century. Since the discovery of superconductivity at the

beginning of the 20th century[1–4], multiple theories tried to fully explain the phenomenon and

culminating in the phenomenological theory of Ginzburg-Landau [5] that uses previous works

of Landau and London [1, 6] to describe one of the most interesting and complex problems in

physics.

The discovery in 1911 by Heike K. Onnes in Leiden, Netherlands[7], was the start

of the study of superconductivity. By cooling a sample of mercury below 4.2 K, he found the

perfect conductivity which is one of the main characteristics of the superconductor. Multiple

milestones in the research of superconductivity have been achieved since its discovery. In 1933,

the second main characteristic was discovered by W. Meissner and R. Ochsenfeld[8], which

the superconductor has perfect diamagnetism and expels external magnetic fields. To create

a theory to explain the superconductor one needed to contemplate those two features, and the

first theory to achieve such an explanation was done by F. and H. London[1], using a modified

Maxwell equation to define the behavior of the "superconductors electrons". In the 1950s comes

a big revolution in superconductivity. The decade begins with the publication of the Ginzburg-

Landau theory by V. L. Ginzburg[5]. In 1957, two great works divided the attention, first the

vortex theory of Abrikosov[9], and then the Bardeen-Cooper-Schrieffer (BCS) microscopic the-

ory[10]. Both works revolutionized the understanding of the nature of the superconductor. The

link between the two big theories of Ginzburg and BCS was done by Gor’kov in 1959[11]. More

recently, in 1986, the discovery of high-temperature superconductivity[12] opened a huge num-

ber of possibilities to superconductors. A new wave of theories and experiments started from

this discovery. Another door opened in 2004 with the discovery of two-dimensional graphene

which increased interest in two-dimensional materials. The combination of all these milestones

allowed us to make this thesis.

The GL theory allowed science to advance in solving complex superconductor prob-

lems that could describe superconductivity with inhomogeneous parameters, magnetic fields, or

both. The success of the theory pushed the scientific community to expand the equations for

new systems that had similarities with superconductivity. Multi-component GL theory is used
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to describe superconductors with multiple gaps[13–19], high-temperature superconductors can

be described with the GL theory[20, 21], and spin/charge density waves have a phenomenolog-

ical theory derived from the GL theory of superconductivity[21–26]. In recent years, the study

of novel materials with reduced dimensionality, so-called two-dimensional materials, brought

new challenges to solid-state physics[27–36].

Transition metal dichalcogenides (TMDs) are a versatile chemical family of layered

materials that can be exfoliated to a monolayer. The evidence of the presence of competing col-

lective states, such as charge density waves and superconductivity, has stimulated new studies

involving these materials.[37–42]

The focus of this thesis is to understand the interplay between the charge density

wave (CDW) and superconductivity (SC) in TMDs. We start by expanding a generic multi-

component GL theory, in which multiple interfaces are present. In the interfaces, the dominant

collective state (the CDW) is suppressed and a hidden SC state rises. In such a case, we demon-

strate how the number of the parallel interfacial planes and the distance between them is linked

to the number and the size of the emerging superconducting gaps in the system, as well as the

versatility and temperature evolution of the possible superconducting phases. These findings

bear relevance to a broad selection of known layered superconducting materials, as well as to

further design of artificial (e.g. oxide) superlattices, where the interplay between competing or-

der parameters paves the way toward otherwise unattainable superconducting states, some with

enhanced superconducting critical temperature.

After developing such a general model, we discuss in more detail the interplay be-

tween the collective phases in TMDs. In these materials, the CDW is formed by three order pa-

rameters representing three charge density distributions. We use an expansion of the GL theory

developed by McMillan[23] to describe the CDW in TMD fully. We then developed an efficient

imaginary time evolution method for solving the MGL equations resulting from this approach,

which allowed us to investigate, in a phenomenological way, the role of different coupling pa-

rameters on the CDW patterns and to perform calculations with different energy functionals that

lead to several experimentally observed singularities in the CDW phase profiles.[43] In particu-

lar, by choosing the appropriate energy functionals, we were able to use this phenomenological

model to obtain phases that go beyond the well-known periodic phase slips (discommensura-

tions), exhibiting also topological defects (namely, vortex-antivortex pairs), domain walls where

the CDW order parameter is suppressed, and even CDW with broken rotational symmetry. The
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effect of these different phases on the profile and critical temperature of the competing emergent

superconducting state is also discussed.

The thesis is organized as follows. In chapter 2 we describe the GL theory in detail.

Chapter 3 is dedicated to giving a brief introduction to the charge density wave theory, while

Chapter 4 expands the theory to the transition metal dichalcogenides. Chapter 5 provides the

theory and results from our investigation on the multi-component GL theory for interface su-

perconductivity. Chapter 6 is focused on the interplay between SC and CDW in TMDs. We

finish with our conclusions in Chapter 7.
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2 SUPERCONDUCTIVITY: GINZBURG-LANDAU THEORY

The discovery of superconductivity in 1911 by Heike K. Onnes [7] in Leiden,

Netherlands, brought to the scientific world a new type of phenomenon to investigate. After

110 years of experiments and discoveries, the field keeps providing questions, especially in the

pursuit of a room-temperature SC. Novel materials with unusual physical properties have given

rise to new and intriguing SC phases when combined with other collective states.

In this chapter, we will review the basic concepts of SC, such as the Meissner-

Ochsenfeld effect, critical field, and condensation energy. We will introduce the Ginzburg-

Landau (GL) theory[5] and the notations we shall use in this thesis. We will not follow a

historical line, but instead, we will step-by-step introduce the concepts and equations necessary

to understand the GL theory.

Magnetic field-induced Abrikosov vortices are not among the topics discussed in

the results produced by this Thesis. However, since we will discuss vortex-antivortex pairs in

CDW later in this work, it is worth providing a brief introduction to vortex states in supercon-

ductors, which is done in what follows. For more details on the Abrikosov vortex lattice, see

the Appendix.

2.1 Condensation energy of a superconductor

Onnes discovered superconductivity by reducing the temperature of a mercury sam-

ple to temperatures below 4.2 K. At this temperature, the electric resistance fell abruptly close

to zero (see Fig. 1). He defined the SC as a state where the material has perfect conductivity.

Another characteristic of the SC state is the perfect diamagnetism discovered in 1933 by W.

Meissner and R. Ochsenfeld[8]. The perfect conductivity explains that a magnetic field can not

enter a massive superconductor, but in the Meissner-Ochsenfeld effect, the magnetic field is

expelled from a material when it is cooled below its critical temperature, which means that the

material does not retain magnetic history. This behavior is sketched in Fig. 2.

The Meissner-Ochesenfeld effect is important for a thermodynamic approach to the

study of superconductors. It proves that SC is a reversible and stable state, allowing the study

of superconductors by a phase transition theory much like the transition between liquid and

gas[44, 45]. Although the GL theory of superconductivity, developed in 1950, was introduced
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Figure 1 – First discovery of superconductivity

Source: Figure extracted from [7]. Figure extracted from K. Onnes notebook. It shows the drop in
resistivity of a mercury sample for temperatures below 4.2 K.

as a phenomenological theory, in 1959, Gor’kov[11] showed that it can be derived from the

microscopic theory and, in this way, the GL theory describes the SC phase transition from the

thermodynamic point of view.

As the superconductivity state is a thermodynamic state, there are variables that

can be used to characterize it, like pressure and temperature, as used for solid, liquid, and gas

phases. From the first experimental observations of SC, it is clear that one of the variables

is the temperature: there is a critical temperature Tc below which the material goes from the

normal state to the superconductivity state. The reversibility of the expulsion of the magnetic

field also implies that there is a transition from normal to superconductor state by the magnetic

field when a critical magnetic field is applied H = Hc[44]. It is important to say that only type-I

superconductors, the firsts to be discovered, faithfully obey this distinction between normal and

superconducting state - for a type-II superconductor, there is a mixed state where part of the

magnetic field penetrates in the superconductor. The set (T,H) then gives us variables that can

be used in a thermodynamic framework.

For the superconductor state to be stable its free energy must be lower than the

normal state for a set of (T < Tc,H < Hc). We can now use all the tools from thermodynamics
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Figure 2 – Skech of the Meissner-Ochsenfeld effect

N

cooling

cooling

magnetic 
field

magnetic 
field

N
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S

Source: Author’s figure. In the Meissner-Ochsenfeld effect, the superconductor expels the magnetic
field when it is cooled from the normal state (N) down below the critical temperature, where it becomes
superconductor (S), even if the magnetic field is already in place before the cooling.

and apply them to the transition between normal and superconductor states. Starting with the

internal energy U ,

dU = T dS+µ0V H ·dM, (2.1)

where U is the total internal energy, T is the temperature and S the entropy. We can define the

Helmholtz, F(T,M), and Gibbs, G(T,H), free energies

F(T,M) =U−T S, (2.2)

G(T,H) = F(T,M)−µ0H ·M. (2.3)

Since the superconductor is a stable state, the Gibbs free energy when we go from H = 0 to

H = Hc, where Hc(T ) is the critical field that destroys the superconductor state, has to be lower

than the normal state. We can evaluate such change by integrating the Gibbs free energy

Gs(T,Hc)−Gs(T,0) =−µ0V
∫ Hc

0
M ·dH, (2.4)

where the subscript s implies that we are referring to the superconducting state. The Meissner-

Ochsenfeld effect gives us M =−H and thus

Gs(T,Hc)−Gs(T,0) = µ0
Hc2

2
. (2.5)

In the normal state, M≈ 0, apart from the small normal metal para-magnetism or diamagnetism,
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so

Gn(T,Hc)−Gn(T,0) = 0. (2.6)

At the critical field Hc, the normal and superconducting phases are in thermodynamic equilib-

rium, this implies that the two Gibbs energies are equal,

Gs(T,Hc) = Gn(T,Hc). (2.7)

Putting together the difference in Gibbs free energies of superconducting and normal states,

Gs(T,0)−Gn(T,0) =−µ0
H2

c
2

(2.8)

or

Fs(T,0)−Fn(T,0) =−µ0
H2

c
2

(2.9)

The difference in the Gibbs energy µ0
H2

c
2 is the condensation energy. It is negative,

implying the superconducting state is stable, and defines the thermodynamic critical field Hc(T )

as a function of the difference of the free energy between the normal and the superconducting

phases. It was found empirically that Hc(T )[45] is well approximated by a parabolic law

Hc(T )≈ Hc(0)[1− (T/Tc)
2]. (2.10)

We can sketch the phase diagram H×T for type-I superconductors, Fig. 3, where the line is

transition Normal/Superconductor.

The experiment of H. K. Onnes showed that the transition in zero fields at Tc is

second order, while the transition of the magnetic field is first order, as can be verified by the

finite change in entropy between normal and superconductor state and has a finite latent heat,

Ss(T,Hc)−Sn(T,Hc) =−µ0Hc
dHc

dT
. (2.11)

The Ginzburg-Landau theory of superconductivity[5] uses the fact that we have a

second-order phase transition in the temperature to expand the theory of second-order phase

transition developed by L. D. Landau in the 1930s[46].

The value of the theory is in treating the macroscopic behavior of superconductors

in nonuniform situations, giving quite reliable predictions of the critical fields and spatial struc-

ture of the superconductivity. For the following sections, we use as references the works of

[5, 44, 45].
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Figure 3 – Sketch of the phase diagram for type-I superconductors

H

(T;0)

N

S

(T;Hc)

Tc

Hc

T

Source: Figure adapted from [45].Sketch of a phase diagram of a transition from Normal (N) to the
superconductor (S) state. Hc is the critical field and Tc is the critical temperature. The condensation
energy for type-I superconductors is obtained by integration of the Gibbs free energy along the arrow.

2.2 Bulk Superconductors

We start with bulk superconductors. The second-order phase transitions involve a

change in the symmetry of the system, below a certain temperature, Tc the superconductivity

appears spontaneously. In Landau’s theory, the phase transition is characterized by an order

parameter (OP). Ginzburg postulated the existence of a complex OP ψ that characterizes the

superconductivity. At first, it was not specified of what physical quantity this ψ would represent.

Later, Gor’kov proved the relationship between the OP and the density of Cooper pairs in the

Bardeen-Cooper-Schrieffer (BCS) theory[10] and their relation with the opening of a gap ∆ in

the Fermi energy of the system.

The basic postulate of GL is that if ψ varies slowly in space, the free energy density

Fs can be expanded in a series of the form,

fs = fn +as|ψ|2 +
bs

2
|ψ|4 + 1

2m∗

∣∣∣∣( h̄
i
∇− e∗

c
A
)

ψ

∣∣∣∣2 + h2

8π
, (2.12)

where as and bs are phenomenological coefficients, A is vector potential that is related to the

applied magnetic field h. The terms m∗ = 2me and e∗ = 2e are the mass and charge of the
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Cooper pair, respectively.

In the absence of fields and gradients, we have

fs− fn = as|ψ|2 +
bs

2
|ψ|4, (2.13)

which can be viewed as a series expansion in powers of |ψ|2 with only the first two terms.

The phenomenological parameters are temperature dependent and are assumed to be smooth

functions of the temperature. For the energy in Eq. (2.13) to have a minimum, the coefficient

bs must be positive. Two cases arise, depending on whether as is positive or negative. As is

Figure 4 – Superconductor free energy

-2 -1 0 1 2

0.0

0.5

1.0

f s 
- f

n

y/y0

 as < 0
 as > 0

Source: Figure adapted from [45]. Difference between the free energy of the superconducting state and
the normal state per unit volume as a function of the order parameter. For T < Tc the free energy has
minimums in ψ0, whereas for T > Tc the minimum union is in ψ = 0

illustrated in Fig. 4, if as > 0 the curve has one minimum at ψ = 0. On the other hand, if as < 0

there are minima whenever

|ψ|2 = |ψ0|2 =−as/bs. (2.14)

The notation ψ0 is used to represent a value infinitely deep in the interior of the superconductor.

Using this value and Eq. (2.9), we find

− a2
s

2bs
=−µ0

H2
c

2
,
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H2
c =

a2
s

µ0bs
, (2.15)

the definition of the thermodynamic critical field Hc.

The phenomenological parameters as and bs must be temperature dependent for the

ψ behave like Fig. 4

as→ as(T )

bs→ bs(T )

and as(T ) must change from positive to negative at the temperature Tc, where Tc is the critical

temperature of the superconductor, the point of phase transition between the normal and the

superconductor state. At temperatures below Tc, the free energy (2.12) has a lower value when

the OP |ψ|2 6= 0 than |ψ|2 = 0. In Eq. (2.10), Hc(T ) has a dependence with the term (1− t),

where t = T/Tc. On another hand, if Hc(T ) and as are related by Eq. (2.15), then it is expected

that as(T ) to have some kind of dependence with (1− t). We can use Taylor’s series expansion

of as(T ) about Tc and retain only the first term

as(t) = ȧs(t−1), (2.16)

where ȧs > 0. Note that, Eq. (2.16) is consistent with Eqs. (2.15) and (2.10). Now let us

consider the remaining term in the expansion from Eq. (2.12). Since ψ is a complex number we

can rewrite it as ψ = |ψ|eiφ , where |ψ| is the amplitude and φ the phase of the order parameter.

The term with the fields and gradients of Eq. (2.12) rewrites as

1
2m∗

[
h̄2(∇|ψ|)2 +

(
h̄∇φ − e∗

c
A
)
|ψ|2

]
. (2.17)

The first term is the energy associated with the gradients, the second is the kinetic energy as-

sociated with the supercurrents in the gauge-invariant form. Here we can link the GL theory

with the London theory of superconductivity [1]. In London’s theory, the superconductivity is

described in terms of the ns, the number density of superconducting electrons, that would vary

continuously from zero at Tc to a limiting value than T � Tc. In London’s theory, kinetic energy

is

KL =
A2

2µ0λ 2
eff

(2.18)

where λeff is the London’s effective penetration depth. Using the London gauge in Eq.(2.17), φ
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is constant and the kinetic term is reduced to

KGL =
e∗2A2|ψ|2

2m∗c2 (2.19)

Equating Eq. (2.18) and Eq. (2.19), we obtain

λ
2
eff =

m∗c2

µ0|ψ|2e∗2
. (2.20)

Comparing with London’s λ

λ
2
L =

mc2

µ0nse2 , (2.21)

we can identify that |ψ|2 = n∗s , and we have an effective mass m∗ and effective charge e∗.

Experimental data are fitted better if this effective charge is twice the value of a single electron,

e∗ ≈ 2e. The microscopic pairing theory of superconductivity explicitly takes e∗ = 2e. Then,

we can take m∗ = 2m and n∗s =
1
2ns, where ns is the number of single electrons in the condensate

and n∗s the number of electrons pair. The penetration depth coefficient is equal

m∗

n∗s e∗2
=

m
nse2 , (2.22)

and London’s penetration depth is unchanged by the electron pairing. We can evaluate the GL

theory parameters by using Eqs. (2.14), (2.15) and (2.20)

|ψ0|2 =
1
2

ns =
mc2

8πe2λ 2
e f f

, (2.23)

as(T ) =−
2e2

mc2 H2
c (T )λ

2
e f f , (2.24)

bs(T ) =
16πe4

m2c4 H2
c (T )λ

4
e f f . (2.25)

Notice that, by inserting the empirical approximations for Hc≈Hc(0)[1−t2] and λ−2≈ λ (0)[1−

t4] into the equations above and using the Taylor expansion, we find

|ψ0|2 ∝ 1− t4 ≈ 4(1− t) (2.26)

as ∝
1− t2

1+ t2 ≈ 1− t (2.27)

bs ∝
1

1+ t2 ≈ const (2.28)

In the GL theory is customary to carry only the leading dependence on temperature; i.e., |ψ0|2

and as are usually taken to vary as (1− t) and bs constant.
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2.3 Ginzburg-Landau Differential Equations

Without boundary conditions, the free energy is minimized by having ψ = ψ0 ev-

erywhere. But, when fields, currents, or gradients are imposed, the OP ψ adjusts to minimize

the overall free energy given by Eq. (2.12). This variational problem leads to two differen-

tial equations, named the Ginzburg-Landau equations. In the first equation, the free energy is

minimized with the OP ψ and the second with the potential vector A

2.3.1 First GL equation

Using the Euler-Lagrange equation that minimizes the energy functional F about

ψ†, we have:
∂F
∂ψ† −∇

[
∂F

∂∇ψ†

]
= 0, (2.29)

where F is the volume integral of Eq. (2.12). Using |ψ|4 = (ψ†ψ)2, we have

∂ |ψ|4

∂ψ† = 2|ψ|2ψ
† (2.30)

and rewriting the gradient term as∣∣∣∣(−ih̄∇− e∗

c
A
)

ψ

∣∣∣∣2 = (−ih̄∇− e∗

c
A
)

ψ ·
(

ih̄∇− e∗

c
A
)

ψ
†

∣∣∣∣(−ih̄∇− e∗

c
A
)

ψ

∣∣∣∣2 = ϕ ·
(

ih̄∇− e∗

c
A
)

ψ
† (2.31)

where ϕ =
(
−ih̄∇− e∗

c A
)

ψ . From Eq. (2.29), we have

asψ +bs|ψ|2ψ +
1

2m∗

[
ϕ

(
−e∗

c
A
)]
− 1

2m∗
(ih̄∇ϕ) = 0

asψ +bs|ψ|2ψ +
1

2m∗

[(
−ih̄∇− e∗

c
A
) ˙
(−e∗

c
A
)
− ih̄∇

(
−ih̄∇− e∗

c
A
)]

ψ = 0

asψ +bs|ψ|2ψ +
1

2m∗

[(
ih̄e∗

c
∇A+

e∗2

c2 A2

)
+(ih̄)2

∇
2 +

ih̄e∗

c
∇A

]
ψ = 0

asψ +bs|ψ|2ψ +
1

2m∗

[
−h̄2

∇
2 +

2ih̄e∗

c
∇A+

e∗2

c2 A2

]
ψ = 0

asψ +bs|ψ|2ψ +
h̄2

2m∗

[
−∇

2 +
2ie∗

h̄c
∇A+

(
e∗

c

)2

A2

]
ψ = 0

(as +bs|ψ|2)ψ +
h̄2

2m∗

[
−i∇− e∗

h̄c
A
]2

ψ = 0 (2.32)
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The first GL equation is thus similar to the Schrödinger equation, but with a second-order term,

which makes it a non-linear equation. Because of this term, the superposition principle cannot

be applied.

2.3.2 Second GL equation

The Euler-Lagrange equation about the potential vector A is

∂F
∂A
−∇

[
∂F

∂∇×A

]
= 0, (2.33)

Re-writing the gradient term as Eq. (2.31) and using the magnetic field as B = ∇×A, we find

the second GL equation

J =
−ie∗h̄
2m∗

(
ψ

†
∇ψ−ψ∇ψ

†
)
− e∗2

m∗c
|ψ|2A (2.34)

where

J =
c

4π
∇×∇×A (2.35)

The boundary condition used by Ginzburg-Landau to carry through the variational process is(
h̄
i
∇− e∗

c
A
)

ψ

∣∣∣∣
n
= 0 (2.36)

which assures that no current passes through the surface.

2.4 Superconductors’ characteristic lengths

2.4.1 Coherence Length

The equations (2.32) and (2.34) are the core of the GL theory. Solving both equa-

tions with the appropriate boundary conditions is no easy task, and most solutions are only

achieved through numerical methods. One of the problems that have an analytical solution is

the interface between a superconductor and normal states. Suppose the interface is contained in

the yz plane and separates the metal region, x < 0, from the superconductor, x > 0, as shown in

Fig. 5. In the absence of magnetic field A = 0, the first GL equation is

− h̄2

2m∗
d2ψ

dx2 +(as +bs|ψ|2) = 0. (2.37)

Using f = ψ/ψ0, where ψ2
0 =−as/bs > 0, the Eq. (2.37) can be written as

h̄2

2m∗|as|
d2 f
dx2 + f − f 3 = 0 (2.38)
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We can define the coherence length ξ (T ) as

ξ
2(T ) =

h̄2

2m∗|as(T )|
(2.39)

The Eq. (2.38) takes the form

ξ
2(T )

d2 f
dx2 + f − f 3 = 0, (2.40)

whose solution is[47]

ψ(x) = ψ0 tanh
(

x√
2ξ (T )

)
(2.41)

The significance of ξ (T ) as a characteristic length is evident by plotting the solution in the

interface, like Fig. 5. It measures the distance of the interface that the order parameter increases

Figure 5 – Superconductor solution in interface

Source: Author’s figure. Schematic diagram illustrating the variation of ψ in an interface. The length b
is the length at which OP ψ increases to ψ0 inside the superconductor.

to the maximum value of ψ0 in the interior of the superconductor.

We can use Eq. (2.24) to calculate ξ ,

ξ (T ) =
Φ0

2
√

2πHc(T )λe f f (T )
(2.42)

where

Φ0 =
hc
e∗

=
hc
2e

(2.43)

is the flux quantum. This parameter plays an important role in type-II superconductors, where

magnetic field can penetrate the superconductor above a lower critical field in the form of vor-

tices carrying quantized magnetic flux.
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2.4.2 London’s penetration length

Let the same interface include a magnetic field on the z-axis. Assume the super-

conductor is homogeneous, that is, |ψ|2 = ψ0. The second GL equation is used to calculate the

change in the magnetic field inside the superconductor. Using Eq. (2.34)

J =− e∗2

m∗c
|ψ|2A. (2.44)

Applying the rotational, we obtain

∇×J =− e∗2

m∗c
|ψ|2∇×A. (2.45)

Using the relations ∇×J = ∇×∇×H and ∇×A = H, we get,

∇×∇×H =− e∗2

m∗c
|ψ|2H, (2.46)

and using the vector identity ∇×∇×H = ∇(∇ ·H)−∇2H, we get the differential equation

∇
2H =

e∗2

m∗c
|as|
bs

H (2.47)

The solution to this equation

H = H0e−z/λ (T ) (2.48)

where λ is London’s penetration length. This is roughly the distance that the magnetic field

penetrates the superconductor before being suppressed, as illustrated in Fig. 6. With these two

Figure 6 – Magnetic field at the interface of superconductor

SuperconductorNormal Material

b

Bz(x)Bz(x)

x
Source: Author’s figure. Schematic diagram illustrating the variation of Bz in an interface. The length b
is the length at which magnetic field Bz decreases to zero inside the superconductor.

characteristic lengths, we can characterize superconductors.

Ginzburg and Landau introduced a dimensionless parameter that does not depend
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on temperature,

κ =
λ (T )
ξ (T )

(2.49)

This GL parameter was used by A. Abrikosov to classify superconductors into two types: Type-

I (κ < 1/
√

2) and Type-II (κ > 1/
√

2). Type-I superconductors destroy the superconductivity

when the critical field is reached. Type-II superconductors were discovered when A. Abrikosov

[9] studied what would happen if ξ (T ) < λ (T ). His article demonstrated that, for this type of

superconductor, there was a second-order phase transition about the magnetic field. In place of

the abrupt destruction of superconductivity, Abrikosov has shown a continuous growth of the

magnetic flux within the superconductor from a critical field Hc1 to a second critical field Hc2

where superconductivity is destroyed.
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3 CHARGE DENSITY WAVES

Besides the superconducting phase, electronic phases with broken symmetries are

amongst the most interesting topics in current research on solid-state physics. Density waves

are broken symmetry states due to electron-phonon or electron-electron interaction, creating an

inhomogeneous charge distribution with periodicity different from the periodicity of the crystal.

When the state originates from electron-phonon interactions, it creates a charge density wave

(CDW). Else, if it originates from electron-electron correlations, it is characterized as a spin

density wave.

Fröhlich and Peielrs[48, 49] made the first theoretical prediction of the charge den-

sity wave in 1954 and 1955, respectively. They predicted that a highly anisotropic band structure

is necessary to observe this state. The first experimental observation of charge density waves

happened much later, when low-dimensional materials were discovered and studied, see e.g.

[43, 50–53].

This chapter focuses on introducing the most relevant aspects of CDW and present-

ing the concepts of commensurate and incommensurate CDW. For a more in-depth overview of

the topic, see [25, 43, 54, 55].

3.1 Peierls transition and Kohn anomaly

Since low dimensionality is required to observe CDW phases, reviewing some use-

ful results from the one-dimension electron gas is essential.

The energy dispersion of electrons is

ε(k) =
h̄2k2

2m
(3.1)

and its Fermi energy is

ε(kF) =
h̄2k2

F
2m

, (3.2)

where kF is the Fermi wave vector. Let us consider a time-independent potential φ(r) acting on

the electron gas. The charge density ρ(r) is rearranged following the expression

ρ(q) = χ(q)φ(q) (3.3)

where q is the wave vector in the momentum space and χ(q) is the Lindhard response function
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given by, in d dimensions:

χ(q) =
∫ dk

(2π)d

fk− fk+q

εk− εk+q
(3.4)

fk = f (εk) is the Fermi distribution function. Solving for one dimension, assuming a linear

dispersion function, we get

χ(q) =−e2n(εF)ln
∣∣∣∣q+2kF

q−2kF

∣∣∣∣ (3.5)

where n(εF) is the density of states at the Fermi level. Notice that χ diverges for q = 2kF ,

known as Kohn anomaly, as seen in Fig. 7. The Kohn anomaly implies that, at T = 0, the

Figure 7 – Lindhard response and Kohn anomaly

Source: Figure extracted from [43]. Susceptibility of the 1D electron gas as a function of wave-vector.
When q = 2kF, the Lindhard response diverge, characterizing the Kohn anomaly.

electron gas is unstable to the formation of a periodically varying electron density. This leads

to a phase transition to the CDW state, known as the Peierls transition.

The transition is a consequence of strong electron-phonon coupling and we can use

the mean-field description to write a Hamiltonian for the interactions

H = ∑
k

εkc†
kck +∑

q
h̄ωqb†

qbq +∑
k,q

gqc†
k+qck(b

†
−q +bq). (3.6)

Equation (3.6) is called the Fröhlich Hamiltonian, where the first term is the electron gas Hamil-

tonian with c†
k and ck being the creation and annihilation operators for the electron states. The

second term is the phonon Hamiltonian, where b†
q and bq are the creation and annihilation op-

erators for the phonon with wave-vector q and normal mode frequencies ωq. The last term is

the electron-phonon interaction Hamiltonian, where gq is the coupling constant.
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Using the linear response theory and the equation of motion for the Hamiltonian

(3.6), one finds the re-normalized phonon frequency

ω̃
2
q = ω

2
q

(
1+

2g2
q

h̄ωq
χ(q,T )

)
. (3.7)

Combining it with Eq. (3.5), one has

ω̃
2
q = ω

2
q

(
1−

2g2
qn(εF)

h̄ωq
ln
∣∣∣∣q+2kF

q−2kF

∣∣∣∣
)
. (3.8)

For q = 2kF , equation (3.8) becomes

ω̃
2
2kF

= ω
2
2kF

(
1− 2g2kF n(εF)

h̄ω2kF

ln(1.14εF/kBT )
)
. (3.9)

A decrease in temperature softens the phonon mode. When temperature is low enough, the re-

normalized frequency becomes ω̃2
q = 0. We can find the transition temperature using equation

(3.9) with ω̃2
q = 0

kBT m f
CDW = 1.14εFexp(−1/λ ) (3.10)

where λ is the dimensionless electron-phonon coupling constant

λ =
g2

2kF
n(εF)

h̄ω2kF

. (3.11)

In summary, the Kohn anomaly indicates the electron gas is unstable to the forma-

tion of a periodic charge density and for temperatures low enough, given by equation (3.10),

the electron-phonon coupling reaches the anomaly that leads to the phase transition to the CDW

state. Below the transition temperature, a gap (∆) opens in the single particle spectrum at the

Fermi energy, much like in superconductivity. This gap follows the same characteristics of the

Bardeen-Cooper-Schrieffer (BCS) theory, including its temperature dependence.

The periodic charge density that characterizes the CDW is described by an ampli-

tude ρ1, the wave-vector q0, and a phase ϕ

ρ(r) = ρ0 +ρ1 · cos(q0 · r+ϕ), (3.12)

where ρ0 is the electron density in the normal state, ρ1 is proportional to the gap and q0 connects

the electron-hole pairs in momentum space. The phase ϕ describes the relative position of the

CDW to the atomic lattice. In the following chapters, we will see that the density modulation

δρ = ρ − ρ0 is proportional to a complex order parameter, and we will formulate a theory
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similar to the Ginzburg-Landau theory for superconductivity, but for CDW in transition-metal

dichalcogenides.

3.2 Commensurate and Incommensurate CDW

For a one-dimensional system, one can sketch the periodic charge density in a very

simplistic way. Imagine a chain of ions placed at a distance aL from each other - this is the

lattice period. In the first site, there is a high charge density. In the following site, a lower

charge density and the alternation from high to low continue along the lattice. This CDW is the

so-called commensurate CDW. This specific case, where the CDW period is 2aL, is illustrated

in Fig. 8.

Figure 8 – Sketch of the charge density wave in an ion lattice

Ions

IC - Charge density

aL

C - Charge density

Source: Figure adapted from [56]. Sketch of the C-CDW (top) and IC-CDW (middle) in a periodic ion
lattice.

In a three-dimensional case, one simply writes the CDW in terms of the reciprocal

lattice vectors q0 = αa+ βb+ γc. If the numbers α , β , and γ are all rational, the CDW is

commensurate. Otherwise, if any of them is irrational, we have incommensurate ordering, in

which case the wave-vector is not aligned/commensurate with the ion lattice.
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4 MCMILLAN THEORY FOR CDW IN TRANSITION-METAL
DICHALCOGENIDES

In the previous Chapter, we discussed the main characteristics of the CDW from a

broad point of view. Much like the SC, the phase transition to CDW opens a gap in the energy

spectrum, and a complex order parameter describes both. In the case of the CDW, it is defined

as

ψ = ∆eiφ = gq0 〈bq0 +b−q0〉 (4.1)

These similarities inspired W. L. McMillan[22–24] to develop a theory to describe

the particularities of the CDW in transition-metal dichalcogenides (TMDs). Let’s start by giving

an overview of the characteristics of this family of materials and then introduce the McMillan

model.

4.1 TMDs: Overview

The TMDs are layered materials, where each layer consists of transition-metal ions

in a central plane forming a triangular lattice, surrounded by two sheets of a triangular lattice

of chalcogen atoms, one above and one below, as seen in Fig. 9(a,b). The intra-sheet bonds are

predominantly covalent, while each layer is maintained by a weak van der Waals force. The

way the layers are stacked can vary, each variation is called polytype, making this family even

bigger. The two main polytypes used in the experimental studies and in the theoretical study of

Chen et. al. are the 1T and the 2H polytypes. In the 1T polytype, the unit cell is composed of a

single sheet and the metal atom sits in the center of a chalcogen octahedron. In the 2H polytype,

the metal atom has trigonal prismatic coordination and two sheets are involved in the unit cell.

There are numerous TMDs that can be studied that are notable for their robust CDW

and SC phases. But the low charge density of 1T-TiSe2 makes it easier to spot the transition

between the C-CDW, IC-CDW, and NC-CDW, as well as the presence of a superconductor

dome.

Pristine niobium diselenide 2H−NbSe2 is a superconducting TMD at ambient pres-

sure with a superconducting transition temperature Tsc = 7 K. It can be found in different poly-

types, it is most commonly studied in the 2H phase in which the lattice constant is a = 3.45

angstrom. The material not only has a natural superconductivity phase, but also a CDW state

that can be incommensurate which when suppressed enhances the superconductivity critical
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Figure 9 – Sketch of the Fermi surface of 1T-TaS2

Source: Figure from [43]. Crystal structures of transition metal dichalcogenides.

temperature[43].

4.2 McMillan model

The two-dimensional CDW in these layers is formed in the ΓM directions. The 2D

CDW in TMDs is composed of three coexisting 1D CDW, one in each direction of the reciprocal

vectors qi. Fig 10 is a sketch of the Fermi surface for the TMD 1T−TaS2, where these lattice

vectors are illustrated.

Within this framework, we use an extension of the McMillan functional to account

for the symmetries of transition metal dichalcogenides[57]. We start with the density modula-

tion for a commensurate CDW (C-CDW),

ρ(r) = ∑
j

eir·QC
j ψ j + c.c. (4.2)

where ψ j is the OP associated to the commensurate wave-vectors in each j-th direction QC
j , that

are multiples of the primitive reciprocal vector G j of the material.

The McMillan-Ginzburg-Landau (MGL) energy functional for TMDs carries the

contribution of the three order parameters ψ j,

fMGL = f0 + f1, (4.3)
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Figure 10 – Sketch of the Fermi surface of 1T-TaS2

Source: Figure from [22]. Sketch of the Fermi surface of 1T-TaS2 of the first Brillouin zone. The three
vectors of the three CDW form the complete CDW and are separated by a 120o angle.

where f0 is the conventional Ginzburg-Landau-like portion,

f0(r) = ∑
j

[
ατ|ψ j|2 +G|ψ j|4 +B

∣∣(i∇+qI
j
)

ψ j
∣∣2] (4.4)

where α , G, and B are phenomenological parameters, much like the ones for superconductivity.

The parameter τ = T/Tcdw−1 is the effective temperature. The parameter qI
j is the incommen-

surability vector defined as

qI
j ≡ δ jQC

j . (4.5)

The CDW OP can be re-written in terms of their amplitude φ j(r) and phase θ j(r) as

ψ j(r) = φ j(r)eiθ j(r). (4.6)

The phase parameter quantifies the deviations in comparison to the commensurate wave-vector

which we can define in terms of the incommensurability vector θ j(r) = qI
j · r. Combining
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equations (4.2), (4.5) and (4.6) leads to an effective wave-vector,

Q = QC
j (1+δ j). (4.7)

It is easy to see that, when the parameter δ is an integer, the effective wave-vector is multiple

of the commensurate wave-vector, leading to a commensurate state. When δ is not an integer,

the effective wave-vector deviates from the commensurate state to the incommensurate one in

the j direction.

The second term of the MGL energy functional gathers the possible (symmetry-

allowed) couplings between order parameters,

f1 =−
E
2 ∑

j

(
ψ

2
j +ψ

†
j

2)− 3D
2

(ψ1ψ2ψ3 + c.c.)+
K
2 ∑

i, j>i

∣∣ψiψ j
∣∣2

−M
2 ∑

j,k 6=l 6= j

(
ψ jψ

∗
k ψ
∗
l + c.c.

)
, (4.8)

where E, D, K and M are coefficients to map the symmetries of the TMDs.

From f0, the B term favors the incommensurate solution, by yielding lower energy

as θ j(r)→ qI
j · r. On the other hand, the E > 0 term in f1 favors the commensurate solution:

since (ψ2
j +ψ†2

) = 2φ 2
j cos(2θ j), the energy is minimized as the phase approaches nπ , for

integer n. The parameter E is called lock-in energy, which stabilizes the commensurate and

incommensurate states, and is inversely proportional to the total electron density.

McMillan used the free energy to show that the phase transition between the com-

mensurate and incommensurate states is a second-order phase transition, and defined a new

defect in the commensurate CDW state, the discommensuration (DC)[23]. These DC are re-

gions on a commensurate CDW state that exhibit an incommensurate CDW (IC-CDW) state

in between them. In the free energy functional, equations (4.4) and (4.8), the balance between

the lock-in term (E) and the B term dictates in what state the CDW is. For E → 0, the B term

minimizes the energy for the IC-CDW, while for E → ∞, the lock-in term minimizes for the

C-CDW. For values of E not extremely low or high, the CDW enters a mixed state of IC-CDW

and C-CDW called the near-commensurate state (NC-CDW). In the NC-CDW, lock-in C-CDW

states are separated by IC-CDW states, the DC. This behavior can be seen by plotting the CDW

phase θ j in real space, like shown in figure 11.

The flat horizontal regions are the C-CDW states with the rapidly varying phase re-

gions in between are the DC, where the IC-CDW state is present. The NC-CDW state proposed
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Figure 11 – DC in TMD materials

Source: Figure from [23]. DC of the CDW in 1T-TaS2. The rapidly varying phases are the DC, where
IC-CDW is preset, in between the commensurate phases.

by McMillan was studied primarily in the TMD 1T−TaS2 and in the charge-ordered phase of

cuprate superconductors[58]. The study of Árpád Pásztor et. al.[43] used STM imaging on

the material 2H−NbSe2 and not only confirmed the coexistence of three order parameters for

CDW in this material but also found discommensurations, Fig. 12c, that mimics the McMillan

prediction. Figs. 12a and b are the in situ cleaved surfaces and the phase map of one of the

Figure 12 – STM imaging of the CDW in 2H−NbSe2

Source: Figure adapted from [43]. STM imaging of crystalline defects, CDW DC in 2H-NbSe2. (a)
STM micrograph with atomic defects. (b) Phase map of the corresponding q2 CDW. (c) Phase profile
extracted from the diamond to the circle along the red dashed line in (b)

CDW, respectively.

In recent studies, the relationship between emergent superconductivity in doped

TMDs and the CDW state were investigated. Experiments suggest the enhancement of super-
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Figure 13 – Phase diagram of 1T−TaS2

Source: Figure extracted from [57]. Phase diagram of 1T−TaS2. Labels C, NC, and IC stand for
commensurate, near-commensurate, and incommensurate CDW phases, respectively. The lines are the
transition boundary between each state. The inset shows the η which determines if the solution is C
(η = 0), IC (η = 1), or NC, versus the lock-in energy.

conductivity in these materials is linked with the NC-CDW state and the DCs. Chen et. al.

used the McMillan theory to describe the cooperative coexistence of the CDW and supercon-

ducting order in two-dimensional TMDs. They mapped the transition between the CDW states

and monitored the development of the DC and found that the NC-CDW enhances nonuniform

superconductivity. The phase diagram, Fig. 13, is in qualitative agreement with experiments.

In the phase diagram of t, the reduced temperature, versus E, the lock-in energy, the

authors show the transition between the CDW states, going from the C-CDW to the NC-CDW

and then to IC-CDW. Notice the increase in the critical temperature of the SC when the CDW is

in the near-commensurate state suggesting that the DCs are related to the presence of supercon-

ductivity. In the next chapter, we will present our study that shows when there is competition

between a collective state (like CDW) and SC, defects (or suppression) of the collective state

enhance the presence of SC. This work suggests the DCs, which are defects of the C-CDW,

make the superconductivity viable in TMDs, by increasing their critical temperature. In fact,

our calculations demonstrate that several other types of defects experimentally observed e.g. by
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[43], such as phase domain walls and vortex-antivortex pairs, can also be described by MacMil-

lan theory provided we start from a proper choice of incommensuration vectors qI
j . The effect

of these features in CDW on the SC critical temperature will be discussed later on, in Chapter

6.
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5 LATENT SUPERCONDUCTIVITY AT PARALLEL INTERFACES IN A
SUPERLATTICE DOMINATED BY ANOTHER COLLECTIVE QUANTUM
PHASE

In the previous chapter, we presented the phase diagram for TMDs in which the

critical temperature of the superconductivity increases as the CDW transition between the C,

NC, and IC phases. This indicates an interplay between the CDW and SC.

Controlling and enhancing the thresholds of the SC phase is challenging. Over the

past decades, multiple approaches have been proposed to enhance the critical temperature of

different superconducting materials[59–67]. In iron pnictides and cuprates, the increase of the

SC critical temperature is intimately connected with the competition between the SC and other

collective quantum states[68–71]. These additionally ordered quantum phases may suppress

SC by competing for the same electrons wrapped in the Cooper-pairing mechanism. Using a

two-component GL model, Moor et. al.[72] provided a general analysis to describe the rise of

the interface superconductivity as a hidden order parameter in a single interface between two

separate regions where another collective phenomenon is dominant.

We develop an extension of the model to investigate the role of several parallel

interface coupling on parameters such as SC critical temperature and Cooper pairs density.

5.1 Theoretical Model

Consider two OP, ∆ and W , describing a (hidden) SC phase and another collective

excitation, CDW for example. In a general way, the one-dimensional GL free energy is defined

as

F =
∫

dx
{

ξ
2
s (∇∆)2−as∆

2 +
bs

2
∆

4 +ξ
2
w(∇W )2−aw(x)W 2 +

bw

2
W 4 + γW 2

∆
2
}

(5.1)

where ξi, ai, and bi are the usual phenomenological parameters in the GL formalism, while γ is

the coupling term between the condensate densities. For a numerical approach, it is common to

rewrite the free energy in a dimensionless form

F =
∫

dx
{

1
δ 2 (∇∆)2 +

ξ 2
r

δ 2

[
−as∆

2 +
1
2

∆
4
]
++(∇W )2−Ωw(x)W 2 +

1
2

W 4 +σW 2
∆

2
}
(5.2)

where we use the unit of energy F0 = a2
w0/bw (aw0 is the parameter aw in the bulk). The param-

eter δ = Wb/∆b measures the relative strength between the maximum values of the OP in the
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bulk. The coefficient

ξ
2
r = ξ

2
w/ξ

2
s (5.3)

relates the coherence lengths of both OP, σ = γδ 2/aw0, and as = 1−T/T∆, where T∆ is the bulk

critical temperature of the SC phase. In this framework, the parameter aw is spacial-dependent

aw→ aw(x) to induce the suppression of the dominant OP W at the interfaces. In dimensionless

form, we have Ω(x) takes this role

Ω(x) =

−a0, |x−χ j|< L,

+1, |x−χ j| ≥ L
, (5.4)

where a0 ≥ 0, L is the width of the interfacial regions, and χ j ( j = 1,2,3, . . . ,N) is the position

of the j-th interface.

Minimizing F with respect to ∆ and W leads to two GL first equations

−d2W
dx2 +

[
−Ωw(x)+W 2 +σ∆

2]W = 0 (5.5)

−d2∆

dx2 +

[
−as +∆

2 +
σδ 2

ξ 2
r

W 2
]

∆ = 0. (5.6)

Eqs. (5.5) and (5.6) are solvable numerically using a self-consistent relaxation procedure, and

we will discuss the complete solution in a further section. But we will start with the solutions

based on the linearized GL formalism, to gain insights into the physics behind the full equations.

Assuming a weak superconducting gap at the interface, higher-order terms of ∆ can

be neglected in Eqs. (5.5) and (5.6), so that

−d2W
dx2 +

[
−Ωw(x)+W 2]W = 0 (5.7)

−d2∆

dx2 +

[
−as +

σδ 2

ξ 2
r

W 2
]

∆ = 0 (5.8)

Starting with equation (5.7), we can solve it by means of the relaxation method. Using a finite-

difference scheme on a uniform Cartesian grid with 0.1ξw spacing, an initial arbitrary trial

function of W (x) evolves in time as

W t+1
i =W t

i +dt
[

W t
i+1−2W t

i +W t
i−1

2x2 −Ω
i
wW t

i +(W t
i )

3
]
, (5.9)

with a dimensionless time step dt = 0.01, until convergence is reached up to tolerance
∣∣W t+1

i −W t
i

∣∣≤
10−8 at any point in space xi.
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The converged solution for W (x) is then used as input in Eq. (5.8)

−d2∆

dx2 +σδ
2|W |2∆ = ε∆, (5.10)

where ε = ξ 2
r as and the equation is discretized in the same spatial grid. Equation (5.10) is a

Schrödinger equation for a V = σδ 2|W (x)|2 potential. We can solve this eigenvalue equation

numerically, which yields a series of solutions for the superconducting order parameter, each

with an eigenvalue εn and a gap distribution ∆n(x). The OP ∆ is non-zero when in the interface,

where the OP W is suppressed, thus describing interface superconducting states. This situation

is sketched in Fig. 14.

Figure 14 – Sketch of a system with two adjacent interfaces

x

L

L
d

Source: Figure adapted from [72]. Sketch of a system with two adjacent interfaces, based on the
single-interface system proposed in Ref. [72]. Here, the order parameter W (x) (dashed line) describes a
collective excitation (e.g. spin or charge density waves) dominating in the bulk (green), that is
suppressed along parallel interfaces (blue) of width L, separated by distance d (see Eq. (5.4)). The
hidden order parameter ∆(x), which describes the superconducting phase, arises at these interfaces
(plotted as a solid line).

Given the temperature dependence of the parameters as and the value of ξ 2
r , we can

obtain the critical temperature Tcn for each n-th superconducting eigenstate. Alternatively, we

can solve Eq. (5.8) through the relaxation method to find the temperature dependence of the

OP ∆n(x). The solutions for the full non-linear GL equations are also obtained by the same

procedure and the discussion on these is postponed to the final section of the chapter.

The model proposed in this chapter applies to superconductors with co-existing

collective states, such as CDW. In the next chapter, we discuss how the MGL theory can be used

to describe the DC in TMDs and how we can apply this general model to a specific material.
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5.2 Interface eigenstates and their criticality

Moor et. al. did an extensive study of interface superconductivity in a single inter-

face[72,73] and showed that the eigenstates of Eq. (5.10) represent possible distributions of the

SC OP ∆(x), each with different eigenvalue εn. The behavior is reminiscent of the eigenstates

of the Schrödinger equation for a particle confined in a quantum well. For two or more parallel

interfaces, Eqs. (5.9) and (5.10) were solved for the SC ground state in the interfaces. All in-

terfaces will have the same width L = 2 ξw and the distance between the interfaces will vary in

fractions of ξw.

The collective state W (x) and the SC OP ∆(x) are shown in Fig. 15(a) and 15(b),

respectively. The two interfaces are separated by distance d = 12 ξw and we assume the SC

coherence length and the healing coefficient of W are equal, i.e. ξw = ξs or ξr = 1. At the

position, χ1 =−6 ξw and χ2 =+6 ξw, the solution for Eq. (5.9) has two dips in the position of

the interfaces with Ωw given by Eq. (5.4), representing the suppression of the collective state.

Increasing the value of a0 leads to a stronger suppression of W in the interface. We

consider a0 = 1 as a weak suppression and a0 = 5 as a strong suppression. The two lowest

eigenfunctions of the SC in the a0 = 5 case are in Fig. 15 and their peaks at the interfaces, thus

representing the rise of interface superconductivity. Note the symmetric and anti-symmetric

character of the solutions which resembles the double quantum well.

In the double quantum well, the eigenvalues of the symmetric and anti-symmetric

solutions becomes degenerate when the wells are far from each other. We expect the same to

happen for the eigenvalues of Eq. (5.10) when the interfaces are far (i.e. d → ∞), whereas

this degeneracy is lifted as they are brought closer. This behavior is shown in Fig. 16, repre-

senting the eigenvalues ε of the SC states for the symmetric (black solid) and anti-symmetric

(red dashed) eigenfunctions. Even small suppression of the W OP gives rise to interface super-

conductivity. Notice the dependence of the eigenvalues on the distance between interfaces d is

affected by how strongly the other collective state is suppressed. In fact, in the case of a0 is set

to a high value, the W OP does not reach its maximum value in the region between interfaces

as the distance between them is made shorter, as can be seen in the inset of Fig. 16(a). Notice

that in the case of strong suppression, when d < 2 ξw, the region in between the interfaces is

also affected by the suppressed OP inside the interfaces, creating effectively a single region of

weakly modulated OP, maximizing the induced SC ∆.
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Figure 15 – Spatial distribution of the order parameters
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Spatial distribution of the order parameters (a) of the density wave W , assuming its strong (α0 = 5, solid
line) and weak (α0 = 1, dashed line) suppression at the interfaces, and (b) lowest-lying eigenfunctions
of the SC state ∆n in the strong suppression case, for two interfaces of width L = 2 ξw, separated by
d = 12 ξw (cf. Fig. 14).

5.2.1 Tight-binding model for interface SC

The lift of the eigenstates degeneracy in Figs. 16(a,b) resembles the one in a double

quantum well, where a tight-biding model can be developed. The same can be done for our

system, re-writing the eigenvalue Eq. (5.8) as

D∆ = ε∆ (5.11)
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Figure 16 – Eigenvalues for two interfaces

Eigenvalues of Eq. (5.8) as a function of distance d between two interfaces, assuming strong (a) and
weak (b) suppression of the W order parameter W , i.e. with α0 = 5 and α0 = 1, respectively. Lines
show the numerically obtained results for symmetric (black solid) and anti-symmetric (red dashed)
eigenfunctions, while open symbols plot results of a tight-binding approach for the same states. (c) The
calculated hopping parameter τ as a function of distance d for a weak suppression case (open symbols),
with an analytical fitting function, plotted as well (solid curve). Inset in (a) shows the order parameter
with α0 = 5 assuming d = 4ξW (red dashed) and d = 6ξW (black solid).

and the eigenvalues are obtained by diagonalization of the matrix D with the diagonal terms

given by the ground state eigenvalue of each interface

D11 = D22 = ε0, (5.12)

and the off-diagonal

D21 = D12 =−τ, (5.13)
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where τ plays the role of a hopping parameter between the interfaces. The diagonalization of

the matrix leads to eigenvalues of

ε± = ε0± τ (5.14)

along with symmetric and anti-symmetric eigenfunctions, qualitatively similar to those in Fig.

15(b). The hopping parameter τ increases with the distance d between the interface, controlling

the separation between the eigenvalues. The results of the model are shown as open symbols

in Figs. 16(a,b), with good agreement with the numerical results for weak suppression. For

the strong suppression case, the tight-binding model results are good for larger interface sepa-

rations. In comparison, it falls short for closer separations due to the W behavior explained in

the previous section.

The dependence of the hopping parameter τ on the interface separation is plotted

as open symbols in Fig. 16(c) for the weak suppression case. The tight-binding model can be

expanded for multiple interfaces, which we investigate in the next section. To facilitate its use,

the numerically obtained hopping parameters are fitted by the function

τ(d) = τmaxe−
d
2 . (5.15)

The fitted function is plotted as a solid curve in Fig. 16(c), using τmax = 0.24. The importance

of a simplistic model is to have a convenient way to estimate the eigenvalues for any number of

interfaces.

5.2.2 Multiple interfaces

In the case of multiple interfaces, we first investigate a system consisting of 3 and

4 parallel interfaces and then generalize for any number of interfaces using the tight-binding

model. The order parameter W (x) for systems with interfaces separated by d = 12 ξw is shown

in Figs. 17(a) and 17(b). The first 3 and 4 low-lying eigenfunctions ∆n(x) are shown in Figs.

17(c,d), respectively. Interestingly, different eigenvalues produce eigenfunctions ∆n(x) describ-

ing higher superconducting gaps at specific interfaces. For example, considering four interfaces,

∆0 and ∆3 states exhibit higher peaks at the two internal interfaces, while ∆1 and ∆2 peaks at

the external. This suggests that as the system’s temperature increases, the critical temperatures

associated with εn sates are exceeded sequentially, and the superconducting states ∆n becomes

available one by one, each with a different spatial distribution of gaps among the interfaces.

The solution for the full GL Eqs. (5.5) and (5.6) for ∆ is a linear combination of the available
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Figure 17 – Order parameter for 3 and 4 interfaces
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Order parameter W for a system consisting of (a) 3 and (b) 4 parallel interfaces, separated by distance
d = 12 ξw. The SC order parameters ∆n of the first 3 and 4 low-lying eigenstates of these systems are
shown in panels (c) and (d), respectively.

eigenstates ∆n, therefore, as the temperature decreases (especially for rapid cooling), one may

find solutions where ∆ contains contributions of higher n eigenstates that lead to non-trivial

spatial distributions of the Cooper-pairs condensate on the interfaces.

The numerically obtained εn eigenstates in systems with 3 and 4 interfaces are plot-

ted as solid lines in Figs. 18(a) and 17(b), respectively, for the weak suppression case. Re-

sults obtained with the tight-binding model, using hopping parameters given by Eq. (5.15),

are shown as open symbols, where good agreement is observed only for interface separations

beyond d ≈ 4 ξw. As previously discussed, the disagreement between the numerical and the

tight-binding results for shorter d has the same explanation as given for the disagreement for

two interfaces in the strong suppression case, so that the problem of several interfaces with short

separation can no longer be described as a combination of several single-interface problems in

a tight-binding approach. For instance, in the case of 3 interfaces, even the intermediate eigen-

value state ε1, which in the tight-binding model is a constant ε0, starts to decrease as d becomes

smaller in the actual system as a consequence of the decreasing W (x) between the interfaces. In
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Figure 18 – Eigenvalues of the SC order parameter for 3 and 4 interfaces

Eigenvalues of the SC order parameter, from Eq. (5.8), assuming (a,b) weak and (c,d) strong W
suppression, in a system with (a,c) 3 and (b,d) 4 interfaces. For separation larger than d ≈ 4 ξw, the
tight-binding model (symbols) predicts the eigenvalues reasonably well in all cases.

the case of strong suppression, this situation worsens, as shown in Figs. 17(c) and 17(d).

The sharp kinks seen in these figures result from the strong suppression in between

the interfaces at small separation d, similar to those observed for the 2 interface case in Fig.

16(a). Nevertheless, the tight-binding model proposed here still yields a good quantitative pre-

diction for d > 4 ξw in all cases, while preserving at least good qualitative predictions of the

behavior of the eigenvalues in the weak-suppression regime even for smaller d.

The SC order parameter’s maximum value, ∆max,n, offers us an estimation of the

superconducting gap at the interfaces. As the temperature decreases below the critical tempera-

ture of the n-th eigenstate in Eq. (5.10), this value increases from zero. Although this equation

determines each eigenstate’s critical temperature Tcn through the relation εn = ξ 2
r (1−Tcn/T∆),

it does not provide the temperature dependence of each ∆max,n. To obtain this information, we

use a relaxation procedure to solve Eq. (5.8) at various temperatures. The results are illustrated

in Figs. 19(a) and (b), which plot ∆max,n of the first three (four) states for a system with three

(four) interfaces as a function of temperature.

We can now extend our results to the case of an infinite number of interfaces

(N → ∞) since the tight-binding model has reasonable reliability. For any value of N, the

proposed tight-binding matrix D takes on the tri-diagonal Toeplitz form as described in [74]. Its
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Figure 19 – Maximum values of the superconducting order parameter ∆n(x) as a function of
temperature

b
b

b

Maximum values of the superconducting order parameter ∆n(x) as a function of temperature, for the
first (a) three eigenstates of a three-interfaces system, and (b) four eigenstates of a four-interfaces
system. (c) The same as (a,b), but for an infinite superlattice of equally spaced parallel interfaces. In all
cases, interfaces are separated by d = 3.5 ξw, assuming weak suppression a0 = 1.

eigenvalues are.

εn = ε0−2τ(d)cos
(

nπ

N +1

)
. (5.16)

It is easy to see that the results for N = 2− 4 are special cases of this general

expression. As N approaches infinity, an infinite number of states form a band of eigenvalues

ε(k) = ε0−2τ(d)cos(kd) , (5.17)

limited to the range [ε0−2τ,ε0 +2τ]. As a result, there will be a range of critical temperatures

such that, as the system cools down, a series of SC eigenstates at the interfaces become ener-
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getically favorable one after the other, for temperatures within this range. This is illustrated by

the shaded area in Fig. 19(c). Importantly, the upper limit of this range of critical temperatures

is determined by the strength of the interface coupling, τ , which depends on factors such as the

separation between the interfaces.

This can be seen as a way to effectively increase the critical temperature of interface

superconductivity in a system with many parallel interfaces, as we will discuss further. It is

worth noting that these critical temperatures are higher than those expected for a single interface

or for multiple non-coupled interfaces (i.e. far apart from each other), although they are still

lower than the critical temperature expected for the same order parameter in the bulk case.

5.3 Superconducting states as a function of temperature - The complete solution

The solutions derived from our linearized Ginzburg-Landau (GL) analysis highlight

an intriguing interaction of superconductivity across the interfaces. Specifically, when there are

multiple interfaces, there is a critical temperature for the degeneracy of different superconduct-

ing eigenstates. This degeneracy is lifted as the interfaces are brought closer together. However,

these solutions do not provide a full resolution of the GL equation. Instead, they serve as a foun-

dation that can be used to express the full solutions. For instance, if there are only two interfaces,

the full solution can be represented as a linear combination of ∆0 and ∆1 eigenstates. It is crucial

to examine the impact of these eigenstates on the overall solution, which requires solving the

coupled set of equations, Eq. (5.5) and Eq. (5.6), self-consistently using the relaxation method.

We start with the simplest scenario of two interfaces. The complete solution in this

case must either be symmetrical, anti-symmetrical, or a combination of the two, as shown in

Fig. 15(b). However, Fig. 16 indicates that the symmetrical and anti-symmetrical eigenstates

have different critical temperatures, depending on the separation distance d, with ∆0 always

having a higher critical temperature. Fig. 20 shows the reduced temperature T/T∆ at which the

superconducting (SC) order parameter ∆ first appears from zero. In the model, if the sample is

entirely superconducting, this reduced temperature would be T/T∆ = 1. But, instead, the sample

is in the collective state, which competes with and suppresses superconductivity throughout the

system. The suppression of the other collective OP at the interfaces leads to superconductivity,

and it occurs at temperatures that are only a fraction of the critical temperature T∆.

As seen in Fig. 20(a), interfaces separated by d = 6 ξw become superconducting

at T ≈ 0.09T∆. The effective critical temperature decreases further to T ≈ 0.058T∆ and ≈
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Figure 20 – Color maps of the Cooper pairs density ∆

Color maps of the Cooper pairs density ∆ as a function of the reduced temperature T/T∆, calculated by
the self-consistent solution of Eqs. (5.5) and (5.6), for two interfaces separated by (a) d = 6 ξw, (b)
12 ξw and (c) 40 ξw. For shorter separations, the SC order parameter in the interfaces is enhanced and
the effective critical temperature, marked by the horizontal dashed lines, increases, from the predictions
of the linearized GL formalism.

0.052T∆ for larger separations d = 12 ξw and 40 ξw in Figs. 20(b) and 20(c), respectively. This

dependence of the effective SC critical temperature on the separation d is expected based on the

results of the linearized equations. As the interfaces get closer, the critical temperature of the

symmetrical eigenstate ∆0, which is the highest one, increases. This demonstrates the potential

for enhancing the SC critical temperature by creating superlattices with interfaces stacked closer

together or by increasing the number of stacked interfaces, since the critical temperature of the

eigenstate ∆0 also increases with N – as confirmed in Fig. 19.

At lower temperatures, the critical temperature of the anti-symmetric eigenstate ∆1

is reached, enabling it to serve as a potential basis for the SC order parameter. With both eigen-

states attainable, solutions in the form ∆ = a0∆0 +a1∆1 become possible. For example, a com-

bination with a0 = a1 results in superconductivity only occurring in one interface, as depicted in

Fig. 21(a), where this solution is shown to be metastable up to T/T∆ ≈ 0.01. However, at zero

temperature, this single-interface superconducting state is only stable if the interfaces are far

apart (beyond 35 ξw in this scenario) so that the energies of either symmetric, anti-symmetric,

or a combination of the two eigenstates are equivalent. But as the interfaces come closer, the

single-interface SC state becomes unstable, as seen in Fig. 21(b). This is a result of Cooper

pairs tunneling through the W region separating the interfaces, leading to superconductivity in

both interfaces if one is superconducting.

The tight-binding model described in the last section predicts that the critical tem-
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Figure 21 – Color map of the Cooper-pair density in two parallel interfaces
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Color map of the Cooper-pair density in two parallel interfaces, obtained by solving the full nonlinear
GL set of equations, as a function of (a) temperature, for a fixed interface separation distance d = 40 ξw,
and (b) as a function of d, for a fixed temperature T = 0. The metastable solution where SC is active
only in one of the interfaces (left) is obtained only for larger separation between the interfaces and is
expected to be experimentally achieved after a rapid quench to low temperatures.

perature of interface superconductivity increases with the number of stacked interfaces. This is

demonstrated in Figure 22 which shows three potential states for a system of N = 10 interfaces.

The state displayed in Figure 22(a), obtained from relaxing a randomly generated

initial trial function, shows all interfaces with superconductivity at low temperatures, with

slightly higher Cooper-pair densities in the inner interfaces than in the outer ones. As the tem-

perature rises, superconductivity in the peripheral interfaces is suppressed first. On the other

hand, Figures 22(b) and 22(c) shows stable states where superconductivity is completely sup-

pressed in some of the inner interfaces. As the temperature decreases, the critical temperatures

of different superconducting eigenstates are reached, allowing several combinations of eigen-
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Figure 22 – Color map of the Cooper-pair density in 10 parallel interfaces

Color map of the Cooper-pair density in 10 parallel interfaces separated by d = 6 ξw, obtained by
solving the full nonlinear GL set of equations as a function of temperature. Panels (a)-(c) exemplify
three different metastable states at low temperatures, obtained after initialization from many different
initial conditions (simulating nucleation from the normal state).

functions with varying numbers of spatial nodes and phase shifts. At low temperatures, there

may be stable solutions with suppressed Cooper-pair density in one or more interfaces, similar

to what is shown in Figure 21(a) for N = 2. These are metastable states, but they are higher

in energy than the state shown in Figure 22(a) and therefore less likely to be obtained from

different initial conditions. However, they may still be relevant for experimental observation,

particularly in the field-cooled regime where the system is rapidly cooled to low temperatures

from the normal state.

The composition of the superconducting states in Figs. 22(b) and 22(c) is presented

in the top and bottom panels of Fig. 23. It is important to note that the state in Fig. 22(a)

consists only of the ground eigenstate ∆0 at all temperatures and thus, it is not shown in Fig.

23. On the other hand, the state in Fig. 22(b) is a combination of eigenstates with odd indices

until T = 0.1T∆, where ∆0 becomes dominant and the final state resembles that of Fig. 22(a) at

higher temperatures. The contribution of the eigenstates with higher eigenvalues (lower critical

temperature) decreases, especially at higher temperatures. Fig. 22(c), which shows strong

suppression of SC in the inner interfaces up to T = 0.01T∆, is composed of the eigenstates with

even indices as shown in the bottom panel of Fig. 23.

The suppression of superconductivity in specific interfaces, as shown in Figs. 21

and 22, is a type of latent superconductivity. In these states, the system is below the critical

temperature for superconductivity, but there are no competing order parameters present in the

affected interfaces. The combination of specific eigenstates, which can have opposing phases,
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Figure 23 – Projections of the Cooper-pair densities
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Projections of the Cooper-pair densities shown in Fig. 22(b) (top panel) and Fig. 22(c) (bottom panel)
on the eigenstates ∆n of a system with ten stacked interfaces.

can result in a partial cancellation of the superconducting order parameter in some interfaces.

However, it is important to note that these exotic, metastable states are not easily attainable

through slow cooling but rather require a rapid quenching of the temperature below the critical

temperature of the exotic state. Such a rapid cooling process would allow the system to reach

one of these metastable states at low temperatures. Subsequently, warming the system slowly

would provide insight into the behavior of the order parameter distribution as seen in Figs. 21

and 22.
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6 SINGULARITIES AND DISCOMMENSURATIONS IN CHARGE DENSITY
WAVE STATES OF TRANSITION METAL DICHALCOGENIDES

The relationship between collective phases and their competition is a central discus-

sion in solid-state physics[67, 75–83]. With the discovery of high-temperature superconductiv-

ity, researchers have been studying the interplay between superconductivity and other collective

phenomena such as nematic order[76,77,84], anti-ferromagnetism[69], and charge/spin density

waves in these materials. Transition-metal dichalcogenides (TMDs) exhibit superconductivity

when doped in the form of a dome in the temperature-doping phase diagram of the material.

It is believed that the fluctuations of the TMDs’ charge density wave (CDW) or-

der, play a role in enhancing the superconducting critical temperature[57, 85, 86]. In chapter

4 shows the study of A. Pasztor et al. in their study [43] utilized the scanning tunneling mi-

croscopy (STM) technique to obtain high-resolution images of the charge density wave (CDW)

phase in VSe2 and NbSe2. This novel method allows the extraction of the amplitude and phase

maps of the different components of the CDW pattern. The results showed that the CDW in

these transition-metal dichalcogenides (TMDs) consists of three separate charge modulation

order parameters. The phase images revealed not only discommensurations, which had been

predicted by McMillan theory [23], but also topological defects and domain walls in the nearly-

commensurate state.

Recently, the McMillan-Ginzburg-Landau model (MGL) was employed to explain

the transformation from incommensurate to commensurate CDW phases in TMDs [57]. This

study revealed the presence of discommensurations in the near-commensurate phase and pro-

posed a connection between the CDW and SC phases by way of a modulation of the quadratic

term of the SC order parameter in the Ginzburg-Landau energy functional, which is proportional

to the gradient of the CDW order parameter. This approach allowed for the modeling of the SC

dome in the near-commensurate region of the TMD phase diagram, as the SC phase appeared

in areas with high variations in the CDW order parameters, such as in the discommensurations.

In Chapter 5, we have shown the relation between the SC and another collective

state. However, a more in-depth analysis is necessary to better understand the different param-

eters involved in the MGL model and to examine the impact of the experimentally observed

phase domain walls and topological defects on the CDW profile, to accurately predict and con-

trol the shape of the SC dome in the phase diagram of different TMD-based systems.
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6.1 Theoretical Model

Recalling the equations for TMDs of chapter 4 we have the density modulation of

the C-CDW, Eq. (4.2), and the MGL energy functional for TMDs is given by the sum of Eqs.

(4.4) and (4.8). The former equation gives the energy for the formation of the CDW phase,

while the latter accounts for the TMDs symmetries.

The SC energy can be included in the full energy functional for the TMDs

f = fMGL + fs + γ ∑
j
|ψ j|2|Φ|2, (6.1)

where fs is the standard GL functional without a magnetic field

fs = as|Φ|2 +
bs

2
|Φ|4 + 1

2m∗

∣∣∣∣ h̄i ∇Φ

∣∣∣∣2 (6.2)

The method we use for coupling CDW profiles and SC via a bi-quadratic term γ ∑ j |ψ j|2|Φ|2,

is the same as in the previous chapter. Notice the same rationality from the previous chapter

applies to this case. The CDW is well settled when superconductivity arises, this way, we can

neglect the influence of the SC OP on the CDW.

Three Euler-Lagrange equations, one for each j-direction, are used to minimize the

energy in the MGL functional and using an effective mass term m∗ to re-write B = h̄2

2m∗ we get

a better physical insight:[
ατ +G|ψ j|2 +

K
2
(
|ψl|2 + |ψk|2

)]
ψ j−Eψ

†
j −

h̄2

2m∗
(i∇+qI

j)
2
ψ j +

3D
2
(ψ†

l ψ
†
k )

+
M
2
(ψlψk +2R[ψlψk]) = 0, (6.3)

where l 6= k 6= j. Defining a characteristic length ξ =
√

h̄2/2m∗α and re-scale energies by α .

Equation 6.3 become[
τ +

G
α
|ψ j|2 +

K
2α

(
|ψl|2 + |ψk|2

)]
ψ j−

E
α

ψ
†−ξ

2(i∇+qI
j)

2
ψ j +

3D
2α

(ψ†
l ψ

†
k )

− M
2α

(ψlψk +2[ψlψk]) = 0. (6.4)

For the SC, the Euler-Lagrange equation that minimizes fs is simply the GL equation, coupled

to the CDW parameter by γ[87]

(
as +bs|Φ|2

)
|Φ− 1

2m∗

(
h̄
i
∇

)2

Φ+ γΦ∑
k
|ψk|2 = 0 (6.5)
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Both Equations (6.4) and (6.5) are solved by numerical methods. The SC equation can be

solved by the relaxation method, the same way as in the last chapter. For CDW equations Eqs.

(6.4) can be solved by using the imaginary time evolution technique, which has proven to be

effective in similar mathematical cases such as the Gross-Pitaevskii equation in Bose-Einstein

condensation[88–90].

6.2 Imaginary time evolution technique

The split-operator technique[91], a numerical method for time evolution, is utilized

to carry out the process, where the initial wavefunctions ψ j(x,y, t = 0) are evolved to solve

the set of coupled equations. This technique involves dividing the time evolution operator, as

described in [92].

e−
i
h̄
∫ t+∆t

t fM(t)dt ≈ e−
i

2h̄V̂ ∆t e−
i

2h̄ T̂ ∆t e−
i

2h̄V̂ ∆t +O(∆t3), (6.6)

where the O(∆t3) error accounts for the non-commutativity between the V̂ and T̂ operators,

which are defined as

V̂ =

[
τ + Ḡ

∣∣ψ j
∣∣2 + K̄

2

(
|ψl|2 + |ψk|2

)]
− Ē

ψ∗j
ψ j

+
3D̄
2ψ j

(ψ∗l ψ
∗
k )−

M̄
2ψ j

(ψlψk +2R[ψlψk])

(6.7)

and

T̂ =−
(
i∇+qI

j
)2

(6.8)

In the model, the parameters Ē, Ḡ, K̄, D̄, and M̄ are expressed in units of α , while lengths are

measured in units of ξ . As the initial order parameters ψ j(x,y, t = 0) evolve in the imaginary

time Ti = it, they will eventually reach the profiles that minimize the McMillan energy func-

tional. It should be noted that the V̂ term in Eq. (6.7) depends on ψ j and therefore, it changes

with time. This would require a time integral in the terms in Eq. (6.6) that are dependent on

V̂ . To overcome this issue, we approximate V̂ to be approximately constant within the interval

[t, t +∆t], provided that ∆t is small enough to produce a converged energy result with an error

of less than 1

In some cases that we will discuss further, we will need to use a vector field qI
j(x,y)

as the incommensurability wave-vector instead of a constant wave-vector. This can create diffi-

culties for the application of the exponential of the T̂ term in Eq. (6.6), which now includes both

derivative operators and functions. However, this challenge is addressed by the gauge-invariant
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finite difference method presented in Ref. [93].

6.3 Results and discussion

In this section, the parameters G = K = 2α , M = α , and D = −α are selected,

following the choice made in Ref. [57], unless specified otherwise. This allows us to make

comparisons with previous studies while also enabling us to modify the parameters individually

to see how they impact the results.

6.3.1 Physical insights from a phase-only approximation

The CDW order parameters can be written in terms of their amplitude and phase,

Equation 4.6. In terms of the amplitude and phase of each order parameter, the McMillan energy

functional is re-written as

Fcdw = ∑
j=1,2,3

{
τφ

2
j +Gφ

4
j +ξ

2[(qI
j−∇θ j)

2
φ

2
j +(∇φ j)

2]

−Eφ
2
j cos(2θ j)

}
−φ1φ2φ3[3Dcos(Θ)+M ∑

j=1,2,3
cos(Θ j)]+

K
2 ∑

i6= j
φ

2
i φ

2
j (6.9)

where Θ = θ1 +θ2 +θ3 and Θ j = θ j−θ j+1−θ j+2.

From the McMillan energy functional, it becomes evident that in a phase-only

model, meaning for constant φ j, without any coupling term and for E = 0, the energy mini-

mum is achieved when

∇θ j = qI
j. (6.10)

This implies that as E approaches 0, the solution must tend towards the incommensurate case,

where θ j = qI
j · r and thus, the phase adds a qI

j correction to the CDW wave-vector QC
j .

The Euler-Lagrange equations for θ j that minimize Fcdw reads

φ j∇
2
θ j +2∇φ j∇θ j−2qI

j ·∇φ j−
E
ξ 2 φ j sin(2θ j)−

3D
2ξ 2 φ j+1φ j+2 sin(Θ)

− M
2ξ 2 φ j+1φ j+2[sin(Θ j)− sin(Θ j+1)− sin(Θ j+2)] = 0 (6.11)

In this equation, the incommensurate phase θ j = qI
j · r is still the solution of this

equation for E = 0 even at a non-constant φ j and non-zero coupling D, since the term involving

the latter is zero, as Θ = (qI
1 + qI

2 + qI
3) · r = 0 in this case. On the other hand, a non-zero

coupling constant M does not guarantee the incommensurate solution as the lowest energy state
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in the system. Therefore, increasing the coupling constant M may harness the ability to control

the transitions between commensurate, near-commensurate, and incommensurate phases of the

CDW only through the parameter E.

Furthermore, in the phase-only model in the absence of couplings and for non-zero

E, Eq. (6.11) reduces to

∇
2
θ j−

E
ξ 2 sin(2θ j) = 0, (6.12)

which is easily identified as the sine-Gordon equation, whose solution takes the form of a soli-

ton. This suggests that increasing E leads to soliton-like solutions for the phase, which would

perfectly mimic the experimentally observed discommensurations in CDW. Since the stationary

soliton solution has the general form

θ j(x j) ∝ tan−1{exp[
√

E(x j− x j0)/ξ ]}, (6.13)

where x j is the coordinate along the j-th direction and x j0 is an offset for the soliton position,

the sharpness of the soliton steps are controllable by either E or ξ , which are related to the total

charge density and the deviation parameter δ j, respectively. The analysis of these limits in our

model suggests that in the absence of couplings:

1. E→ 0 leads to the incommensurate solution,

2. moderate values of E lead to a combination between an incommensurate phase and

soliton-like phase-slips, which can be seen as discommensurations,

3. E → ∞ leads to an infinitely long soliton-like step, which is eventually interpreted as the

commensurate phase.

It is important to check how the presence of couplings K, D, and M between the different CDW

order parameters change this scenario.

The prediction that ∇θ j must converge to qI
j in order to minimize the energy can be

used as a convenient way to modify the MGL model as to produce different defects in CDW.

For instance, consider a domain wall perpendicular to a given direction G j, at x j = 0, separating

regions where the phase is constant.[43, 94] The associated phase θ j can be mathematically

described as a kink function θ j = hi tanh(x j/ai), where ai and hi controls the width of the

interface region and its height, respectively. Such a phase distribution is readily obtained from
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the imaginary time evolution by defining an effective incommensurability vector field

qI
j(x j) =

hi

ai
sech2

(
x j

ai

)
x̂ j (6.14)

such that ∇θ j = qI
j(x) yields the expected kink profile for θ j. As another example of the appli-

cation of this concept, a vortex-antivortex pair along the x-axis in θ j is obtained by an incom-

mensurability vector field[19]

qI
j(x,y) =

(
−y
r2

v
+

y
r2

av

)
x̂+

(
x− dvav

2
r2

v
−

x+ dvav
2

r2
av

)
ŷ (6.15)

where rv =
√

(x−dvav/2)2 + y2, rav =
√

(x+dvav/2)2 + y2, and dvav is the vortex-antivortex

separation. The profiles of the order parameters obtained from the MGL theory with constant

qI
j, as well as with vector fields defined by Eqs. (6.14) and (6.15), are discussed in what follows.

6.3.2 Discommensurations revisited

In this discussion, we first consider the scenario of constant δ jQC
j , which results in

discommensurations. To simplify, let’s assume the same δ j for all three directions ( j = 1−3).

Figure 24(a) displays the phase distribution along the reciprocal lattice direction j = 1, for

various values of the energy parameter E, with δ j = 0.1. The results and conclusions for the

other directions j = 2 and 3 are identical to those for j = 1, so they are omitted. For E = 0,

the phase is simply θ1(x1) = qI
1x1, meaning the system is in a perfectly incommensurate phase,

with the effective wave-vector of the CDW in this direction being

QC
1 (1+δ1) = 1.1QC

1 . (6.16)

As E increases, the soliton-like steps predicted in the previous section are observed,

creating regions where the system is locally commensurate, separated by phase slips, or dis-

commensurations. At higher values of E, the soliton steps become so long that the phase is

virtually constant, leading to the effective wave-vector of the CDW being QC
1 , which results in

the commensurate phase.

By taking the derivative of θ1 and calculating the height and distance between the

resulting peaks, one can estimate the steepness of the discommensurations and the length of the

steps produced by them, respectively. The former is represented by red line-squares, and the lat-

ter by black lines, in Figure 24(b) as a function of the lock-in energy E. Lengths are expressed

in units of the lattice parameter aL. Since the length of discommensurations steps can be effec-
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Figure 24 – Phase of CDW order parameter versus lock-in energy

(a) Phase of the j = 1 order parameter along the x1 direction, assuming different values of lock-in
energy E = 0, 15, 30, 45, and 60 α . (b) Length of the discommensuration steps (black line, left axis),
along with the discommensuration steepness (red line-symbols, right axis), as a function of the lock in
energy E. The lock-in energy axis is reversed to help visualization since the actual experimentally
controllable parameter is the overall charge density, which is inversely proportional to E.

tively measured by current experimental techniques (such as in Ref. [43]), the results presented

here enable us to estimate some of the parameters needed for a proper theoretical description of

a CDW phase in a given TMD. As the lock-in energy increases (i.e., the overall charge density

decreases), the length of the discommensuration steps rapidly increases, eventually leading to

the commensurate phase.

Figure 25 – Phase of CDW order parameter versus M parameter

(a) Phase of the j = 1 order parameter along the x1 direction for E = 50α , assuming different values of
the third order coupling energy M = 0, 20, 40, 60, 80 and 100 α .

Previously, it was stated that the coupling parameter M has a negative impact on

the formation of discommensurations in the CDW phase profile. To evaluate the significance

of this coupling, the effect of M on the length and height of the discommensuration steps is
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shown in Fig. 25. As M increases, the step lengths decrease and the distance between the

discommensurations becomes shorter, as shown in Fig. 25(a). A decrease of about 30% in step

length is observed when M increases from 0 to 100α . On the other hand, the height of the steps

is not significantly impacted, with oscillations of less than 3% of the average value, seen in Fig.

25(b), which are within the margin of error in our calculations.

The long and steep steps in the phase profiles observed in Fig. 24 become signifi-

cantly smaller as one increases the incommensurability factor δ j. This is illustrated in Fig. 26,

where we consider δ j = 0.15. In this case, increasing E within the same range as in Fig. 24,

the step length is still two orders of magnitude shorter than that observed in the δ j = 0.1 case,

while the steepness is ≈ 30% smaller.

Figure 26 – Phase of CDW order parameter versus lock-in energy for higher δ j

Same as Fig. 24, but for δ j = 0.15 (a) Phase of the j = 1 order parameter along the x1 direction,
assuming different values of lock-in energy E = 0, 15, 30, 45, 60 and 100 α . It needs a higher value of
the lock-in energy to achieve the soliton solution (b) Length of the discommensuration steps (black line,
left axis), along with the discommensurations steepness (red line-symbols, left axis), as a function of the
lock-in energy E.

Increasing the lock-in energy E effectively increases the critical temperature of the

CDW, as inferred by Eq. (6.11), where one sees that the temperature parameter τ = T/Tcdw−1,

which multiplies φ 2
j , is effectively changed as T/Tcdw−1−E cos(2θ j). As E increases and the

phase converges to θ j ≡ 0 as the lowest energy (commensurate) solution, higher temperatures

are required to induce the normal/CDW phase transition. However, how fast θ j converges to 0

depends on the different system parameters: higher discommensuration factors δ j, for example,

lead to a delayed convergence of θ j to zero at significantly higher E. Therefore, the control

of the CDW critical temperature is expected to depend e.g. on δ j, which is confirmed by our

numerical results in Fig. 27, which shows the effective critical temperature as a function of the

lock in energy E for different values of δ j. The delayed convergence of cos(2θ j) to 1 for higher

δ j eventually hinders the contribution of E to the effective critical temperature, thus making the
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Figure 27 – Effective critical temperature as a function of the lock-in energy
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control of the CDW critical temperature via E less efficient.

6.3.3 Phase domain walls and topological defects

Figure 28(a) shows a color map of a CDW profile, calculated with Eq. (4.2), in the

presence of a phase domain wall. Such domain wall is obtained by defining the incommen-

surability vector fields qI
1(x,y) and qI

2(x,y) as in Eq. (6.14), which leads to the formation of

identical domain walls in the order parameters ψ1 and ψ2, as observed in Ref. [43]. Indeed, the

phase slips observed due to the domain wall leads to a CDW profile that qualitatively resembles

those experimentally observed e.g. in Ref. [43, 94]. The amplitude (squared modulus) of the

ψ1 order parameter is shown as a solid line in Fig. 28(a) and exhibits a strong suppression in

the interface. The |ψ2|2 profile is the same, therefore, it is omitted.

Figure 29 illustrates the phase and amplitude obtained from our calculations defin-

ing the incommensurability vector field qI
1(x,y) as in Eq. (6.15), which yields the formation of

a vortex-antivortex pair.

Either in the presence of the domain wall or vortex-antivortex pair defects, it is clear

that along the line where the phase of the CDW order parameter changes abruptly, its amplitude

drops to zero, thus enabling the emergence of a SC phase, as we will discuss later.
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Figure 28 – Phase domain wall in CDW
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(a) Color map of the CDW profile in the presence of a phase domain wall in the order parameters ψ1
and ψ2, obtained by defining their incommensurability vector fields as in Eq. (6.14). The amplitude of
the order parameter ψ1 along the x-direction is superposed on the color map, for comparison. The
amplitude of the order parameter ψ2 is the same in this case. (b) Phase distribution of the CDW order
parameter ψ1.

6.3.4 CDW with broken rotational symmetry

Earlier experiments on NbSe2 revealed the existence of a CDW phase characterized

by a wave with a single direction, for instance, QC
3 > 0, with the effective wave vector being zero

in the other directions, known as the uni-directional charge density wave phase (1q-CDW)[43].

In the model presented here, a similar phase can be obtained by considering an

anisotropic form for the incommensurability vectors, Eq. (4.5), where two of the discommen-

suration parameters are set to -1, e.g. δ1 = δ2 = −1, while δ3 is set to a small value, such

as δ3 = 0.1, as an example. The numerical solution of Eq. (6.4) with this set of δ j values is

found to be unstable if the first-order coupling terms proportional to D and M are non-zero. As
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Figure 29 – Vortex-antivortex pair in CDW
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(a) Phase and (b) amplitude of the CDW order parameter ψ1, obtained by defining the
incommensurability vector field as in Eq. (6.15).

the one-directional phase is observed experimentally, this suggests a way to potentially rule out

some coupling terms that, although allowed by symmetry[57], may not be significant in certain

physical situations. Hence, results in this section are presented assuming D = M = 0.

Figure 30 shows the CDW profile with this set of parameters, which indeed leads to

uni-directional CDW along the QC
3 direction. In the case of low lock in energy E = 100α , no

defect is observed in the CDW periodicity, see Fig. 30(a). However, as this energy decreases

to E = 40α , our model predicts the occurrence of phase slips, due to discommensurations, in

the CDW profile, see Fig. 30(b). For E = 0, we observe in Fig. 30(c) a perfectly periodic,

although incommensurate, CDW profile. It is easy to verify that unidirectional CDW in the j =
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1, 2 directions can be similarly obtained just by making δ j 6= 0 and δn = 1 for n 6= j.

Figure 30 – CDW distribution ρ(r) assuming an anisotropic set of incommensurability
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CDW distribution ρ(r) assuming an anisotropic set of incommensurability vectors such that
qI

3 = 0.1QC
3 , qI

2 = QC
3 and qI

1 = QC
1 , for D = M = 0, thus leading to an uni-directional charge density

oscillation. Three values of lock-in energy are considered: (a) E = 100α , (b) E = 40α , and (c) E = 0.

Notice that the minima in the 1q-CDW profile ρ(r) shown in Fig. 30 for E = 0

and E = 100α do not result from modulation of the amplitude of the order parameter, but

rather from the oscillations originating from the exponential terms in Eq. (4.2). Therefore, the

minima in these 1q-CDW cases are not expected to affect the SC phase, which couples to the



67

order parameters ψ j, rather than to the total CDW profile ρ in the MGL model.

6.3.5 Effects on the emergent superconducting phase

In this section, we will explore the impact of the CDW defects, as outlined in the

previous section, on superconductivity in a qualitative manner. Our model suggests that there is

a competition between the superconducting order parameter Φ and the CDW order parameters

ψ j, which are linked through the γ parameter in equation (6.1). The superconducting phase is

expected to develop in areas where the CDW order parameters are diminished. This approach

resembles the hidden order parameter model discussed in references [72, 87]. In fact, the bi-

quadratic coupling in equation 6.1 can be compared to the coupling presented in reference [57]

by grouping all terms that multiply |ψ j|2. This results in an effective α∗s = αs−∑ j γ|ψ j|2.

Based on the temperature dependence in GL theory [15], αs(T ) = α0(T/TSC− 1),

where TSC is the reference superconductor critical temperature, the γ coupling decreases the

critical temperature of the superconducting phase wherever |ψ j|2 is suppressed. For clarity,

temperatures are scaled to TSC. In the absence of CDW, the superconducting phase transition

would occur at T = TSC. However, high values of |ψ j|2 inhibit superconductivity and lower the

effective superconductor critical temperature.

Figure 31 – Color map of the superconducting order parameter
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Color map of the superconducting order parameter rising as the temperature T decreases below the SC
critical temperature TSC, in the system where the CDW order parameter ψ1 exhibits discommensurations
along the x-direction, for lock-in energies E = (a) 40α , (b) 50α , (c) 60α , and (d) 70α , assuming a
coupling parameter γ = 4. The profile of the CDW is superposed in each panel as a solid line.

In the following discussion on the rise of the superconducting order parameter in the

interstitial spaces, for simplicity, we will assume two approximations: first, a one dimensional

CDW. This allows us to easily qualitatively predict the behavior of the superconducting critical

temperature dome in terms of the parameters of the CDW. A generalization of this discussion to

the case of a combination of three CDW order parameters is straightforward. Second, we will
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also neglect the influence of the SC order parameter on the CDW profile. This is a reasonable

approximation since the CDW is already well settled in place when the critical temperature for

the superconductivity phase is reached. This fact is supported by the phase diagram of several

materials, e.g. cuprates and iron-pnictides[95–99]. The GL equation for the SC order parameter

resulting from these approximations reads[87]

− 1
ξ 2

r

d2Φ

dx2 +

[
T

TSC
−
(

1− γ

ξ 2
r
|ψ1|2

)
+ |Φ|2

]
Φ = 0, (6.17)

For example, we assume coherent lengths of CDW and SC order parameters with a ξr = ξ/ξSC

= 0.7 ratio.

The amplitude of the CDW order parameter exhibit dips at the discommensurations,

whose depth is given by the steepness of the discommensuration. Within the model employed

here, the effective superconducting critical temperature increases as the dips in the CDW are

made deeper and closer[87]. Therefore, Fig. 24 allows us to predict that starting with low

values of E, the discommensurations become steeper as E increases, thus increasing the super-

conducting critical temperature. On the other hand, for intermediate E, the discommensurations

become too far from each other, decreasing the critical temperature again, until it goes back to

zero at the commensurate phase, where discommensurations are no longer seen. This explains

the emergence of a superconducting dome in the temperature versus charge density phase dia-

gram.

Indeed, this behavior is verified in the color maps of the calculated SC order param-

eter along the x1-axis as a function of temperature in Fig. 31. The profile of the CDW order

parameter in the E = (a) 40α , (b) 50α , (c) 60α , and (d) 70α are shown as solid lines in each

panel, for comparison. For E = 60α , the dips in this order parameter are deep and close, leading

to an SC order parameter that is active almost up to T = TSC for γ = 4, see Fig. 31(c). However,

superconductivity in the center of the sample vanishes at lower effective critical temperatures

as E is made either higher or lower than E = 60α . For either E < 40α or E > 90α , these dips

are no longer able to sustain SC and the effective SC critical temperature drops to zero.

Figure 32 shows the SC dome delimited by the effective critical temperatures found

as the temperature at which |Φ|2 drops to zero for each value of E. In the case where the discom-

mensuration parameter is δ1 = 0.10 and the coupling between SC and CDW order parameters

is high, the SC dome reaches values as high as 85% of the nominal SC critical temperature at

E = 40α , assuming γ = 2.5. Considering a lower coupling parameter, γ = 2.0, the SC dome
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Figure 32 – Superconductor dome in TMDs
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becomes smaller. It is hard to predict the strength of the SC-CDW coupling with the phe-

nomenological model proposed here for an actual sample, but the behavior of the SC dome for

systems with different discommensuration lengths can be compared. In this case, our model

predicts that for δ1 = 0.12, where discommensurations are shorter in space and more weakly

affected by the lock in E (see Fig. 26), the SC dome becomes considerably higher and wider, as

shown by the blue symbols in Fig. 32. Since the superconductivity is expected to emerge only

at the discommensurations, superconducting lines would be further apart also in systems with

high coupling M. Consequently, the superconducting dome is expected to exhibit lower critical

temperatures in systems with high M as well.

SC is also expected to emerge within the dips in the CDW order parameter ψ1 due

to the defects. A color map of the SC order parameter profile in (a,b) vortex-antivortex defects

as a function of temperature T is shown in Fig. 33, assuming coupling parameters γ = 4 (a)

and γ = 1 (b). As in the previously discussed case where SC rises in the discommensurations,

a higher γ coupling here also enhances the effective SC critical temperature. However, in this

case, changing the lock in energy E does not affect either the depth or width of the minimum in

ψ1, therefore, although these defects are expected to enhance superconductivity in the sample,

they are not expected to affect the profile of the SC dome in the temperature versus density

phase diagram.
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Figure 33 – Superconductivity in a CDW vortex-antivortex pair
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7 CONCLUSION

In this thesis, I studied two different problems involving collective phases and su-

perconductivity that are closely related. First, interface superconductivity is modeled with a

general approach to describe the interplay between one dominant collective state and super-

conductivity. The results of this model are then used to expand the theory of the formation of

a superconducting dome in the temperature versus density phase diagram of TMDs, where a

CDW state is dominant and a superconducting phase emerges among the defects in the CDW

profile.

We have employed a two-component GL model to investigate properties of super-

conductivity arising in competition with another dominant (spin/charge density) order in a series

of parallel interfaces. The model is developed on top of the one previously proposed in Ref.

[72], where two competing order parameters exhibit density-density coupling but are easily

extendable to other coupling forms stemming from a microscopic derivation. We go beyond

this previous model by expanding its concept to the case of several parallel interfaces, where

we demonstrate that as more interfaces are stacked together, the number of possible super-

conducting states across these interfaces increases, each with a different critical temperature.

The critical temperature of the ground state, which would thus be the superconducting critical

temperature of the system, depends on the distance between interfaces, the number of stacked

interfaces, and, generally speaking, the coupling between adjacent interfaces. Bearing in mind

the large number of systems where interface superconductivity is relevant, especially the arti-

ficially fabricated ones, our study conveniently indicates pathways towards control of critical

temperature by nanoengineering of material superlattices.

Different (meta)stable superconducting states we found in the superlattice of in-

terfaces are not only rich in number, but also in different physical manifestation, since some

of them can host rather nontrivial spatial distribution of the Cooper-pair condensate, and even

contain intrinsic π-Josephson junctions between parts of the superlattice. That suggests very

rich possible behavior of the system in applied current and/or magnetic field, which is worth be

explore further.

We also have demonstrated how an appropriate choice of parameters and functional

forms of the MacMillan-Ginzburg-Landau energy functional can be used to describe not only
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the formation of discommensurations in the CDW phase profiles but also the emergence of

topological defects (vortex-antivortex pairs) and domain walls in the phase, as well as the ap-

pearance of a uni-directional CDW state. Revealing the mechanism behind the formation of

these states, which have been observed in recent experiments, allowed us to investigate, within

a phenomenological model, how modifications on the phase step lengths and heights and on the

vortex-antivortex separation affect the profile of the CDW order parameters.

Since this order parameter is known to compete with an emergent SC order pa-

rameter in these systems, we have also used our model to elucidate the mechanism behind the

emergence of the SC dome in their phase diagrams. Much like the previously discussed general

model of hidden SC order parameter, we demonstrate that the SC state rises in defects of the

pure C-CDW (or IC-CDW), like DC, vortex-antivortex, and domain walls. We also showed that

the SC critical temperature depends on the distance and depth of the modulations in the CDW

order parameter, which allows us to design systems where this critical temperature is effectively

enhanced.

In this thesis, we introduce a powerful theoretical and numerical model that can

handle non-uniform cases, like the domain wall and vortex-antivortex which opens multiple

interesting paths to study. With this framework, we can explore the phase diagrams of the

CDW, by modifying the multiple parameters present. Or apply magnetic and electric fields to

understand the response of the CDW and how affect the rise of superconductivity. We showed

the superconductivity rising in the defects of the CDW, another point that can be explored is if

the regions in between the defects can function as Josephson junctions. In the interfaces, we

saw the tunneling of the superconductivity, could this happen for the discommensurations in the

CDW?

The charge density and superconductivity in transition-metal dichalcogenides are an

interesting branch of condensed physics for future studies and we provide a robust theoretical

and numerical framework to explore this rich environment.
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APPENDIX A -- ABRIKOSOV VORTEX STATE

A.1 Abrikosov Lattice

The greatest strength of the GL theory over the other existing theories of SC at that

time was its capability to solve multiple problems without having to look at the microscopic

aspects of the superconductor. Another advantage is that it is considerably easier to work with

the GL theory when the order parameter has a spatial dependency. The theory allowed A. A.

Abrikosov[9] to study type-II superconductors in a magnetic field. He predicted that just below

Hc2 the order parameter forms a periodic vortex lattice, where each vortex carries a quantum

of magnetic flux. His work explains why type-II superconductors let the magnetic field enter

without losing superconductivity and why κ = 1/
√

2 is the division between type-I and type-

II. Abrikosov won the Nobel Prize in physics in 2003 for his important contributions to the

understanding of vortices in superconductors.

A.1.1 Fluxoid quantization

Let’s apply the GL theory in a superconductor ring with a perpendicular magnetic

field, as illustrated in Fig. 34. Using cylindrical coordinates the OP ψ(r,φ ,z) must be periodic

Figure 34 – Magnetic field in a superconducting ring
Bz

Φ

Source: Author’s figure. Schematic diagram illustrating a superconducting ring

in φ . Assuming the superconductor ring is uniform, the solution does not depend on z or r. The

solution takes the form:

ψ(φ) = ψ0einφ (A.1)
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where n is an integer. The magnetic flux passing through the wire is given by the integral

Φ =
∫

B ·dS =
∫

∇×A ·dS =
∮

A ·dr = 2πrAφ (A.2)

where the vector potential can be written as

Aφ =
Φ

2πr
. (A.3)

Applying Eq. (A.1) and (A.3) in the integral form of the free energy equation (2.12)

Fs(T ) = Fn(T )+
∫

d3r

(
1

2m∗

∣∣∣∣( h̄
i
∇− e∗

c
A
)

ψ

∣∣∣∣2 +as|ψ|2 +
bs

2
|ψ|4

)
+EB (A.4)

or

Fs(T ) = F0
s +V

h̄2

2m∗R2

(
n− Φ

Φ0

)2

|ψ|2 +EB (A.5)

where

F0
s = Fn(T )+

∫
d3r as|ψ|2 +

bs

2
|ψ|4 (A.6)

is the ring’s free energy in the absence of magnetic flux and

EB =
1

2µ0

∫
B2d3r (A.7)

is the magnetic field energy in the vacuum.

In the second term in Eq. (A.5), Φ0 = hc/e∗ is the fluxoid quantum. If we want to

minimize the ring’s energy, the flux Φ must be an integer multiple of the fluxoid quantum

Φ = nΦ0 (A.8)

It is interesting to note that we can have several values of n that minimize the free energy.

When the ring is cooled below the critical temperature Tc, the system will enter one of the meta-

states, depending on the field that has been applied. The magnetic field induces a current in the

superconducting ring. If the magnetic field is removed, the ring will still be in one of the energy

minima illustrated in Fig. 35 and the induced current will persist.

Abrikosov used these results and showed that, in type-II superconductors, the mag-

netic flux that penetrates the superconductor is quantized to minimize the free energy. The

clearest peculiarity of type-II superconductors is the magnetic field increase inside the super-

conductor without destroying superconductivity, thus constituting a second-order phase tran-

sition. The magnetic flux continuously increases from a critical field Hc1 to a second critical
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Figure 35 – Energy minima as a function of the quantum flux
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Source: Figure adapted from [44]. Energy minimum as a function of the quantum flux. When the
superconductor is cooled in a magnetic field, the OP enters at one of the minima of energy depending
on the field applied.

field Hc2, where the superconductivity is destroyed. A. A. Abrikosov developed a theory that

explains this behavior, demonstrating the existence of the two types of superconductors and the

existence of a periodic lattice of magnetic vortices.

The order parameter ψ is small at the vicinity of Hc2. With this premise, we can use

the linear form of the first GL equation, by removing the non-linear term,

h̄2

2m∗

[
−i∇− e∗

h̄c
A
]2

ψ +asψ = 0. (A.9)

Assuming a magnetic field at the z-component

B = (0,0,B) (A.10)

and using Landau gauge to write the potential vector A,

A = (0,xB,0). (A.11)

Replacing the potential vector in Eq. (A.9), we have

h̄2

2m∗

(
−i∇− e∗B

h̄c
xŷ
)
·
(
−i∇− e∗B

h̄c
xŷ
)

ψ +asψ = 0 (A.12)

(
− h̄2

2m∗
∇

2 +
ih̄e∗B
m∗c

x
∂

∂y
+

(e∗B)2

2m∗c2 x2
)

ψ +asψ = 0 (A.13)

Introducing the term ωc =
e∗B
cm∗ and considering that as is negative in the superconducting regime,
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we can rewrite (A.13) as an eigenvalue equation(
− h̄

2m∗
∇

2 + h̄ωcix
∂

∂x
+

m∗ω2
c

2
x2
)

ψ = |as|ψ. (A.14)

The equation takes the form of a Schrödinger equation for a charged particle in a magnetic field

[47]. The ansatz for this type is

ψ(r) = ei(kyy+kzz) f (x), (A.15)

where it is necessary to find the unknown function f (x). Let us emply this ansatz in Equation

A.14

− h̄2

2m∗
d2 f
dx2 +

(
h̄ωckyx+

m∗ω2
c

2
x2
)

f =

(
|as|−

h̄2(k2
y + k2

z )

2m∗

)
f . (A.16)

We can complete the term on the left side(
h̄ωckyx+

m∗ω2
c

2
x2
)
=

m∗ω2
c

2
x2(x− x0)

2− m∗ω2
c

2
x2

0 (A.17)

where x0 = h̄ky/m∗ωc, and rearranging the terms

− h̄2

2m∗
d2 f
dx2 +

m∗ω2
c

2
(x− x0)

2 f =

(
|as|−

h̄2k2
z

2m∗

)
f (A.18)

Equation (A.18) is the Schrödinger equation for a harmonic oscillator displaced from the origin

of x0[47], where f plays the role of an eigenstate

H f = E f . (A.19)

The right term in the parentheses is the energy of the oscillator(
n+

1
2

)
h̄ωc +

h̄2k2
z

2m∗
, (A.20)

so that, isolating |as|,

|as(T )|=
(

n+
1
2

)
h̄ωc +

h̄2k2
z

2m∗
. (A.21)

When a superconductor in the presence of an external magnetic field B is cooled down, at the

critical temperature Tc(H = 0), the critical temperature at a zero magnetic field, it is impossible

to solve Eq. (A.21), since |as(T )| = 0, but the minimum energy of an oscillator (right side) is

the ground state, with n = 0, kz = 0 and E = h̄ωc/2. Therefore, the temperature for which the
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transition occurs depends on the external magnetic field

h̄ωc

2
= a0(Tc−T ), (A.22)

T (H) = Tc(0)−
h̄ωc

2
. (A.23)

The temperature needed for the phase transition is therefore lower as the magnetic field in-

creases.

Another possible situation is to keep the superconductor at a fixed temperature be-

low Tc and decrease the magnetic field B. When the magnetic field crosses the Hc2, the super-

conductivity appears in the ground state. Using Eq. (A.22)

h̄e∗B
m∗c

= a0(Tc−T ) (A.24)

Bc2 =
2m∗a0(Tc−T )

h̄2
h

2π
(A.25)

Hc2 =
Φ0

2πµ0ξ (T )2 (A.26)

This expression determines the number of quantum flux per unit of area that can exist simulta-

neously in the superconductor.

The thermodynamic critical field, equation (2.15), is related to the free energy dif-

ference between the superconducting state and the normal state. The second critical field, equa-

tion (A.26), is also related to the transition between the normal and the superconducting states.

We have an ambiguity, which one is correct? Let’s compare the equations

Hc =
a0

(µ0bs)1/2 (Tc−T ) (A.27)

we can rewrite in terms of the characteristic lengths

Hc =
Φ0

2π
√

2ξ λ
(A.28)

using the Hc2

Hc =
Hc2√

2κ
(A.29)

or

Hc2 =
√

2κHc (A.30)

where κ = λ/ξ . We have two possible outcomes depending on the κ . If κ > 1/
√

2, Hc2 > Hc

and the superconductor goes through two phase transitions. First, when the magnetic field is
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Hc, the superconductor goes from the pure Meissner state, without vortex, to the mixed state,

where part of the magnetic field enters the superconductor. The second transition is when the

magnetic field is Hc2 and the superconductor becomes the normal state. Fig. 36 is a schema

of the superconductor magnetization versus the applied field for this behavior. These super-

conductors are classified as type-II. The second outcome is when κ < 1/
√

2, then Hc2 < Hc,

Figure 36 – Sketchy of the magnetization for type-II superconductors
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Source: Author’s figure. The magnetization versus the magnetic field for type-II superconductors. To
expel the magnetic field, the magnetization increases until the first critical Hc, where the vortex starts to
penetrate the superconductor. Between Hc and Hc2, increases the number of vortexes in the
superconductor and the magnetization slowly decreases until Hc2, where the superconductivity is
destroyed.

and the superconductor goes through one phase transition. When the magnetic field is Hc, the

superconductor goes from the superconducting state to the normal state directly. This first-order

phase transition is sketched in Fig. 37 and the superconductor is classified as type-I. Pure mate-

rials are mostly type-I superconductors, which is one of the reasons they were discovered first.

Type-II superconductors allowed for studies with high magnetic fields due to the mixed state

and the vortex states and their behavior is one of the most studied topics in superconductivity.

The linearized GL equation allowed us to evaluate Hc2 and classify the supercon-

ductors, but we still do not have information about the distribution of the OP. We need to return

to the non-linear GL equation and try to solve it. Abrikosov used an insightful ansatz that led to

the solution. He realized that in the linearized equation, only the ground state of the oscillator,

n = 0 and kz = 0, is important, but there are infinite degenerate states that correspond to the
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Figure 37 – Sketchy of the magnetization for type-I superconductors
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Author’s figure. The magnetization versus the magnetic field for type-I superconductors. To expel the
magnetic field, the magnetization increases until the first critical Hc. After Hc, the superconductivity is
destroyed.

different values of ky. The solution to the ground stat is a Gaussian function[47]

ψ(r) =Ceikyye−(x−x0)
2/ξ (T )2

(A.31)

Abrikosov assumed that the final solution should be periodic in y and restricted the values of ky

ky =
2π

ly
n, (A.32)

where n is integer, positive or negative, and ly is the period. The term x0 in the oscillator solution

takes the value of

x0 =−
2π h̄

mωcly
=−Φ0

Bly
n (A.33)

The periodic solution has the form

ψ(r) =
∞

∑
n=−∞

Cnei(2πny/ly)e−(x+nΦ0/Bly)2/ξ (T )2
. (A.34)

The parameter Cn is a variational parameter that is chosen to minimize the free energy of the

system.

The solution is periodic in y, but not in x. Abrikosov forced the solution to also be

periodic in x, thus the coefficients Cn are periodic for a parameter ν

Cn+ν =Cn (A.35)
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and the period lx is

lx = ν
Φ0

Bly
. (A.36)

Now, the solution is periodic in y and x. We need yet to choose the value of ν to minimize the

free energy.

In his study, Abrikosov used ν = 1 which creates a square lattice. Further studies

have shown that the triangular lattice, with ν = 2, has a free energy slightly smaller than the

square lattice. Whatever the configuration, the main point of Abrikosov’s work is that the OP

ψ(r) goes to zero at one point for each unit cell, and a quantum flux Φ0 enters the supercon-

ductor, creating a mixed (vortex) state. The final solution is a periodic vortex lattice, as shown

in Fig. 38.

Figure 38 – Abrikosov vortex lattice

Source: Figure extracted from [45]. Vortex lattice in a type-II superconductor. Each vortex carries one
quantum flux Φ.
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