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A B S T R A C T   

Aerobic Granular Sludge (AGS) technology is considered promising, but many aspects are being studied and 
developed to increase system reliability. In this regard, the research assessed the performance of a conventional 
AGS (R1) sequencing batch reactor (SBR) system compared to a new AGS design through the inclusion of a 
biological filter (BF) compartment in the upper zone (R2), treating municipal wastewater. BF insertion in R2 
improved total nitrogen removal (> 85 %) and effluent clarification. Effluent total suspended solids (TSS) 
average values of 44.1 and 17.1 mg/L were found for R1 and R2, respectively. Sludge production was evaluated, 
and the yield coefficient (Y) and sludge concentration were different in the two reactors. The new system (R2) 
can be an interesting alternative to improve some aspects of conventional AGS reactors, such as denitrification 
and nitrite accumulation, effluent TSS concentration, and system reliability increase during periods of instability 
and granules breakage.   

1. Introduction 

The aerobic granular sludge (AGS) process is considered one of the 
most efficient and promising technologies existing in the market, pre
senting several advantages like simultaneous removal of carbon, nitro
gen, and phosphorus, high potential of metal and several pollutants 
biosorption, color removal, resource recovery from the excess sludge 
such as polyhydroxyalkanoates (PHAs), alginate-like exopolymers 
(ALE), tryptophan, and polysaccharide-based biomaterial, among others 
(Ferreira et al., 2021; Van Leeuwen et al., 2018; Wang et al., 2018; Lu 
et al., 2016; Wang et al., 2014). 

Because of these advantages, the AGS technology has been exten
sively studied in sewage treatment and industrial wastewater treatment, 
including palm oil mill effluent, livestock, leachate, dairy, textile, and 
other complex effluents (Rollemberg et al., 2018). Over ninety full-scale 
Nereda® AGS wastewater treatment plants are currently operating 
worldwide (Royal HaskoningDHV, 2022). In comparison with activated 
sludge (AS), for example, AGS showed a significant reduction in foot
print (~ 75 %) and power consumption (30–50 %) (Bengtsson et al., 
2018). 

Although aerobic granules reactors have several advantages 
regarding performance, footprint, energy demand, investment, and 
operational costs aspects, their operation on pilot- and full-scale 

(especially in the treatment of low-load domestic sewage and some in
dustrial effluents) has faced some problems, such as:  

(i) Granule disintegration in long-term operation, leading to high 
total suspended solids (TSS) concentrations in the treated 
effluent, treatment performance deterioration, and, eventually, 
to the overall AGS reactor failure (Rollemberg et al., 2018; 
Wagner et al., 2015; Wan et al., 2013).  

(ii) Long start-up time, sometimes requiring extended periods (up to 
13 months) to achieve granulation (Ni et al., 2009).  

(iii) Low total nitrogen (TN) and total phosphorus (TP) removals and 
problems with nitrite accumulation (Rollemberg et al., 2020a, 
2020b; Franca et al., 2018).  

(iv) Flotation of the granules and flocs and high solids presence in the 
effluent due to denitrification (N2 gas) and influent TSS and fat 
presence (Van Dijk et al., 2018). 

Several modifications in the AGS reactor design and operation were 
suggested to overcome such problems. Li et al. (2014) proposed AGS 
cultivation on a pilot-scale under ideal conditions with synthetic 
wastewater and biomass use as inoculum in full-scale wastewater 
treatment plants (WWTPs) after granules maturation. Although this 
methodology has been efficient for granule stability, it is likely 
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unfeasible for full-scale application. The approach adopted by Van Dijk 
et al. (2018) to reduce effluent TSS was the installation of vertical baffles 
in front of the AGS effluent weirs. Rollemberg et al. (2020a, 2020b) and 
Wu et al. (2018) proposed sludge discharge methodologies aiming at 
increasing phosphorus removal (sludge age control) in addition to the 
selective discharge of flocculent biomass which improved the final 
effluent quality in terms of TSS. 

All these alternatives showed important results in increasing the 
knowledge regarding the AGS technology. Nonetheless, a new design for 
AGS systems could be an approach to overcome/minimize the reported 
problems and increase the system reliability. This work proposes an 
unprecedented modification of a sequencing batch reactor (SBR) AGS 
system, which consists of implanting a biological filter on top of the SBR 
(AGS-BF) using a high surface application rate biomedia. 

2. Material and methods 

2.1. Experiment location and wastewater characteristics 

The reactor was installed in the largest wastewater treatment plant 
(WWTP) of Fortaleza, Ceará, Brazil, which receives about 3.0 m3/s. The 
sanitary wastewater used in the pilot-scale systems received coarse 
screening and grit removal and was stored in an equalization tank. The 
influent municipal wastewater composition was: chemical oxygen de
mand (COD) – 717 mg/L, biochemical oxygen demand (BOD5) – 313 
mg/L, TSS – 167 mg/L, NH4

+-N – 52.5 mg/L, and PO4
3− -P (dissolved) – 

7.1 mg/L (see Supplementary Material). 
The influent had low load characteristics, hindering the granulation 

process (Gao et al., 2011). The methodology of sludge discharge and 
cycle optimization [control of the food to microorganism (F/M) ratio 
and control of organic loading rate through cycle optimization] pre
sented by Rollemberg et al. (2020a, 2020b) made it possible to obtain 
stable granulation even when applied to low-load sanitary wastewater. 

2.2. Seed sludge 

The aerobic flocculent biomass source was from a full-scale activated 
sludge reactor. The initial concentration of mixed liquor volatile sus
pended solids (MLVSS) was around ~2.0 g/L with sludge volume index 
at 30 min (SVI30) reaching a value of around 150 mL/g, and the average 
size was 0.05 mm with sedimentation velocities about 3 m/h. 

2.3. Experimental setup 

Two identical sequencing batch reactors (SBR) were used, with a 
diameter of 100 mm, height of 1000 mm, working volume of 7.2 L, and a 
ratio of height to diameter (H/D) of 10. Reactor R1 was a conventional 
AGS system that worked as a control, while R2 was a modified AGS 
system by applying a biological filter (BF) compartment in the upper 
zone. For this reactor, a false bottom was inserted to support the high 
surface application rate biomedias. The BF compartment volume was 
approximately 10 % of the useful SBR volume. The biomedia was made 
of polyurethane foam, commercially called Monera Bio Power®, being 
considered, for this research, a surface area of 1000 m2/m3. Different 
sludge discharge points were included along the AGS heights and BF 
compartment. Fig. 1 shows the schematic of the research reactors. 

Air was pumped to the bottom of the reactors with an aeration rate of 
10.0 L/min, keeping the dissolved oxygen (DO) concentration in the 
mixed liquor between 2 and 3 mg/L. The exchange ratio was 50 %, and 
the ambient temperature was about 28 ± 2 ◦C. The initial cycle of the 
SBR reactors was 6 h, consisting of anaerobic feeding (60 min), oxic 
phase (280–295 min), and settling (20–5 min). The hydraulic retention 
time (HRT) was around 12 h. The systems were operated in four periods, 
varying the sedimentation time: 20 min (Period I), 10 min (Period II), 5 
min (Period III), and the cycle time reduction from 6 h to 4 h after 
granule maturation (Period IV). Such reduction in the cycle time, 

keeping the same exchange ratio of 50 %, resulted in the HRT decrease 
to 8 h. 

The SBR operation was as simultaneous fill-and-draw mode or con
stant volume, in which influent was pumped to the reactor bottom while 
the treated wastewater leaves it from the top. The sludge discharge 
protocol was carried out according to Rollemberg et al. (2022). The 
selective sludge discharge through SRT control (the SRT was maintained 
around 20 days) was applied after the sedimentation period. Bottom 
sludge and flocculent sludge discharges were implemented, constituting 
30 % and 70 % of the total volume of sludge discarded, respectively. 
Bottom and flocculent sludge discharges were done through specific 
registers located along the reactor height. The idea was to withdraw 
both old P-rich/saturated granule present at the reactor bottom and the 
filamentous/flocculent sludge existing at the reactor top. All excess 
sludge retained on the BF compartment was recirculated twice a week to 
the bottom of the AGS reactor. 

2.4. Sludge production and theoretical yield coefficient (Y) 

Mass balance to define the volume of discharge sludge was carried 
out from the yield coefficient (Yobs) calculation, considering the sludge 
withdraw, the sludge production and effluent solids, and dividing by the 
accumulated TCOD removed, according to the literature (Metcalf, 2003) 
Eq. (1): 

Yobs =
[(X2 − X1)Vr + XeV + XsVs ]

(CODin − CODout)V
[gVSS/gCODrem] (1)  

where X2 and X1 are the biomass concentrations (gVSS/L) at the day (n) 
and (n-1), Vr is the reactor working volume, Xe (gVSS/L) is the effluent 
biomass concentrations, V is the daily volume of wastewater treated, Xs 
is the waste biomass concentration (gVSS/L), Vs is the daily volume of 
waste sludge, and CODin and CODef are the influent and effluent COD 
concentration (g/L), respectively. 

2.5. Analysis 

COD, pH, ammonium, nitrite (NO2
− ), nitrate (NO3

− ), total phosphorus 
(TP), total and volatile suspended solids (TSS and VSS), and sludge 
volume index at 10 and 30 min (SVI10 and SVI30) were determined ac
cording to APHA (2012). Dissolved oxygen (DO) was measured by a YSI 
5000 m (YSI, USA). The aeration system was carried out through an air 
compressor (Yuting SUN, China). The extracellular polymeric sub
stances (EPS), i.e., proteins (PN) and polysaccharides (PS) contents, 
were determined according to Rollemberg et al. (2019). The reactors 
were subject to mechanical stirring (Magnetic stirrer, WEA, 30 rpm) 
through the anaerobic, oxic and anoxic phases to prevent settling. More 
details about types, brand, and origin of all instruments are described in 
Rollemberg et al. (2021). 

For the determination of NO2
− , NO3

− , and PO4
3− ions, ion chroma

tography was performed on a Dionex™ ICS-1100 ion chromatograph 
according to Do Nascimento et al. (2021). 

The method described by Lin et al. (2013) was used to extract the 
ALE from the aerobic granular sludge. A dried biomass (0.5 g) was 
lyophilized for 5 min (Freeze Dryer L 101, Liotop, Brazil), and the ALE 
were extracted by using 80 mL of a 0.2 M Na2CO3 solution at 80 ◦C for 1 
h. After centrifugation at 15,000 rpm for 20 min, the pellet was dis
carded. The mass value was expressed following the recommendations 
of Felz et al. (2016). The method used for P determination in the biomass 
was described elsewhere (Rollemberg et al., 2021). 

The sludge settling velocity was determined similarly to Wang et al. 
(2018) using an acrylic column with a working height of 0.4 m and a 
diameter of 75 mm. The granules collected from the SBRs were intro
duced on the top of the column, and, then, the time for their complete 
settling was measured in triplicate. 
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Fig. 1. Schematic diagram of the reactors: Conventional AGS, control (R1) (a) and AGS with a biological filter (R2) (b).  

S.L. de Sousa Rollemberg et al.                                                                                                                                                                                                              



Bioresource Technology Reports 19 (2022) 101172

4

2.6. Statistical methods 

The non-parametric Mann-Whitney test was used to compare the 
reactors' performance at a confidence level of 95 %, in which the data 
groups were statistically different when p ≤ 0.05. 

3. Results and discussion 

The reactors R1 (conventional, control) and R2 (modified AGS with 
BF compartment) were evaluated in terms of (i) performance in the 
removal of C, N, and P; (ii) pollutant removal mechanism; (iii) sludge 
production and characterization of excess sludge; (iv) energy con
sumption and engineering aspects. 

3.1. Reactor start-up 

As mentioned, the 1st part of the investigation consisted of reducing 
the sedimentation time from 20 min to 10 min and then to 5 min, a 
common procedure in AGS research, aiming at selecting granules by 
washing the filaments and obtaining mature granules. Although the 
reactors started with similar conditions (MLVSS of 2000 mg/L; SVI30 of 
180 mL/g), considering that the same inoculum (activated sludge) and 
the same concentration were used, the behavior of the systems during 
the experimental period was considerably distinct (Fig. 2). 

Initially, both reactors showed a significant reduction in SVI30, 
which is expected since the aerobic granulation process promotes the 
improvement of biomass sedimentability by transforming activated 
sludge flocs into aerobic granules induced by several selection pressures 
(Rollemberg et al., 2018). The ones adopted in the current research 
were: (i) sedimentation time reduction to keep only the biomass with a 
sedimentation velocity above 0.2 m/min; (ii) selection of slow-growing 
bacteria that use intracellularly stored PHA through an anaerobic period 
followed by aerobic periods with extended famine (substrate absence, 
which was consumed around 70–80 % in the anaerobic period); (iii) 
selective sludge discharge, where the filaments present in the upper 
layer of the sludge blanket and floating biomass were selectively 
removed (De Kreuk et al., 20077; Rollemberg et al., 2018). 

As mentioned, the reactors showed different behaviors. There was 
considerable instability (partial disintegration) in R1, especially be
tween days 25–30 and 60–65, with an SVI30 increase in addition to an 
MLVSS concentration decrease (Fig. 3a). Several works (Franca et al., 
2018; Wagner et al., 2015) had reported this instability, with a partial 

disintegration of the granules when AGS was applied to treat sanitary 
wastewater. On the other hand, in R2, no record of instability was 
observed, either in terms of SVI30 (Fig. 2) or MLVSS (Fig. 3a). This dif
ference in behavior is related to R2 modification. The biological filter in 
the upper part of the reactor played a decisive role in retaining biomass 
originating from the granules that went through a disintegration/ 
breakdown process. 

A significant difference was found concerning MLVSS concentration 
(Fig. 3a). While R1 had an average of 2 g/L, a typical value of AGS re
actors in sanitary wastewater treatment on a lab- and pilot-scale (Roll
emberg et al., 2020a, 2020b; Wagner et al., 2015), R2 had an average 
value of 3.5 g/L. This difference can also be attributed to the modifi
cation performed in R2. Fig. 3 evaluated the MLVSS and effluent VSS 
concentrations, showed that the biological filtration helped to retain the 
biomass, which was recirculated to the lower compartment (aerobic 
granular biomass compartment). 

Regarding effluent VSS (Fig. 3b), higher values were observed in R1, 
especially during the instability period. On the other hand, in R2, no 
instability was observed, and low VSS values in the effluent (≈ 10 mg/L) 
were found. The effluent VSS concentrations were statistically different 
(p = 0.04) (data not shown), with mean values of 39.7 ± 3 mg/L in R1 

Fig. 2. SVI30 variation of the control reactor (R1, square) and AGS with a 
biological filter (R2, circle) throughout the operational periods. 

Fig. 3. MLVSS concentration (a) and effluent VSS concentration (b) of the 
control reactor (R1) and AGS with a biological filter (R2) throughout the 
operational periods. 
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and 15.4 ± 4 mg/L in R2. In terms of effluent TSS, the average values are 
44.1 and 17.1 mg/L for R1 and R2, respectively. Therefore, it is clearly 
observed that in R2, a significant reduction of effluent solids was found 
due to the BF compartment inclusion. Solids' loss in AGS reactors 
effluent has been reported in many works, as a result of granule disin
tegration, biomass washout by denitrification or due to the presence of 
fats (Rollemberg et al., 2020a, 2020b; Franca et al., 2018; Rocktäschel 
et al., 2015; Li et al., 2008). Generally, well-operated AGS systems in 
full-scale applications such as WWTP Garmerwolde (Pronk et al., 2015) 
and WWTP Dinxperlo (van der Roest et al., 2011), have presented TSS 
values close to 20 mg/L. 

Some works have proposed methodologies to reduce TSS concen
tration in the effluent. Rollemberg et al. (2020a, 2020b) proposed ter
tiary filtration, obtaining high-quality effluent (TSS below 15 mg/L and 
turbidity below 3.5 NTU). TSS near 8 mg/L and turbidity close to 5.0 
NTU were obtained during vertical baffles installation in front of the 
AGS effluent weirs (Van Dijk et al., 2018). This research adopted a 
simple solution, which provided an effluent with a low TSS concentra
tion without the need of an additional tertiary treatment unit (filtra
tion). Other aspects related to reactor operation are described in Table 1. 

3.2. Granule characteristics 

The reactor configuration also influenced biomass characteristics. 
Granules' average size (≈ 1.2 mm) and sedimentation velocities (≈ 20 
m/h) were close in both systems. However, there was a significant dif
ference in the EPS content (p ≈ 0.03), where notably, there was a greater 
accumulation of PS and mainly PN in the R2 granules. 

One of the most important parameters in granulation is the EPS, 
substances secreted by bacteria under specific conditions and mainly 
composed of proteins, polysaccharides, humic acids, and lipids (Adav 
and Lee, 2008). The PN/PS ratio generally increases in EPS after gran
ulation (Rollemberg et al., 2020a, 2020b; Zhang et al., 2017). There is a 
consensus in the literature that PN is responsible for the structure and 
stability of granules, while PS is important for acting as a biological glue 
in the aggregation of granular biomass. In general, PN is the most 
abundant substance in the EPS of stable aerobic granules. Therefore, it is 
important to evaluate the PN/PS ratio (McSwain et al., 2005). 

While the PN/PS ratio in R1 was close to 1.1, values close to 1.5 were 
observed for R2, indicating greater granules' stability. This result agrees 
with what was discussed in Section 3.2, where a greater oscillation in the 
MLVSS content in R1 was observed, caused by granules' disintegration at 
two different times. Therefore, the reactor modification, with the BF 
compartment inclusion and sludge recirculation to the aerobic granular 
sludge zone, promoted a higher EPS concentration, mainly PN, acting on 
the stability of the granules. 

There was a tendency towards a yellowish color in R1 and a brown 
color in R2 (probably due to the higher P content in R2 – see Section 

3.5). The aerobic granules obtained in R1, and the biomass obtained in 
R2 (granules from the lower zone – AGS zone; adhered and flocculent 
sludge obtained from the upper zone – biological filtration zone) are 
shown in the Supplementary Material. 

3.3. Systems' performance 

Systems' performance in terms of C, N, and P removals was evaluated 
and the results are shown in Table 2. 

As mentioned, the experiment was divided into four periods, varying 
the sedimentation time: 20 min (Period I), 10 min (Period II), 5 min 
(Period III), and the cycle time reduction from 6 h to 4 h after granule 
maturation (Period IV). BOD removal was high in both systems, with 
values above 90 % observed in all periods, with no significant differ
ences (p = 0.06) between the reactors. The values found are similar to 
those of several other studies that observed high BOD removals (> 90 %) 
in AGS systems treating sanitary/municipal wastewaters (Rollemberg 
et al., 2020a, 2020b; Pronk et al., 2015). 

Similar to BOD removal, COD removal was also high in both systems. 
However, in some operation periods, lower removals were achieved in 
R1, especially in Periods I and II, where system instability was observed. 
Overall, COD removals of close to 90 % were found. 

Removal of NH4
+-N was also evaluated in the two systems, in which a 

significant difference between Periods I and II was found (p = 0.04). In 
this regard, the lower efficiency found in R1 can be explained by the 
lower MLVSS concentration. Moreover, the instability and biomass loss 
may be related to the retention of ammonia-oxidizing bacteria (AOB). 
After the stability and maturation of the granules, ammonia removals 
above 90 % were observed, with no significant effect upon cycle time 
reduction (Period IV). 

A tendency of nitrite accumulation in R1 was observed, which in turn 

Table 1 
Granule's characteristics of the control reactor (R1) and AGS with a biological 
filter (R2) throughout the operational periods.  

Sludge characteristics  Period I Period II Period III Period IV 

MLVSS (g/L) R1 1.3 ± 0.5 1.7 ± 0.8 1.7 ± 0.5 2.0 ± 0.2 
R2 2.6 ± 0.5 3.2 ± 0.7 3.7 ± 0.6 3.8 ± 0.4 

SVI30/SVI5 R1 0.89 0.9 0.93 0.92 
R2 0.91 0.92 0.95 0.96 

Mean diameter (mm) R1 0.9 1.3 1.2 1.2 
R2 0.8 1.2 1.1 1.3 

Settling velocity (m/h) R1 18 14 19 21 
R2 17 16 22 24 

PS (mg/mgVSS) R1 144 149 145 144 
R2 129 155 143 153 

PN (mg/mgVSS) R1 117 151 157 155 
R2 180 204 215 215 

PN/PS ratio R1 0.8 1.1 1.1 1.1 
R2 1.3 1.3 1.5 1.4  

Table 2 
Performance of the control reactor (R1) and AGS with a biological filter (R2) 
throughout the operational periods.  

Parameter Period I Period II Period III Period IV 

R1 R2 R1 R2 R1 R2 R1 R2 

BODinf 

(mg/L) 
341 
± 53 

327 
± 45 

349 
± 34 

319 
± 40 

338 
± 76 

385 
± 81 

396 
± 53 

427 
± 49 

BODefl 

(mg/L) 
19 
± 13 

14 
± 8 

16 
± 7 

11 
± 4 

17 
± 8 

9 ±
3 

13 
± 9 

9 ±
3 

BODrem 

(%) 
92 
± 6 
% 

91 
± 5 
% 

90 
± 4 
% 

95 
± 4 
% 

91 
± 4 
% 

96 
± 3 
% 

93 
± 5 
% 

95 
± 3 
% 

CODinf 

(mg/L) 
809 
± 45 

867 
± 39 

773 
±

112 

805 
± 91 

721 
± 63 

705 
± 27 

719 
± 61 

682 
± 49 

CODefl 

(mg/L) 
48 
± 21 

26 
± 7 

41 
± 9 

22 
± 5 

33 
± 10 

17 
± 6 

24 
± 10 

19 
± 8 

CODrem 

(%) 
89 
± 7 
% 

96 
± 7 
% 

90 
± 2 
% 

94 
± 2 
% 

90 
± 7 
% 

95 
± 4 
% 

91 
± 5 
% 

95 
± 4 
% 

TPinf (mg/ 
L) 

9 ±
3 

8 ±
3 

9 ±
2 

9 ±
2 

9 ±
2 

9 ±
1 

9 ±
1 

9 ±
1 

TPefl (mg/ 
L) 

3 ±
2 

3 ±
1 

3 ±
2 

2 ±
1 

2 ±
1 

2 ±
1 

2 ±
1 

2 ±
1 

TPrem (%) 64 
± 7 

63 
± 3 

69 
± 2 

74 
± 3 

75 
± 3 

72 
± 3 

73 
± 2 

71 
± 3 

NH4
+-Ninf 

(mg/L) 
63 
± 9 

59 
± 15 

48 
± 7 

46 
± 5 

52 
± 9 

53 
± 7 

61 
± 6 

65 
± 3 

NH4
+-Nefl 

(mg/L) 
11 
± 7 

5 ±
4 

7 ±
3 

6 ±
3 

4 ±
2 

5 ±
2 

6 ±
2 

7 ±
3 

NO2
− -Nefl 

(mg/L) 
8 ±
8 

2 ±
3 

8 ±
5 

3 ±
1 

9 ±
4 

4 ±
3 

10 
± 3 

3 ±
1 

NO3
− -Nefl 

(mg/L) 
1 ±
2 

1 ±
2 

2 ±
2 

3 ±
2 

5 ±
2 

3 ±
1 

2 ±
2 

1 ±
1 

NH4
+-Nrem 

(%) 
82 
± 4 

91 
± 3 

83 
± 3 

88 
± 3 

93 
± 2 

91 
± 2 

91 
± 3 

90 
± 1 

TNrem (%) 75 
± 5 

86 
± 2 

77 
± 4 

85 
± 5 

78 
± 3 

85 
± 5 

76 
± 2 

86 
± 3  
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impacted the TN removal. Other AGS reactors have faced problems with 
nitrite accumulation (partial nitrification) (Coma et al., 2012), when the 
COD available for denitrification is low (Derlon et al., 2016). The better 
denitrification in R2 was explained by two mechanisms: (i) In the aer
obic period, the DO concentration in the AGS zone was 2.0 mg/L, but 
below 0.5 mg/L in the BF (upper zone), therefore, likely promoting the 
simultaneous nitrification and denitrification - SND mechanism, as it 
occurs in the aerobic granular sludge, improving TN removal; (ii) during 
an anaerobic period a high sludge denitrified activity was found in the 

two stages (aerobic granular sludge and BF zones); (iii) higher sludge 
concentration in R2, due to the greater biomass retention and sludge 
recirculation, enhancing denitrification, mainly endogenous, i.e., the 
denitrification that occurs when there is an absence of substrate and the 
sludge uses the material stored internally as an electron donor. 

Unlike TN removals, TP removals were not impacted by the reactor 
configuration. After systems stabilization, removal values close to 70 % 
were observed. Several factors impact TP removal, the main ones being: 
(i) sludge age control, which is carried out by controlling sludge 

Fig. 4. Concentration of organic matter (a), phosphorous (b) and nitrogen species (c-e) throughout the cycle: R1 (square), R2 – AGS zone (triangle) and R2 biofilter 
zone (circle). 
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discharge; (ii) type of substrate, being known that acetate and propio
nate favor the development of polyphosphate-accumulating organisms - 
PAOs; and (iii) cycle configuration, i.e., the existence of an anaerobic 
period followed by an aerobic period (Rollemberg et al., 2018; Nan
charaiah and Reddy, 2018). Considering that all these factors were the 
same in the two systems, the configuration change in R2 did not 
significantly impact the TP removal. 

3.4. Removal mechanisms and sludge production 

In order to understand the pollutants removal processes, influent and 
effluent samplings were carried out during an SBR cycle. For R2 (Fig. 4), 
another sampling was included immediately before the BF compart
ment. The simultaneous nitrification, denitrification, and phosphorus 
removal (SNDPR) process was initially evaluated. In the R1 system, it 
was verified that the main nitrogen removal mechanism occurred 
through the SND in the granule during the aerobic period, with a slight 
nitrite accumulation. Also important is the process of phosphorus 
release in the anaerobic period, followed by sequestration in the aerobic 
period. At the end of the experiment (reactors' stabilization), TN 
removal was favored in R2 (Table 2) due to the biomedia presence that 
helped in the additional denitrification. Therefore, SND occurred in both 
systems due to the presence of the granules (Fig. 4c and d), but only R2 
presents an additional denitrification due to the attached-growth zone. 

Endogenous denitrification was also observed in the sludge adhered 
to the biomedia. TP removal occurred mainly in the aerobic granular 
sludge (Fig. 4e). This justifies the similar efficiencies found in the two 
reactors. The lower PAOs activity in the biomedia may be related to the 
high density of denitrifying bacteria (dispute for the substrate, i.e., VFA, 
in the anoxic period). This can be explained due to direct competition 
between PAO bacteria and denitrifying bacteria (Rollemberg et al., 
2018; Nancharaiah and Reddy, 2018). The upward reactor flow favors 
the initial substrate contact with the aerobic granular biomass during 
the anaerobic feeding. Therefore, the low organic load in the upper zone 
(biological filter) may explain the low favorability of PAOs bacteria in 
the biomedias. 

Finally, the high capture of filamentous solids detached from the 
aerobic granular zone, which are adhered by the biomedias in the upper 
layer (biological filter), also stands out. This mechanism provided an 
effluent with lower turbidity and TSS. In addition, it is important to 
mention that the BF compartment insertion increases system reliability, 
especially during periods of instability where the granules' fragments 
(due to breakage) increase the effluent TSS, turbidity, and COD. 

In addition to these parameters, the sludge production in both sys
tems was also evaluated through respirometry, as presented by Corsino 
et al. (2016) and Rollemberg et al. (2019). According to Marais and 
Ekama (1976), in aerobic degradation, 1/3 of the energy in organic 
matter is used to catabolism and 2/3 to anabolism. It is emphasized that 
in an aerobic system is usually adopted a yield coefficient (Y) of 0.4 to 
0.5 gVSS/gCODrem (van Haandel and Lubbe, 2011) and 0.05 to 0.15 
gVSS/gCODrem for anaerobic biomass (van Haandel and Lettinga, 1994). 

Sludge production has been evaluated in some AGS studies. The 
theoretical yield coefficients (Y) of aerobic granules were estimated at 
0.2 (Liu et al., 2005) and 0.3 gVSS/gCODrem (Rollemberg et al., 2019) 
for municipal wastewater. Compared with the conventional AS system, 
in which a sludge growth yield of around 0.45 gVSS/gCODrem is found 
(Metcalf, 2003), there is a sludge production decrease by around 30 % in 
AGS systems. 

The Y coefficient found in this research was 0.33 and 0.37 gVSS/ 
gCODrem in R1 and R2, respectively, and the Y coefficient of R2 was 11 
% higher than that of R1. Therefore, the sludge growth and sludge 
filtration on BF carrier are the main reasons for the high Y coefficient of 
R2. As noted, the biomass production rate in R2 was slightly higher than 
that found in R1. However, such an impact of the BF compartment was 
not as significant because most of the influent COD was removed in the 
AGS zone, as previously explained. 

3.5. Resource recovery from excess sludge and engineering aspects 

This work evaluated the presence of phosphorus and ALE in the AGS 
granules (R1 and R2) and in the BF compartment sludge (R2). The ALE 
found in the granules have chemical and mechanical properties (gel- 
forming capability) that allow industry applications. The high potential 
of ALE recovery from AGS provided a new Nereda® project through 
Royal HaskoningDHV, called Kaumera Nereda® Gum, aiming at the 
production of bio-based resources to a variety of oil-based materials. The 
first large-scale Kaumera production unit is currently in operation in 
Zutphen, The Netherlands (Royal HaskoningDHV, 2022; Rollemberg 
et al., 2021). The processes involving the production of ALE in AGS and 
the accumulation of P in the granules were described in some review 
papers (Carvalho et al., 2021; Ferreira et al., 2021). 

In R1, values of 0.012 gP/gTSS and 0.15 gALE/gVSS were observed. 
On the other hand, R2 granules presented values close to 0.014 gP/gTSS 
and 0.17 gALE/gVSS. Values close to 0.002 gP/gTSS and 0.07 gALE/ 
gVSS were observed in the BF compartment sludge (most adhered to the 
biomedia). 

The results showed that granular biomass has a significantly greater 
capacity to accumulate phosphorus and ALE than cultivated sludge 
adhered to biomedia. This result confirms preliminary studies carried 
out elsewhere showing that AGS has a greater capacity to accumulate P 
and produce ALE due to the greater abundance of slow-growing mi
croorganisms compared to attached-growth systems (Nancharaiah and 
Reddy, 2018). 

Regarding sludge discharge, the internal recirculation protocol from 
the biological filtration zone to the aerobic granular zone provided a 
sludge with high digestibility content. VSS/TSS ratio in the discharged 
sludge was below 0.7, which could also be related to the high phos
phorus content in the granular biomass, as shown in Section 3.5. 

Close energy demand was found for the two systems evaluated. In 
other words, the biological filter insertion in the SBR upper zone did not 
require greater aeration, in which a consumption close to 0.3 kWh/m3 

was observed. As mentioned, the BF compartment remained anoxic most 
of the time, justifying the high N removal in this system. The advantages 
found in R2 over R1 are summarized in the Supplementary Material. 

4. Conclusions 

The BF compartment in the AGS reactor (R2) provided a high-quality 
effluent in terms of TSS and turbidity, and excellent TN removals were 
found. Sludge production was evaluated, and the yield coefficient (Y, 
gVSS/gCODrem) and sludge concentration were different in the two re
actors. As expected, no increase in energy demand in R2 was found. The 
new AGS system can be an interesting alternative to improve some as
pects of conventional AGS reactors, such as denitrification and nitrite 
accumulation, effluent TSS concentration, and system reliability in
crease during periods of instability and granules breakage. 
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