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Abstract— Light polarization is an important property that 
has being extensively used for quantum communication 
purposes. However, light polarization is also fragile and during 
propagation in a noisy channel the light becomes partially or 
even completely unpolarized, making impossible the realization 
of quantum protocols without polarization control. In this 
direction, the present work studies the dynamic of the 
depolarization of some noisy channels found in the literature 
identifying when the polarization vanishes exponentially and q-
exponentially. 
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I. INTRODUCTION 

Quantum polarization is an important and useful property 
that permits the designing and implementation of quantum 
communication protocols in optical networks. For example, 
some quantum key distribution (QKD) setups encode the 
information in light polarization. On the other hand, in QKD 
setups where the information is coded in the phase of the light 
pulse, the polarization has to be controlled in order to permit 
good interference [1-4]. A light pulse can be polarized, 
partially polarized or unpolarized. The amount of 
polarization is measured by the degree of polarization, DOP. 
Classically, the DOP is measured or calculated using the 
Stokes parameters. However, the classical DOP is not a good 
measure of polarization for the highly quantum states used in 
quantum communication, like single-photon or two-photon 
pulses. In these cases, the quantum DOP has to be used. In 
what concerns quantum communication, the lower the DOP 
the higher is the error rate. Therefore, it is important to 
determine the dynamic of the depolarization in order to know 
how fast a noisy channel depolarizes an initially polarized 
light pulse. In this direction, the present work studies the 
dynamic of depolarization of some known noisy channels 
found in the literature aiming to identify if the polarization 
vanishes exponentially or q-exponentially, as well 
determining the amount of time required for the DOP to reach 
a given value. The q-exponential function provided by Tsallis 
is given by 
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This work is outlined as follow: In Section II, the main 
concepts of quantum polarization used in this work are 
reviewed. In Section III, the depolarization caused by some 
channel models are analyzed. At last, the conclusions are 
drawn in Section IV. 

II. MATHEMATICAL TOOLS 

When quantum polarization is considered, one has to use 
the quantum version of the Stokes parameters 5,6: 

                              0 1 1 2 2
ˆ ˆ ˆ ˆ ˆ ,S a a a a                                  (2.1) 

                             1 1 1 2 2
ˆ ˆ ˆ ˆ ˆ ,S a a a a                                   (2.2) 

                             2 1 2 2 1
ˆ ˆ ˆ ˆ ˆ ,S a a a a                                  (2.3) 

                              3 2 1 1 2
ˆ ˆ ˆ ˆ ˆ ,S i a a a a                              (2.4) 

                                  2 3 1
ˆ ˆ ˆ, 2 .S S i S                                  (2.5) 

In (2.1)-(2.5) 𝑎ොଵ  ( 𝑎ොଵ
ற ) is the annihilation (creation) 

operator of the horizontal mode while 𝑎ොଶ  ( 𝑎ොଶ
ற ) is the 

annihilation (creation) operator of the vertical mode. 
Equation (2.5) and its cyclic versions imply that it is not 
possible to know, with total accuracy, any pair of Stokes 
parameters simultaneously. Hence, quantum polarization 
cannot be represented by only a point on the Poincaré sphere. 
In order to apply a phase shift  between two linearly 
polarized modes, the unitary operator 𝑈థ = 𝑒𝑥𝑝൫𝑖0.5𝜙𝑆መଵ൯ is 
used. On the other hand, a geometric rotating of  in the 
polarization is achieved by the application of the unitary 
operator 𝑈ఏ = 𝑒𝑥𝑝൫𝑖𝜃𝑆መଷ൯.  

Classically, a light pulse is unpolarized if its Stokes 
parameters vanish. When quantum light is considered, that 
condition (in average) is necessary but not sufficient. From a 
quantum optics point of view, a light beam can be considered 
unpolarized if its observable properties remain unchanged 
after an application of a geometric rotating and/or a phase 
shift between the two linearly polarized components. These 
conditions are mathematically described by 7-9: 

                     3 1
ˆ ˆ, , 0.S S                                       (3) 

The most general form of an unpolarized state is 7-9: 
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The first attempt to quantify how much polarized a quantum 
light is, was proposed in [10] using the Q function based on 
SU(2) coherent states: 
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The quantum degree of polarization is then given by  
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In eq. (7) 1/(4) is the Q function of the unpolarized light. As 
can be seen, PQ is only a normalization of the distance 
between the pseudo-distribution (Q function) of the light 
whose polarization one wants to measure and the pseudo-
distribution of the unpolarized light. Hence, one can also 
consider DQ as a DOP.   

Another quantum DOP is the minimal distance between 
the density matrix of the light whose polarization one wishes 
to measure and the density matrix of an unpolarized light. The 
distance commonly used is the Hilbert-Schmidt metric: 
DHS(1,2) = Tr[(1-2)2]. Thus, the quantum DOP is defined 
as [11]: 

           2
min , min ,
unp unp

HS HS unp unp
U U

P D Tr
 

    
 

     
         (9) 

where U is the set of all possible unpolarized light. Now using 
(4) in (9) one can get the following expression for PHS: 
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Equation (10) shows that the quantum DOP depends on how 
much pure is the quantum light state (measured by Tr(2)) 
and the total photon number distribution. 

III. DYNAMIC OF THE DEPOLARIZATION 

The light depolarization depends on the channel’s 
properties and on the quantum light state at the channel’s 
input. For example, for the same noisy channel, coherent 
light, single-photon and two-photon pulses will experiment 
different dynamics of depolarization. Let us start by 
considering the depolarization of a single-photon pulse. A 
general single-photon light state can be written in the 
following way: 

 
01 01 10 10

1 ,
2

HV    
                 (11) 

   cos 10 sin 01 .i

HV HV
e                 (12) 

The average value of the Stokes parameters  in eq. (10) are 
〈𝑆መ଴〉 = 1, 〈𝑆መଵ〉 = 𝜉𝑐𝑜𝑠(2𝜆), 〈𝑆መଶ〉 = 𝜉𝑠𝑖𝑛(2𝜆)𝑐𝑜𝑠(𝜇),  〈𝑆መଶ〉 =
𝜉𝑠𝑖𝑛(2𝜆)𝑠𝑖𝑛(𝜇), and its classical DOP, Pclass, is 
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On the other hand, the quantum DOP using (7)-(10) are given 
by: 

                            2 1
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The exact dynamic of the depolarization depends on how 
 decreases toward zero during light propagation, however, 
the q-exponential behavior is clear in eqs. (14)-(15). Now, 
using the quantum noisy channel described in [10], one has 
the following DOP 
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where  is a parameter that models the velocity of the 
depolarization. For the same channel, the DOP for the states 
2 = (2,0+0,2)HV/21/2 and 3 = (3,0+0,3)HV/21/2 are, 
respectively, 
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                             (18) 

As it can be noted, 2 and 3 have the same initial 
polarization state, they are linearly polarized in /4. However, 
2 suffers an exponential depolarization while 3 suffers an 
q-exponential depolarization.  

 Now, using the channel discussed in [12] and the DOP 
proposed by them, one has the following DOPs when the input 
states are, respectively, the states HH and (HV+VH)/21/2: 

                             2 2 1
12 2

0

1
,

2

tt eP t e e
                                (19) 

                              1 2
1

.
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tP t e                                       (20) 

 In (19)-(20) 1 and 2 are, respectively, the decoherence 
rates in channels 1 and 2 (each photon is sent through a 
different channel). One may note that both states HH and 
(HV+VH)/21/2 are two-photon states, however, the first one 
is disentangled while the last one is maximally entangled, 
showing the dynamic of the depolarization is not only 
dependent on the photon number distribution but also on the 
entanglement of the input state. The disentangled state 
experiments a q-exponential depolarization dynamic while the 
entangled state experiments an exponential depolarization 
dynamic.    

 One maybe interested in determining the channel 
parameter’s value that will provide the maximal 
depolarization acceptable. This means to invert the equation 
that models the dynamic. When the dynamic is exponential, 
this task is trivially realized by using the logarithm function. 
On the other hand, the inversion of the q-exponential dynamic 
may require a more complex mathematical tool (that depends 
on the value of q). Equations (15), (16), (18) and (19) can be 
inverted using the Lambert-Tsallis Wq function, the solution 
of Wq(z)expq[Wq(z)] = z [13]. For example, if  
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then  
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,            (22) 

where q = 1 - /(-)). For example, the inverse of (16) is 

              2
1 2

1 15 32
log .

32 2 135 Qt W D


        
                         (23) 

 Now, let us consider a coherent state propagating in a 
polarization maintaining (PM) optical fiber. In this case the 
input state is ,0HV (one of the   axes of the fiber is 
considered to be the horizontal polarization) and the optical 
power is proportional to the mean photon number ||2. The 
DOP of ,0HV is given by 

                    
  2

2

2 2 2

4
1 .

1 2 1
QP
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  
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                (24)                                       

As one can note in eq. (24), the polarization depends on the 
optical power, hence, the depolarization will be caused by the 
optical loss of the PM fiber. Since we are interested in the low 
photon number regime, we can use exp(x)  1 + x in (24), 
obtaining 

                               

2

2
21 .QP e



                                       (25) 

Thus, the depolarization dynamic of the coherent state in the 
low photon number regime, due to optical losses, is 
approximately q-exponential. The coherent state becomes 
less polarized when the optical power decreases because the 
state 0,0HV is completely unpolarized.  

IV. CONCLUSIONS 

As observed in the cases here described, two types of 
depolarization dynamic were considered: exponential decay, 
eqs. (16) and (19) and q-exponential decay, eqs. (13), (14), 
(15), (17) and (18). The exponential decay is trivial and it does 

not deserve much explanation. The q-exponential decay, by its 
turn, is more complex and it may lead someone to believe, for 
example, that polarization sudden death may occur. However, 
observing eq. (22), one can easily see that, when D tends to 0, 
t tends to ∞ (Wq(0) = 0 for any q). Hence, the polarization 
sudden death does not occur for the examples here considered.   
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