
Improving the Classification Performance of

Optimal Linear Associative Memory in the

Presence of Outliers

Ana Luiza B. P. Barros1,2 and Guilherme A. Barreto2

1 Department of Computer Science, State University of Ceará
Campus of Itaperi, Fortaleza, Ceará, Brazil

analuiza@larces.uece.br

2 Department of Teleinformatics Engineering, Federal University of Ceará
Center of Technology, Campus of Pici, Fortaleza, Ceará, Brazil

guilherme@deti.ufc.br

Abstract. The optimal linear associative memory (OLAM) proposed
by Kohonen and Ruohonen [16] is a classic neural network model widely
used as a standalone pattern classifier or as a fundamental component
of multilayer nonlinear classification approaches, such as the extreme
learning machine (ELM) [10] and the echo-state network (ESN) [6]. In
this paper, we develop an extension of OLAM which is robust to labeling
errors (outliers) in the data set. The proposed model is robust to label
noise not only near the class boundaries, but also far from the class
boundaries which can result from mistakes in labelling or gross errors
in measuring the input features. To deal with this problem, we propose
the use of M -estimators, a parameter estimation framework widely used
in robust regression, to compute the weight matrix operator, instead
of using the ordinary least squares solution. We show the usefulness of
the proposed classification approach through simulation results using
synthetic and real-world data.

Keywords: Linear Associative Memory, Moore-Penrose Generalized In-
verse, Pattern Classification, Outliers, M -Estimation.

1 Introduction

The OLAM model, as proposed by Kohonen and Ruohonen [16], is a well known
computational paradigm of associative memory. As such, information in OLAM
is stored distributively in a matrix operator, so that it can recall a stored data by
specifying all or portion of a key (degraded key). The OLAM has the property of
providing rapid recall of information, and it can tolerate local damage without
a great degradation in performance.

Previous studies have evaluated empirically and/or theoretically the robust-
ness of OLAM to noisy input patterns [3,19,20]. The main conclusion that these
works have pointed out is that when input key vectors are degraded (noisy), the

model becomes extremely sensitive (unstable) and its association error becomes
unacceptably large. Authors have tackled this limitation of the OLAM by in-
cluding nonlinear features into the associative memory model [13] or by taking
into consideration the properties of the noise directly into the developing of the
model [1].

In this paper, we are interested in OLAM not for associative memory, but
rather for pattern classification. In this context, the OLAM is theoretically equiv-
alent to the least-squares classifier [4,21] and has been used either as a standalone
classifier [2,5,15] or as a fundamental building block of multilayer nonlinear clas-
sification approaches, such as the radial basis functions network [18], the extreme
learning machine (ELM) [10] and the echo-state network (ESN) [6].

In many real-world classification problems the labels provided for the data
are noisy. There are typically two kinds of noise in labels. Noise near the class
boundaries often occurs because it is hard to consistently label ambiguous data
points. Labelling errors far from the class boundaries can occur because of mis-
takes in labelling or gross errors in measuring the input features. Labelling errors
far from the boundary comprises a particular category of outliers [14].

In order to allow the OLAM classifier to handle outliers efficiently, in this
paper we propose the use of M -estimators [12], a broad framework widely used
for parameter estimation in robust regression problems, to compute the weight
matrix operator instead of using the ordinary least squares solution. We show
through simulations on synthetic and real-world data that the resulting OLAM
classifier is very robust to outliers.

Despite the fact that M -estimation has been widely used in regression prob-
lems (see, e.g. references [9,17]), its application to supervised pattern classifica-
tion problems is much less studied. In reality, we were not able to find a single
paper on the combined use of M -estimation and neural network classifiers. Fur-
thermore, to the best of our knowledge, this is the first time the performance of
the OLAM model as a classifier is evaluated under the presence of outliers.

The remainder of the paper is organized as follows. In Section 2, we briefly
review the fundamentals of OLAM in the context of pattern classification. Then,
in Section 3 we describe the basic ideas and concepts behind the M -estimation
framework and introduce our approach to robust supervised pattern classifica-
tion using OLAM. In Section 4 we present the computer experiments we carried
out using synthetic and real-world datasets and also discuss the achieved results.
The paper is concluded in Section 5.

2 Fundamentals of OLAM

Let us assume that N data pairs {(xµ,dµ)}
N
µ=1 are available for building and

evaluating the model, where xµ ∈ R
p+1 is the µ-th input pattern3 and dµ ∈ R

K

is the corresponding target class label, with K denoting the number of classes.
For the labels, we assume an 1-of-K encoding scheme, i.e. for each label vector

3 First component of xµ is equal to 1 in order to include the bias.

dµ, the component whose index corresponds to the class of pattern xµ is set to
“+1”, while the other K − 1 components are set to “-1”.

Then, let us randomly select N1 (N1 < N) data pairs from the available data
pool and arrange them along the columns of the matrices D and X as follows:

X = [x1 | x2 | · · · | xN1
] and D = [d1 | d2 | · · · | dN1

]. (1)

where dim(X) = (p + 1) × N1 and dim(D) = m × N1. Our goal is to use the
matrices X and D to build the following linear mapping:

D = βX (batch recall) or dµ = βxµ (pattern-by-pattern recall), (2)

for µ = 1, . . . , N1. For both recall modes, the dimension of β is K × (p+ 1).

The ordinary least squares (OLS) solution of the linear system in Eq. (2) is
given by the Moore-Penrose generalized inverse as follows:

β̂ = DXT
(

XXT
)−1

, (3)

where the hat symbol (∧) indicates an estimate of the matrix operator β. A
minimum-norm solution for Eq. (2) is given by the regularized version of Eq. (3):

β̂ = DXT
(

XXT + λI
)−1

, (4)

where I is the identity matrix of dimension (p+1)× (p+1) and λ is a very small
positive regularization parameter.

Once we have computed β̂, the remaining N2 = N −N1 data pairs are used
to validate the model. In this regard, for the pattern-by-pattern recall mode, the
output of the OLAM is given by

yµ = β̂xµ, (5)

while for the batch recall mode we have Ỹ = β̂X̃.

The predicted class index i∗µ for the µ-th testing input pattern is then given
by the following decision rule:

i∗µ = arg max
i=1,...,K

{yiµ} = arg max
i=1,...,K

{β̂
T

i xµ}, (6)

where yiµ is the i-th component of vector yµ computed as in Eq. (5), with the

vector βT
i being the i-th row of the matrix β̂.

It is worth noting that the parameter vector βi ∈ R
m, i = 1, . . . ,m, can be

computed individually by means of the following equation:

β̂i =
(

XXT
)−1

XDT
i , (7)

where the vector Di corresponds to the i-th row of the matrix D.

3 Basics of M -Estimation

An important feature of OLS is that it assigns the same importance to all error
samples, i.e. all errors contribute the same way to the final solution. A common
approach to handle this problem consists in removing outliers from data and
then try the usual least-squares fit. A more principled approach, known as robust
regression, uses estimation methods not as sensitive to outliers as the OLS.

Huber [11] introduced the concept of M -estimation, where M stands for
“maximum likelihood” type, where robustness is achieved by minimizing another
function than the sum of the squared errors. Based on Huber theory, a general
M -estimator applied to the i-th output neuron of the OLAM classifier minimizes
the following objective function:

J(βi) =

N
∑

µ=1

ρ(eiµ) =

N
∑

µ=1

ρ(diµ − yiµ) =

N
∑

µ=1

ρ(diµ − βT
i xµ), (8)

where the function ρ(·) computes the contribution of each error eiµ = diµ − yiµ
to the objective function, diµ is the target value of the i-th output neuron for
the µ-th input pattern xµ, and βi is the weight vector of the i-th output neuron.
The OLS is a particularM -estimator, achieved when ρ(eiµ) = e2iµ. It is desirable
that the function ρ possesses the following properties:

Property 1 : ρ(eiµ) ≥ 0.
Property 2 : ρ(0) = 0.
Property 3 : ρ(eiµ) = ρ(−eiµ).
Property 4 : ρ(eiµ) ≥ ρ(ei′µ), for |eiµ| > |ei′µ|.

Parameter estimation is defined by the estimating equation which is a weighted
function of the objective function derivative. Let ψ = ρ′ to be the derivative of
ρ. Differentiating ρ with respect to the estimated weight vector β̂i, we have

N
∑

µ=1

ψ(yiµ − β̂
T

i xµ)x
T
µ = 0, (9)

where 0 is a (p+ 1)-dimensional row vector of zeros. Then, defining the weight
function w(eiµ) = ψ(eiµ)/eiµ, and let wiµ = w(eiµ), the estimating equations
are given by

n
∑

µ=1

wiµ(yiµ − β̂
T

i xµ)x
T
µ = 0. (10)

Thus, solving the estimating equations corresponds to solving a weighted
least-squares problem, minimizing

∑

µw
2
iµe

2
iµ.

It is worth noting, however, that the weights depend on the residuals (i.e.
estimated errors), the residuals depend upon the estimated coefficients, and the
estimated coefficients depend upon the weights. As a consequence, an iterative

estimation method called iteratively reweighted least-squares (IRLS) [7] is com-
monly used. The steps of the IRLS algorithm in the context of training the
OLAM classifier using Eq. (7) as reference are described next.

IRLS Algorithm for OLAM Training

Step 1 - Provide an initial estimate β̂i(0) using the regularized least-squares
solution in Eq. (7).

Step 2 - At each iteration t, compute the residuals from the previous iteration
eiµ(t− 1), µ = 1, . . . , N , associated with the i-th output neuron, and then com-
pute the corresponding weights wiµ(t− 1) = w[eiµ(t− 1)].

Step 3 - Solve for new weighted-least-squares estimate of βi(t):

β̂i(t) =
[

XW(t− 1)XT
]−1

XW(t− 1)DT
i , (11)

where W(t− 1) = diag{wiµ(t− 1)} is an N ×N weight matrix. Repeat Steps 2

and 3 until the convergence of the estimated coefficient vector β̂i(t).
Several weighting functions for the M -estimators can be chosen, such as the

Huber’s weighting function:

w(eiµ) =

{

k
|eiµ|

, if |eiµ| > k

1, otherwise.
(12)

where the parameter k is a tuning constant. Smaller values of k produce more
resistance to outliers, but at the expense of lower efficiency when the errors are
normally distributed. In particular, k = 1.345σ for the Huber function, where σ
is a robust estimate of the standard deviation of the errors4.

In a sum, the basic idea of the proposed approach is very simple: replace
the OLS estimation of the weight matrix β̂ described in Eq. (3) with the one
provided by the combined use of the M -estimation framework and the IRLS
algorithm. From now on, we refer to the proposed approach by Robust OLAM

classifier (or ROLAM, for short). In the next section we present and discuss the
results achieved by the ROLAM classifier on synthetic and real-world datasets.

4 Simulations and Discussion

As a proof of concept, in the first experiment we aim at showing the influence
of outliers in the final position the decision line between two linear separable
data classes. For this purpose, we created a synthetic two-dimensional dataset
consisting of N = 120 samples plus Nout outliers. The OLAM and the ROLAM
classifiers are trained twice. The first time they are trained with the outlier-free
dataset. The second time, they are trained with the outliers added to the original

4 A usual approach is to take σ = MAR/0.6745, where MAR is the median absolute
residual.

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

Feature X1

F
e
a
t
u
r
e

X
2

Class +1
Class −1
Robust OLAM
Standard OLAM

(a) Dataset without outliers.

−20 −15 −10 −5 0 5 10 15 20

−20

−15

−10

−5

0

5

10

15

20

Feature X1

F
ea

tu
re

 X
2

Class +1
Class −1
Robust OLAM
Standard OLAM

outliers

(b) Dataset with outliers.

Fig. 1. Decision lines of the standard OLAM and the proposed robust OLAM classi-
fiers. (a) Dataset without outliers. (b) Dataset with outliers.

dataset. It is worth mentioning that all data samples are used for training the
classifiers, since the goal is to visualize the final position of the decision line and
not to compute recognition rates.

For this experiment, the Huber weighting function was used for implementing
the ROLAM classifier and the regularization constant required for implementing
the standard OLAM classifier was set to λ = 10−2. The default tuning parameter
k of Matlab’s robustfit function was used. In order to evaluate the final decision
lines of the OLAM and the ROLAM classifiers in the presence of outliers, we
added Nout = 10 outliers to the dataset and labelled them as beloging to class
+1. The outliers were located purposefully far from the class boundary found
for the outlier-free case; more specifically, at the decision region of class −1.

The results for the training without outliers are shown in Fig. 1a, where
as expected the decision lines of both classifiers coincide. The results for the
training with outliers are shown in Fig. 1b, where this time the decision line of
the OLAM classifier moved towards the outliers, while the decision line of the
ROLAM classifier remained at the same position, thus revealing the robustness
of the proposed approach to the presence of outliers. The dataset (with and
without outliers) used in the first experiment can be made available by the
authors upon request.

In the second and third experiments we aim at evaluating the robustness
of the ROLAM classifier using real-world datasets. In these experiments, four
weighting functions were tested for implementing the ROLAM classifier and the
regularization constant required for implementing the standard OLAM classifier

Table 1. Performance comparison of OLAM and ROLAM classifiers (Iris dataset).

Classifier Nout = 0% Nout = 5% Nout = 10% Nout = 20% Nout = 30%
OLAM 93.05 ± 4.76 91.75 ± 5.52 85.60 ± 9.03 66.60 ± 11.78 56.25 ± 10.65
ROLAM (Bisquare) 93.35 ± 4.55 94.05± 4.36 93.40± 5.02 69.10 ± 11.90 57.80± 11.20

ROLAM (Fair) 93.25 ± 5.52 93.35 ± 5.13 92.05 ± 5.73 70.20± 11.28 53.15 ± 12.30
ROLAM (Huber) 94.20± 4.75 93.10 ± 5.31 93.10 ± 5.49 67.00 ± 10.96 53.35 ± 11.55
ROLAM (Logistic) 93.55 ± 4.68 93.50 ± 5.29 93.30 ± 5.23 68.95 ± 9.33 56.80 ± 11.77

was set to λ = 10−2. The default tuning parameter k of Matlab’s robustfit

function was adopted for all weighting functions.
In order to evaluate the classifier’s robustness to outliers we follow the method-

ology introduced by Kim and Ghahramani [14]. Thus, the original labels of some
data samples of a given class are deliberately changed to the label of the other
class. Two datasets were selected, Iris and Vertebral Column (VC), which are
publicly available for download from the UCI Machine Learning Repository web-
site [8].

For the Iris dataset, we labelled the samples of classes Virginica (Nvir =
50 samples) and Versicolor (Nver = 50 samples) as +1 and −1, respectively.
Data from category Setosa (Nset = 50 samples) will be labelled as belonging to
class +1, i.e. will be treated as outliers of class +1. A certain number Nout of
outliers are randomly selected and added to the training set of the classifiers.
Thus, the total number of training samples is given by N = Ptrain × (Nver +
Nvir) + Nout, where Ptrain is a percentage of samples randomly selected from
classes Versicolor and Virginica. We evaluate the performance of the OLAM and
ROLAM classifiers for increasing values of Nout.

The results are given in Table 1 for different values of Nout and for different
weighting functions. In this table, we show the values of the classification rates
and the corresponding standard deviations averaged over 100 training/testing
runs. By analyzing the results, we verify that the ROLAM classifier always per-
formed better than the OLAM, even for the case without outliers (Nout = 0%).
The ROLAM classifier using the bisquare function achieved the best overall per-
formance. For Nout = 20%, the performances of the ROLAM classifier using the
bisquare and the fair functions are statistically equivalent. It is worth noting
that the standard deviation of the classification rate increases with the increase
in Nout. Also interesting is the fact that, for Nout > 30%, the ROLAM classifier
performs as badly as the OLAM classifier (results are not shown here for lack of
space). However, when the number of outliers is too high, perhaps they should
not be considered as outliers anymore, but as usual data samples of the class.
In this situation, we recommend a more powerful classifier (e.g. the ELM) to be
used, since it can produce a curved decision surface.

For the VC dataset, we labelled the samples of classes Normal (Nnor = 100
samples) and Spondylolisthesis5 (Nspl = 150 samples) as +1 and −1, respec-
tively. Samples from category Spondylolisthesis will be labelled as belonging to

5 Spondylolisthesis is the displacement of a vertebra or the vertebral column in relation
to the vertebrae below.

Table 2. Performance comparison of OLAM and ROLAM classifiers (VC dataset).

Classifier Nout = 0% Nout = 5% Nout = 10% Nout = 20% Nout = 30%
OLAM 90.70 ± 4.05 85.34 ± 5.18 79.80 ± 6.12 63.66 ± 7.79 53.66 ± 7.30
ROLAM (Bisquare) 91.98± 3.54 94.32± 2.95 87.92± 5.21 67.00± 6.11 54.74± 7.79

ROLAM (Fair) 91.54 ± 3.58 89.16 ± 4.43 82.36 ± 5.47 63.52 ± 7.16 52.76 ± 7.47
ROLAM (Huber) 91.58 ± 3.61 90.14 ± 4.29 84.26 ± 5.88 64.42 ± 6.77 53.88 ± 8.82
ROLAM (Logistic) 91.76 ± 3.58 90.10 ± 4.25 84.62 ± 5.35 64.14 ± 7.53 51.84 ± 8.83

class +1, i.e. will be treated as outliers of class +1. For generating the training
set, we first compute the centroids of both classes. Then, we select randomly a
certain number of samples from the total available (e.g. 0.8 × (Nnorm +Nspl)).
Finally, among the selected samples of class Spondylolisthesis, we select a certain
quantity (Nout) of the most distant ones to the centroid of the class Normal to
have their labels changed to +1.

The results are given in Table 2 for different values of Nout and for different
weighting functions. In this table, we show the values of the classification rates
and the corresponding standard deviations averaged over 100 training/testing
runs. One can easily note that the ROLAM classifier using the bisquare func-
tion performed much better than the standard OLAM classifier, even for the
case without outliers. Again, when the percentage of outliers reaches high values
(e.g. Nout ≥ 20%) the performances of both classifiers begin to deteriorate con-
siderably, with the performance of the ROLAM classifier degrading at a lower
rate.

In the previous experiments we used the default value of the tuning param-
eter k. Since this is a free parameter, we show in a final experiment that the
performance of the ROLAM classifier can be improved considerably if an optimal
tuning parameter is searched during the training phase. In this experiment we
used the Wisconsin Breast Cancer (Diagnostic) dataset, which is also publicly
available for download from the UCI Machine Learning Repository website [8].
The range of the search for the optimal value of the tuning parameter for each
weighting function covered the interval from 0.1 to 10.

The results are shown in Table 3, where kdef and kopt denote the default and
the optimal values of the tuning parameter, respectively. In this table, we show
the values of the classification rates and the corresponding standard deviations
averaged over 100 training/testing runs. Below each value of the pair (classifi-
cation rate, standard deviation) we show the associated value of kdef or kopt for
a specific percentage of outliers. We labelled the samples of class Malignant as
−1 and of class Benign as −1. During training a certain number of randomly
selected samples from the category Benign (class −1) will be labelled as belong-
ing to class malignant (class +1), i.e. will be treated as outliers of class −1. For
generating the outliers we followed the same procedure used in the second and
third experiments. The regularization constant required for implementing the
standard OLAM classifier was again set to λ = 10−2.

The results in Table 3 emphasize the power of the M -estimation method in
providing a principled approach for robust pattern classification. It is easy to

Table 3. Performance comparison of OLAM and ROLAM classifiers (Breast Cancer
dataset).

Classifier 0% 5% 10% 20% 30%
OLAM 95.39±1.87 92.47±2.51 85.76±3.31 74.58±4.45 62.12±4.50
ROLAM (Andrews) 94.33±1.96 95.24±1.83 86.50±3.27 75.02±3.86 62.94±4.48

(kdef = 1.339) (kdef = 1.339) (kdef = 1.339) (kdef = 1.339) (kdef = 1.339)
95.89±1.80 95.40±2.00 89.75±5.09 80.46±4.04 66.85±4.60
(kopt = 3.5) (kopt = 1.5) (kopt = 1) (kopt = 0.5) (kopt = 0.5)

ROLAM (Bisquare)
94.78±1.96 95.17±1.88 85.69±3.38 75.29±4.15 62.76±4.22

(kdef = 4.685) (kdef = 4.685) (kdef = 4.685) (kdef = 4.685) (kdef = 4.685)
95.57±1.77 95.31±1.85 93.61±2.78 81.44±4.79 70.37±5.30
(kopt = 9.5) (kopt = 4.5) (kopt = 3) (kopt = 1.5) (kopt = 1)

ROLAM (Cauchy)
94.89±1.69 93.59±2.66 86.12±3.51 75.47±3.93 62.44±5.00

(kdef = 2.385) (kdef = 2.385) (kdef = 2.385) (kdef = 2.385) (kdef = 2.385)
95.82±1.91 94.09±2.23 90.72±2.72 77.53±4.14 69.82±5.02
(kopt = 8.5) (kopt = 2) (kopt = 0.5) (kopt = 0.1) (kopt = 0.1)

ROLAM (Fair)
94.80±1.94 92.55±2.43 85.88±3.19 75.96±3.80 62.60±5.06

(kdef = 1.400) (kdef = 1.400) (kdef = 1.400) (kdef = 1.400) (kdef = 1.400)
95.61±1.69 93.40±2.11 87.17±2.65 76.03±3.89 64.94±4.46
(kopt = 9) (kopt = 0.1) (kopt = 0.1) (kopt = 4.5) (kopt = 0.1)

ROLAM (Huber)
94.07±2.00 93.94±2.27 86.21±3.07 74.61±3.57 62.82±4.68

(kdef = 1.345) (kdef = 1.345) (kdef = 1.345) (kdef = 1.345) (kdef = 1.345)
95.87±1.78 93.71±2.33 87.91±3.04 76.61±3.61 65.65±5.07
(kopt = 7.5) (kopt = 1.5) (kopt = 0.1) (kopt = 0.5) (kopt = 0.1)

ROLAM (Logistic)
94.68±2.12 92.97±2.43 86.23±3.14 75.79±4.10 64.29±5.16

(kdef = 1.205) (kdef = 1.205) (kdef = 1.205) (kdef = 1.205) (kdef = 1.205)
95.86±1.60 93.29±2.55 86.46±3.39 76.16±3.90 65.20±6.10
(kopt = 6.5) (kopt = 1) (kopt = 1.5) (kopt = 2) (kopt = 0.1)

ROLAM (Talwar)
95.54±1.86 95.02±2.15 85.82±3.31 74.76±3.77 62.16±5.33

(kdef = 2.795) (kdef = 2.795) (kdef = 2.795) (kdef = 2.795) (kdef = 2.795)
95.99±1.80 95.44±1.90 92.19±2.79 78.75±3.69 68.01±8.55
(kopt = 5) (kopt = 2.5) (kopt = 1.5) (kopt = 1) (kopt = 0.5)

ROLAM (Welsch)
94.61±1.93 94.89±1.98 85.63±3.25 74.97±3.87 62.19±5.46

(kdef = 2.985) (kdef = 2.985) (kdef = 2.985) (kdef = 2.985) (kdef = 2.985)
95.70±1.72 94.94±1.89 91.81±3.05 80.45±4.62 69.73±4.91
(kopt = 8) (kopt = 2.5) (kopt = 1.5) (kopt = 1) (kopt = 0.5)

note that the performances of the ROLAM classifier are much better than those
achieved by the OLAM classifier and by the ROLAM classifier using default
values of the tuning parameter, specially in the presence of a high number of
outliers (10%, 20% and 30%). The improvement is particularly sharp for the
following weighting functions: Andrews, Bisquare, Cauchy, Talwar and Welsch.

5 Conclusion

In this paper we introduced a robust OLAM classifier for supervised pattern
classification in the presence of labeling errors (outliers) in the data set. The
robust OLAM classifier is designed by means ofM -estimation methods which are
used to compute the weight matrix operator instead of using the ordinary least

squares solution. We have shown that the resulting classifier is robust to label
noise not only near the class boundaries, but also far from the class boundaries
which can result from mistakes in labelling or gross errors in measuring the input
features.

Currently we are evaluating the use ofM -estimation techniques in the design
of robust ELM-based classifiers. The results we obtained so far suggests that this
is a promising approach, since the ELM is in fact using the OLAM classifier in
the output layer.

References

1. Baek, D., Oh, S.Y.: Improving optimal linear associative memory using data par-
titioning. In: Proceedings of the 2006 IEEE International Conference on Systems,
Man, and Cybernetics (SMC’06). vol. 3, pp. 2251–2256 (2006)

2. Barreto, G.A., Frota, R.A.: A unifying methodology for the evaluation of neural
network models on novelty detection tasks. Pattern Analysis and Applications
16(1), 83–972 (2013)

3. Cherkassky, V., Fassett, K., Vassilas, N.: Linear algebra approach to neural asso-
ciative memories and noise performance of neural classifiers. IEEE Transactions
on Computers 40(12), 1429–1435 (1991)

4. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. John Wiley & Sons,
2nd edn. (2006)

5. Eichmann, G., Kasparis, T.: Pattern classification using a linear associative mem-
ory. Pattern Recognition 22(6), 733–740 (1989)

6. Emmerich, C., Reinhart, F., Steil, J.: Recurrence enhances the spatial encoding
of static inputs in reservoir networks. In: Proceedings of the 20th International
Conference on Artificial Neural Networks. vol. LNCS 6353, pp. 148–153. Springer
(2010)

7. Fox, J.: Applied Regression Analysis, Linear Models, and Related Methods. Sage
Publications (1997)

8. Frank, A., Asuncion, A.: UCI machine learning repository (2010),
http://archive.ics.uci.edu/ml

9. Horata, P., Chiewchanwattana, S., Sunat, K.: Robust extreme learning machine.
Neurocomputing 102, 31–44 (2012)

10. Huang, G.B., Wang, D.H., Lan, Y.: Extreme learning machines: a survey. Interna-
tional Journal of Machine Learning and Cybernetics 2, 107–122 (2011)

11. Huber, P.J.: Robust estimation of a location parameter. Annals of Mathematical
Statistics 35(1), 73–101 (1964)

12. Huber, P.J., Ronchetti, E.M.: Robust Statistics. john Wiley & Sons, LTD (2009)
13. Hunt, B., Nadar, M., Keller, P., VonColln, E., Goyal, A.: Synthesis of a nonrecur-

rent associative memory model based on a nonlinear transformation in the spectral
domain. IEEE Transactions on Neural Networks 4(5), 873–878 (1993)

14. Kim, H.C., Ghahramani, Z.: Outlier robust gaussian process classification. In: Pro-
ceedings of the 2008 Joint IAPR International Workshop on Structural, Syntactic,
and Statistical Pattern Recognition (SSPR)’08. pp. 896–905 (2008)

15. Kohonen, T., Oja, E.: Fast adaptive formation of orthogonalizing filters and as-
sociative memory in recurrent networks of neuron-like elements. Biological Cyber-
netics 25, 85–95 (1976)

16. Kohonen, T., Ruohonen, M.: Representation of associated data by matrix opera-
tors. IEEE Transactions on Computers 22(7), 701–702 (1973)

17. Li, D., Han, M., Wang, J.: Chaotic time series prediction based on a novel robust
echo state network. IEEE Transactions on Neural Networks and Learning Systems
23(5), 787–799 (2012)

18. Poggio, T., Girosi, F.: Networks for approximation and learning. Proceedings of
the IEEE 78(9), 1481–1497 (1990)

19. Stiles, G.S., Denq, D.: On the effect of noise on the Moore-Penrose generalized
inverse associative memory. IEEE Transactions on Pattern Analysis and Machine
Intelligence 7(3), 358–360 (1985)

20. Stiles, G., Denq, D.L.: A quantitative comparison of the performance of three
discrete distributed associative memory models. IEEE Transactions on Computers
36(3), 257–263 (1987)

21. Webb, A.: Statistical Pattern Recognition. John Wiley & Sons, LTD, 2 edn. (2002)

