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Abstract— In this paper we introduce a novel technique for
optimal tuning of PD controllers engaged in tracking minimum-
jerk (MJ) trajectories. The proposed approach is an attempt
to bridge the gap between the MJ principle for trajectory
planning, which is based solely on the robot’s kinematics, and
the optimal estimation of the gains of the joint controllers,
which depends on the robot dynamics. For this purpose we
define an objective function that combines kinematic and
dynamic-based performance indices and which is minimized
via a genetic algorithm that searches for optimal gains for the
joint controllers. The proposed approach is shown to perform
consistently better than the standard PD control for tracking
MJ trajectories.

I. INTRODUCTION

Since the early 1990’s, the principle of minimum-jerk (MJ)

has been widely used for trajectory planning purposes in

robotics [1], [2], [3], [4], [5], [6], [7]. As the jerk is the

time-derivative of acceleration, MJ trajectories are desirable

for limiting excessive wear on the robot and the excitation of

resonances so that the robot life-span is extended [5]. More-

over, MJ principle is also important for neuroscience studies,

since it has been hypothesized that the movements of human

joints tend to follow MJ paths [8], [9], a feature that has

been used e.g. for the purpose of motor rehabilitation [10].

It should be noted, however, that the generation of MJ

trajectories are based solely on the robot’s kinematics. Des-

pite this seems to be a rather convenient property from

the point of view of trajectory planning, for the optimal

design of the controllers responsible for the effective tracking

of the desired trajectory the robot’s dynamics must be

taken into account. Indeed, it has been pointed out in [6]

and [7] that the jerk of the desired trajectory adversely

affects the performance of the tracking control algorithms

for robotic manipulators. This happens because PID-like

controllers [11], [12] at the robot’s joints, while doing their

best in tracking the planned trajectories as close as possible,

cannot guarantee that this goal will be achieved since the

robot’s dynamics is not taken into account in the formulation

of the MJ principle.

Motivated by this mismatch between MJ-based trajectory

planning and the effective tracking of the desired trajectories,
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we introduce a novel technique for optimal tuning of PD-

like controllers engaged in tracking minimum-jerk (MJ)

trajectories. For this purpose we define an objective function

in which we aggregate kinematic and dynamic-based perfor-

mance indices and which is minimized by means of a genetic

algorithm whose goal is to find optimal gains for the joint

controllers. A comprehensive performance evaluation of the

proposed approach reveals that it consistently outperforms

the standard PD-like control for tracking MJ trajectories.

The remainder of the paper is organized as follows. The

fundamentals of the MJ principle for trajectory planning is

presented in Section II, while the robot dynamics and control

are discussed in Section III. In Section IV a new approach

is introduced for tuning the gains of the joint controllers for

effective tracking of the planned MJ trajectories. In Section

V we finally report the results of our computer experiments

and discuss them. The paper is concluded in Section VI.

II. BASICS OF THE MINIMUM JERK PRINCIPLE

Let us assume a single joint. If the angular position of this

joint is defined by a function of time q(t), then the jerk J of

the system, i.e. the rate in which the acceleration varies, is

defined as the third derivative of the position:

J(t) =
d3q(t)

dt3
. (1)

The jerk plays an important role in robotic system because

it is widely known since the work of Kyriakopoulos and

Saridis [7] that joint position errors increase in the presence

of jerky movements. Hence, to increase the accuracy of

position control in robotic systems, an interesting approach

is to minimize the jerk. In this regard, the objective of the

minimum jerk (MJ) principle is to find a function q that

minimizes the integral of the squared jerk over time:

LJ(q) =
1

2

∫ T

0
J2(t)dt =

1

2

∫ T

0

(
d3q(t)

dt3

)2

dt. (2)

Thus, by choosing q as a 5th-order polynomial we have the

guarantee that the trajectory will be of minimum jerk. This

choice leads to the following equation for the joint position:

q(t) = a0+a1t +a2t2+a3t3+a4t4+a5t5, (3)

where {ak}5k=0 corresponds to the set of coefficients that must

be estimated to satisfy the MJ principle. By differentiating

Eq. 3 with respect to time, we obtain the corresponding

expressions for the velocity (q̇), acceleration (q̈) and jerk
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Fig. 1. Minimum jerk trajectories obtained when the function q(t) is
defined as in Eq. (3).

(J), which are given by

q̇(t) = a1+2a2t +3a3t2+4a4t3+5a5t4, (4)

q̈(t) = 2a2+6a3t +12a4t2+20a5t3, (5)

J(t) = 6a3+24a4t +60a5t2. (6)

Typical curves for q(t) and its derivatives for certain values

of the coefficients are shown in Figure 1. It should be noted

that for obtaining these equations we assumed that trajectory

planning will be carried out in the joint space of the robot.

Similar procedure can be used to generate trajectories in the

cartesian domain.

To compute the optimal coefficients according to MJ

principle, it is necessary to specify the positions, velocities

and accelerations at the initial instant t0 (q0, q̇0, q̈0) and at

the final instant t f (q f , q̇ f , q̈ f ). Thus, let a be the vector of

coefficients and s be the vector of initial and final states of

the system, defined respectively as

a = [a0 a1 a2 a3 a4 a5]
T , (7)

and

s = [q0 q̇0 q̈0 q f q̇ f q̈ f ]
T , (8)

where the superscript T denotes the transpose of a vec-

tor/matrix. Furthermore, let D be a matrix whose entries

depend on the initial and final time instants of the movement:

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 t0 (t0)2 (t0)3 (t0)4 (t0)5

0 1 2t0 3(t0)2 4(t0)3 5(t0)4

0 0 2 6t0 12(t0)2 20(t0)3

1 t f (t f )
2 (t f )

3 (t f )
4 (t f )

5

0 1 2t f 3(t f )
2 4(t f )

3 5(t f )
4

0 0 2 6t f 12(t f )
2 20(t f )

3

⎤
⎥⎥⎥⎥⎥⎥⎦
; (9)

Finally, if we formulate the problem as a linear system

s = Da, then the coefficients are computed as

a = D−1s, (10)

assuming that the matrix D is invertible. It is worth men-

tioning that the procedure for computing the coefficients

{ak}5k=0 and the corresponding functions should be repeated

for each joint of the robot. Thus, for a robot with n DOF,

we will have to compute 6×n coefficients.

Remark 1: It is worth recalling that the MJ principle, as

a trajectory planning method, is based solely on the robot’s

kinematics. As a consequence, there is no guarantee at all

that the joint controllers will accurately follow the desired

acceleration and jerk trajectories since the robot’s dynamics

is not taken into account in the formulation of the MJ

principle.

III. ROBOT DYNAMICS AND CONTROL

Robot dynamics is concerned with the relationship

between the forces and torques acting on a robotic structure

and the accelerations they produce on it. In this paper, a

rigid-body robotic manipulator is modeled as a kinematic

chain with n degrees of freedom, whose dynamics is given

by [13], [14], [15]

M(q)q̈+h(q, q̇)+g(q) = Q, (11)

where q is the vector of joint positions, q̇ is the vector of

joint velocities, q̈ is the vector of accelerations, M(q) denotes
the joint-space inertia matrix, and it is an n×n symmetric,

positive-definite matrix. The term h(q, q̇) accounts for the

effects of Coriolis and centripetal forces, while g(q) is the

term that accounts for the effects of gravity. The term Q
represents the action of all external forces acting on the

system, such as friction and torques due to joint movement.

A. Low-Level Control of Manipulators

Proportional-integral-derivative (PID) controllers and vari-

ants, such as the proportional-derivative controller (PD), are

the most commonly used control strategies in industry [11].

The PD controller is a variant of the PID controller

commonly used in Robotics [15], [12], whose control law

can be written as

u = Kpe+Kdė, (12)

where Kp and Kd are, respectively, the controller’s propor-

tional and derivative gains, e is the error signal and ė is its

derivative. The term u is the control action. This equation

has to be modified in order to adapt to the dynamics of a

robotic manipulator.

Since the robotic system of interest can be understood as

a multi-input/multi-output (MIMO) system, the control law

in (12) must be rewritten in vector-matrix format as

Kpe+Kd ė = τ, (13)

where the gain terms Kp and Kd are now positive-definite

diagonal matrices, while the error terms e, ė and τ are

vectors. It should be noted that the variable associated with

the control action has been replaced by τ (i.e. the torque

vector), since it is the torque that effectively generates the

motion of the joint.

A crucial issue in the design of the PD controller is the

choice of the gain matrices, which is usually performed by

means of the heuristic method by Ziegler & Nichols [16].

While this widely used method provides gain values which

are good enough for simple end-effector positioning tasks,

this is not the case for the more complex robotic tasks we

are interested in.
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Fig. 2. Standard PD joint control scheme that must be executed for each
chromosome of the population at a given generation.

The MJ principle for trajectory planning generates tra-

jectories for position, velocity, acceleration and jerk. In

our studies, we have observed that by using the standard

Ziegler-Nichols method for tuning the PD controller, there

was absolutely no guarantee that the combined motions of

the joints would effectively follow (i.e. track) the generated

trajectories, especially the acceleration and jerk trajectories.

In order to reduce these effects, we developed a novel

approach to search for the gains of the PD controllers of

each joint so that the minimum-jerk requirements could

be realized at the controller level. The proposed approach

is based on a metaheuristic optimization method and is

described in detail in the next section.

IV. THE PROPOSED APPROACH

Aiming at reducing undesirable effects due to the robot

dynamics while tracking MJ trajectories the following ob-

jective function is proposed:

L(Kp,Kd) = α
∫ t f

t0
edt +β

∫ t f

t0
Jdt + γ

∫ t f

t0
τdt +

∫ t f

t0
Δτdt,

(14)

where we have included the jerk (J) and the torque (τ) of

the system in the equation so that the controller, besides

minimizing the error (e), also causes reduction of jerk and

reduction of torque in the system, thus making wear on

the joints of the kinematic chain smaller. Furthermore, a

term involving torque change (Δτ) is included to ensure that

there will be no abrupt variations of the torque values. The

constants α , β and γ are used to normalize the terms to

roughly the same order of magnitude, and can be chosen

based on the reading time of the position in the controller.

Due to the complexity of the cost function shown in (14),

we decided to follow a metaheuristic based optimization

approach and chose a simple genetic algorithm (GA) [17]

for this purpose. The optimization process is executed for

the PD controller of each joint independently. Hence, for the

j-th joint of the robot the i-th chromosome in a population

is defined as

x(i| j) = [Kp(i| j) Kd(i| j)], (15)

where Kp,Kd ∈ R, with 0 < Kp < 104 and 0 < Kd < 103.

Optimization process is executed sequentially, starting at the

end effector joint and ending at the joint closest to the

manipulator base. The PD controller tuning technique based

on the minimization of the proposed objective function in

(14) will be henceforth be referred to as the minimum jerk
optimal PD control (MJ-OPD).

The design parameters of the GA used in this paper

are the following: (i) size of the population (M = 20); (ii)

Fig. 3. Two-dof robot introduced in [18] whose model was used in the
computer experiments reported in this paper.

number of generations (N = 15); (iii) selection method:

roulette; (iv) crossover type: intermediate recombination;

(v) mutation type: random Gaussian number with standard

deviation σGA = 0.1; (vi) crossover probability (pc = 80%);

(vii) mutation probability (pm = 10%), and (viii) elitism: yes.

In case of violation of the search space constraints, the gain

value is clipped to the limit of the corresponding interval.

The search intervals for the gains were selected based on

the values obtained for them by the Ziegler-Nichols (ZN)

method. The choice of GA parameters required some initial

experimentation, but nothing beyond the expectation for this

type of optimization method.

Remark 2: Since the search for the optimal gains is executed

independently, we have to execute two GAs, one for each

joint. We decided for this approach because we observed in

the experiments that it converged much faster than a single

GA with the i-th chromosome being defined as

x(i) = [Kp(i|1) Kd(i|1) Kp(i|2) Kd(i|2)], (16)

where Kp(i|1) and Kd(i|1) are the gains for the Joint 1

controller, while Kp(i|2) and Kd(i|2) are the gains for the

Joint 2 controller.

Remark 3: The objective function defined in Eq. (14) is

used as fitness function for the GAs. For each chromosome

x(i| j), the associated values of the gains (i.e. Kp(i| j) and

Kd(i| j)) are used in a standard closed-loop joint control

scheme (see Fig. 2 to position the arm at the desired joint

positions (qd), which corresponds to points of the planned

trajectory sampled at certain time instants, tk, k = 0, . . . , f .
The actual joint position is denoted as qa.

V. RESULTS AND DISCUSSION

In order to compare the performance of the MJ-OPD

controller with that of the standard PD controller, simulations

were performed in the Julia language1. The robot model

used in the computer experiments was obtained from [18]

and consists of a 2-dof planar robot whose movements are

constrained to the vertical plane (see Fig. 3), so that the

effects of gravity must be taken into account.

The constant parameters of the objective function in

Eq. (14) were set to α = 10, β = 0.01 and γ = 0.1. For

1https://julialang.org/
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(a) GA for Joint 1

(b) GA for Joint 2

Fig. 4. Best fitness values at each generation for the two GAs.

the sake of comparison, in addition to estimating the gains

of the MJ-OPD controller, we also tuned the gains of the PD

controller using the classical Ziegler-Nichols (ZN) method.

The values obtained by the two approaches are presented in

Table I. The evolution through generations of the fitness of

the best individual in the population for the two GAs (one

for each joint) are shown in Figs. 4(a) and 4(b).

TABLE I

ESTIMATED GAINS OF THE JOINT CONTROLLERS.

Gains ZN-PD MJ-OPD

Kp
Joint 1 8550.00 5611.43
Joint 2 160.00 1495.46

Kd
Joint 1 415.00 969.85
Joint 2 15.00 424.93

The performances of the classical ZN-PD and MJ-OPD

controllers introduced earlier are compared on a trajectory

tracking task. The duration of each trajectory is set to 2 se-

conds (t0 = 0 and t f = 2). Trajectory planning and generation

based on minimum jerk rely not only on specification for

position, but it takes into account velocity and acceleration

profiles, as well as the jerk itself. Initial results are plotted

in Figure 5, revealing that both controllers perform well for

the basic positioning task.

Similarly, both controllers performed well in tracking the

planned velocity profile, as can be seen in Figure 6 for joints

1 and 2, respectively. The accuracy in tracking position and

velocity trajectories was already expected for both controllers

(a) Joint 1

(b) Joint 2

Fig. 5. Position results for joints 1 and 2.

because, although they present different gains, the PD control

law explicitly takes into account position and velocity errors.

However, in what concerns the acceleration profile, the

performance of the controllers starts to differ considerably.

From Figure 7, which report the desired and the actu-

ally executed acceleration trajectories for joints 1 and 2,

one can easily see that the proposed MJ-OPD controller

performed considerably better than the classical ZN-based

PD controller, which suffers from severe limitations leading

to oscillatory behavior along the executed trajectory. As a

consequence the MJ-OPD controller was able to track the

desired trajectory with a squared error lower than the other

controller, as reported in Table II.

TABLE II

ACCELERATION SQUARED ERRORS.

Squared Error
(
rad/s2

)2 ZN-PD MJ-OPD
Joint 1 0.0136 0.0092
Joint 2 0.0247 0.0091

Tracking the trajectory profile of the jerk was challenging

for classical ZN-PD controller once again. In Figure 8 one

can observe abrupt oscillations (in red dashed lines) resulting

from the action of the classical PD controller. The MJ-OPD

controller also faced some minor oscillations, specially for

Joint 2, but in a much lower degree in comparison to the

classical PD controller.

In order to assess both controllers quantitatively, in Table
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(a) Joint 1

(b) Joint 2

Fig. 6. Velocity results for joints 1 and 2.

TABLE III

COMPARISON OF THE PRODUCED JERK VALUES.

Jerk
(
rad/s3

)
ZN-PD MJ-OPD

Maximum
Joint 1 22.19 17.51
Joint 2 26.34 9.19

Total
Joint 1 80.55 76.21
Joint 2 131.14 118.16

III the peaks and mean values of produced jerk are reported.

A careful analysis of this table reveals that the MJ-OPD

controller was able to limit significantly the peaks of the

jerks in Joints 1 and 2. Significant reduction in the total

jerk was also observed. In Table IV we report the resulting

squared errors, from which one can infer that the proposed

MJ-OPD controller was able to track the desired trajectories

consistently better than the classical PD controller.

Finally, a comparative evaluation of the produced torque is

carried out for assessing the demanded energy for executing

the task. In Figure 9 we report the developed torque along

the trajectory tracking task for each joint. An inspection of

these figures reveals that the controllers behave similarly, a

feature somehow expected because the controller structure is

the same, differing only in the tuning method. For the sake of

completeness, in Table V we report the maximum (i.e. peak)

and total values for the developed torques at both joints.

(a) Joint 1

(b) Joint 2

Fig. 7. Acceleration results for joints 1 and 2.

TABLE IV

SQUARED ERROR VALUES FOR THE JERK TRAJECTORIES.

Squared Error
(
rad/s3

)2 ZN-PD MJ-OPD
Joint 1 9.9152 4.63
Joint 2 19.2416 6.68

VI. CONCLUSIONS AND FURTHER WORK

In this work the problem of the choice of gains for controllers

of robotic manipulators based on trajectories generated by the

principle of minimum-jerk was addressed. Simulations were

performed to present a comparison between the classical

gain selection method by Ziegler-Nichols and the proposed

method for optimization based on jerk and torque. The

proposed method presents good results in the reduction of

the jerk in the system, reducing the difference between the

actual values and the planned values in the generation of

trajectory, as well as does not present sudden oscillations as

it was possible to observe in the classic PD controller in the

simulations. The proposed method is simple to implement

since the only requirement for its realization is the knowledge

of the dynamics of the system and in kinematic chains this

can be easily obtained from the knowledge of the lengths

and weights of each link.

Currently, we are working in the development of an alter-

native minimum-jerk-based cost function for optimal tuning
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(a) Joint 1

(b) Joint 2

Fig. 8. Jerk results for joints 1 and 2.

TABLE V

COMPARISON OF THE PRODUCED TORQUE VALUES.

Torque (Nm) ZN-PD MJ-OPD

Maximum
Joint 1 29.37 29.38
Joint 2 0.83 0.82

Total
Joint 1 1022.86 1023.11
Joint 2 16.98 16.95

of fractional-order PID controllers for robotic manipulators.
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