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Abstract Regarding the encoding of robot trajectories,
Althéfer and Bugmann [2] described two types of neural

This paper proposes an unsupervised neural algorithri€tworks for learning and planning robot arm
for trajectory production of a 6-DOF robotic arm. The movements. The first one, a neural implementation of a
model encodes these trajectories in a single trainingesistive grid [5] for path planning, presented limitations
iteration by using competitive and temporal Hebbiansuch as jerkiness of the movements and inaccurate final
|earning rules and operates by producing the CurrenpOSitiOnS. The second network is trained during the
and the next position for the robotic arm. In this papefead-out of a sequence of movements as determined by
we will focus on trajectories with at least one commorihe resistive grid. This network solves the former
point. These types of trajectories introduce somdimitations by using a RBF model witteceptive fields
ambiguities, but even so, the neural algorithm is able t6entered on a sequence of starting positions in the
reproduce them accurately and unambiguously due teonfiguration space of the arm, and with weights to the
context units used as part of the input. In addition, th@utput layer being used to point out to the next position
proposed model is shown to be fault-tolerant. in the space. This network generates a smooth arm
trajectory and an accurate positioning by interpolating
points between those given by means of the resistive grid
1. Introduction network. , _
In the context of mobile robotics, Bugmann et al. [3]
One of the major aspects of natural intelligence is thB"0P0Sed a model that uses Normalized Radial Basis
Functions to encode a sequence of positions forming the

ability to process temporal information. Temporal® ™~ )
pattern learning and recalling are crucial for ourtrajectory of an autonomous wheelchair. The network

capacity to perceive and generate limb movement?,ro,duces the next position .for the wheelchair. As the
speech, music, etc. In atidn, because we live in an trajectqry passes .several times over tht_a same point,
environment that changes continuously, an intelligen'?ha,se information is a_ddgd to the position information to
system must be able to encode patterns over time and 3§°'d thepercept,ualallasmgl problem [4]. The use of

reproduce them [1]. Normalized RBF’'s creates an attraction field over the

During the last years, many neural networkWh°|e workspace and enables the wheelchair to handle

approaches have been proposed for the trajectoRfrturbations caused by the avoidance of people.
generation problem. One of them is known rabot Aradjo and Vieira [6] and Aradjo e D'arbo Jr. [7]
trajectory learningor robot trajectory encoding2],[3]. proposed, respectively, temporal associative memory and
According to the approach above, an aisfimeural recurrent neural networks models for learning and
network receives as input the currenats (such as production of trajectories of a 6-DOBhot arm. In both

spatial position, angles and associated torques) of tf@Ses, the initial and goal positions are given and the
robot and usally responds with the next state in order tonetworks produce all the intermediate positions and its

execute a task defined in advance. This anticipatm?SSOCi_ated joint angles apd torques. Both models are able
behavior is particularly useful for solving trajectory o retrieve the trained trajectories and are robust (up to a

ambiguities [4] and is suitable for point-to-point

trajectory control or for trajectory tracking. Th_is p!'oblem involves two or more identical perceptual inputs that
require different responses from the robot.

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO CEARA. Downloaded on December 21,2022 at 13:16:43 UTC from IEEE Xplore. Restrictions apply.



certain degree) to noise. The simulations suggested themcode the temporal ordering of the input trajectory.
the recurrent neural model is suitable for tracking th&®nce active, the current winning neuron triggers,
trajectory while the associative memory model isthrough the lateral connections, the neuron that encodes
adequate for interpolating trajectory states. the next point of the trajectory. Both neurons remain

In this paper, the main goal is to devise aractive. In order to differentiate the responses, the
unsupervised neural algorithm to learn and retrievactivation of the current winning neuron is made lower
temporal sequences in the form of robot trajectories ifthrough the self-connection) than the activation of the
order to perform tracking tasks. neuron encoding the next state.

The remaining part of the paper is organized as It is important to note the presence of time delays in
follows. In Section 2, we present the proposedhe proposed architecture. They implement a short-term
architecture for the unsupervised network and discussemory (STM) model [1]. That enables temporal
each component. In Section 3, we introduce thassociation between patterns occurring in consecutive
proposed algorithm and discuss its dynamics in detailsnstants of time.

In Section 4, some simulations are carried out in order to The context units are of great importance to the
show the model ability to learn and reproduce theroposed architecture. Without it, only trajectories with
desired trajectories. The fault-tolerance is also evaluatedo points in common can be reproduced. The context

Finally, in Section 5 we conclude the paper. information allows the network to distinguish between
equal states belonging to different trajectories. For
2. The Proposed Model example, trajectories with a state in common usually

have different initial or goal spatial position. One of

The set of points that specifies the translational anthese two positions can be used as a context information.
rotational paths of the manipulator end-effector as a
function of time is referred to as a trajectory [8]. In our lateral
case, the robot trajectories are specified as sequences Qfgights
eleven points (or states) in which each state is a 15- ™
dimensional vector consisting of the Cartesian
coordinatesx, y, 2), the joint anglesf,..., 6¢), and the

a(t-1), y(t-1)

time delgs

a(t), y(?)

. . . . feedforward
torques t1,..., Tg) associated with that spatial position. weights
The architecture of the proposed model is shown in w
Figure 1. It comprises two layers of neurons, in which O >
g p Y! N H_/

each input node is connected to all output neurons
through feedforward weighta;, wherei indicates the
input node and, the output one. The network activates
the neurons that encode the current and the next statrvé
of the trajectory once an input state arrives. ) ) .
Whenever an input state is presented to the network, Differently from previous models for trajectory
a neuron with the most similar weight vector to the inpugncoding [3], [4], which use pre-wired network weights,
is activated. This neuron is called the winner of théh€ proposed algorithm learns to encode the temporal
competition for that input pattern. The weights, arrivingorder_ by sglf—organization. In_the next .sectior? the neural
to the winning neuron, encode the state of the trajectodidorithm is presented and discussed in detail.
at a particular instant of time.
In this model, each state of the trajectory must b&. Presenting the Algorithm
represented by a single neuron (or a small group of
neurons). Thus, a mechanism must be provided to avoid The steps of the neural algorithm are defined as:
that such a group responds for more than one state of t
trajectory. The mechanism adopted in the current work,
exclude the current winning neuron from all subsequent w; (0) = rand[O, 1], for all, j;
competitions for trajectory states. Furthermore, the
exclusion mechanism allocates different neurons for
equal states occurring in different instants of time. This g(0) =y;(0) = 0, for allj.
kind of situation occurs when a trajectory passes more £(0) = 1, for allj
than one time through the same point. ! ' '
Each output neuron projects a connection to itselfiwhere rand[0, 1] is a random number between 0 and 1;
m;, and to all other nodesn,. These connections a(t) andy;(t) are the activation and output of neurjon

Sensory stimulus  Context units

Figure 1. The topology of the proposed network,
here the time delays implement the short-term
%mory. Only some connections are shown.

Initialize the network as follows:

m:(0) = 0, for allj, r;
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respectively, and the functionfi(t) is called neuron The lateral weights are liable for encoding the

exclusion factor. temporal ordering of the input sequence. When an input
. . stimulus is presented, the network will activate at least
(2) Present an input stimulus to the network. two neurons. One should respond for the current input

pattern (less activated neuron) and the other indicates
the next state of the trajectory (most activated neuron).
For every input vector, order the output neurons The ideas behind the learning rules are the

(3) Determine the winning neurons:

according to their distance to the input vecty. i.e: following: (i) self-connections should weaken the
activation, and (ii) lateral connections from the winners

P () v(t) = wias (£)] < Fua )V (E) = Wi, (1)) < of the last competition to the winner of the current
~ ~ competition should be established. By inhibiting its

< T () = W ()] << P (O ) = wian 1) (1) activity through the self-connection and exciting other

) ] o neuron through a lateral weight, the winning neuron of
wherepu(t) is the index of the winning neuron (the oneihe cyrrent competition determines the current and the

closest to the input) of the current competitipg(t) is  next state of the trajectory. Mathematically, we have the
the index of the second neuron closest to the input, angjiowing learning rules:

so on. The indek indicates the number of neurons used

to encode each input pattern per competition (fo(6a) Learning procedure for self-connections:
example, fok=2, two neurons will remain active) ahd

is the number of output neurons. The choice of more  for {j = pa(t), Ya(t), ..., l(t)} do:

than one neuron per state prevents catastrophic loss of a

entire trajectory when a single neuron fails. my (t+2)=m (9+Bg (9, ()

The function f; (t) is updated according to: ] .
where 0€<1 is the learning rate ana(t),..., p(t) are

© do, forj =i, Pa, ..., ke ) the indexes of the winners of the current competition.
filt)=0 )
01 Otherwise (6b) Learning procedure for lateral connections:

wherea >> 0, in order to §>.<clude the chosen neurons ¢, { = pat), paf®)s oo D)},
from all subsequent competitions.
for {r = pa(t-1), po(t-1), ..., iu(t-1)} do:

(4) Determine the activations: my (t+1) = - (D2 . (Daled ©)

The activations are determined by

OATL, fori=1..k whereA>p is the learning ratgyi(t), p(t), ..., h(t) are

(t) = 3 the winners of the current competition apa(t-1), po(t-
au‘ t [l 0 fori = ( ) . ..
0 , fori=1>k 1), ..., i(t-1) are the winners of the last competition.
Note that equation (6) represents a simple temporal
andA > 0 and 0 <y < 1 are constant values. version of the correlation (or Hebbian) learning [10]

between the activations of the output neurons in different
instants of time. Thus, connections are always

Adapt the feedforward weight vectors according toestablished from the winners at timé (represented by

. s : ) the indexr) to winners at timet (represented by the
the following competitive learning rule [9]: ) : _ S
g P g (9] indexj). By defining3<A, the activation of the neuron
representing the current input is made smaller than that
of the neuron encoding the next state of the trajectory.

] . o The activations,(t-1) in (6) are obtained through the
where 6 (=1) is the learning rate determining hOWtime-deIays.

similar to the input(t) will be the weight vectow(t).
Only those neurons with activations not equal to zero ang) Determine the outputs:
allowed to learn.

(5) Adjust the feedforward weights:

wi(t+2) = wj (0)+50) ) (O[x(0)-wj () (4)

The outputs are determined through the simple
(6) Adjust the self- and lateral connections: weighted summation:
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N as part of the input, remaining clamped to the input
yi(t) = Elmlf (9a(d. (7) during both trajectory learning and reproduction phases.
In this paper, the trajectories were defined in

wherem, (t) is the connection weight between the outpu@dvance, being generated by the toolbox robotics of
neuronsg andj. MATLAB [11]. However, the obot arm could be trained

Suppose that neuron three is the winner for th€Y @ ‘teach-by-showing” method. In this case, an user

current input state, so according to equations (1) and (gvjould push the arm through the desired trajectories.
we have:p(t) = 3 and ayt) = 1. The remaining The network parameters were setite 1000,k=2, A
activations are zero (we have chosésl, for =1.y=0.97,6=0.99,8=0.2, and\ =1 =0.8. The
simplicity). Now, also suppose that the next state of thBumber of output neurons was set to 70 and three
trajectory was encoded by neuron 7. Hence, because ti@aiectories per case were trained sequentially in only
temporal order is to be encoded by the lateral weight§ne presentation for each trajectory. The context units

there must be a non-zero self-connection for neuron Were made equal to the goal position of the trajectory
and a non-zero lateral connection from neuron 3 tgnder consideration, changing when another trajectory

neuron 7. Thusm=0.2 and m;;=0.8, for example. IS considered. The tests are similar to those presented in
Thus, according to equation (7) the outputs during thE] and [7], and for Figures 3-6 only the results for the

reproduction phase are: fIrSt winner are ShOWﬂ. .
As a measure for the tracking error, we used the

ye(t) = me(t)ae(t) = (0.2).(1.0) = 0.2 (8)  following expression:

y#(t) = mys(t)as(t) = (0.8).(1.0) = 0.8 (9) N

yi(t) = 0, for allj # 3 andj # 7 w0 E=—3 %xé xt Pl -yt Pz -2 )Zﬁ (11)
N, &

Equations (8), (9) e (10) mean that the neuron 3 is
the most similar to the current input pattern and neurofyhere g, yq, z) and &, ., z) are the original and the
7 is the next state of the trajectory. The procesgetrieved spatial coordinate, is the number of points
continues from step (2) until the end of the trajectory igf the trajectory andis the position in the sequence. For
reached. For trajectory reproduction, steps (5) and (&xamplet=1 indicates the first vector in the sequence.
are skipped. In the next section, we show some Figure 3 shows the results for three trajectories with

simulations results involving different trajectories. the same starting point located at (0.6, 0.1, 0.0). Note
) . that the retrieved and the desired trajectories in all the
4. The simulations three cases are very similar. The tracking error for

trajectoryl-G1 is 5.224x10. This illustrates the ability
The different trajectories considered for study areof the model in accurately encoding an input state in

shown in Figure 2. only one iteration.
X G3
X |
| — 2l :
X | - initial point ¥
| S — G-goal point _f G
§ 1
(@) } o2
i
j* g
[
[
(c) (d) Figure 3. Desired ‘0’ and retrieved ' « spatial

Figure 2. Types of trajectories considered for study. trajectories with same starting point (0.6, 0.1, 0.0).

The filled circle indicates the initial position and “x” . . . .
. i Figure 4 illustrates the desired and the retrieved

stands for tr_]e fma_l posttion. _joint angles for the trajectolyG1. It also has very good

_ The trajectories 2b, 2c, and 2d have at least one poigh formance, confirming the adequacy of the model for

in common, which may introduce ambiguities during th&aiectory tracking. The ambiguity faced by the network

reproduction of the sequence. This problem is stated a%hen it has to decide which trajectory to follow is

which trajectory should the arm follow when eaChresoIved by the knowledge of the goal position.
candidate has points in common with another one? This

problem is solved by using a fixed context vector given
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Figure 4. The desired ‘0’ and the retrieved *' joint r . -
angles for trajectory I-G1 in Figure 3. - : o
Figure 5 illustrates the results for three trajectories R e LA %
. . . . . . . . L - T
with no points in common. This situation is considered e e W T 1
. f iy -4
by the model as the easiest one to be encoded, because s ey i
there is no ambiguity. The model was able to reproduce
the trained trajectories with a small tracking error (e.g. ;
4.67x10°, for the sequence 11-G1). L gt s g2
ONEES e
13 g_ugg::pz?:t Figure 6. Trajectories with one crossing point: (a)
12 spatial positions, (b) joint angles for trajectory 11-G1.
‘\-._\‘-.‘ ! The last simulation explores the fault-tolerance
G3 ‘-‘1.__'(;2 G1 ability of the model. We have simulated a worst-case
e situation, namely: all first winners for each state of the
s trajectory 12-G2 in Figure 5a have collapsed for some
i o reason (for example, hardware failure in a real
(@) ) ; ; : implementation). The results are shown in Figure 7.
. |_- initial point
el i G - goal point G
1--\1"1-. 1 - iy 3
e, R I -
l-._‘_.5: *-\:._._._:_l- -1_ : . b
4 b | . :
2__‘___1-:_‘___. 1
: e (a) %
(b) |t
-.-"'..'-
loe,
Figure 5. Trajectories without common points: (a) | 1 R, o o i
spatial points; (b) joint angles and (c) for trajectory Sk - T
11-G1. e Yo e s i A
. . . . . . 4 — = .
The next simulation considers trajectories with one i o
crossing point. The desired and retrieved spatial position B 2%y -l e
are shown in Figure 6a. The corresponding joint angles [ - ¥ i
are shown in Figure 6b. In this case, the context units [6="F"

also play an important role. The trajectories are harder (b)
to be followed because of their abrupt change of _ _ N
directions. Even so, the model was able to track thernigure 7. Simulation of the worst-case condition

with a small error (6.92xﬂ)for trajectory 11-G1). (collapse of all first winners) for trajectory 12-G2 in
Figure 6a: (a) spatial points and (b) joint angles.
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Even for this catastrophic situation, the tracking (6)Lower computational cost when compared with
error was quite small, 5.91x10It is worth noting in supervised learning; and
Figure 7a that the network dynamics tend to maintain an (7) The algorithm can be potentially adapted to work
accurate initial and final position even for second on others temporal sequence tasks (such as
winners. The joint angles are shown in Figure 7b. mobile robot control, speech recdgon, and
One could ask that this last result can be improved if natural language processing).
we change step 6 of the algorithm by assigning the same
activation value to all winnersa€l for all j=1.K). In
this case we would be improving the fault-tolerance an
the total accuracy but worsening the tolerance to noi
and the generalization ability of the proposed model.
Table 1 summarizes the tracking errors for th

Further work must be developed in order to explore
g1e generalization ability of the proposed model and
xtend the present model to one which generates
S5ppropriate control actions over the whadeat working
espace given a number of trajectories to be learned.

trajectories discussed in this work. The best conditionACkrmwmdgmemS
refers to the situation in which the first winners for each
state of the trajectories are used to retrieve them.

Table 1. Summar vy of trackin g errors

The authors would like to thank PICDT/CAPES and
FAPESP for finanial support.
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