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Abstract

This paper proposes an unsupervised neural algorithm
for trajectory production of a 6-DOF robotic arm. The
model encodes these trajectories in a single training
iteration by using competitive and temporal Hebbian
learning rules and operates by producing the current
and the next position for the robotic arm. In this paper
we will focus on trajectories with at least one common
point. These types of trajectories introduce some
ambiguities, but even so, the neural algorithm is able to
reproduce them accurately and unambiguously due to
context units used as part of the input. In addition, the
proposed model is shown to be fault-tolerant.

1.  Introduction

One of the major aspects of natural intelligence is the
ability to process temporal information. Temporal
pattern learning and recalling are crucial for our
capacity to perceive and generate limb movements,
speech, music, etc. In addition, because we live in an
environment that changes continuously, an intelligent
system must be able to encode patterns over time and to
reproduce them [1].

During the last years, many neural network
approaches have been proposed for the trajectory
generation problem. One of them is known as robot
trajectory learning or robot trajectory encoding [2],[3].

According to the approach above, an artificial neural
network receives as input the current state (such as
spatial position, angles and associated torques) of the
robot and usually responds with the next state in order to
execute a task defined in advance. This anticipatory
behavior is particularly useful for solving trajectory
ambiguities [4] and is suitable for point-to-point
trajectory control or for trajectory tracking.

Regarding the encoding of robot trajectories,
Althöfer and Bugmann [2] described two types of neural
networks for learning and planning robot arm
movements. The first one, a neural implementation of a
resistive grid [5] for path planning, presented limitations
such as jerkiness of the movements and inaccurate final
positions. The second network is trained during the
read-out of a sequence of movements as determined by
the resistive grid. This network solves the former
limitations by using a RBF model with receptive fields
centered on a sequence of starting positions in the
configuration space of the arm, and with weights to the
output layer being used to point out to the next position
in the space.  This network generates a smooth arm
trajectory  and an accurate positioning by interpolating
points between those given by means of the resistive grid
network.

In the context of mobile robotics, Bugmann et al. [3]
proposed a model that uses Normalized Radial Basis
Functions to encode a sequence of positions forming the
trajectory of an autonomous wheelchair. The network
produces the next position for the wheelchair. As the
trajectory passes several times over the same point,
phase information is added to the position information to
avoid the perceptual aliasing1 problem [4]. The use of
Normalized RBF’s creates an attraction field over the
whole workspace and enables the wheelchair to handle
perturbations caused by the avoidance of people.

Araújo and Vieira [6] and Araújo e D’arbo Jr. [7]
proposed, respectively, temporal associative memory and
recurrent neural networks models for learning and
production of trajectories of a 6-DOF robot arm. In both
cases, the initial and goal positions are given and the
networks produce all the intermediate positions and its
associated joint angles and torques. Both models are able
to retrieve the trained trajectories and are robust (up to a
                                                       
1 This problem involves two or more identical perceptual inputs that
require different responses from the robot.
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certain degree) to noise. The simulations suggested that
the recurrent neural model is suitable for tracking the
trajectory while the associative memory model is
adequate for interpolating trajectory states.

In this paper, the main goal is to devise an
unsupervised neural algorithm to learn and retrieve
temporal sequences in the form of robot trajectories in
order to perform tracking tasks.

The remaining part of the paper is organized as
follows. In Section 2, we present the proposed
architecture for the unsupervised network and discuss
each component. In Section 3, we introduce the
proposed algorithm and discuss its dynamics in details.
In Section 4, some simulations are carried out in order to
show the model ability to learn and reproduce the
desired trajectories. The fault-tolerance is also evaluated.
Finally, in Section 5 we conclude the paper.

2.  The Proposed Model

The set of points that specifies the translational and
rotational paths of the manipulator end-effector as a
function of time is referred to as a trajectory [8]. In our
case, the robot trajectories are specified as sequences of
eleven points (or states) in which each state is a 15-
dimensional vector consisting of the Cartesian
coordinates (x, y, z), the joint angles (θ1,..., θ6), and the
torques (τ1,..., τ6) associated with that spatial position.

The architecture of the proposed model is shown in
Figure 1. It comprises two layers of neurons, in which
each input node is connected to all output neurons
through feedforward weights wji , where i indicates the
input node and j, the output one. The network activates
the neurons that encode the current and the next states
of the trajectory once an input state arrives.

Whenever an input state is presented to the network,
a neuron with the most similar weight vector to the input
is activated. This neuron is called the winner of the
competition for that input pattern. The weights, arriving
to the winning neuron, encode the state of the trajectory
at a particular instant of time.

In this model, each state of the trajectory must be
represented by a single neuron (or a small group of
neurons). Thus, a mechanism must be provided to avoid
that such a group responds for more than one state of the
trajectory. The mechanism adopted in the current work,
exclude the current winning neuron from all subsequent
competitions for trajectory states. Furthermore, the
exclusion mechanism allocates different neurons for
equal states occurring in different instants of time. This
kind of situation occurs when a trajectory passes more
than one time through the same point.

Each output neuron projects a connection to itself,
mjj, and to all other nodes, mjr . These connections

encode the temporal ordering of the input trajectory.
Once active, the current winning neuron triggers,
through the lateral connections, the neuron that encodes
the next point of the trajectory. Both neurons remain
active. In order to differentiate the responses, the
activation of the current winning neuron is made lower
(through the self-connection) than the activation of the
neuron encoding the next state.

It is important to note the presence of time delays in
the proposed architecture. They implement a short-term
memory (STM) model [1]. That enables temporal
association between patterns occurring in consecutive
instants of time.

The context units are of great importance to the
proposed architecture. Without it, only trajectories with
no points in common can be reproduced. The context
information allows the network to distinguish between
equal states belonging to different trajectories. For
example, trajectories with a state in common usually
have different initial or goal spatial position. One of
these two positions can be used as a context information.

Differently from previous models for trajectory
encoding [3], [4], which use pre-wired network weights,
the proposed algorithm learns to encode the temporal
order by self-organization. In the next section the neural
algorithm is presented and discussed in detail.

3.  Presenting the Algorithm

The steps of the neural algorithm are defined as:

(1)  Initialize the network as follows:

wji (0) = rand[0, 1], for all i, j;

mjr(0) = 0, for all j, r;

aj(0) = yj(0) = 0, for all j.

fj(0) = 1, for all j.

where rand[0, 1] is a random number between 0 and 1;
aj(t) and yj(t) are the activation and output of neuron j,

Figure 1. The topology of the proposed network,
where the time delays implement the short-term
memory. Only some connections are shown.
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respectively; and the function  fj(t) is called neuron
exclusion factor.

(2) Present an input stimulus to the network.

(3)  Determine the winning neurons:

For every input vector, order the output neurons
according to their distance to the input vector v(t). i.e:

( ) ( ) ( ) ( ) ( ) ( )f t t t f t t tµ µ µ µ1 1 2 2v w v w− < − <�

( ) ( ) ( ) ( ) ( ) ( )� �< − < < −f t t t f t t t
k k N Nµ µ µ µv w v w

where µ1(t) is the index of the winning neuron (the one
closest to the input) of the current competition, µ2(t) is
the index of the second neuron closest to the input, and
so on. The index k indicates the number of neurons used
to encode each input pattern per competition (for
example, for k=2, two neurons will remain active) and N
is the number of output neurons. The choice of more
than one neuron per state prevents catastrophic loss of a
entire trajectory when a single neuron fails.

The function ( )f tj  is updated according to:

( )f tj =




α,

,1

where α >> 0, in order to exclude the chosen neurons
from all subsequent competitions.

(4)  Determine the activations:

The activations are determined by
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and A > 0 and 0 < γ < 1 are constant values.

(5) Adjust the feedforward weights:

Adapt the feedforward weight vectors according to
the following competitive learning rule [9]:

( ) ( ) ( ) ( ) ( ) ( )[ ]w w x wj j j jt t t a t t t+ = + −1 δ        (4)

where δ (≈1) is the learning rate determining how
similar to the input x(t) will be the weight vector wj(t).
Only those neurons with activations not equal to zero are
allowed to learn.

(6)  Adjust the self- and lateral connections:

The lateral weights are liable for encoding the
temporal ordering of the input sequence. When an input
stimulus is presented, the network will activate at least
two neurons. One should respond for the current input
pattern (less activated neuron) and the other indicates
the next state of the trajectory (most activated neuron).

The ideas behind the learning rules are the
following: (i) self-connections should weaken the
activation, and (ii) lateral connections from the winners
of the last competition to the winner of the current
competition should be established. By inhibiting its
activity through the self-connection and exciting other
neuron through a lateral weight, the winning neuron of
the current competition determines the current and the
next state of the trajectory. Mathematically, we have the
following learning rules:

(6a) Learning procedure for self-connections:

for { j = µ1(t), µ2(t), ..., µk(t)}   do:

      ( ) ( ) ( )m t m t a tjj jj j+ = +1 β ,                     (5)

where 0<β<1 is the learning rate and µ1(t),..., µk(t) are
the indexes of the winners of the current competition.

(6b) Learning procedure for lateral connections:

for { j = µ1(t), µ2(t), ..., µk(t)},

for { r = µ1(t-1), µ2(t-1), ..., µk(t-1)}   do:

( ) ( ) ( ) ( )m t m t a t a tjr jr j r+ = + −1 1λ          (6)

where λ>β is the learning rate, µ1(t), µ2(t), ..., µk(t) are
the winners of the current competition and  µ1(t-1), µ2(t-
1), ..., µk(t-1) are the winners of the last competition.
Note that equation (6) represents a simple temporal
version of the correlation (or Hebbian) learning [10]
between the activations of the output neurons in different
instants of time. Thus, connections are always
established from the winners at time t-1 (represented by
the index r) to winners at time t (represented by the
index j). By defining β<λ, the activation of the neuron
representing the current input is made smaller than that
of the neuron encoding the next state of the trajectory.
The activations ar(t-1) in (6) are obtained through the
time-delays.

(7) Determine the outputs:

The outputs are determined through the simple
weighted summation:

for j = µ1, µ2, ..., µk

Otherwise.
(2)

(1)

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO CEARA. Downloaded on December 21,2022 at 13:16:43 UTC from IEEE Xplore.  Restrictions apply. 



( ) ( ) ( )y t m t a tj jr r
r

N
= ∑

=1
,             (7)

where mjr(t) is the connection weight between the output
neurons r and j.

Suppose that neuron three is the winner for the
current input state, so according to equations (1) and (3)
we have: µ1(t) = 3 and  a3(t) = 1. The remaining
activations are zero (we have chosen k=1, for
simplicity). Now, also suppose that the next state of the
trajectory was encoded by neuron 7. Hence, because the
temporal order is to be encoded by the lateral weights,
there must be a non-zero self-connection for neuron 3
and a non-zero lateral connection from neuron 3 to
neuron 7. Thus, m33=0.2 and m73=0.8, for example.
Thus, according to equation (7) the outputs during the
reproduction phase are:

y3(t) = m33(t)a3(t) = (0.2).(1.0) = 0.2 (8)

y7(t) = m73(t)a3(t) = (0.8).(1.0) = 0.8 (9)

yj(t) = 0,  for all j ≠ 3 and  j ≠ 7                           (10)

Equations (8), (9) e (10) mean that the neuron 3 is
the most similar to the current input pattern and neuron
7 is the next state of the trajectory. The process
continues from step (2) until the end of the trajectory is
reached. For trajectory reproduction, steps (5) and (6)
are skipped. In the next section, we show some
simulations results involving different trajectories.

4.  The simulations

The different trajectories considered for study are
shown in Figure 2.

The trajectories 2b, 2c, and 2d have at least one point
in common, which may introduce ambiguities during the
reproduction of the sequence. This problem is stated as:
which trajectory should the arm follow when each
candidate has points in common with another one? This
problem is solved by using a fixed context vector given

as part of the input, remaining clamped to the input
during both trajectory learning and reproduction phases.

In this paper, the trajectories were defined in
advance, being generated by the toolbox robotics of
MATLAB [11]. However, the robot arm could be trained
by a “teach-by-showing” method. In this case, an user
would push the arm through the desired trajectories.

The network parameters were set to α = 1000, k=2, A
= 1, γ = 0.97, δ = 0.99, β = 0.2, and λ = 1-β = 0.8. The
number of output neurons was set to 70 and three
trajectories per case were trained sequentially in only
one presentation for each trajectory. The context units
were made equal to the goal position of the trajectory
under consideration, changing when another trajectory
is considered. The tests are similar to those presented in
[6] and [7], and for Figures 3-6 only the results for the
first winner are shown.

As a measure for the tracking error, we used the
following expression:

( ) ( ) ( )∑
= 



 −+−+−=

pN

t

t
r

t
o

t
r

t
o

t
r

t
o

p
t zzyyxx

N
E

1

2221
   (11)

where (xd, yd, zd) and (xr, yr, zr) are the original and the
retrieved spatial coordinates, Np is the number of points
of the trajectory and t is the position in the sequence. For
example, t=1 indicates the first vector in the sequence.

Figure 3 shows the results for three trajectories with
the same starting point located at (0.6, 0.1, 0.0). Note
that the retrieved and the desired trajectories in all the
three cases are very similar. The tracking error for
trajectory I-G1 is 5.224x10-5. This illustrates the ability
of the model in accurately encoding an input state in
only one iteration.

I

G2

G1

G3

 I  - initial point
 G - goal point

Figure 4 illustrates the desired and the retrieved
joint angles for the trajectory I-G1. It also has very good
performance, confirming the adequacy of the model for
trajectory tracking. The ambiguity faced by the network
when it has to decide which trajectory to follow is
resolved by the knowledge of the goal position.

(d)

(a) (b)

(c)
Figure 2. Types of trajectories considered for study.
The filled circle indicates the initial position and “x”
stands for the final position.

Figure 3. Desired ‘o’ and retrieved ‘ *’ spatial
trajectories with same starting point (0.6, 0.1, 0.0).

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO CEARA. Downloaded on December 21,2022 at 13:16:43 UTC from IEEE Xplore.  Restrictions apply. 



1

2
3
4

5

6

Figure 5 illustrates the results for three trajectories
with no points in common.   This situation is considered
by the model as the easiest one to be encoded, because
there is no ambiguity. The model was able to reproduce
the trained trajectories with a small tracking error (e.g.
4.67x10-5, for the sequence I1-G1).

I1

G1

I2

G2

I3

G3

 I  - initial point
 G - goal point
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The next simulation considers trajectories with one
crossing point. The desired and retrieved spatial position
are shown in Figure 6a. The corresponding joint angles
are shown in Figure 6b. In this case, the context units
also play an important role. The trajectories are harder
to be followed because of their abrupt change of
directions. Even so, the model was able to track them
with a small error (6.92x10-5 for trajectory I1-G1).

I1
G1

I2

G2

 I - initial point

 G - goal point

1

2

3

4

5

6

The last simulation explores the fault-tolerance
ability of the model. We have simulated a worst-case
situation, namely: all first winners for each state of the
trajectory I2-G2 in Figure 5a have collapsed for some
reason (for example, hardware failure in a real
implementation). The results are shown in Figure 7.

I

G

 I  - initial point
G - goal point

1

2

3

4
5

6

Figure 4. The desired ‘o’ and the retrieved ‘*’ joint
angles for trajectory I-G1 in Figure 3.

Figure 6. Trajectories with one crossing point: (a)
spatial positions, (b) joint angles for trajectory I1-G1.

(b)

(a)

Figure 7. Simulation of the worst-case condition
(collapse of all first winners) for trajectory I2-G2 in
Figure 6a: (a) spatial points and (b) joint angles.

(b)

(a)
(b)

Figure 5. Trajectories without common points: (a)
spatial points; (b) joint angles and (c) for trajectory
I1-G1.

(a)
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Even for this catastrophic situation, the tracking
error was quite small, 5.91x10-4. It is worth noting in
Figure 7a that the network dynamics tend to maintain an
accurate initial and final position even for second
winners. The joint angles are shown in Figure 7b.

One could ask that this last result can be improved if
we change step 6 of the algorithm by assigning the same
activation value to all winners (aj=1 for all j=1..k). In
this case we would be improving the fault-tolerance and
the total accuracy but worsening the tolerance to noise
and the generalization ability of the proposed model.

Table 1 summarizes the tracking errors for the
trajectories discussed in this work. The best condition
refers to the situation in which the first winners for each
state of the trajectories are used to retrieve them.

TRAJECTORY
TYPE

BEST
CONDITION

WORST
CONDITION

common
initial point

(Figure 3)
common

final point
(not shown)

without
common points

(Figure 5)
common

intermediate
point (Figure 6)

The results for the torques associated with joint
angles were not shown because of lack of space, but the
proposed network model was able to track them with
small error as well.

5.  Conclusions and Further Work

In this paper, we have proposed a temporal sequence
based control system for robotic trajectory learning.
Despite the simplicity of the model, the system has a
combination of properties which are of great importance
for the design of intelligent robotic systems, namely:

(1)  Accurate recall of stored temporal patterns;
(2)  Disambiguation when trajectories have points in

common;
(3)  Tolerance to faults, since a sequence can still be

retrieved even in the presence of neuronal failure;
(4)  Simple and fast learning;
(5)  Learning of inverse kinematics and inverse

dynamics;

(6)  Lower computational cost when compared with
supervised learning; and

(7)  The algorithm can be potentially adapted to work
on others temporal sequence tasks (such as
mobile robot control, speech recognition, and
natural language processing).

Further work must be developed in order to explore
the generalization ability of the proposed model and
extend the present model to one which generates
appropriate control actions over the whole robot working
space given a number of trajectories to be learned.
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Table 1. Summar y of trackin g errors

I-G1: 5.9863x10-4

I-G2: 6.9996x10-4

I-G3: 5.9260x10-4

I1-G: 7.1104x10-4

I2-G: 7.7006x10-4

I3-G: 6.3143x10-4

I1-G1: 9.2189x10-4

I2-G2: 7.2673x10-4

I3-G3: 6.4547x10-4

I1-G1: 1.0087x10-3

I2-G2: 8.6517x10-4

I3-G3: 5.9096x10-4

I-G1: 5.2213x10-5

I-G2: 6.7044x10-5

I-G3: 4.1415x10-5

I1-G: 5.7652x10-5

I2-G: 3.5489x10-5

I3-G: 3.7065x10-5

I1-G1: 4.6685x10-5

I2-G2: 3.4346x10-5

I3-G3: 2.8334x10-5

I1-G1: 6.9224x10-5

I2-G2: 4.9082x10-5

I3-G3: 4.8149x10-5
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