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Abstract

In this paper we propose modifications for the learning
rules of Marshall’s EXIN (exdtatory + inhibitory) neural
network model in order to deaease its computationd
complexity and undrstand the role of the weight
updaing learning rules in corredly encoding familiar,
superimposed and anbiguots input patterns. The MEXIN
(Modified EXIN) models introduce mixtures of
competitive and Hebbian updaing rules. In this case,
only the weights of the unit with highest activation ae
updaed. Hence the MEXN networks require less
computation thanthe original EXIN model. A number of
simulations are arried ou with the aim of shawing hav
the models respond to overlappng, superimpaosed and
ambiguoLs patterns.

Keywords: EXIN networks, anti-hebbian learning,
competiti ve learning, uncertainty, distributed coding.

1. Introduction

Different authors [1], [2], [3], [4] have proposed self-
organizing artificial neural network (ANN) models with
trainable ecitatory and inhibitory weight connedions.
Most of them deal with the problem of decorreating
output units applied to principal components analysis
(PCA models) [5]. The basic idea is to use a Hebhian
learning rule to upcdete ecitatory weights and anti-
Hebbian learning rule to update inhibitory weights.
According to the Hebbian rule, an excitatory synapse
conneding two neurons are strengthened if the activities
of the two neurons are a@rrelated and weakened if they
are anti-correlated. The anti-Hebbian rule, states that the
change in a synaptic strength is proportional to the
correlation of the activities of the two neurons, but the
diredion of the dange is opposite to that in the Hebbian
rule.

Information receved by ANN from the environment
might carry redundancy and uncertainty. In neura

networks, uncertainty ocaurs when an incomplete, noisy,
or ambiguous incoming signal has more than one likely
clasdfication. The ability to deal with uncertainty is a
desirable network property. An ANN must also be able to
handle ontext [6] and multiple patterns ocaurring
simultaneoudly in the data. Marshall [7] proposed a self-
organizing neural network model that deals with
overlapping, superimposed and ambiguous patterns. The
EXIN (excitatory + inhibitory) network consists basically
of a set of coupled differential equations that governs the
dynamics of the neural modd. These ejuations are
characterized by a Hebhian learning rule to update the
feadforward excitatory weights, an anti-Hebhbian learning
rule to update the inhibitory weights, and a shunting
equation [8].

One of the major drawbacks of implementing EXIN
model is the high computational cost of finding
numerical solutions to the differential equations
governing its activation [9]. This limits its practicality
and the network efficacy can only be demonstrated on
small problems. Other limitations of EXIN models are
the absence of a clear ohjedive function and the difficult
to determine, except empirically, the system effediveness
and stability [10].

In this paper, we propose a mode to reduce the
computation time for EXIN networks and to help us
understanding the role of excitatory and inhibitory
learning rules. The basic idea is to subgtitute the
Hebbian-like weight updating rule by a smpler
competitive learning rule [11] and to update only the
weights of the output unit with highest activation value.

The paper is organized as foll ows. First we summarize
the original EXIN model in Sedion 2. Then, in Sedion 3
we present the modified versions. In Sedion 4, we
discretize the MEXIN (Modified EXIN) models and
organize them in a procedure for implementation
purpose. In Sedion 5, we show the simulation results.
Then, we discuss the results and conclude the paper in
Sedion 6.
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2. Theoriginal EXIN model

The EXIN neural network model has been proposed
by J. Marshall [7], [12], [13], and comprises two layers of
processng units, a non-linear system of coupled
differential equations for activating the output neurons,
modifiable excitatory feedforward and inhibitory
feadback connedions. Each group of connedions is
trained through a different Hebbian-like learning rule.
EXIN can deal with binary and analog inputs. The
network has m inputs: u;, and n output units: &. The
activation of the output units follows the shunting
equation:

%:—Awﬁ(s—a)a—y(cwn ®

where A is a deay term, B and C are the maximum and
minimum possble activities, E; and [; represent the total
excitatory and inhibitory input to theunit i, 8 and y are
parameters that describe the overall influence of the
excitatory and inhibitory termsin (1). E; isdefined as:
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where the u; represents the activation level of the input
unit j, [u] = max(y, 0), and w; is the ecitatory
connedion between input j and output unit i. |; is defined
as.

=3 a([a]es) 3

where g represents the activity level of the output unit j,
[a] = max(g;, 0), and p; is the inhibitory connedion
between output unitsj and i.

It is worth noting that the activation of the output
units cannot be @lculated in a single step because of the
influence of the feadback links and the non-linearity of
the other units. Thus, a transient must be simulated by
numerically solving the differential equation (1).

The feedforward excitatory weights from the input to
the output layer are updated according to the following
Hebbian rule;

%:Gf(ai)[g(uj)_wji] (4)

where o is a small positive the learning rate cnstant,
f(a)=[max(a;, 0)]° and g(w)=max(Gy, 0), G is a
constant.

The inhibitory weights conneding the output units are
updated according to an anti-Hebhian rule:

d(% =na(a; )[h(ai )= pi ] ®)

where 0 < n <<a is the learning rate, q(a)=max(a;, 0)

and h(a))=max(H &, , 0), H isa constant.
In the next sedions we propose some @mbinations

of the weight updating rules together with a mecdhanism
of finding the highest activation output unit.

3. Themodified EXIN models

In this sdion we introduce the modified versions of
the EXIN modd. The goal of these changes is to reduce
the @mputation effort for the EXIN mode, and to
understand the role played by the ecitatory and
inhibitory learning rules in classfying the superimposed
and ambiguous input patterns.

3.1. Thefirst modified EXIN modd

The first modification in the origina EXIN is the
introduction of a mechanism to find the output unit with
the highest activation value. Then, we subgtitute the
feadforward excitatory Hebbian updating rule (4) by a
purely competitive rule, namely

d\évtjv = afg(u;) - wy] ©

where v is the index of the output unit with the highest
activation. The inhibitory learning is performed by
equation (5).

Equation (6) can be onsdered a particular
realization of equation (4) when f(a;) = 1, for all i.

3.2. The Second Modified EXIN Modd

The second modification in the original EXIN also
employs a mechanism to find the output unit with the
highest activation value. Then, the eccitatory learning is
performed by equation (4) updating the weights of the
unit with highest activity, however the inhibitory weights
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are updated according to an “anti-competitive” rule,
namely:

dpji

0 rl[h(ai )~ pj ] (7)
In this case, according to the inhibitory equation (7),

the output units will compete for the right of not

responding to a given input pattern. Equation (7) can be

considered a particular realizaion of equation (5) when

q(a) = 1, for all j.

3.3. Thethird modified EXIN modél

The third modification, as in the other two MEXIN
models, employs a medianism to find the output unit
with the highest activation value. In this case, we use the
competitive equation (6) to update the excitatory weights,
and the anti-competitive ejuation (7) to perform
inhibitory learning.

4. Discretizing the models

In order to simulate the models presented abowe on a
general purpose @mputer, we must discretize the
differential equations of the EXIN and MEXIN models.
So, using a forward-difference method [14] the equation
(1) get the following form

- =-Aa“+(B-a“)Ef - (C+a")l" (8

where the superscript k refersto the discretetimeand Tis
the integration step size mnstant. After some algebraic
manipulations the final form of the equation (8) is

Bal =-A'a +B"(B-af JEX -y (C+af)IK
(%)
afl =af +Aaf (%)

where A = AT, B=BT,andy =y.T.
The same procedure is valid to equations (4) and (5).
In this case the final forms are

AwS = o f (aik)[g(u';) - wh ] (10

Apf = n*q(a}()[h(ai") - pY ] (1)

and the discrete versions of equations (6) and (7) are

K — y* k| — Kk
Awj, =a [g(uj) Wi, (12
Ap§, = n*[h(aik) - pTi] (13

where @” =a.T,and n° =n.T in bath sets of weight
updating rules.

Marshall [15] has also worked with adaptive step-size
numerical integration methods (Gear method, for
instance) however the speal dfference was not worth the
extraeffort.

4.1. The MEXIN algorithm

The activation and the weight updating rules are
organized and summarized below in order to corredly
simulate the dynamics of MEXIN neural networks.

1. Set thefollowing initial values for k=0:

wd =10+ 00X 2R; -1), foralli,j

. _D25+00Y2R; ~1) if i#]
Pi = Ho it i =]
0 j

where R; isarandom value between 0 and 1
2. Initiali ze the output activations: g=0, i=1, ...,n

3. Present the randomly chosen input pattern
u= (ul,...,um)T , in which T isthe transpose.

4. With the pattern clamped, numerically solve the
differential equation (1), cycling the discretized shunting
equation (9) until the variation of the activation reaches a
given near-zero value

Calculate EX according to equation (2)

DO:
Calculate | acoording to equation (3)
Calculate Aak acoording to equation (9a)
Calculate a** acoording to equation (9b)

WHILE: |Aaf|> ¢, for all i.

where gisavery small value.
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5. Find the output unit with the highest activation:
v=argmax{ & }

6. Update only the e<citator§/ weights of the output
unit determined in step 5 acoording to the first, second,
or third MEXIN modd.

7. Update inhibitory weights according to the first,
seand, or third MEXIN modd.

8. Increment k. If k > kyax (in which k. is the
maximum number of cycles), the algorithm stops;
otherwise go to step 2.

6. Simulation results

The simulations carried out here are based on those
performed by Marshal [7] and Harpur [9]. All the
experiments refer to a network with m = 6 inputs (labeled
A-F) and n = 6 outputs. In all smulations, the patterns
are randomly chosen and presented to the network
repeatedly for a fixed number of times gedfied by Kyax.
For all the smulations the onstants used are:  Kyax =
9000 (0 1500for each pattern), A = 2.25 B=1.0, C =
0.1, B=1.25 y=750 a= 1125, n=16.125 £=10°, G
=1, and H = 1. The MEXIN models were simulated in
ANSI C in a SUN workstation ULTRA-1, 166VIHz and
128 Mbytes of RAM.

Simulation 1: Coding Overlapping Patterns

In this experiment the MEXIN model uses equation
(12) to upckte the excitatory weights and equation (11) to
update the lateral inhibitory connedions. The training set
is composed of 6 overlapping binary patterns A, AB,
ABC, CD, DE, and DEF. Theresults are shown in Figure
1. Once these weights are reached they bemme
completdy stable. It is worth noting that inhibition is
strongest between neurons coding overlapping petterns
and weakest between neurons coding non-overlapping
patterns. The inhibitory weight matrix is approximately
symmetric. For this smulation we used a step size T =
0.0014 Figure 1a illustrates the final excitatory weight
configuration, and Figure 1b shows the final inhibitory
weight matrix.

Simulation 2; Network Responseto Trained Patterns

Using the weights obtained in the first simulation, the
response of the network to familiar patterns was
evaluated. When each input pattern was presented to the
developed network only the @rresponding neuron coding
the whole pattern became active (see Figure 2a) For
instance when AB was presented, the output unit AB
became fully active and inhibited the activations of the
others output units.

Simulation 3; Parsing Superimposed Patterns
Additional tests were performed considering as inputs
unfamiliar patterns. Unfamiliar patterns mean an exact
combination of two training patterns. In this case, the
two corresponding neurons coding the superimposed
patterns became active (see Figure 2b). For example,
when ABDE was presented, bath units AB and DE
became fully active. The network parses unfamiliar
patterns in terms of the familiar patterns [7]. Hence the
MEXIN network, as well as the original EXIN, allows
multiple patterns to be represented in a distributed
fashion. The use of a inhibitory learning rule (Hebbian,
competitive, etc.) allows multiple neurons to win a
competition, instead of forcing a single winner.

B R DE

H B o v
HEN o
HE ZCIN
HEEE ABC ¢
H A
A B C D E F
Input layer
@
- WM  DE
-0 - B oo ?
e E e |
mll _ AB L
s - . R

A ABC AB DEF CD DE
Output layer

(b)

Figure 1. Final weight in simulation 1 for (a)
excitatory weights; (b) inhibitory weights.
The weight values are to the length of the
sides of each square.
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Simulation 4: Representation of Uncertainty

The fourth test evaluated the response of the network
to ambiguous patterns (Figure 2c). When pattern D was
presented to the network, bath units CD and DE became
a littl e active. These are the nearest known patterns to
input D. The activation of other neurons (DEF, for
instance) was sppressd. The network represents its
uncertainty about the dasdfication of an input pattern
simultaneoudly activating multiple output units. Thisis a
very useful property because in some perceptual
environments, a network can succesqully self-organize
only when multiple hypotheses about a uncertain
clasdfication can be simultaneously represented [7].

A B C D E F

inpu
output

AB ABC CD DE DEF

SRR RRERRE ISR
SRIRE SRS St

RNIRE SRANRT RIS
RIHE FRIN

(c)
Figure 2. The responses of the network in simulation 2-
4 for (a) familiar patterns; (b) parsing of familiar
patterns; and (c) ambiguous patterns (representation of
uncertainty). The inhibitory connections are not shown
for clarity sake.

Simulation 5:

In this experiment the MEXIN model uses equation
(10) to upckte the excitatory weights, and equation (13)
to update the lateral inhibitory connedions. The training
set is composed of the same 6 overlapping binary patterns
used in smulation 1. The excitatory weights coded the
overlapping petterns identically to the MEXIN modd in
simulation 1. However, the inhibitory weight matrix is
very different (see Figure 3a) The inhibition between
neurons coding overlapping petterns and between
neurons coding non-overlapping patterns were quite

strong. This leads to a deaeasing in the network ahility
to classfy superimposed petterns (seesimulation 6).
Simulation 6:

This test verifies the response of the model trained in
simulation 5 to familiar and superimposed input patterns.
The response to familiar overlapping patternsis identical
to that of Figure 2a in simulation 2. However, the
response to superimposed patterns does not activate only
the output units which coded the superimposed pattern.
For example, the presentation of pattern ABDE activates
the output units that coded the patterns AB and DE, as
well as the units that coded patterns A and ABC. This
ocaurs due to strong inhibition between units encoding
non-overlapping patterns.

A ABC AB DEF CD DE
Output layer
Figure 3. Inhibitory weights in simulation 5.

SO<®— ~“coT~CcQ

Simulation 7:

This experiment used a combination of equation (12)
to update ecitatory weights and equation (13) as a
inhibitory weight updating rule. The integration step size
was st to T = 0.014 We repeated the sequence of
simulations 1-4 and asesxd the results as in the
previous smulations. The network was able to code the
six binary patterns as the others MEXIN models did,
however the networks was unable to clasdfy corredly the
familiar patterns (see Figure 4). The inhibitory weight
matrix had the same structure of that of Figure 3, that is,
inhibition between neurons coding non-overlapping
patterns were strong, and had the same order of
magnitude of the inhibition between neurons coding

overlapping petterns.

SRTRT ST SRR
SRINNE SR St

Figure 4. Response of the network to
familiar patterns in simulation 7.
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7. Conclusions and further work

We have presented a set of modifications to the
original  EXIN model in order to deaqease its
computational cost and assess the role played by the
excitatory and inhibitory weight updeting rules in
encoding overlapping, superimposed and ambiguous
input patterns. The nature of the inhibitory learning rule
plays a very important rolein learning such patterns.

Table 1 summarizes the results of the several models
presented. Such results suggest that corred classfication
and encoding of familiar, superimposed and ambiguous
binary patterns demands the inhibitory Hebhian learning
rule. The ecitatory learning rule @n be ather Hebhian
or competiti ve type. The absence of a Hebbian learning in
bath rulesisthe worst case. It isworth emphasizing that
the @mbinations of different kinds of learning rules,
together with shunting activation equation, is possble
only if we determine the output unit with highest
activation. If we try to use the embinations proposed in
Sedion 3in theorigina modd it will fail.

The MEXIN1 model requireslesscomputational effort
than the original EXIN for a same task. But, one auld
argue that updating only the weights of the unit with
highest activation value limit the representational
capacity of the network becauseit isimplementing a kind
of winner-take-all behavior. The simulations siggest that
even doing so the MEXIN1 modd is gill able to deal
with overlapping, superimposed and ambiguous binary
patterns. Further work must be developed in order to
simulate the MEXIN models with real-valued inputs and
with applications domains in which we have a network
with a significantly higher number of output units.

Table 1. Summary of features and results

EXIN MEXIN MEXIN MEXIN
1 2 3
Excitatory Hebb Compet. Hebb Compet.
Leaning
Inhibitory Anti Anti Anti Anti
Leaning Hebb Hebb Compet. Compet.
Encode
overlapping YES YES YES YES
Patterns
Clasdgfy
overlapping YES YES YES NO
Patterns
Parsing o
Multiple YES YES NO NO
Patterns
Clasdgfy
Ambiguous YES YES NO NO
Patterns

Acknowledgments: | would like to thank FAPESP
and CAPES, for providing financial support for this
research.

8. References

[1] A. Carlson. Anti-Hebbian learning in a non-linea neural
network, Biological Cybernetics, 64:171-176, 1990
[2] J. Rubrer, and P. Tavan. Development of fedure detectors
by self-organization: A network model, Biological
Cybernetics, 62193199 1990
[3] P. Foldiak. Forming sparse representations by local anti-
Hebbian leaning, Biological Cybernetics, 64:165170
1990
[4] F. Pamieri, J. Zhy, and C.H. Levy. Anti-Hebbian leaning
in topologcaly constrained linea networks:. A tutorial,
IEEE Transactions on Neural Networks, 4(5):748761,
1997
[5] J. Rubrer, and P. Tavan. A self-organizing network for
principal-component, Europhysics Letters, 10(7):693-698
December 1989
[6] 1.J. Myung, C. Kim, and W.B. Levy. Context-dependent
recognition in a self-organizing recurrent network,
Procealings of the Annud Conference of Cogntive Science
Saiety, 7-10, San Francisco, CA, August 1997.
[7] JA. Marshall. Adaptive perceptual pattern recognition by
self-organizing neural networks. context, uncertainty,
multi plicity, and scale, Neural Networks, 8:335-362, April
1995
[8] S. Grossherg. Sudies of Mind andBrain: Neural Principles
of Learning, Perception, Development, Cogrition and
Motor Control, Reidel Press Boston, 1982
[9] G.F. Harpur, and R.W. Prager. A fast method for activating
competitive self-organizing neural networks, Proceedings
of the Internationd Symposium on Artificial Neural
Networks, 412-418 Tainan 1994
[10] G.F. Harpur. Low Entropy Coding with Unsupervised
Neural Networks, PhD. Thesis, University of Cambridge,
February 1997.

[11] D.E. Rumelhart, and D. Zipser, “Feaure discovery by
competitive learning”, Cogritive Science, 9:75-112 1985

[12] J. A. Marshall, “A self-organizing scale sensitive neural
network”, Procealings of the Internationd Joint
Conference on Neural Networks, 3:649654, San Diego,
Jure 1990

[13] J. A. Marshall, “Representation of uncertainty in self-
organizing”, Procealings of the Internationd Neural
Network Conference, 809-812, Paris, France, July 199Q

[14] W.E. Boyce and R.C. Diprima, Elementary Differential
Equaions and Bounday Value Problem, John Wiley &
Sons, 6th Edition, August 1996

[15 JA. Marshal, Personnd communication, September,
1997


https://www.researchgate.net/publication/20863986_Forming_sparse_representations_by_local_anti-Hebbian_learning?el=1_x_8&enrichId=rgreq-e500c1c9bb25f586903509d809ee4196-XXX&enrichSource=Y292ZXJQYWdlOzIzNTY0MDA7QVM6OTkxNTYyOTkzNTQxMTlAMTQwMDY1MjExMjQxOA==
https://www.researchgate.net/publication/20863986_Forming_sparse_representations_by_local_anti-Hebbian_learning?el=1_x_8&enrichId=rgreq-e500c1c9bb25f586903509d809ee4196-XXX&enrichSource=Y292ZXJQYWdlOzIzNTY0MDA7QVM6OTkxNTYyOTkzNTQxMTlAMTQwMDY1MjExMjQxOA==
https://www.researchgate.net/publication/20863986_Forming_sparse_representations_by_local_anti-Hebbian_learning?el=1_x_8&enrichId=rgreq-e500c1c9bb25f586903509d809ee4196-XXX&enrichSource=Y292ZXJQYWdlOzIzNTY0MDA7QVM6OTkxNTYyOTkzNTQxMTlAMTQwMDY1MjExMjQxOA==
https://www.researchgate.net/publication/3301763_Anti-Hebbian_Learning_in_Topologically_Constrained_Linear_Networks_A_Tutorial?el=1_x_8&enrichId=rgreq-e500c1c9bb25f586903509d809ee4196-XXX&enrichSource=Y292ZXJQYWdlOzIzNTY0MDA7QVM6OTkxNTYyOTkzNTQxMTlAMTQwMDY1MjExMjQxOA==
https://www.researchgate.net/publication/3301763_Anti-Hebbian_Learning_in_Topologically_Constrained_Linear_Networks_A_Tutorial?el=1_x_8&enrichId=rgreq-e500c1c9bb25f586903509d809ee4196-XXX&enrichSource=Y292ZXJQYWdlOzIzNTY0MDA7QVM6OTkxNTYyOTkzNTQxMTlAMTQwMDY1MjExMjQxOA==
https://www.researchgate.net/publication/3301763_Anti-Hebbian_Learning_in_Topologically_Constrained_Linear_Networks_A_Tutorial?el=1_x_8&enrichId=rgreq-e500c1c9bb25f586903509d809ee4196-XXX&enrichSource=Y292ZXJQYWdlOzIzNTY0MDA7QVM6OTkxNTYyOTkzNTQxMTlAMTQwMDY1MjExMjQxOA==
https://www.researchgate.net/publication/3301763_Anti-Hebbian_Learning_in_Topologically_Constrained_Linear_Networks_A_Tutorial?el=1_x_8&enrichId=rgreq-e500c1c9bb25f586903509d809ee4196-XXX&enrichSource=Y292ZXJQYWdlOzIzNTY0MDA7QVM6OTkxNTYyOTkzNTQxMTlAMTQwMDY1MjExMjQxOA==
https://www.researchgate.net/publication/223600485_Adaptive_Perceptual_Pattern_Recognition_by_Self-Organizing_Neural_Networks_Context_Uncertainty_Multiplicity_and_Scale?el=1_x_8&enrichId=rgreq-e500c1c9bb25f586903509d809ee4196-XXX&enrichSource=Y292ZXJQYWdlOzIzNTY0MDA7QVM6OTkxNTYyOTkzNTQxMTlAMTQwMDY1MjExMjQxOA==
https://www.researchgate.net/publication/223600485_Adaptive_Perceptual_Pattern_Recognition_by_Self-Organizing_Neural_Networks_Context_Uncertainty_Multiplicity_and_Scale?el=1_x_8&enrichId=rgreq-e500c1c9bb25f586903509d809ee4196-XXX&enrichSource=Y292ZXJQYWdlOzIzNTY0MDA7QVM6OTkxNTYyOTkzNTQxMTlAMTQwMDY1MjExMjQxOA==
https://www.researchgate.net/publication/223600485_Adaptive_Perceptual_Pattern_Recognition_by_Self-Organizing_Neural_Networks_Context_Uncertainty_Multiplicity_and_Scale?el=1_x_8&enrichId=rgreq-e500c1c9bb25f586903509d809ee4196-XXX&enrichSource=Y292ZXJQYWdlOzIzNTY0MDA7QVM6OTkxNTYyOTkzNTQxMTlAMTQwMDY1MjExMjQxOA==
https://www.researchgate.net/publication/223600485_Adaptive_Perceptual_Pattern_Recognition_by_Self-Organizing_Neural_Networks_Context_Uncertainty_Multiplicity_and_Scale?el=1_x_8&enrichId=rgreq-e500c1c9bb25f586903509d809ee4196-XXX&enrichSource=Y292ZXJQYWdlOzIzNTY0MDA7QVM6OTkxNTYyOTkzNTQxMTlAMTQwMDY1MjExMjQxOA==
https://www.researchgate.net/publication/222449051_Feature_Discovery_by_Competitive_Learning?el=1_x_8&enrichId=rgreq-e500c1c9bb25f586903509d809ee4196-XXX&enrichSource=Y292ZXJQYWdlOzIzNTY0MDA7QVM6OTkxNTYyOTkzNTQxMTlAMTQwMDY1MjExMjQxOA==
https://www.researchgate.net/publication/222449051_Feature_Discovery_by_Competitive_Learning?el=1_x_8&enrichId=rgreq-e500c1c9bb25f586903509d809ee4196-XXX&enrichSource=Y292ZXJQYWdlOzIzNTY0MDA7QVM6OTkxNTYyOTkzNTQxMTlAMTQwMDY1MjExMjQxOA==
https://www.researchgate.net/publication/243776184_A_fast_method_for_activating_competitive_self-organising_neural_networks?el=1_x_8&enrichId=rgreq-e500c1c9bb25f586903509d809ee4196-XXX&enrichSource=Y292ZXJQYWdlOzIzNTY0MDA7QVM6OTkxNTYyOTkzNTQxMTlAMTQwMDY1MjExMjQxOA==
https://www.researchgate.net/publication/243776184_A_fast_method_for_activating_competitive_self-organising_neural_networks?el=1_x_8&enrichId=rgreq-e500c1c9bb25f586903509d809ee4196-XXX&enrichSource=Y292ZXJQYWdlOzIzNTY0MDA7QVM6OTkxNTYyOTkzNTQxMTlAMTQwMDY1MjExMjQxOA==
https://www.researchgate.net/publication/243776184_A_fast_method_for_activating_competitive_self-organising_neural_networks?el=1_x_8&enrichId=rgreq-e500c1c9bb25f586903509d809ee4196-XXX&enrichSource=Y292ZXJQYWdlOzIzNTY0MDA7QVM6OTkxNTYyOTkzNTQxMTlAMTQwMDY1MjExMjQxOA==
https://www.researchgate.net/publication/243776184_A_fast_method_for_activating_competitive_self-organising_neural_networks?el=1_x_8&enrichId=rgreq-e500c1c9bb25f586903509d809ee4196-XXX&enrichSource=Y292ZXJQYWdlOzIzNTY0MDA7QVM6OTkxNTYyOTkzNTQxMTlAMTQwMDY1MjExMjQxOA==
https://www.researchgate.net/publication/2361874_Low_Entropy_Coding_with_Unsupervised_Neural_Networks?el=1_x_8&enrichId=rgreq-e500c1c9bb25f586903509d809ee4196-XXX&enrichSource=Y292ZXJQYWdlOzIzNTY0MDA7QVM6OTkxNTYyOTkzNTQxMTlAMTQwMDY1MjExMjQxOA==
https://www.researchgate.net/publication/2361874_Low_Entropy_Coding_with_Unsupervised_Neural_Networks?el=1_x_8&enrichId=rgreq-e500c1c9bb25f586903509d809ee4196-XXX&enrichSource=Y292ZXJQYWdlOzIzNTY0MDA7QVM6OTkxNTYyOTkzNTQxMTlAMTQwMDY1MjExMjQxOA==
https://www.researchgate.net/publication/2361874_Low_Entropy_Coding_with_Unsupervised_Neural_Networks?el=1_x_8&enrichId=rgreq-e500c1c9bb25f586903509d809ee4196-XXX&enrichSource=Y292ZXJQYWdlOzIzNTY0MDA7QVM6OTkxNTYyOTkzNTQxMTlAMTQwMDY1MjExMjQxOA==
https://www.researchgate.net/publication/20863987_Anti-Hebbian_learning_in_a_non-linear_neural_network?el=1_x_8&enrichId=rgreq-e500c1c9bb25f586903509d809ee4196-XXX&enrichSource=Y292ZXJQYWdlOzIzNTY0MDA7QVM6OTkxNTYyOTkzNTQxMTlAMTQwMDY1MjExMjQxOA==
https://www.researchgate.net/publication/20863987_Anti-Hebbian_learning_in_a_non-linear_neural_network?el=1_x_8&enrichId=rgreq-e500c1c9bb25f586903509d809ee4196-XXX&enrichSource=Y292ZXJQYWdlOzIzNTY0MDA7QVM6OTkxNTYyOTkzNTQxMTlAMTQwMDY1MjExMjQxOA==
https://www.researchgate.net/publication/224755267_A_self-organizing_scale-sensitive_neural_network?el=1_x_8&enrichId=rgreq-e500c1c9bb25f586903509d809ee4196-XXX&enrichSource=Y292ZXJQYWdlOzIzNTY0MDA7QVM6OTkxNTYyOTkzNTQxMTlAMTQwMDY1MjExMjQxOA==
https://www.researchgate.net/publication/224755267_A_self-organizing_scale-sensitive_neural_network?el=1_x_8&enrichId=rgreq-e500c1c9bb25f586903509d809ee4196-XXX&enrichSource=Y292ZXJQYWdlOzIzNTY0MDA7QVM6OTkxNTYyOTkzNTQxMTlAMTQwMDY1MjExMjQxOA==
https://www.researchgate.net/publication/224755267_A_self-organizing_scale-sensitive_neural_network?el=1_x_8&enrichId=rgreq-e500c1c9bb25f586903509d809ee4196-XXX&enrichSource=Y292ZXJQYWdlOzIzNTY0MDA7QVM6OTkxNTYyOTkzNTQxMTlAMTQwMDY1MjExMjQxOA==
https://www.researchgate.net/publication/224755267_A_self-organizing_scale-sensitive_neural_network?el=1_x_8&enrichId=rgreq-e500c1c9bb25f586903509d809ee4196-XXX&enrichSource=Y292ZXJQYWdlOzIzNTY0MDA7QVM6OTkxNTYyOTkzNTQxMTlAMTQwMDY1MjExMjQxOA==
https://www.researchgate.net/publication/20854512_Development_of_feature_detectors_by_self-organization_A_network_model?el=1_x_8&enrichId=rgreq-e500c1c9bb25f586903509d809ee4196-XXX&enrichSource=Y292ZXJQYWdlOzIzNTY0MDA7QVM6OTkxNTYyOTkzNTQxMTlAMTQwMDY1MjExMjQxOA==
https://www.researchgate.net/publication/20854512_Development_of_feature_detectors_by_self-organization_A_network_model?el=1_x_8&enrichId=rgreq-e500c1c9bb25f586903509d809ee4196-XXX&enrichSource=Y292ZXJQYWdlOzIzNTY0MDA7QVM6OTkxNTYyOTkzNTQxMTlAMTQwMDY1MjExMjQxOA==
https://www.researchgate.net/publication/20854512_Development_of_feature_detectors_by_self-organization_A_network_model?el=1_x_8&enrichId=rgreq-e500c1c9bb25f586903509d809ee4196-XXX&enrichSource=Y292ZXJQYWdlOzIzNTY0MDA7QVM6OTkxNTYyOTkzNTQxMTlAMTQwMDY1MjExMjQxOA==
https://www.researchgate.net/publication/44475269_Studies_of_mind_and_brain_Neural_principles_of_learning_perception_development_cognition_and_motor_control_Reprints?el=1_x_8&enrichId=rgreq-e500c1c9bb25f586903509d809ee4196-XXX&enrichSource=Y292ZXJQYWdlOzIzNTY0MDA7QVM6OTkxNTYyOTkzNTQxMTlAMTQwMDY1MjExMjQxOA==
https://www.researchgate.net/publication/44475269_Studies_of_mind_and_brain_Neural_principles_of_learning_perception_development_cognition_and_motor_control_Reprints?el=1_x_8&enrichId=rgreq-e500c1c9bb25f586903509d809ee4196-XXX&enrichSource=Y292ZXJQYWdlOzIzNTY0MDA7QVM6OTkxNTYyOTkzNTQxMTlAMTQwMDY1MjExMjQxOA==
https://www.researchgate.net/publication/44475269_Studies_of_mind_and_brain_Neural_principles_of_learning_perception_development_cognition_and_motor_control_Reprints?el=1_x_8&enrichId=rgreq-e500c1c9bb25f586903509d809ee4196-XXX&enrichSource=Y292ZXJQYWdlOzIzNTY0MDA7QVM6OTkxNTYyOTkzNTQxMTlAMTQwMDY1MjExMjQxOA==
https://www.researchgate.net/publication/275814136_Elementary_Differential_Equations_and_Boundary_Value_Problems?el=1_x_8&enrichId=rgreq-e500c1c9bb25f586903509d809ee4196-XXX&enrichSource=Y292ZXJQYWdlOzIzNTY0MDA7QVM6OTkxNTYyOTkzNTQxMTlAMTQwMDY1MjExMjQxOA==
https://www.researchgate.net/publication/275814136_Elementary_Differential_Equations_and_Boundary_Value_Problems?el=1_x_8&enrichId=rgreq-e500c1c9bb25f586903509d809ee4196-XXX&enrichSource=Y292ZXJQYWdlOzIzNTY0MDA7QVM6OTkxNTYyOTkzNTQxMTlAMTQwMDY1MjExMjQxOA==
https://www.researchgate.net/publication/275814136_Elementary_Differential_Equations_and_Boundary_Value_Problems?el=1_x_8&enrichId=rgreq-e500c1c9bb25f586903509d809ee4196-XXX&enrichSource=Y292ZXJQYWdlOzIzNTY0MDA7QVM6OTkxNTYyOTkzNTQxMTlAMTQwMDY1MjExMjQxOA==

