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Abstract—In this paper we introduce an evolutionary ap-
proach for the efficient design of prototype-based classifiers using
differential evolution (DE). For this purpose we amalgamate
ideas from the Learning Vector Quantization (LVQ) framework
for supervised classification by Kohonen [1], [2], with the DE-
based automatic clustering approach by Das et al. [3] in order
to evolve supervised classifiers. The proposed approach is able
to determine both the optimal number of prototypes per class
and the corresponding positions of these prototypes in the
data space. By means of comprehensive computer simulations
on benchmarking datasets, we show that the resulting classi-
fier, named LVQ-DE, consistently outperforms state-of-the-art
prototype-based classifiers.

I. INTRODUCTION

Prototype-based classification (PBC) encompasses a large
family of supervised pattern classification methods and algo-
rithms. Like the K -nearest neighbor (KNN) method [4], PBC
is a local classification method in the sense that classification
boundaries are approximated locally. Instead of making use
of all the training data points, however, PBC relies on a set
of appropriately chosen prototype vectors (a.k.a. reference,
centroid or codebook vectors). Thus, PBC requires a much
smaller number of items which must be stored and to which a
new data point must be compared for classification than KNN.

Furthermore, PBC possesses two desirable properties
which are hard to find in standard multilayer perceptron (MLP)
and support vector machine (SVM) classifiers. Firstly, due to
the inherent local way of building classification boundaries,
interpretation of the decisions in terms of local explanatory
rules associated to each prototype is facilitated. Secondly,
prototype-based classifiers are easily endowed with adaptive
strategies for adding and deleting prototypes to fit the current
data distribution, a valuable property specially in evolving,
nonstationary environments.

Prototype-based classifiers have been designed in the lit-
erature basically in three different ways. One approach comes
from Bayesian decision theory. In this case, the design of the
classifier involves two steps: 1) the construction of models
for the probability densities of the different classes and 2) the
construction of the classification boundaries using the criterion
of maximum a posteriori (MAP) probability. If, for example,
the designer assumes that (z) class-specific probability densities
are well approximated by Gaussian densities, (iz) the classes
are equiprobable, and (¢¢¢) the input features are uncorrelated
and have equal variances, the MAP classifier reduces to a
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popular class of PBC algorithms known as minimum distance
(MD) classifiers [4].

The second approach comes from the idea of directly
estimating the discriminant functions for multiclass classifi-
cation problems. In PBC, this is done using a set of prototype
vectors for each class, and classification is based on the
distance between a data point and the class to which its closest
prototype belongs to, much the same way as done by MD
classifiers. Often an Euclidean distance measure is used, but
in principle any distance measure can be used. Two of the
most common methods for the construction of prototype-based
discriminant functions are, respectively, the Learning Vector
Quantization (LVQ) [1], [2] and the ARTMAP [5] networks.

Finally, a third approach for building PBC can be used to
build prototype-based (supervised) classifiers from prototype-
based clustering (i.e. unsupervised) methods, such as the Self-
Organizing Map (SOM) [6]. Firstly, the training data samples
are submitted to a SOM network with a certain number of
prototypes. Then, once training is finished, SOM prototypes
are labeled according to a majority voting scheme, i.e. a
given prototype is assigned the label of the most frequent
class among the training samples which are closest to it. As
for MD and LVQ classifiers, classification is based on the
distance between a data point and the class to which its closest
prototype belongs to.

Usually, the possibility of using a set of prototype vectors
for each class gives more flexibility to the second and third
PBC methods just described. However, the number of proto-
types per class has to be defined a priori for the second method
or can only be determined a posteriori (i.e. after the labelling
phase) for the third method. Often, these numbers are far from
optima, requiring from the user a great deal of experimentation
with the data.

Bearing this in mind, in this paper we introduce an evo-
lutionary approach for the efficient design of prototype-based
classifiers using differential evolution (DE) [7]. The idea is
to amalgamate ideas from the LVQ approach to supervised
classification with the DE-based automatic clustering approach
by Das et al. [3] in order to design prototype-based classifiers.
The proposed approach is able to determine both the optimal
number of prototypes per class and the corresponding positions
of these prototypes in the data space. We show by means
of comprehensive computer simulations on benchmarking
datasets that the resulting classifier consistently outperforms
state-of-the-art prototype-based classifiers.
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The remainder of the paper is organized as follows. In
Section II we briefly describe the prototype-based classifiers
to be evaluated in this paper. The proposed LVQ-DE method is
described in detail in Section III. In Section IV the simulation
scenarios are described and the obtained results are discussed.
The paper is concluded in Section V.

II. PROTOTYPE-BASED CLASSIFIERS

Let us consider a set of training input-output patterns
{(x1, ) HY,, where x; € RP denotes the [-th input pattern
and y; € C denotes its corresponding class label. Note that y;
is a discrete variable (of either numerical or nominal nature)
which may assume only one out of K values in the finite set
C ={wi,wa,...,wk}

Given a set of labeled prototype vectors m; € RP, ¢ =

., M, for all the prototype-based classifiers to be described

in this section, class assignment for a new input pattern x(¢)
is based on the following decision criterion:

Class of x(t) = Class of m.(t), (1)
where

c=arg _min, {x(t) - ml} @
in which || - || denotes the euclidean distance measure and

c is the index of the nearest prototype among the M ones
available. In the following paragraphs we briefly described the
learning rules for finding the positions of the prototypes m;,
i=1,..., M in the data space.

Minimum Distance-to-Centroid (MDC) classifier [4]: For
this classifier, we have M = K, i.e. the number of prototypes
(M) is equal to the number of classes (K). In this case, the
prototype of the i-th class is computed as the centroid of class

1 as 1
==Y x, i=1,... K 3)

n:
4 XEwW;

where n; is the number of training examples of class 3.

A. LVQ classifiers

The LVQ is very popular family of competitive learning
algorithms for supervised pattern classification. As a con-
sequence, several applications and variants of basic LVQ
algorithms are available elsewhere [8]-[14]. In this paper, we
briefly describe five LVQ network variants. The performances
of these variants will be compared with that of the DE-based
PBC design method to be proposed in Section III.

The Optimized-Learning-Rate (OLVQ) [1]: For the whole
family of LVQ classifiers we have M > K, i.e. the number of
prototypes (M) is higher than the number of classes (K). As
a consequence, different prototypes may share the same label.
Let ¢ be defined as in Eq. (2) for a new input pattern x(t).
Then, the prototype m, is updated as follows

m(t+1) = m.(t) + s(t)a.(t)[x(t) — m.(t)], (@)
where s(t) = +1 if the classification is correct, and s(t) =
—1 if the classification is wrong. The optimal learning rate
scheduling is given by
ac(t—1)

@) = Tttt =1

®)

It should be noted that since a.(t) can also increase, it is
specially important that it shall not rise above 1. This constraint
can be forced in the implementation of the algorithm itself. For
the initial values it is recommended to start with «; = 0.3.

LVQ-2.1 [1]: In this algorithm, two prototypes m; and m;
that are the nearest neighbors to x(t) are now updated simul-
taneously. One of them (i, for example) must belong to the
correct class and the other to a wrong class, respectively. Thus,
the learning rules of the LVQ2.1 algorithm are given by

m;(t+1) = my(t) — a(t)x(t) —m,(t)], (6)
m;(t+1) = m;(t)+a@)x() -m;@)], @)
where x(¢) must satisfy the following condition:
d; d; 1—w
(d d)>s wheres:lJriw7 ®)

where d; and d; are the Euclidean distances of x(¢) from m,
and m;, respectively. A relatively ‘window’ width from 0.2 to
0.3 is recommended.

LVQ-3 [1]: For scenarios in which x(t), the nearest prototypes
m; and m; belong to the same class, the following updating
rule is applicable:

my(t + 1) = my(t) + ea(t)[x(t) — my(t)], )

for k € {i,j}, with x falling into the ‘window’. In a series
of experiments carried out in [1], feasible values of € ranging
from 0.1 to 0.5 were found, relating to w = 0.2 or 0.3. The
optimal values for € seems to depend on the size of the window,
being smaller for narrower windows. An important feature of
the LVQ3 algorithm is that it is self-stabilizing, in the sense
that the optimal placements of the prototypes do not change
in continued learning.

Soft LVQ [15], [16]: The Soft LVQ algorithm is based on
a statistical modeling of the given data distribution, i.e. the
probability density is described by a mixture model. It is
assumed that every component j of the mixture generates data
which belongs to only one of the K classes. Following [17],
the probability density of the data is approximated by

P =y Y

1=1 j:class(m;)=w;

P(j)p(x7), (10

where >, P(j) = 1 and the conditional density p(x|j) is a
function of the prototype m;. A possible choice is the normal-
ized exponential form p(x|j) = K(j) - exp{f(x,m;,07)}. A
Gaussian mixture is assumed in [15] with K(j) = (2707 )=
p/2) and f(x,mj,0?) = —d(x,m;), where d(-,-) is the
squared Euclidean distance, and every component is assumed
to have equal variance 02 = o2 and equal prior probability
P(j) = 1/M, ¥j.

Thus, Soft LVQ maximizes the following likelihood ratio

N
p(xl’wl|W
L= 11
ll_[l p(x | W) an

with respect to the prototype locations by means of gradient
ascent. p(x;,w;|W) is the probability density that sample x;
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is generated jointly with a component of the correct class w;.
This local density corresponds to the inner sum in Eq. (10). The
Soft LVQ learning rule is obtained by taking the derivatives of
the cost function E' = log(L) with respect to m; as follows.

1) If class of x(t) = wj, then

Amy(t) = %(Py(jIX(t))—P(j\X(t)))(X(t)—mj(t))~

12)
2)  If class of x(t) # wj, then

am, (1) = =8 P () x(t) — my (1)), (13

where a1 > 0 is the learning rate, and P,(j|x(¢)) and

P(j|x(t)) are assignment probabilities given, respectively, by
exp f(x(t), my, 0?)

Zi:class(m,-):y exp f(X(t), my, 02)

Py (jx(t)) = (14)

and
€xXp f(X(t)a my, 02)

2oiexp f(x(t), my, 0%)

with respect to one example (x,y). As expected, the update
rules reflect the fact that prototypes with class(m;) = y must
be attracted by the training sample, while prototypes carrying
any other class label must be repelled.

P(jlx(t) = (15)

It is worth noting that the performance of the Soft LVQ
algorithm highly depends on the hyperparameter o2, since it
determines the value of the assignment probabilities as can
be seen in Egs. (14) and (15). Also, it directly controls the
strength of the attractive and repulsive forces in the learning
equations (12) and (13), respectively.

In the limit 02 — 0, the soft LVQ algorithm reduces to a
learning-from-mistakes scheme, i.e. only in case of erroneous
classification, the closest correct and incorrect prototype are
updated, behaving much similar to the original LVQ2 algo-
rithm. In the Soft LVQ, however, a larger number of prototypes
is adapted at each learning step. In fact, all training samples
lying in an active region around the decision boundary cause
an update of the prototype constellation.

LVQ with Training Count (LVQTC) [18]: LVQTC repre-
sents a modification of the original LVQ scheme by attributing
training counters to each neuron, which record its training
statistics. The additional neuron attributes are exploited during
training and classification. During training, they help to replace
(i.e pruning) neurons with poor training performance and to
create new neurons when they re needed. During classification,
they provide an estimate of the reliability of the classification
given by each neuron.

An important consequence of keeping track of the training
count for each neuron is that he number of neurons assigned
to each class is no longer required to be proportional to
the global probability for the class, as in standard LVQ.
In the latter the density of neurons of each class in data
space represents the only ingredient to (statistically) control
classification in overlapping regions. In LVQTC, this role
is largely taken over by the training counters. That can be
exploited by assigning relatively few neurons to classes which
are concentrated in small regions of the data space, and more

neurons to classes which are spread out over large regions.
In this way, with a given total number of neurons, one can
better represent the shapes of the class distributions. Due to
the lack of space, we omit the technicalities of the LVQTC
algorithm implementation. The interested reader are referred
to the original paper [18].

III. THE PROPOSED APPROACH

In this section we firstly describe the DE algorithm as stated
in Das & Suganthan [19]. Then, we introduce our scheme for
designing prototype-based classifiers based on the automatic
clustering procedure proposed by Das et al. [3].

A. Basics of Differential Evolution

Differential Evolution (DE) [7] is a population-based global
optimization algorithm that uses a floating-point (real-coded)
representation. The ¢-th individual vector (chromosome) of
the population at generation ¢ with d components, defining
its dimension, can be simply represented as a vector of real-
numbers as

Zi(t) = [Zi71(t) Zi72(t) Zi7d(t)]. (16)

For each individual vector z,(t) that belongs to the current
population, DE randomly samples three other individuals,
ie., z;(t), z(t), and z,,(t), from the same generation, with
distinct k, 4, [, and m. It then calculates the (component-wise)
difference of z;(t) and z;(t), scales it by a scalar F (usually
F € [0,1]), and creates a trial offspring u;(¢) by adding the
result to z,,(¢). In vector notation, we have

() = 2 (1) + F(zi(t) - z(t)). a7

A crossover operation is carried out component-wise with
z,(t) (parent vector) and u;(¢) (trial vector) in order to produce
offspring z (¢). It is implemented component-wise as follows:

Zﬁﬂ:{mwxlwej

zj(t), otherwise

where z;(t) and wu;;(t) refer to the j-th element of the vectors
zi(t) and u;(¢), respectively. 7 is the set of element indices
that will undergo perturbation (or in other words, the set of
crossover points). Different methods can be used to determine
the set 7. The algorithm of the binomial crossover, one of the
most frequently used in practice, is presented below.

(18)

Algorithm 1 Selecting crossover points for set J

1: procedure BINOMIAL CROSSOVER(d, p;-)
j*~U(1,d)

0 T« JUlt)

4 for each j€{1,2,...,d} do

5 if U(0,1) < p, and j # j* then
6: J <+~ JuU {]}
7

8

9:

end if
end for
end procedure

In binomial crossover, the crossover points are ran-
domly selected from the set of possible crossover points,
{1,2,...,d}, where d is the chromosome dimension. In this
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algorithm, p, is the crossover rate, i.e. the probability that the
considered crossover point will be included. The larger p,, the
more crossover points will be selected compared to a smaller
value. This means that more elements of the trial vector u;(t)
will be used to produce the offspring, and less of the parent
vector z ().

Because a probabilistic decision is made as to the inclusion
of a crossover point, it may happen that no points may be
selected, in which case the offspring will simply be the original
parent zg(t). To enforce that at least one element of the
offspring differs from the parent, the set J is initialized to
include a randomly selected point j*.

Finally, selection operator is applied to determine which of
the parent or the offspring will survive to the next generation.
This is implemented as follows:

), TS 0) > fal)
a(f+1) = { anlt), I F(z,(1)) < flzn(t))

where f(-) is the objective function to be maximized.

19)

B. A Prototype-Based Classifier Using DE

The prototype-based classifier to be proposed in this section
is optimally designed by means of DE. The proposed approach
is highly motivated by recent successful applications of the
DE algorithm to partitional clustering as surveyed in [3], [20].
More specifically, the design procedure can be viewed as an
extension to supervised pattern classification of the automatic
clustering approach introduced by Das et al. [3], henceforth
denoted by DAK (from Das-Abraham-Konar) method. The
details of the DAK method and its extension proposed in the
current paper are given in the following paragraphs.

In the DAK method, each chromosome ¢ in the population
defines a clustering solution with a certain number of cluster
centers optimally positioned in the pattern space. One of the
features of the DAK method is to automatic determine the
optimal number of cluster centroids (or prototypes) in an
unsupervised scenario.

For this purpose, they specified a chromosome whose first
Knar components define activation threshold values associ-
ated with exactly K4, cluster centers. For pattern vectors of
dimension p, the remaining p * K,,,, components of the i-th
chromosome contain the corresponding cluster centers for that
individual. Thus, the i-th chromosome of the DAK method is
coded as follows:

z;(t) = [Tin Tip -+~ %)mr

(20)

For example, let T; ; be the activation threshold of the
j-th cluster centroid of the i-th chromosome. Thus, the j-th
cluster center in the ¢-th chromosome is active or selected for
partitioning the associated data set if T; ; > 0.5. Otherwise, if
T; ; < 0.5, the particular j-th cluster is inactive.

Ty kee | m’ my? - m

During the course of execution of the DE algorithm, when
a new offspring chromosome is created according to (18) and
(19), at first, the activation threshold values are used to select
the active cluster centroids.

If due to mutation some threshold 7T ; in an offspring
exceeds 1 or becomes negative, it is forced back either to 1 or

0, respectively. Also, if it is found that all activation thresholds
are smaller than 0.5, one must randomly select two thresholds
and reinitialize them to a random value between 0.5 and 1.0
in order to have always a minimum number of two clusters.

In LVQ-like supervised classifiers, the prototypes are la-
beled and multiple prototypes per class are allowed. Thus,
in order to extend the DAK method to allow the design of
prototype-based classifiers we need to define the maximum
allowed number of prototypes per class, L,,q,. In general,
1 < Lyaz < nj, where n; is the number of training examples
of the i-th class. Then we must define activation threshold
values for the prototype within a class.

In the extended DAK (EDAK) method, considering the i-
th chromosome in the population, the first L,,,, activation
threshold values correspond to L,,,, prototype vectors of the
first class wy:

. T(Wl)

TEM) = [Tz(uljl) Tz’(;l) le] € Rbmes, (21)

with the corresponding set of L,,,, prototypes given by

WEWl) _ [mguil) m(_gl) oo m@r) | e RP Lmaz  (22)

t,Lmax
where p is the dimension of the pattern vectors.

Similarly, the subsequent L., activation threshold values
correspond to L,,,, prototype vectors of the second class ws,
ie.
ooplw2)

L bmax

T g 1)

7 7,1

] € REmas (23)
with the corresponding set of L,,,, prototypes given by

W’sz) = [mg"iz) m,f(:;z) e m(w2) ] c RP‘Lm,am. (24)

%, Lmax

This coding process is repeated until the last class wg
components:

Twrs) _ [T(WK) 7lwr) o pler) | e RLrnaz’ (25)

i 2,1 7,2 4, Lmax
with the corresponding set of L,,,, prototypes given by

W(WK) _ [m(wK) (u;K) (wk)

i1 My ML as

] € RPEmes (26)

Grouping together all the definitions from Egs. (21) to (26),
the i-th chromosome at generation ¢ coding a prototype-based
classifier is represented as follows:

2;(t) = [TV | o | T | W) | wiee)) @)

From the exposed, the total dimensionality of the chromo-
some z;(t) is

d = dim(zi (t)) Lpae + K -p- Lipga,

K- Lmaa: ) (1 +p) (28)

As a typical example, the hypothetical chromosome shown
in Figure 1 corresponds to a prototype-based classifier for a
two-dimensional (i.e. p = 2), 2-class problem (i.e. K = 2),
Ly = 3. with 3 prototypes assigned to the first class and
2 prototypes assigned to the second class. More examples on
real-world datasets will be shown in Section IV.
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V

Activation thresholds

Fig. 1.

3 prototypes — Class 1
(all are active)

3 prototypes — Class 2
(only two are active)

Hypothetical chromosome structure for the EDAK method, corresponding to a prototype-based classifier for a two-dimensional problem. The resulting

classifier has 3 prototypes assigned to the first class and two prototypes to the second class. Note that the second prototype of the second class (i.e. mEL‘;)) is

not active because its threshold activation is below 0.5.

C. Our Fitness Function

Since we are interested in building efficient pattern clas-
sifiers, it i1s natural to use a fitness function that takes into
consideration a measure of the classification performance, such
as the recognition rate. However, it is interesting to have the
highest classification rate which is possible to achieve using
the smallest number of prototypes. Bearing this in mind, the
following fitness function is used by the EDAK method for
the evaluation of the chromosomes at generation t:

f(zi(t)) = CC(zi(t)) — A~ Q(z(t)), (29)

where C'C(z;(t)) is the correct classification rate of the i-th
chromosome at generation ¢ for the validation set and (Q)(z;(t))
is the number of active prototypes of the classifier associated
with the i-th chromosome.

The penalty factor A > 0 is used to control the influence of
the number of active prototypes on the fitness function. Since
the goal of the EDAK method is to maximize f(z;(t)), high
(small) values of \ tend to produce classifiers with small (high)
numbers of prototypes. The final solution to be found by the
EDAK method is a compromise between a good classification
rate and a sufficient number of prototypes. The final solution
found by the EDAK method will be referred to from now on
as the LVQ-DE classifier.

It is worth mentioning that X\ is a hyperparameter of the
EDAK method and its value affects considerably the perfor-
mance of the proposed approach. Obviously, more complex
classification problems (i.e. with nonlinear, disjoint or highly
overlapping decision boundaries) probably demand more pro-
totypes and, hence, smaller values for the hyperparameter .
By means of comprehensive experimentation, we have found
that values in the range from 0.0025 to 0.0075 led to good
performances of the EDAK method on the evaluated datasets.

IV. SIMULATIONS AND DISCUSSIONS

In this section we report the results of the evaluation of the
performance of the EDAK method in building efficient LVQ-
DE classifiers. For the sake of completeness, we compare the
performance of the proposed LVQ-DE classifier with those
achieved by the prototype-based classifiers described in Sec-
tion II. It worth mentioning that the performance comparison
is not totally fair because the only two approaches capable
of determining automatically the number of prototypes is the
proposed EDAK method and the LVQTC algorithm [18].

All the classifiers were implemented in Matlab R2012a
(64 bits) running under Ubuntu 14.04 LTS on a notebook
equipped with microprocessor Intel Core i5-2500K, 3.3GHz,
with two parallel RAM units model Kingston HyperX Blu 4GB
1600MHz DDR3.

The classifiers were evaluated on five benchmarking
datasets available for download from the public internet
repository of the University of California at Irvine
(http://archive.ics.uci.edu/ml/). The chosen
datasets were the Vertebral Column, Glass Identification,
Heart Disease Cleveland, Breast Cancer Wisconsin and
Vehicle Silhouettes. These datasets are briefly describe in the
following paragraphs.

Vertebral Column (N = 310, p = 6, K = 3): The Vertebral
column dataset contains six relevant features (biomechanical
attributes), correspond to the following parameters of the
spino-pelvic system: 1) angle of pelvic incidence, 2) angle of
pelvic tilt, 3) lordosis angle, 4) sacral slope, 5) pelvic radius
and 6) grade of slipping. The data set has three classes and
the objective is to classify each pattern vector into normal (100
objects), disk hernia (60) or spondilolisthesis (150 objects).

Glass Identification (N = 214, p = 9, K = 6): The data were
sampled from six different types of glass: 1) building windows
float processed (70 objects); 2) building windows nonfloat
processed (76 objects); 3) vehicle windows float processed (17
objects); 4) containers (13 objects); 5) tableware (9 objects);
and 6) headlamps (29 objects). Each type has nine features: 1)
refractive index; 2) sodium; 3) magnesium; 4) aluminum; 5)
silicon; 6) potassium; 7) calcium; 8) barium; and 9) iron.

Heart Disease Cleveland (N = 297, p = 13, K = 2):
This database contains 13 attributes: 1) age, 2) sex, 3) chest
pain type, 4) resting blood pressure, 5) serum cholesterol, 6)
fasting blood sugar, 7) resting electrocardiographic results, 8)
maximum heart rate achieved, 9) exercise induced angina, 10)
ST depression induced by exercise relative to rest, 11) the slope
of the peak exercise ST segment, 12) number of major vessels
colored by fluoroscopy, and 13) type of defect (normal, fixed,
or reversable). The data set has two classes and the goal is
to distinguish presence (137 objects) from absence (160) of
heart disease in the patient. The original dataset has N = 303
objects, but six objects with missing attributes were eliminated.

Breast Cancer Wisconsin (N = 683, p = 9, K = 2):
The Wisconsin breast cancer database contains nine relevant
features: 1) clump thickness; 2) cell size uniformity; 3) cell
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TABLE 1. RESULTS ON THE DATASET Vertebral Column.

# Prototypes

Classifier Median | St.Dev.
w1 wo w3
MDC 74.19 4.80 1 1 1
OLVQ 75.80 5.58 5 5 5
LVQ-2.1 75.80 4.75 15 (15| 15
LVQ-3 74.19 5.64 1515 | 15
Soft LVQ 69.35 4.51 30 | 30 | 30
LVQTC 70.96 5.02 15|15 | 15
LVQDE
() = 0.005) 77.42 4.03 2 3 2

shape uniformity; 4) marginal adhesion; 5) single epithelial cell
size; 6) bare nuclei; 7) bland chromatin; 8) normal nucleoli;
and 9) mitoses. The data set has two classes. The objective
is to classify each data vector into benign (239 objects) or
malignant tumors (444 objects).

Vehicle Silhouettes (N = 946, p = 18, K = 4): This dataset
contains 946 instances divided into 4 classes (OPEL, SAAB,
BUS and VAN). The purpose is to classify a given silhouette
as one of those four types of vehicle, using a set of 18 features
intended to characterize shape, such as circularity, radius ratio,
compactness, scaled variance along major and minor axes, etc.
The vehicle may be viewed from one of many different angles.

For tests with using any of the aforementioned datasets, the
available samples were randomly divided into training (60%),
validation (20%) and testing (20%) sets. The training and
validation sets are used to determine the best hyperparameters
for a given classifier (e.g. training rate and window length w).
For this purpose, the holdout scheme is repeated for 100 runs,
with the training and validation instances chosen randomly at
each run.

A. Parameters of the Evaluated Classifiers

Common parameters: All the evaluated classifiers (except
for the MDC classifier), including the ones trained along the
course of the generations of the EDAK method, are trained for
200 epochs. Furthermore, the maximum number of prototypes
per class (L4, ) varies with the dataset. Our approach is to set
it initially to half the number of instances of the largest class
(i.e. the one with the largest number of instances). Finally, all
the numerical results shown in tables correspond to average
values over 100 executions of a training/testing cycle for each
classifier of interest.

OLVQ Classifier: For this classifier, the initial value of the
optimized learning rate «; is set to 0.3 (see Eq. (5)). Along
the course of learning, the value of «.(t) is reset to 0.3 if it
goes above 1.

LVQ-2.1 and LVQ-3 classifier: For these classifiers, the
learning rate «(t) is decreased linearly along the iterations
from 0.1 to 0.001. The window length w is set to 0.25.

Soft LVQ classifier: Following the algorithm presented
in [15], the parameter o2 is reduced exponentially at each
epoch ' as 0 ("+1) = B(t')o(t'), where the decay parameter
is itself annealed as B('+1) = B(t')7. We set 0(0) = 1.0,
B(0) = 0.9 and v = 1.1. The learning rate «(t) used in Egs.

TABLE II. RESULTS ON THE DATASET Glass Identification.
Classifier Median St.Dev. # Prototypes
w1 w2 w3 w4 ws we
MDC 75.00 5.19 1 1 1 1 1 1
OLVQ 87.5 5.19 12 12 12 12 12 12
LVQ-2.1 87.5 5.40 8 8 8 8 8 8
LVQ-3 90.0 5.03 12 12 12 12 12 12
Soft LVQ 76.25 5.14 12 12 12 12 12 12
LVQTC 87.5 5.53 12 12 12 12 12 12
LVQDE
(A = 0.0075) 92.50 4.60 1 3 1 1 1 2

(12) and (13) is decreased linearly along the iterations from
0.1 to 0.001.

LVQTC classifier: This classifier in particular has a great
number of training parameter to specify. Following the algo-
rithm presented in [18], the learning rate parameters av,- and au,
are initially set to 0.1, but they are monotonically decreased
for each successive epoch by a factor F' = 0.01. The cutoff
parameter P,,., for neuron pruning/creation is set to 5. At
the end of the last epoch, no neuron pruning and creation
is made. The parameters femar = 0.976, P = 7.8636
and D,,,. = 0.8643 are needed in order to determine if
the classification by the nearest neuron can be considered
unreliable.

LVQDE classifier: The population size is set to 50, the
crossover rate is set to p, = 0.6 and the scaling parameter
F is set to 0.1. The following values of the penalty factor
A of the fitness function were tested: {0.25,0.5,0.75and1.0}.
Best value for each dataset is determined with the help of the
corresponding validation set.

B. Results

The first numerical results comparing the performances
of the proposed LVQDE classifier with 6 other state-of-the-
art PBCs described in Section II are shown in Table I for
the Vertebral Column dataset. As mentioned previously, the
results shown in tables corresponding to average values over
100 executions of a training/validation/testing cycle for each
classifier of interest. In these tables we report the values of
median of the classification rate over the 100 executions, the
corresponding standard deviation and the final optimal number
of prototypes'. As can be seen, the performance of the LVQDE
classifier was clearly the best among the evaluated classifiers.
In addition, this performance was achieved with the smallest
number of prototypes among all the LVQ-based classifiers. The
results achieved by the two best classifiers are highlighted in
boldface for the sake of comparison.

In Table II we report the results of the second performance
comparison experiment, this time using the Glass Identification
dataset. Again, the proposed LVQDE classifier clearly per-
formed better than the other six ones. Again, the final number
of prototypes of the LVQDE classifier is very small, when
compared to the other LVQ-based classifiers.

The results of the third and fourth sets of computer
experiments are shown in Tables III and IV, respectively.
Results in Table III are for the Heart Disease Cleveland dataset,

1Of course, for the MDC classifier, by definition, there is always one
prototype per class which is the centroid of the class.
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TABLE III. RESULTS ON THE DATASET Heart Disease Cleveland.

Classifier || Median | St.Dev. # Prototypes
w1 )
MDC 81.48 5.15 1 1
OLVQ 81.48 4.86 5 5
LVQ-2.1 77.77 5.09 15 15
LVQ-3 79.62 4.68 10 10
Soft LVQ 83.33 5.09 5 5
LVQTC 79.62 5.29 5 5
LVQDE
(A = 0.01) 83.33 4.48 1 1
TABLE IV. RESULTS ON THE DATASET Breast Cancer Wisconsin.
Classifier Median | St.Dev. # Prototypes
w1 wWo
MDC 96.29 1.79 1 1
OLVQ 96.29 1.50 10 10
LVQ-2.1 96.66 1.48 10 10
LVQ-3 97.03 1.34 10 10
Soft LVQ 96.66 1.28 10 10
LVQTC 96.29 2.41 5 5
LVQDE
(A = 0.005) 97.03 1.14 1 1

while the results reported in Table IV are for the Breast
Cancer Wisconsin dataset. An analysis of these tables reveals
that the performances of the LVQDE classifier in terms of
median values of the classification rate are equivalent to the
Soft LVQ classifier (Table IV) and to LVQ-3 classifier (Ta-
ble IV). However, it is worth pointing out that the classification
performances of the LVQDE classifier were achieved using
fewer numbers of prototypes. Furthermore, it is also worth
emphasizing that the optimum setting of training parameters
of the Soft LVQ and the LVQ-3 classifiers, including the
number of prototypes per class, were achieved after exhaustive
rounds of experimentation with the data. For the LVQDE
design, however, the parameter setting is relatively loose, in
the sense that the user should not dedicate too much time
to it, letting for example the evolution process find optimum
values for the number of prototype per class. This is clearly
another advantage of the proposed EDAK method over the
other prototype-based classifiers evaluated in this paper.

For the sake of completeness, in Figure 2 we show the
convergence of the proposed EDAK method along the gener-
ations of the DE algorithm for the Wisconsin breast cancer
dataset. For each generation, we show the fitness values of the
individuals that produced the best LVQDE classifier and the
worst LVQDE. We also show the average fitness value of that
particular generation in order to quantify how far is in average
a typical individual is from the best and worst ones. As can
been seen, the observed convergence process is extremely well-
behaved, stabilizing around 100 generations with practically
the best, worst and average fitness values converging to the
same value except for minor random fluctuations).

Finally, the results of the last set of computer experiments
are shown in Table V. This experiment is very interesting in the
sense that it shows that a dramatically decrease in the number

TABLE V. RESULTS ON THE DATASET Vehicle Silhouettes.
Classifier Median | St.Dev. # Prototypes
w1 W2 w3 w4y
MDC 4431 3.19 1 1 1 1
OLVQ 67.06 2.95 20 | 20 | 20 | 20
LVQ-2.1 59.88 3.85 20 | 20 | 20 | 20
LVQ-3 64.67 2.68 10 | 10 | 10 | 10
Soft LVQ 52.69 4.27 10 | 10 | 10 | 10
LVQTC 56.58 3.04 10 | 10 | 10 | 10
LVQDE
(\ = 0.0075) 65.86 2.78 2 2 2 2
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Fig. 2. Evolution of the fitness values of the best and worst individuals of the
population along the generations of the DE algorithm for the Breast Cancer
Wisconsin dataset. Evolution of the average fitness value of the population is
also shown.

of prototypes found automatically by the LVQDE classifier
results in a performance comparable to that of the best LVQ-
based classifier tuned manually (the OLVQ classifier, in this
case).

V. CONCLUSIONS

In this paper we proposed the EDAK method for the
efficient design of prototype-based classifiers using the differ-
ential evolution (DE) global optimization method. The EDAK
method can be viewed as an extension to supervised pattern
classification of the automatic clustering approach introduced
by Das et al. [3], denoted by DAK (from Das-Abraham-Konar)
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method, for convenience. By means of exhaustive computer
simulations on four benchmarking datasets, we have shown
that the proposed EDAK method in providing an efficient
prototype-based classifier (named LVQDE) consistently out-
performs the state-of-the-art prototype-based classifiers, among
them several ones belonging to the LVQ family of neural
network classifiers.

Currently, we are evaluating the EDAK method and
the resulting LVQDE classifier on additional benchmarking
datasets in order to have a more comprehensive notion of
its performance for different classification scenarios. Since
we evaluated only one typical configuration of the DE al-
gorithm (i.e. DE/rand/1/bin), we are also testing the perfor-
mance of the EDAK method for different configurations, such
as DE/rand/1/exp, DE/best/1/(bin or exp), and DE/rand-to-
best/n/(bin or exp).
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