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Abstract .  We propose an unsupervised neural modelling tech- 
nique, called Vector-Quantized Tempoml Associative Memory (VQ- 
TAM),  which enables Kohoneu’s self-organizing map (SOM) t o  ap- 
proximate nonlinear dynamical mappings globally. A theoretical 
analysis of the V Q T A M  scheme demonstrates that the approxima- 
t ion e r ro r  decreases as the SOM training proceeds. T h e  SOM is 
compared w i t h  standard MLP and FU3F networks in the forward 
and inverse identification of a hydraulic actuator. The simulation 
results produced  b y  the S O M  are as accurate as those produced  
b y  the MLP network, and better than those produced b y  the FU3F 
network; both the MLP and the RBF being supervised algorithms. 
The SOM is also less sensitive to weight initialization than MLP 
networks. The paper is concluded with a brief discussion on the 
main proper t ies  of the VQTAM approach. 

1. I N T R O D U C T I O N  

Dynamic system identification (or modelling) is the discipline interested in 
building mathematical models of nonlinear systems, starting from experimen- 
tal time series data, measurements, or observations [7]. Typically, a certain 
linear or nonlinear model structure which contains unknown parameters (i.e. 
one puts forward a certain parameterization) is chosen by the user. The r e  
sulting model of a system is often very important for analysis, simulation, 
prediction, monitoring, diagnosis, and control system design. More recently, 
artificial neural network models have been successfully applied to  the identi- 
fication and control of a variety of nonlinear dynamical systems [5, 11, 4, 81, 
such as chemical, economical, biological or tecnological processes (or hlants). 
Such achievements are due to  a number of results showing that supervised 
feedforward architectures, such as the multilayer perceptron (MLP) or the 
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radial basis function (RBF) networks, can approximate arbitrarily well any 
continuous input-output mapping (see [5] for a review). 

In this paper, we propose a system modelling technique which uses unsu- 
pervised neural networks for function approximation, instead of the usual su- 
pervised ones (MLP and RBF) [ll]. This technique, called Vector-Quantized 
Temporal Associatiwe Memory (VQTAM), shows that the Self-Organizing 
Map (SOM) [6] can be successfully used to approximate nonlinear input- 
output mappings globally. Computer simulations illustrate this approxima- 
tion ability of the SOM using the VQTAM approach and compare the ob- 
tained results with those produced by MLP and RBF networks and linear 
models. 

The remainder of the paper is organized as follows. In Section 2, we 
briefly introduce the function approximation problem. Section 3 introduces 
the VQTAM tecnique and its main properties. It is also shown how the VQ- 
TAM can be used together with SOM in the forward and inverse identification 
problems. Section 4 brings a theoretical analysis of the VQTAM approach. 
Section 5 compares the SOM with other linear and nonlinear methods in 
the forward and inverse identification of a hydraulic actuator. The paper is 
concluded in Section 6. 

2. NONLINEAR FUNCTION APPROXIMATION 

In this paper, we a sume  that the systems of interest are governed by the 
following nonlinear discrete-time difference equation [SI: 

y(t + 1) = f[y(t), . . . , y(t - nu + 1); ~ ( t ) ,  . . . ,u(t - nu + l)]. (1) 

Thus, the system output y E W at time t + 1 depends, in the sense defined 
by the nonlinear map f(.), on the past nu output values and on the past nu 
values of the input U E Pp. In many identification and control problems, it 
is also desirable to  approximate the inverse dynamics of a nonlinear plant': 

u(t) = f-'[y(t + l),y(t), . . . ,y(t - nu + 1); u(t - I), . . . , u(t - nu + l)]  
(2) 

As pointed out in the introductory section, MLP and RBF networks have 
been the most commonly used model structures with the goal of providing 
an approximation for the nonlinear function f(.) or for its inverse(s) f-'(.), 
using only the available input-autput data, {u(t),y(t)}, t = 1,.  . . , N. This 
occurs in part because the identification problem can be easily set up in terms 
of a supervised training scheme. Our goal, however, is to  devise a strategy 
that enables the SOM to approximate input-output mappings. 

Simply put, the SOM is an unsupervised neural algorithm designed to  rep- 
resent neighborhood (spatial) relationships among vectors of an unlabelled 

'When used far direct-inverse control, the term y(t+  I) in (2) is replaced by a reference 
signal, r(t + I ) ,  which is usually assumed to be available at time t [SI. 
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data set [6]. The neurons in the SOM are put together in an output layer, 
A, in one., twD- or even three-dimensional arrays. Each neuron i E A has a 
weight vector wi E 92" with the same dimension as the input vector x E 92". 
The SOM algorithm was originally designed to learn static input-output m a p  
pings [13], usually described by y(t) = g ( u ( t ) ) ,  in which the current output 
y(t) depends solely on the current input u(t) ,  i.e., no memory for past inputs 
and outputs is available. For the SOM to he able to learn dynamic mappings, 
it must have some type of short-term memory (STM) mechanism [I, 2, 31. 
That is, the SOM should be capable of temporarily storing past information 
ahout the system input and output vectors. By using STM mechanisms, 
such as delay lines, the SOM algorithm is used to approximate the nonlinear 
function f(.) or its inverse f-'(.), 85 we demonstrate next. 

3. TEMPORAL ASSOCIATIVE MEMORY USING THE SOM 

In order to approximate nonlinear dynamic mappings, the input vector to the 
SOM, x ( t ) ,  is augmented so that it has from now onwards two parts. The first 
part, denoted as x'"(t), carries data about the input of the dynamic mapping 
being learned. The second part, denoted x""'(t), contains data concerning 
the desired output of this mapping. The weight vector of neuron i has its 
dimension increased accordingly. These changes are written as: 

Depending on the variables chosen to build the vectors xi" ( t )  and x""'(t) 
one can use the SOM algorithm to learn the forward or the inverse dynamics 
of a nonlinear plant. For example, if one wishes to approximate the forward 
dynamics in (1) the following definitions apply: 

x'"(t) (4) 
Xo"t(t) = y(t + 1) (5) 

= [y(t), . . . , y(t - ny + 1); u(t) ,  . . . , u(t - n, + I)] 

If the interest is in inverse identification, then we define: 

x'"(t) = [y ( t+ l ) ,y ( t ) ,  ... , y ( t - n , + l ) ;  
u(t - I), . . . ,u(t - n. + l)] (6) 

( t )  = 4) (7) XO"t 

During training, the winning neurons are found using only the portion cor- 
responding to x'"(t): 

i'(t) = argmin{[/x'"(t) - wp(t)ll} (8) 

AwY(t) = a( t )h( i* , i ;  t ) [x '"( t )  - w?(t)] (9) 
Awp"'(t) = a(t)h(i*,i; t)[xoUt(t) - wp"'(t)] (10) 

* E d  

In updating the weights, both x " ( t )  and xoUt ( t )  are used: 
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where a(t) is the learning rate and h( i* , i ; t )  is a Gaussian neighborhood 
function given by h( i* , i ; t )  = exp (-llr;(t) - r;.(t)llZ/u2(t)), where ri(t) and 
r;. (t) are, respectively, the locations of neurons i and i' in the output ar- 
ray. The variables a(t) and u(t)  decay exponentially with time: a(t) = 
aQ (aT/a0)('lT) and o(t)  = UQ ( U T / U ~ , ) ( ~ ' ~ ) ,  where a0 and UQ denote their 
initial values, while (IT and UT are the final ones, after T training iterations. 

Note that the learning rules in (9) and (10) follow the usual formula- 
tion of the SOM: the first rule acts on the input and the second one acts 
on the output of the mapping being learned. The underlying idea is that, 
as training proceeds, the SOM algorithm learns to associate, in a topology- 
preserving way, the outputs xoUt(t) of the mapping with the corresponding 
inputs x'"(t). Thus, this technique will be referred t o  as Vector-Quantized 
Tempoml Associatiwe Memory (VQTAM). It is also worth emphasizing the 
difference between this unsupervised strategy and that one used for training 
supervised networks. In MLP and RBF networks, the vector x'"(t)  is pre- 
sented to the network input, while the x""'(t) is used at the network output 
to compute an error signal that guides learning. In other words, supervised 
networks use ewur-based learning, that is, they calculate an explicit error be- 
tween the output they generate and the desired output (teaching signal), and 
learning is designed to reduce the error. The VQTAM scheme instead allows 
unsupervised neural networks, such as the SOM, to learn t o  associate in- 
puts and outputs, and the learning mechanism essentially calculatm different 
forms of associations or correlations. 

A trained SOM network can then be used to obtain estimates for the 
output of the learned mapping from the output portion of the weight vector, 

i ( t  + 1) E wCt(t) (forward w e )  or i i ( t )  wCt(t) (inverse case) (11) 

where in both w e s  the winning neuron, i'(t), is found as defined in (8). The 
estimation process continues for M steps until an entirely new series is built 
from the estimated values. 

w y y t ) ,  as follows: 

4. MATHEMATICAL ANALYSIS OF THE VQTAM 

The goal of this section is to present a mathematical analysis of the con- 
vergence process of the SOM algorithm using the VQTAM approach. More 
specifically, we want t o  know if the additional learning rule in (10) really al- 
lows the SOM to learn an input-output mapping asymptotically. This analy- 
sis, based on the stochastic approximation by Robbins and Monro [lo], aims 
at showing that the estimation (or approximation) error decreases as the 
SOM training proceeds, converging eventually to a stable state. For clarity's 
sake, we assume that the function to he approximated is given as in (1) and 
the only source of information available is the time series of measured input- 
output data, {u(t),y(t)}. t = 1,. . . , N. As shown in Section 3, the SOM 
can be used to provide an approximation, p ( . ) ,  of the unknown nonlinear 
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function f(.) using an associative memory approach. In this case, the SOM 
provides an estimate y(t + l), given an unforeseen vector x'"(t) ,  as follows: 

i ( t  + 1) w$'(t) = P[x'"(t); i*( t ) ]  (12) 

where the explicit representation of the winning neuron i'(t) in (12) empha- 
sizes the associative nature of the VQTAM approach, in which i'(t) is the 
element responsible for linking the input and output portions of the learned 
mapping. Then, we define an absolute value for the estimation error: 

E ( t )  = Ily(t + 1) - y(t  + 1)11 I IIX""t(t) - wp.yt)ll (13) 

Through the definition of this error measure we can now prove that the 
proposed unsupervised function approximation scheme is equivalent to an 
implicit error-based learning procedure. 

One of the main features of the SOM algorithm is the cooperation be- 
tween the winning neuron i*(t) and its neighbors through the neighborhood 
function h(i*,< t). Without loss of generality, we assume that the neighbor- 
hood function is time-invariant. To take into account this cooperation during 
the function approximation process, we define the following quantity: 

L L 
J(t) = Eh( i ' , i ; t )~ ' ( t )  = Eh( i ' , i ; t ) l l xou t ( t )  - w4"'(t)ll2 (14) 

;=I i= I 

where L is the number of neurons in the SOM. Thus, the network convergence 
can be evaluated through the mean expected squared estimation error as 
defined by the following functional: 

where it is assumed that the expectation value is taken over an infinite se 
quence of stochastic samples X={xoUt(t)}, t = 1 ,2 , .  . .; p(X) means the joint 
probability density function of the whole input sequence X over which the 
estimator is formed, and dX is a "volume differential" in the space in which 
X is formed. The time index t is omitted for clarity in (15) because it is 
defined implicitly in the temporal order of the sequence X. 

Since the probability density function p(X) is unknown and the sequence 
X is finite in reality, we shall resort to Robbins-Monro stochastic approxima- 
tion technique for the minimization of J ,  i.e., to find an optimal value, %put ,  
for the parameter wp"l. The basic idea is to try to decrease the function 
J ( t )  at each new step t by descending in the direction of its negative gradient 
with respect to the current parameter vector w;"'(t). The recursive formula 
for the parameter vector wp"' reads 

1 aJ(t) 
W4"'(t+ 1) = wp"l(t) - 

awi 0 
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where the scalar a(t) defines the step size and satisfies CL, a(t) = 00 and 
CEoa2(t) < 00. Considering (14), the partial derivative in (16) is given by: 

The recursive equation in (16) is then written as: 

w;"'(t+ 1) = w;"t(t) +a(t)h(i',i;t)[XOYt(t) - w;"'(t)] (18) 

Equation (18) is exactly the learning rule in (10). Hence, starting from 
arbitrary initial values, w;"'(O), the sequence {w;"'(t)} will converge to  the 
neighborhood of the optimal vector e;"'. 

5. SIMULATIONS 

Figure 1 shows measured values of the valve size (input variable), U E W, and 
the oil pressure (output variable), y E 91, of a hydraulic actuator. As can 
be seen in the oil pressure time series, there are very oscillative behaviors 
caused by mechanical resonances. These data have been used in henchmark- 
ing studies on nonlinear system identification [U]. The SOM, MLP and 
RBF networks are used as nonlinear identification models t o  approximate 
the forward and the inverse nonlinear dynamics of the hydraulic actuator. 
In the forward modelling task,  these three neural nets are also compared 
with the usual linear Autoregressive model with Ezogenous Inputs (ARX): 
c(t  + 1) = 12;' a;y(t - i) + )$;'bjU(t j ) ,  where a; and b j  are the 
coefficients of the model and &(t + 1) is the estimated value for the plant out- 
put ,at time step t + 1. The coefficients..are.computed.by the Least-Squares 
Method [7]. The approximation accuracy is evaluated through the root mean 

square error: R M S E  = & Cz;'(o(t) - wCt(t))2 where o(t)  = y(t + 1) 
or o(t)  = u(t)  depending on the mapping being learned and M is the length 
of the estimated series. The data are presented to  the four models without 
any preprocessing stage. A total number of N = 1024 samples are available 
for both the input and output variables. The first 512 samples are used to 
train the three networks and to  compute the coefficients of the linear ARX 
model, while the remaining 512 samples are used to  validate the four models. 
A training epoch is defined as one presentation of the training samples. For 
all the simulations, i t  is assumed nu = 3 and nu = 2, as suggested in [ll]. 

An onedimensional SOM is simulated in this paper. This network has six 
input units, since dim(x'") + dim(xout) = 5 + 1 = 6, and 500 output neurons. 
The weights are randomly initialized between 0 and 1, and adjusted for 600 
epochs2. The training parameters are the following: a0 = 1.0, a~ = 10W5, 
U,, = 250. oT = and T = 600 x 512 = 3 x lo5. The hest result 
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Figure 1: Measured values of valve position (left) and oil pressure (right). 

generated by the SOM model during validation ( R M S E  = 0.2051), together 
with an evaluation of the influence of the number of training epochs in the 
approximation performance, are shown in Figure 2. One can note that the 
error decays very fast initially, stabilizing around FtMSE=0.20 after just 100 
epochs. The results provided by the linear A M  model were not very good 
(RMSE = 1.0133). 

The MLP network has five input units since dim(x'") = 5, one hidden 
layer with ten neurons and one output neuron. The neurons in the hidden 
layer have hyperbolic tangent transfer functions, while the output neuron 
has a linear transfer function. The MLP network is trained with backpropa- 
gation algorithm with momentum. The values for the learning rate and the 
momentum factor are set to 0.2 and 0.9, respectively. The training is stopped 
if RMSE 5 0.001 or a maximum number of 600 training epochs is reached. 
The RBF~ network also has five input units, an intermediate layer with neu- 
rons with Gaussian basis function, and one output neuron. Following the 

Figure 2: Simulation of the SOM (left) model on validation data and evolution of 
the forward approximation mor with the number of training epochs (right). Solid 
line: simulated signal. Dotted line: true oil pressure. 
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6. DISCUSSION AND CONCLUSION 

Function approximation through neural networks is a research field domi- 
nated completely hy supervised learning paradigms. Only recently the use of 
unsupervised neural networks for dynamic system modelling and control has 
become more common (see [9]). The main differences between the method 
in [9] and the VQTAM is that the latter learns an input-output mapping 
globally, in the sense that only one model structure is used; while the former 
uses several (linear) model structures, each one responsible for modelling a 
localized region of the system's state space. In general, local modelling with 
the SOM produces slightly better results than global modelling. However, 
local modelling demands higher computational efforts than global modelling, 
an issue that may become important in real-time control. Another issue of 
interest is that the MLP and RBF networks define a continuous input-output 
mapping, while the SOM builds a discrete input-output mapping with an in- 
herent quantization error. We are currently working on unsupervised s t ra te  
gies to building a continuous input-output mapping through a continuous 
version of the SOM [13], thus reducing the quantization error. 

The simulations shown in this paper illustrate the potential of the VQ- 
TAM technique. Additional tests should be performed, such as residual anal- 
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ysis of the estimation error, noise and fault tolerance, to demonstrate effec- 
tively the viability of using the SOM algorithm in identification and control 
of nonlinear dynamic systems. Currently, research is being conducted with 
the aim of designing a predictive nonlinear controller using the SOM and the 
VQTAM approach. A quantitative comparison with local modelling schemes 
are also being performed. 
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