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Abstract— In this paper, we evaluate four pattern classifiers
built from the self-organizing map (SOM), a well-known neural
clustering algorithm, in the recognition of faces independent of
facial expression. The design of two of the classifiers involves
post-training procedures for labelling the neurons, i.e. no class
information is used prior to the training phase. The other two
classifiers incorporate class information prior to the training
phase. All the classifiers are evaluated using the well-known Yale
face database and their performances compare favorably with
standard neural supervised classifiers.

Index Terms— Biometrics, self-organizing map, facial expres-
sion, face recognition, pattern classification.

I. INTRODUCTION

Biometrics refers to the identification of an individual based
on his/her physiological characteristics, like a fingerprint,
face, eye, voice or behavior, like handwriting or keystroke
patterns [1]. Because biometric characteristics are unique to
each individual, they can be used to prevent theft of fraud.
Unlike a password or a PIN, a biometric feature is much harder
(if not impossible!) to be lost, stolen, or recreated.

Biometrics has long been an active research field, partic-
ularly because of all the attention focused on public and
private security systems in recent years [2]. The goal of an
automatic identity verification system is to either accept or
reject the identity claim made by a given person. Such systems
have many important applications, such as access control
or transaction authentication. Advances in digital computers,
software technologies, and embedded systems have further cat-
alyzed increased interest in commercially available biometric
application systems.

These advances in hardware and software technologies have
also boosted the development of machine learning techniques,
which have been at the forefront of scientific research in
biometric authentication [3]. Unlike the conventional template
matching approach, in which identification resorts to storing
a considerable amount of example patterns of a class, the
machine learning approach adopts representative statistical
models to capture the characteristics of patterns in the feature
domain. Among the several ML-based approaches, artificial
neural networks (ANNs) have been successfully applied to
several biometric identification tasks, such as text-independent
speaker verification, fingerprint identification [4], [5], face
localization [6], and face recognition [7].

Of particular interest to this paper is the face recognition
problem under different lighting conditions, configurations
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(e.g. with or without glasses) and different facial expressions,
feelings and moods including happy, sad, sleepy, surprised,
and wink. This difficult face recognition task has been usu-
ally approached from the perspective of powerful supervised
neural classifiers, such as the Multilayer Perceptron (MLP)
and Radial Basis Functions (RBF) networks [8]–[12]. Despite
the promising results obtained from this type of ANN-based
classifier, the issue of face recognition independent of facial
expressions is in its first infancy and much still remain to be
done.

The Self-Organizing Map (SOM) [13], [14] is a neural clus-
tering algorithm, which has been used as a viable alternative
to MLP and RBF networks in a variety of pattern classification
problems (see [15] for a review and references therein). For
being an unsupervised technique, however, the SOM is mostly
applied to image processing processing problems as a vector-
quantization based compression algorithm [16]–[19]. Thus, it
is usually used as a auxiliary tool for helping conventional
supervised classifiers to deal with face recognition [20]. As
such, very few applications of the SOM as a stand-alone face
recognizer has been reported in the literature [21].

From the exposed above, the very goal of this paper is to
evaluate the performance of SOM-based classifiers as stand-
alone face recognizers. For that purpose, we evaluate four
SOM-based pattern classifiers in the recognition of faces
independent of facial expression. The design of two of the
classifiers involves post-training procedures for labelling the
neurons, i.e. no class information is used prior to the training
phase. The other two classifiers incorporate class information
prior to the training phase. All the classifiers are evaluated
using the well-known Yale face database and their perfor-
mances are discussed in the light of previous studies that used
standard MLP- and RBF-based classifiers. To the best of our
knowledge, this study is the first one to evaluate the SOM as
a classifier per se in this type of face recognition task.

The remainder of the paper is organized as follows. In
Section II we briefly describe the SOM algorithm and its
main computational properties. In Section III we present four
approaches to the problem of designing a supervised classifier
based on the SOM. Simulations with the Yale face database
and corresponding results are presented in Section IV. The
paper is concluded in Section V.

II. THE SELF-ORGANIZING MAP

Competitive learning models constitute one of the main
classes of unsupervised neural networks [22], [23]. This type
of learning algorithm is based on the concept of winning neu-
ron, defined as the one whose weight vector is the closest to the
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current input vector. Different metrics for measuring proximity
between two vectors can be used, such as Euclidean distance
or Inner-product. During the learning phase, the weight vectors
of the winning neurons are modified incrementally in time in
order to extract average statistical features from the set of
input patterns.

Competitive learning rules allow a single-layer network to
group and represent data samples that lie in a neighborhood of
the input space. Each neighborhood is represented by a single
prototype. This operation is commonly called clustering in
pattern recognition [24], [25]. From the point of view of the
input space, clustering is dividing the space in local regions,
each of which is associated with an output neuron. If we
join prototype vectors by a line, its perpendicular bisector
will meet other bisectors forming a division that is called a
Voronoi tessellation, or simply a tessellation. Data samples
that fall inside the regions are assigned to the corresponding
prototype vector. Clustering is also a form of nonparametric
density estimation. In the absence of a desired response, the
best we can do for categorization is to use the information
about the input data distribution to separate inputs into groups
that share the same region in data space. The basic idea of
clustering is to seek regions of high sample density - data
clusters - and represent their centers in the network.

Using Euclidean distance, one of the simplest strategy to
find the winning neuron, i∗(t), is given by the following
expression:

i∗(t) = argmin
∀i

‖x(t) −wi(t)‖ (1)

where x(t) ∈ R
p denotes the current input vector, wi(t) ∈ R

p

is the weight vector of neuron i, and t symbolizes the time
steps associated with the iterations of the algorithm.

The Self-Organizing Map (SOM) is a well-known com-
petitive learning algorithm. The SOM learns from examples
a mapping (projection) from a high-dimensional continuous
input space X onto a low-dimensional discrete space (lattice)
A of N neurons which are arranged in fixed topological
forms, e.g., as a rectangular 2-dimensional array. The map
i∗(x) : X → A, defined by the weight matrix W =
(w1,w2, . . . ,wq),wi ∈ X , assigns to each input vector
x ∈ X a neuron i∗ ∈ A. Adjustment of the weight vectors
of the winning neuron and of those neurons belonging to its
neighborhood:

wi(t + 1) = wi(t) + α(t)h(i∗, i; t)[x(t) −wi(t)] (2)

where 0 < α(t) < 1 is the learning rate and h(i∗, i; t) is
a weighting function which limits the neighborhood of the
winning neuron. A usual choice for h(i∗, i; t) is given by the
Gaussian function:

h(i∗, i; t) = exp

(

−
‖ri(t) − ri∗(t)‖2

2σ2(t)

)

(3)

where ri(t) and ri∗(t) are respectively, the positions of neu-
rons i and i∗ in a predefined output array, and σ(t) > 0 defines
the radius of the neighborhood function at time t.

The variables α(t) and σ(t) should both decay with time to
guarantee convergence of the weight vectors to stable steady

states. In this paper, we adopt for both an exponential decay,
given by:

α(t) = α0

(

αT

α0

)(t/T )

and σ(t) = σ0

(

σT

σ0

)(t/T )

(4)

where α0 (σ0) and αT (σT ) are the initial and final values of
α(t) (σ(t)), respectively. The operations defined in Eqs. (1)
and (4) are repeated until a steady state of global ordering of
the weight vectors has been achieved. In this case, we say that
the map has converged. In addition to usual clustering proper-
ties, the resulting map also preserves the topology of the input
samples in the sense that adjacent patterns are mapped into
adjacent regions on the map. Due to this topology-preserving
property, the SOM is able to cluster input information and
spatial relationships of the data on the map. Despite being
very simple, the SOM algorithm is powerful and has become
one of the most important ANN architectures. It has been
applied to a variety of real-world problems [15], [26] and its
computational properties are well-understood. Also, there are
several theoretical studies on global ordering and convergence
of the SOM [27].

III. SOM-BASED PATTERN CLASSIFICATION

Since the SOM is formed through an unsupervised pro-
cess that builds a topology-preserving representation of the
statistical distribution of the data, it is particularly suited for
unsupervised pattern recognition tasks, such as clustering or
data visualization. However, the SOM architecture is flexible
enough to allow users to apply it as well to supervised clas-
sification. Several approaches have been proposed throughout
the years, and the four most common ones are described next.
Since SOM-based classification is performed on the basis of
the weight vector of the winning neuron, all resulting classi-
fiers belong to the family of prototype-based classifiers [28].

A. SOM-based Classifier 1 (SOM-C1)
The first approach involves a post-training labelling phase,

which should be performed for all neurons in the SOM
before the testing phase [28]–[31]. No weight modifications
are allowed and the original training data vectors should be
used. Firstly, for each training input vector, the corresponding
winning neuron should be found according to (1).

The labelling phase itself is carried out once the winning
neurons of all input vectors have been found. It is worth
noting that a given neuron can be selected the winner for input
vectors belonging to different classes. However, among all the
vectors a given neuron was selected the winner, the number of
exemplars of a given class usually is higher that the number
of exemplars of other classes. Hence, a label is assigned to a
neuron on a majority voting basis, i.e. a neuron receives the
label of the class with the highest number of exemplars. Ties
can be broken by random selection of the competing labels.

It is also possible for a given neuron not to be selected the
winner at all, for any of the input vectors. In this case, the
neuron can inherit the label of its neighboring neurons or be
tagged with an “unknown” or “rejection” class label. During
testing, a new input vector inherits the label of its winning
neuron.
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B. SOM-based Classifier 2 (SOM-C2)
The second approach is a contribution of this paper. This

method is also based on a post-training labelling procedure.
However, in this case, we use the class centroids for labelling
purpose, not the training data vectors themselves. Since the
class labels are known beforehand, the class centroids (one
for each available class) are first computed using the training
data vectors. After SOM training is completed, a given weight
vector is tagged with the class label of its nearest centroid. One
advantage of this method over the SOM-C1 is that a neuron
is labelled with one and only one class label, thus avoiding
the occurrence of ties and unlabeled neurons.

C. SOM-based Classifier 3 (SOM-C3)
In the third approach, the SOM is made supervised by

adding class information to each input data vector [13], [32],
[33]. Specifically, the input vectors x(t) are now formed of two
parts, xp(t) and xl(t), where xp(t) is the pattern vector itself,
while xl(t) is the corresponding class label of xp(t). During
training, these vectors are concatenated to build augmented
vectors x(t) = [xp(t) xl(t)]

T which are used as inputs
to the SOM. The corresponding augmented weight vectors,
wi(t) = [wp

i (t) w
l
i(t)]

T , are adjusted as in the usual SOM
training procedure.

Usually, the label vector xl(t) is represented as a unit-length
binary vector; that is, only one of its components is set to
“1”, while the others are set to “0”. The index of the “1”
position indicates the class of the pattern vector xp(t). For
example, if three classes are available, then three label vectors
are possible: one for the first class ([1 0 0]), one for the second
class ([0 1 0]) and one for the third class ([0 0 1]).

During recognition of an unknown vector x(t), the xl(t)
part is not considered, i.e. only its xp part is compared with the
corresponding part of the weight vectors. However, the class
label of the unknown pattern vector is decided on the basis
of the w

l
i(t) part of the winning weight vector wi∗(t). The

index of the component of w
l
i∗(t) with highest value defines

the class label of the unknown pattern vector xp.

D. SOM-based Classifier 4 (SOM-C4)
The fourth approach uses one SOM network for each avail-

able class; for instance, if three classes of data are available,
three SOMs will be trained, one for each class [34]. The
several SOMs, however, are trained independently, using only
the data vectors of the class it represents. There is no need
for the several SOMs to have the same number of neurons,
unless for the sake of simplicity. During testing, the winning
neuron is searched among the neurons of all available SOM
networks, so that its class label is assigned to the current input
vector.

IV. SIMULATIONS

The Yale Face Database [35] contains 165 grayscale images
in GIF format of 15 individuals. There are 11 images per
subject, one per different facial expression or configuration:
center-light, with glasses, happy, left-light, without glasses,

Fig. 1. Sample of images of the Yale face database.

normal, right-light, sad, sleepy, surprised, and wink. Each
image has 243 × 320 pixels. Pixel intensities are rescaled to
the range [0−1]. Figure 1 shows a sample of the images used
in the simulations.

Image preprocessing: Before presentation to the classifiers
each image in the dataset is vectorized first, i.e. its columns
are rearranged, one beneath the other, into a single column-
vector of dimension p = 77, 760. Principal component analysis
(PCA) is then performed over the resulting set of 165 vectors
in order to reduce their dimensionality. After some experi-
mentation it was found that the first 26 principal directions
(eigenvectors of the data correlation matrix) suffice to explain
approximately 90% of the variance of the dataset. Thus, the
original set of 165 77,760-dimensional vectors is transformed
into a set of 165 26-dimensional vectors. Finally, the 26
components of the transformed data vectors are normalized
to zero mean and unity variance.

All the four SOM-based classifiers are evaluated in terms
of recognition error rates each one reports during the testing
phase. For the sake of completeness, the sensitivity of the
error rates of the four classifiers to several design parameters,
such as number of neurons, number of training epochs, size of
the training set, and number of classes (individuals), are also
assessed.

Firstly, we evaluate the sensitivity of classifiers to the
number of neurons, q. For each value of q, the classifiers
are trained and tested for 50 runs. At each run, the train-
ing/testing datasets are resampled, so that 80% of the 165
data vectors are randomly selected to compose the training
set, while the remaining 20% are used for testing purposes.
The reported error rate, for each q, is then averaged over the
50 training/testing runs. For this simulation, the classifiers are
trained for 100 epochs and the number of classes is set to 15,
i.e. all the individuals in the database are to be recognized. The
learning rate and neighborhood function annealing parameters
are set to α0 = 0.5, αT = 0.001, σ0 = q/2, σT = 0.001 and
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Fig. 2. Recognition error rate as a function of the (a) number of neurons, and (b) the size of training set.

T = 100× 132 = 13, 200.
The results are shown in Figure 2(a). One can note that the

performances of three of the classifiers (SOM-C1, SOM-C2,
SOM-C3) improved as the number of neurons increases, while
the performance of the SOM-C4 classifier deteriorates slightly.
However, changes in the performances of all classifiers is more
intense for q < 150. From this value on, their performances
always degrade. For 100 < q < 150, the performances of all
classifiers are equivalent. For 50 < q < 100, the performances
of the SOM-C2 and SOM-C4 classifiers are the better ones.
Recall q = 50 for the SOM-C4 classifier means that it
uses indeed 15 × 50 = 750 neurons in total, a value much
higher than the total number of images available. The value
q = 50 for the SOM-C2 means that uses only 50 neurons to
represent all the images available, providing at the same time
information compression and high recognition rates.

The second simulation aim to evaluate the sensitivity of
the classifiers to the size of the training set. The training
parameters of the previous simulation are maintained, except
for the percentage of data vectors in the training set, which
varies from 10 to 90% of the available pattern vectors. The
percentage of data vectors in the testing set varies accordingly
from 90 to 10%. The results are shown in Figure 2(b). As ex-
pected, as more information about the individuals are provided
during training, the error rates of all classifiers diminish. For a
percentage value higher than 60%, the SOM-C2 and SOM-C4
performed much better that other classifiers.

The third simulation evaluates the sensitivity of the classi-
fiers to the number of classes (individuals) to be recognized.
The training parameters of the first simulation are maintained,
except for the number of classes, which varies from 2 to 15.
The error rates varies considerably throughout the range of
interest. Only for a high number of classes (i.e. more than

13) the SOM-C2 and SOM-C4 classifiers presented better
performances.

The fourth simulation evaluates the sensitivity of the clas-
sifiers to the number of training epochs. Ideally, a classifier
should require just a few training epochs in order to provide a
good testing performance. The training parameters of the first
simulation are maintained, except for the number of training
epochs, which varies from 10 to 200 (hence, the values of T
changes accordingly). As a general result, the performances of
all classifiers deteriorates for values higher than 100 epochs.
Below, this value the performances of the SOM-C2 and SOM-
C4 classifiers are again the better ones.

Finally, the best results reported for the SOM-based clas-
sifiers are shown in Table I. In this table we list the mean,
minimum, maximum and average values of the recognition
rates. For this simulation, the classifiers are trained for 100
epochs and the number of classes is set to 15. We set q = 100
and use 80% of the pattern vectors to compose the training
set. The learning rate and neighborhood annealing parameters
are the same of first simulation.

As expected the best performances were reported for the
SOM-C2 and SOM-C4 classifiers. It is worth mentioning
that these classifiers presented performances comparable to
those previously reported in the literature for standard neural
supervised classifiers engaged in face recognition tasks [8],
[10]–[12].

V. CONCLUSIONS AND FURTHER WORK

We evaluated four pattern classifiers built from the self-
organizing map (SOM), a well-known neural clustering al-
gorithm, in the recognition of faces independent of facial
expression. The design of two of the classifiers involve post-
training labelling of neurons, i.e. no class information is
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Fig. 3. Recognition error rate as a function of the (a) number of classes, and (b) the number of the training epochs.

TABLE I
BEST PERFORMANCES OF THE FOUR SOM-BASED CLASSIFIERS.

Neural Recognition rates (%)
Models mean min max variance

SOM-C1 82.6 64.0 100.0 0.64
SOM-C2 88.8 66.7 97.0 0.17
SOM-C3 82.0 72.7 90.9 0.32
SOM-C4 87.4 77.8 95.6 0.17

used prior to the training phase. The other two classifiers
incorporate class information prior to the training phase.

All the classifiers were evaluated using the well-known Yale
face database and their performances, despite being derived
from an unsupervised neural algorithm, compared favorably
with standard neural supervised classifiers, such MLP and
RBF.
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