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Abstract Performance of quantum dot lasers subject to optical feedback is numerically studied in this work from Lang-Ko -
bayashi and multi-population rate-equation models. The approach adopted to study the characteristics of the laser response is ba-
sed on the calculation of the Lyapunov exponents of the system and revealed the existence of chaos in shorter devices. Influence 
of the time-delay of the reflected back electrical field has also been addressed.
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Resumo O desempenho de lasers de pontos quânticos quando submetidos a realimentação óptica é estudado numericamente 
neste trabalho, a partir dos modelos de equações de taxa de Lang-Kobayashi e de multi-populações. A abordagem adotada para 
estudar as características da resposta laser é baseada no cálculo dos expoentes de Lyapunov do sistema, e revelou a existência de  
caos em dispositivos curtos. A influência da constante de atraso do campo elétrico refletido para a cavidade também é incluída  
na análise.
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1    Introduction

Semiconductor  quantum dot (QD) lasers have been 
intensively studied in the last years because of their 
potential compared to quantum well and bulk lasers, 
as well as due to the particular properties associated 
with the 3D confinement in the quantum dots, such as 
the high differential gain which should lead to redu-
ced  linewidth  enhancement  factor  and  low  chirp. 
Many papers  have indeed  addressed  this  issue and 
shown there is significant dependence of the alpha-
factor on both internal and external factors, like carri-
er scattering dynamics (Melnik, 2006), wetting layer 
carrier population (Carrol, 2006), cavity length, tem-
perature  (Carrol,  2005),  etc.  As a consequence  the 
device becomes sensitive to out-of-phase optical fi-
eld, and even the coupling to optical fiber could be a 
problem  due  to  the  delayed  optical  field  reflected 
back to the cavity (Gioannini, 2008a).

Among those factors, the influence of the cavity 
length is particularly interesting because it is a design 
issue, and theoretical  information may guide manu-
facturers when choosing between short or long devi-
ces.  Following previous  works  which  revealed  the 
existence of different operating regimes of quantum 
dot lasers, ranging from stable to chaotic-like soluti-
ons  as  the  injection  current  increased  (Gioannini, 
2008b), it is natural to ask if the alpha-factor depend-
ence  on  device  length  is  enough to  lead  to  chaot-
ic-like behaviour.

To give that an answer, in this work it is studied 
the response of quantum dot lasers of different length 
from the calculated Lyapunov exponents of the dyna-

mic system (Monteiro, 2002). This paper is organized 
as follows: in the next section the rate-equations ba-
sed model to take into account the delayed optical fi-
eld and the direct capture path is presented, and a dis-
cussion of the Lyapunov exponents is added. In secti-
on III results are presented and discussed. Finally, we 
draw the conclusions.

2   Modeling

2.1 Rate-equations

The model here used is based on that of (The, 2012), 
which considers separate dynamics for electron and 
hole populations of InAs quantum dots inserted in In-
GaAs quantum well, with GaAs separate confinement 
heterostructure (SCH). This assumption comes from 
the expected band diagram for this material, as obtai-
ned from NextNano3D simulation tool and shown in 
Figure 1. The diagram reveals the existence of one 
fundamental (GS) and two excited (ES1, ES2) confi-
ned  energy  states  for  electrons  in  the  dots;  higher 
energy states have been assumed to form an upper 
quasi-continuum (grey shaded part in Fig. 1a, called 
wetting layer) since they are weakly confined in the 
dots and can be quantum mechanically coupled toge-
ther.

In order to correctly include the inhomogeneous 
dot  size  distribution  which  takes  place  in  the 
Stranski-Krastanow growth technique, a multi-popu-
lation approach has  been adopted  (Rossetti,  2007); 
this means that quantum dots of an ensemble are se-
parated into  k small groups of dots similar in size, 



thus leading to k equations for carrier number of each 
confined state. Moreover, there are also equations for 
carriers of the conduction band in the SCH and WL 
states.  Electrons  are  first  injected  in  the  SCH and 
may undergo different physical processes, like diffu-
sion, radiative and non-radiative recombination, cap-
ture and relaxation scattering, etc.

Figure 1. Band diagram of quantum dot material: a) Conduction 
Band  b) Valence Band.

These  phenomena  are  traditionally  described 
from a set of first-order time-derivative equations as 
in the following short notation:

˙nsch= f 1( I , nsch , nwl)
˙nwl= f 2(nsch , nwl , nes2 , nes1 , ngs)

˙nes2k= f 3k(nwl , nes2 , nes1 , E0)
˙nes1k= f 4k(nwl , nes2 , nes1 , ngs , E0)

˙ngk= f 5k (nwl , nes1 , ngs , E0)

    (1)

Each velocity field equation of the above autono-
mous system also depends on time constants which 
characterize the various physical processes just men-
tioned.

For  what  concerns  carriers  of  the  conduction 
band,  assumption  of  quasithermal  equilibrium 
between quantum-dot and wetting layer states (The, 
2010)  makes  things  simpler,  and  the  system looks 
like:

˙nsch= f 6( I , nsch , nwlDot)
˙nwlDot= f 7(nsch , nwlDot)

             (2)

The  main  difference  between  the  model  here 
used and that of (The, 2012) is that the photon equa-
tions for the cavity resonant modes have been repla-
ced by one equation for the internal electrical  field 
intensity,  E0 and one for its phase,  Φ. This follows 
the  classical  Lang-Kobayashi  model  (Lang,  1980) 
used widely to study the effects of optical feedback in 
semiconductor single-mode lasers (Otto, 2010; O'Bri-
en, 2004). Here are the remaining two equations:

Ė0=
−E0

2t ph
+ c

2nr
+B sp

−∑ (g nES2+gnES1+g nGS )⋅E0

+k⋅E0( t−t d)⋅cos (w0 t d+Δ (t ))
       (3)

Φ̇=
−k⋅E0( t−t d )

E0 (t )
⋅sin(w0t d +Δ (t ))

+2πδ f

   (4)

In the above equations  tph is the photon lifetime 
in the laser cavity,  c is the free-space light velocity, 
nr is the active material refractive index,  k is the in-
tensity of feedback light, w0 is the angular frequency 
of the solitary laser, td is the external cavity roundtrip 
time and  δf is the frequency chirp calculated accor-
ding to (Gioannini, 2007).  Finally,  the terms inside 
the summation operator is the material gain coupling 
cavity photons and carriers of the ground-, first- and 
second-excited states. 

2.2 Lyapunov exponents

According to the theory of dynamical systems, only 
nonlinear dissipative systems may experience chaotic 
behavior, being chaos related to sensitivity to initial 
conditions  and  characterized  by  a  time  evolution 
towards a strange attractor in the phase space (Mon-
teiro, 2002). A widely used approach to test sensiti-
vity to  initial  conditions  of  nonlinear  systems and, 
therefore, conclude about the existence of chaos re-
quires the calculation of Lyapunov exponents.

Given a dynamic system with  p velocity fields 
associated to state variables,  there are  two require-
ments to be satisfied before concluding if the process 
is chaotic:
a) at least one of the Lyapunov exponents associated 
to the velocity equations is positive: this is to guaran-
tee divergence of  adjacent trajectories (those starting 
at slightly different initial conditions); 
b) the sum of all Lyapunov exponents associated to 
the whole set of velocity field equations must be ne-
gative: this is to ensure the system is dissipative (and 
therefore phase space evolution towards a strange at-
tractor takes place).

In the present work the calculation of the Lyapu-
nov exponents is based on the following formula:

Λi=
1
N

⋅∑n

N −1
loge(

f i ( x0+δ0)− f i ( x0)
δ0

) (5)

In this expression, N is the size of the discrete 
time vector corresponding to the last time instants of 
every simulation (transient is discarded), and δ0 is the 
small deviation between two different initial conditi-
ons.



3  Results and discussion

In the following three devices are considered,  with 
0.6 mm, 0.7 mm and 1.0 mm length; all of them are 4 
microns-wide edge-emitting single-mode lasers emit-
ting  at  1285  nm from the  fundamental  state.  This 
device has been chosen to allow for better compre-
hension  of  already  reported  results,  especially  the 
chaotic-like solutions which had not been explained 
in terms of Lyapunov exponents (Gioannini, 2008a e 
2008b).

First result shown in Figure 2 is the time-domain 
evolution of the sum of the whole set of Lyapunov 
exponents calculated for the carrier and photon popu-
lation equations of the quantum dot laser. This figure 
has been obtained for a 300 mA switch-on driving, 
and the exponents have been calculated considering 
the last instants of simulation (to discard the transi-
ent). Although for l mm-long laser it seems stationary 
conditions have not been achieved, globally the re-
quirement b) of section 2.2 has been satisfied.

Figure 2. Time-domain evolution of the sum of calculated Lyapu-
nov exponents for different laser length.

Individual  contribution  of  every  velocity  field 
equation for the stationary value of  the Lyapunov ex-
ponents is reported in Figure 3. Main purpose of this 
plot is to report the existence of one positive Lyapu-
nov exponent for 700 microns- and 600 microns-long 
lasers, whereas the longer device has no positive ex-
ponent.  

Figure 3. Calculated Lyapunov exponents for each velocity field 
equations of the laser system.

Indeed a phase-space portrait for this device re-
veals evolution towards a fixed-point solution for the 
1 mm-long device, as shown in Figure 4 top-left and 
top-right parts. Left column refers to variation of out-
put photon number as function of wetting layer and 
SCH populations, whereas right column refers to va-
riation of photons as function of the carriers confined 
in the quantum dot. Bottom parts reveal instead the 
phase-space for the 700 microns-long device.

To make the study more complete, the influence 
of the external cavity has also been investigated. The 
existence of an external cavity is, actually, the basis 
for the Lang-Kobayashi model since it allows for the 
mathematical modeling of the optical feedback as a 
time-delayed electrical field. Thus, changing the ex-
ternal  cavity  length  means  changing  the  delay 
between the  forward  and  backward  components  of 
the electrical field inside the device. 

Compared to the results  just discussed,  plot  of 
Figure  5 refers  to  a longer  external  cavity device, 
with 625 ps round-trip time, instead of 500 ps used so 
far. It is a 15 ns-long time-domain response for 300 
mA  switch-on  driving,  for  the  700  microns-long 
device.  There  are,  however,  two time-series  in  the 
picture, which deviate from instant t = 9.5 ns, show-
ing completely different  responses  at  longer  times. 
Solid and dotted lines refer to the same variable (out-
put photon number), as the system responds to two 
slightly different initial conditions in some of the sta-
te  variables (from 1.0e-3 to 1.1e-3).  One can see the 
sensitivity to initial conditions which is very charac-
teristic of chaotic behaviour.

Figure 4. Phase-space portrait for 1 mm-long laser (top part) and 
700 microns-long device (bottom part).

For  completeness,  in  Figure  6 the  deviation 
between the output photon number obtained for two 
very close initial conditions is compared in time-do-
main for the two external cavity configurations ana-
lyzed, i.e.,  500 ps (top part)  and 625 ps round-trip 
time (bottom part).

For what concerns the short external cavity (500 
ps, top figure), we got a very regular profile, which 
gives no suggestion of tendency to exponential diver-
gence  of  adjacent  trajectories.  On  the  other  hand, 
when the longer external cavity is used, we got two 
remarks: first, we see no regular profile on the devi-



ation between close trajectories (look at the inset, on 
the bottom part); second, to emphasize the result of 
Figure 5, at about instant t = 9.5 ns adjacent trajector-
ies experience strong deviation.

Figure 5. Time-domain laser response after 300 mA switch-on dri-
ving, for two slightly different initial conditions.

Figure 6. Plot of the separation between adjacent trajectories of 
the output photon number, obtained for 500 ps (top) and 625 ps 
(bottom) external cavity round-trip time. Inset: detailed view of 

the first 10 ns.

5   Conclusions

Sensitivity of quantum dot lasers to optical feed-
back has been investigated in this work on the basis 
of a  Lang-Kobayashi-like description of the optical 
feedback effect and a multi-population numerical mo-
del for quantum dot devices.

The adopted approach was based on the calcula-
tion of the Lyapunov exponents of the laser dynami-
cal  system,  and the analysis confirmed the depend-
ence of the laser behaviour at different cavity length, 
as  reported in  (Carroll,  2005),  according  to  which 
longer devices are more stable.

In addition, simulation results indicate that lon-
ger  external  cavity  round-trip  time  delays  lead  to 
more pronounced sensitivity to  initial  conditions in 
quantum dot  laser  devices,  pointing to  chaotic-like 
behaviour.
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