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a b s t r a c t

The present work brings two applications of the Lambert–Tsallis Wq function in radial
basis function networks (RBFN). Initially, an RBFN is used to discriminate between
entangled and disentangled bipartite of qubit states. The kernel used is based on the
Lambert–Tsallis Wq function for q ∈ {1/2, 3/2, 2} and the quantum relative disentropy is
used as a distance measure between quantum states. Entangled states with concurrence
larger than 0.1 were correctly classified by the proposed RBFN in at least 97% of the
cases. Following, a RBFN with the same kernel is used to estimate the probability density
function of a set of data sampled according to Normal and Cauchy distributions.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The Lambert W function has found several applications in physics and engineering, providing analytical solutions
where traditionally numerical methods were used [1–3]. Its generalization, the recently proposed Lambert–Tsallis Wq
function [4] was used to define the generalized disentropy [4]. The classical and quantum disentropy have been used,
respectively, in classical and quantum information theory [5]. In the present work we show that Wq can be used to
construct a useful radial basis function that can be successfully used in a radial basis function network (RBFN). Two RBFN
were constructed. The first one is a classifier trained to identify entangled and disentangled bipartite of qubit states. It
uses the quantum relative disentropy [5] as distance measure between quantum states. The Wootters’ concurrence [6] is
used to measure the error rate of the RBFN. Following, a second RBFN is used to estimate the probability density function
(PDF) of a set of data samples. The test of this RBFN was done considering two situations: data samples from normal and
Cauchy distributions.

This work is outlined as follows: In Section 2, a brief review of RBFN, Lambert–Tsallis function and disentropy is
provided; In Section 3 the proposed classifier is introduced and the numerical results are shown. In Section 4 the proposed
PDF estimator is presented and the numerical results are shown. At last, the conclusions are drawn in Section 5.
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Fig. 1. RBFN with one hidden layer.

2. Radial basis function network, Lambert–Tsallis Wq function and disentropy

Radial basis function network can successfully be used to realize function approximation and pattern recognition, for
example. Its basic structure with only one hidden layer is shown in Fig. 1.

The t-th output, yt , is given by

yt
(
x⃗
)

=

k∑
n=1

rnthn
[
d
(
x⃗, x⃗cn

)
; δn; cn

]
. (1)

In (1), the input variable x⃗ is a function of the input data {x1,. . . , xj}, hn is the radial basis function of the nth neuron. It
has three parameters: x⃗cn (the center), δn (the width) and cn (the type of RBF used). The value of hn is maximum when the
distance given by the function d(·) between its center and the input variable is zero and it decreases when the distance
increases. Functions like Gaussian, q-Gaussian and Cauchy function have been used as RBF [7,8]. The distance function
d can be, for example, an Euclidean distance or an entropic distance. A RBFN can use different RBFs, in this case the
parameter cn identifies the type of RBF used. At last, rnt are the coefficients found during the training stage. The training
consists of finding out the best values of x⃗cn, δn, cn, rnt and the number of neurons in the hidden layer, such that the error
during the training using known examples is minimal. The size and quality of the training set are also important for a
good performance of the classifier. It is common to use a genetic algorithm or another heuristic to train the RBFN.

The RBF proposed in this work is

h [d (x, xc) ; δ; q] =
Cq
1

1 + Wq [δd (x, xc)]
− Cq

2 , (2)

where Cq
1 and Cq

2 are parameters used to normalize the function h and Wq is the Lambert–Tsallis function that was
introduced in [4]. Basically, it is the function that solves the equation

Wq (z) eqWq(z) = z. (3)

In (3) q is the Tsallis non-extensivity parameter [9] and eq(x) is the q-exponential. When q = 1, one has eq(x) = ex and,
hence, Wq=1 is the famous Lambert W function. For example, for q ∈ {1/2, 3/2, 2} one has

W1/2(x) =
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for x > −0.2950 (4)

W3/2 (x) =
2
(
(x + 1) −

√
2x + 1

)
x

for x > −1/2 (5)

W2 (x) =
x

x + 1
for x > −1. (6)

The respective radial basis functions are

h (δd (x, xc) ; q = 1) = 1
/
[1 + W (δd (x, xc))] (7)

h (δd (x, xc) ; q = 1/2) = 1
/ [

1 + W1/2 (δd (x, xc))
]

(8)

h (δd (x, xc) ; q = 3/2) =
3/2

1 + W3/2 [δd (x, xc)]
−

1
2

(9)
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Fig. 2. Radial basis functions (7)–(10) for δ = 1 and d = (x − 50)2 .

Fig. 3. q-Gaussians as RBFs for q ∈ {1/2, 1, 3/2, 2}.

h (δd (x, xc) ; q = 2) =
2

1 + W2 [δd (x, xc)]
− 1. (10)

In Fig. 2 it is shown the plots of (7)–(10) versus x for δ = 1 and d = (x − 50)2.
As one can see in Fig. 2, The RBFs using the Lambert–Tsallis functions are sharply peaked functions. It is interesting to

compare them with RBFs having rounded peak, like the q-Gaussians [7]. The q-Gaussian function is given by

eq−x2
=

⎧⎨⎩ e−x2 q = 1[
1 − (1 − q) x2

]1/(1−q) q ̸= 1& 1 + (1 − q) z ≥ 0.
0 otherwise

(11)

The plot of q-Gaussians for q ∈ {1/2, 1, 3/2, 2} can be seen in Fig. 3.
The quantum disentropy, by its turn, is defined as [4]

Dq (ρ) =

∑
n

λq
nWq (λn) , (12)

where λi is the ith eigenvalue of the density matrix ρ. The quantum relative disentropy, by its turn, is given by [5]

DR
q

(
ρ
Γ

)
=

∑
n

λq
n

⏐⏐Wq (λn) − Wq (γn)
⏐⏐ . (13)

where λn and γn are, respectively, the eigenvalues of the density matrices ρ and Γ .
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Fig. 4. RBFN used to discriminate between entangled and disentangled two-qubit states.

At last, the Wootters’ concurrence (an entanglement measure) of the bipartite state ρ, is given by C(ρ) = max{0,

λ1-λ2-λ3-λ4}, where λ1≥λ2≥λ3≥λ4 are the eigenvalues of the Hermitean matrix R =

√
√

ρ
(
σy

⨂
σy

)
ρ∗

(
σy

⨂
σy

)√
ρ.

The star denotes the complex conjugate and σy is the spin–flip Pauli gate.

3. The classifier of C2⊗C2 quantum states using RBFN with Lambert–Tsallis function

Since the goal is to show that Wq can be used to construct a useful radial basis function, initially we chose to implement
a classifier able to discriminate between entangled and disentangled two-qubit states. This problem is easily solved using
Wootter’s concurrence [6], hence we used it in order to measure the error rate of the RBFN implemented. The classifier
proposed has one input (the input quantum state), one hidden layer and a single output value. It is shown in Fig. 4.

The distance function used is the quantum relative disentropy with q = 2,

d
(
ρ, Γ c

n

)
= D2

(
ρ
Γ c

n

)
. (14)

In (14) Γ c
n are the ‘central’ quantum states. Using (14) and (2) in (1) one gets the equations that describe the proposed

classifier
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2 (16)

y (ρ) = y1 (ρ) − y2 (ρ) . (17)

The central states Γc
n are entangled while Φc

n are disentangled states. The input state ρ is considered entangled
(disentangled) by the RBFN if y(ρ) > 0 (y(ρ) ≤ 0). The heuristic used to training the RBFN (to find the values of Γc

n, Φ
c
n,

rn1, rn2, δn1 and δn2 that minimizes the error rate) was the Differential Evolution (DE), since the solutions are directly coded
in real values instead of binary strings. Initially, we used q = 2 and 20 neurons in the hidden layer, k = 10 in (15)–(16).
The initial training set was composed by 2500 entangled states and 2500 disentangled states chosen randomly. The DE
algorithm used a population with 20 individuals and crossover and mutation rates equal to 0.75 and 0.25, respectively.
The training took 1000 generations. After the training, we used a test set with 1000,000 states (500,000 entangled and
500,000 disentangled) chosen randomly and the classifier discriminated them correctly in 89.42% of the cases. The correct
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Table 1
Training sets. C is the Wootter’s concurrence.
Training set – 5000 states randomly chosen

Str0 2500 disentangled states and 2500 entangled states without any restriction.
Str1 2500 disentangled states and 2500 entangled states with C ≤ 0.1.
Str2 2500 disentangled states and 2500 entangled states with: C ≤ 0.1 (75%) and 0.1 < C ≤ 0.2 (25%).
Str3 2500 disentangled states and 2500 entangled states with: C ≤ 0.1 (50%) and 0.1 < C ≤ 0.2 (50%).
Str4 2500 disentangled states and 2500 entangled states with: C ≤ 0.1 (25%) and 0.1 < C ≤ 0.2 (75%).
Str5 2500 disentangled states and 2500 entangled states with: C ≤ 0.1 (25%); 0.1 < C ≤ 0.2 (25%); 0.2 < C ≤ 0.3 (25%); 0.3 < C ≤ 0.4 (25%).

Table 2
Test sets.
Test set – 1,000,000 states randomly chosen

Stst1 Entangled and disentangled states without any restriction
Stst2 Only disentangled states
Stst3 Only entangled states
Stst4 Only entangled states with C ≤ 0.1
Stst5 Only entangled states with 0.1 < C ≤ 0.2
Stst6 Only entangled states with 0.2 < C ≤ 0.3
Stst7 Only entangled states with 0.3 < C ≤ 0.4
Stst8 Only entangled states with 0.4 < C ≤ 0.5
Stst9 Only entangled states with 0.5 < C ≤ 0.6

Table 3
Success rate when the training and test sets used are Str i and Stst j .

q = 2 Stst1 Stst2 Stst3 Stst4 Stst5 Stst6 Stst7 Stst8 Stst9
Str0 87% 85.31% 86.93% 75.56% 99.65% 100% 100% 100% 100%
Str1 89.42% 75.69% 89.34% 87.80% 100% 100% 100% 100% 100%
Str2 87.60% 83.69% 87.51% 78.06% 99.99% 100% 100% 100% 100%
Str3 86.06% 86.07% 85.98% 72.62% 99.92% 100% 100% 100% 100%
Str4 84.01% 89.08% 84% 65.80% 99.50% 100% 100% 100% 100%
Str5 81.86% 91.76% 81.82% 59.45% 97.70% 100% 100% 100% 100%

Table 4
Success rate when the training and test sets used are Str0,1 and Stst j , j = 1,. . . ,9, for the classifier using
q =1/2 and q = 3/2.

Stst1 Stst2 Stst3 Stst4 Stst5 Stst6 Stst7 Stst8 Stst9
Str0 q = 1/2 86.59% 86.14% 86.55% 74.23% 99.62% 100% 100% 100% 100%
Str1 q = 1/2 89.55% 76.14% 89.45% 87.77% 100% 100% 100% 100% 100%
Str0 q = 3/2 87.52% 83.81% 87.43% 77.78% 99.99% 100% 100% 100% 100%
Str1 q = 3/2 89.05% 78.82% 88.97% 84.88% 100% 100% 100% 100% 100%

discrimination is more complicated when the input is an entangled state with a very low value of entanglement. In order
to check the performance of the classifier in this region, we considered the scenarios described in Tables 1 and 2:

The success rates for the different scenarios using q = 2 are shown in Table 3.
Table 4 shows the results of the classifier using q = 1/2 and q = 3/2. Here, only two training sets were used Str0 e Str1.
As it can be noted in Tables 3 and 4, entangled states with concurrence larger than 0.2 are always correctly

discriminated by the RBFN. Moreover, there is no statistically significant change between the different values of q used.
At last, a classifier using q-Gaussians was also simulated. The equations that describe the q-Gaussian-based classifier

are

y1 (ρ) =

k∑
n=1

rn1e
−δn1D2

2

(
ρ

Γ c
n

)
q =

k∑
n=1

rn1
[
1 − (1 − q) δn1D2

2

(
ρ
Γ c

n

)]1/(1−q)
+

(18)

y2 (ρ) =

k∑
n=1

rn2e
−δn2D2

2

(
ρ

Φc
n

)
q =

k∑
n=1

rn2
[
1 − (1 − q) δn2D2

2

(
ρ
Φc

n

)]1/(1−q)
+

(19)

y (ρ) = y1 (ρ) − y2 (ρ) . (20)

In (18)–(19) [A]+ = max{A,0}. Table 5 shows the results of the q-Gaussian-based classifier for q ∈ {1/2, 3/2, 2}.
Comparing Tables 3–5, one can see a slightly better performance of the classifier using the Lambert–Tsallis function,

however, based only on these results, it is not possible to claim that in general sharp peaked RBFs show better performance
than RBFs having rounded peak.
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Table 5
Success rate when the training and test sets used are Str0,1 and Stst j , j = 1,. . . ,9, for the q-Gaussian-based
classifier.

Stst1 Stst2 Stst3 Stst4 Stst5 Stst6 Stst7 Stst8 Stst9
Str0 q = 2 87.03% 85.38% 86.98% 75.69% 99.81% 100% 100% 100% 100%
Str1 q = 2 89.07% 78.41% 88.99% 85.18% 100% 100% 100% 100% 100%
Str0 q = 1/2 85.08% 88.10% 85.05% 69.22% 99.66% 99.90% 99.76% 99.41% 98.58%
Str1 q = 1/2 88.73% 80.28% 88.63% 83.09% 100% 100% 100% 100% 100%
Str0 q = 3/2 87.26% 84.86% 87.17% 76.48% 99.96% 100% 100% 100% 100%
Str1 q = 3/2 88.99% 78.49% 88.92% 84.92% 100% 100% 100% 100% 100%

Fig. 5. RBFN for PDF estimation.

4. Probability density function estimator using RBFN and W2

Sometimes one is interested in the determination of the probability density function of a physical process, like in
quantum state tomography [10]. In this cases only the data sample whose probability density function is not known in
advance are available. Hence, one has to estimate the PDF using the available set of data. There are several PDF estimators
in the literature [11]. The easiest way to estimate the PDF from available data is to construct the histogram. However, this
estimation is coarse. Here, we propose a RBFN for PDF estimation using W2 in the kernel. The proposed RBFN is shown
in Fig. 5.

The RBFN output is

y (x) =

k∑
n=1

rn

⎡⎣ 2

1 + W2

[
δn

(
x − xcn

)2] − 1

⎤⎦ . (21)

In order to get the parameters rn and xcn, we firstly construct the histogram with number of bins much smaller than the
number of samples. The parameter rn is the relative frequency and xcn is the center of the nth bin. The values of δn depends
on the real PDF and, therefore, it is the variable to be optimized. We chose to use the same width for all neurons in order
to avoid a numerical optimization (as the one used to training the RBFN in Section 3). The width was varied linearly in
a fixed range. The best width is the one that minimizes the absolute value of the difference between the log-likelihood
of the initial histogram and the log-likelihood of the PDF estimated by the RBFN. The number of neurons in the hidden
layer is equal to the number of bins of the histogram. The first test was realized with a normal distribution

p (x) =
1

√
2π

e−
x2
2 . (22)

Twenty thousand numbers were randomly chosen according to the PDF in Eq. (22) and a histogram with 2000 bins was
constructed, hence, there were two thousand neurons in the hidden layer. The real and estimated PDF’s can be seen in
Fig. 6. The value of δn used was 30 for all neurons in the hidden layer.

A second estimation was also realized. Ten thousand numbers were randomly chosen according to the PDF in Eq. (22)
and a histogram with 200 bins was constructed, hence, there were two hundred neurons in the hidden layer. Two RBFN
were tested. The RBFN I used Eq. (10) as RBF while RBFN II used the q-Gaussian with q = 2 as RBF. The real and estimated
PDF’s can be seen in Fig. 7. The value of δn used was 50 for all neurons in the hidden layer.

The third test uses a standard Cauchy distribution:

p (x) = 1
/ [

π
(
1 + x2

)]
. (23)
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Fig. 6. Normal distribution and its estimation using a RBFN with q = 2, twenty thousand samples and 2000 neurons.

Fig. 7. Normal distribution and its estimations using the RBFN I (Lambert–Tsallis) and the RBFN II (q-Gaussian). Ten thousand samples and two
hundred neurons were used.

Ten thousand numbers were randomly chosen according to the PDF in Eq. (23) and a histogram with 2000 bins was
constructed. The real and estimated PDF’s can be seen in Fig. 8. The value of δn used was 0.5 for all neurons in the hidden
layer.

As one can note, in all cases the PDF estimation was not perfect but it was good enough for, for example, to provide
a good estimation of the entropy or disentropy of the data sample.

The problem of estimating a PDF using a histogram as start point is, in some sense, a function fitting task. Let us
consider, now, the Lambert–Tsallis function for q = 1/2 given by Eq. (4). In a defined range, using the same topology
shown in Fig. 5, its normalized version W1/2/max(W1/2) can be well fitted by

y (x) =

k∑
n=1

W1/2
(
xcn

)
W1/2

(
xck

)
⎡⎣ 2

1 + W2

[
δn

(
x − xcn

)2] − 1

⎤⎦ (24)

in the range
[
xc1, x

c
k

]
. Fig. 9 shows the plot of W1/2(x) and y(x) given by (24) in the range [0, 98.99]. The plot in Fig. 9 has

20,000 points and we used 1000 neurons (k = 1000 in (24)) with δn = 50.15 for all of them.

5. Conclusions

The good performances of the RBFNs presented show that the proposed kernel based on the Lambert–Tsallis Wq
function, Eq. (2), is useful and it can be used in RBFNs. Here, we were restricted to q ∈ {1/2, 3/2, 2} because of their
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Fig. 8. Cauchy distribution and its estimations by RBFN I (Lambert–Tsallis) and an RBFN II (q-Gaussian). Ten thousand samples and two thousand
neurons were used.

Fig. 9. W1/2(x) and its approximation using a RBFN (Eq. (24)) versus x.

easy and fast numerical calculations, but other values of q can also be tested using the numerical procedure shown in [4]
for calculation of the Lambert–Tsallis function. In conclusion, the high rate success of the classifier also shows that the
quantum relative disentropy is a useful measure of the distance between quantum states.
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