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Abstract: Future cellular systems will likely employ massive bi-dimensional arrays to improve performance by large array gain
and more accurate spatial filtering, motivating the design of low-complexity signal-processing methods. The authors propose
optimising a Kronecker-separable beamforming filter that takes advantage of the bi-dimensional array geometry to reduce
computational costs. The Kronecker factors are obtained using two strategies: alternating optimisation and sub-array minimum
mean square error (MMSE) beamforming with Tikhonov regularisation. According to the simulation results, the proposed
methods are computationally efficient but come with source recovery degradation, which becomes negligible when the sources
are sufficiently separated in space.

1௑Introduction
The number of wireless connected devices has been growing
significantly, bringing new challenges to engineers. Future mobile
communications systems, for example, are expected to provide
very high throughput to several mobile terminals. In order to boost
system capacity, new transceiver and network architectures are
under investigation. Massive multiple-input-multiple-output
(MIMO) technology, which consists of employing a large number
of antenna elements at the base station (BS) to serve many multi-
antenna users, is expected to yield significant spectral efficiency
improvement [1, 2]. Such massive systems should be implemented
using planar arrays in order to reduce the array's physical
dimensions and to perform elevation and azimuth beamforming.
This implementation, known as full-dimension MIMO (FD-
MIMO), allows for better interference mitigation and has already
been incorporated into 3GPP standards [3]. These technologies
pose new engineering challenges concerning computational and
energy efficiency [4], calling for research efforts to design
computationally efficient signal processing methods for high-
dimensional systems.

The high computational complexity of multidimensional
filtering systems is not a new problem, though, and the first
attempts to tackle this problem can be traced back to some decades
ago. For instance, the authors in [5] proposed a multi-stage
representation for bi-dimensional filters based on the coefficient
matrix eigen decomposition, yielding computer storage, and speed
savings. However, computing the eigen decomposition of high-
dimensional observations is expensive in general. More recent
works have been interested in exploiting the algebraic structure
present in some problems to reduce computational costs and to
improve system performance. The authors in [6] introduced tensor-
based blind source separation methods which reduce the number of
parameters to be estimated by exploiting the structure of low-rank
signals. Such property implies that signals can be well
approximated by a finite sum of low-dimensional Kronecker
products. Although this representation simplifies the parameter
estimation problem, signal accuracy is degraded. Kronecker
separability has also been exploited in [7–9] to increase the
convergence rate of adaptive algorithms. Gradient descent-based
solutions were presented in [7, 8] to identify second-order
Kronecker separable systems, which can be useful to model
telephone hybrid-causing electrical echoes. In [9], the authors show
that Volterra systems with separable kernels can be expressed in

terms of Kronecker products. In [10], we introduce a supervised
system identification method to identify third-order Kronecker
separable impulse responses based on alternating optimisation. The
proposed identification method is applied to identify the telephone
hybrid-like impulse response of [7]. Simulation results indicate that
the proposed method exhibits better accuracy than the classical
Wiener filter solution. In [11], the method of [10] is extended to
cope with low-rank Kronecker separable systems, allowing for the
identification of more intricate acoustic responses. In [12], fast
recursive least squares methods for identifying second-order
Kronecker separable (bilinear) systems are presented. Analytical
and simulation results confirm the low computational costs and the
identification performance of the proposed bilinear methods.

It is well-known that the spatial signature of planar arrays can
be decomposed along its two dimensions [13]. Based on this
property, beamforming techniques have been proposed. The
authors in [14] obtained a low-complexity two-dimensional MIMO
precoding scheme by exploiting the Kronecker structure in the
steering vectors of rectangular arrays. Therein, the proposed
separable zero-forcing (ZF) precoder is presented based on the
small angular spread at the elevation domain assumption, which
enables algebraic separation of the azimuth and elevation domains
by filtering. Results show that when this assumption is satisfied,
the proposed separable ZF filter exhibits acceptable performance.
However, in more realistic scenarios, this assumption is seldom
met, and the performance of the separable ZF filter is severely
degraded. In [15], a clever hybrid analogue/digital beamforming
method based on the Kronecker product is proposed for multi-cell
multi-user MIMO systems. The analogue beamformers are
designed exploiting the mixed product property of the Kronecker
product to null inter-cell interference and to enhance the desired
signal power. In [16], the authors investigate the performance of a
tensor global sidelobe canceller (GSC). Simulation results suggest
that this tensor-based beamformer requires fewer snapshots than
the classical GSC filter to achieve the desired performance. A
tensor minimum variance distortionless response beamformer has
been introduced in [17] for polarisation sensitive arrays. In [18],
we express the received signal vector of a massive MIMO system
equipped with a planar array using multi-linear (tensor) algebra.
From this model, we derived a two-step low-complexity equaliser
which exploits each signal dimension, similar to [14]. It basically
consists of sub-array ZF beamforming followed by a low-
dimensional minimum mean square error (MMSE) equaliser.
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In this present work, we propose novel beamforming techniques
which exploit the array separability to reduce their computational
costs. Our methods are based on the classical MMSE beamformer,
also known as Wiener filter [19]. This filter may be
computationally impractical due to the inversion of a possibly very
large covariance matrix. The matrix inversion lemma [20] can be
applied to the MMSE beamformer when the signal statistics are
perfectly known, however, in practice, this seldom happens. As
alternatives to the classical MMSE solution, we propose methods
which aim at optimising a beamforming filter with Kronecker
structure, i.e. the coefficients vector admits a Kronecker
factorisation. Thus, instead of optimising a large beamforming
vector, we propose designing two relatively small beamforming
vectors corresponding to the Kronecker factors. We present two
strategies to design a Kronecker separable filter. In the first
strategy, the mean square error (MSE) function is minimised by
means of alternating optimisation. This strategy was first
introduced in [21], where the beamforming filter is obtained using
sample estimates of the received signal covariance matrix. Here,
we derive analytical expressions for the beamformer assuming
perfect knowledge of the array manifold matrix. The second
strategy consists of a closed-form solution based on the Khatri-Rao
factorisation of the separable array manifold matrix. Each sub-
beamformer is obtained by performing sub-array MMSE
beamforming with Tikhonov regularisation. Simulation results
show that the proposed methods can be computationally efficient,
however, they come with source recovery degradation, which
becomes insignificant when the wavefronts are sufficiently
separated in the space.

The following notation is adopted throughout the paper: x
denotes a scalar, x a vector, and X a matrix. The (i, j)th entry of X
is given by [X]i, j. The transposed, conjugated transposed
(Hermitian), and pseudo-inverse of X are denoted by XT, XH, and
X

†, respectively. The (M × M)-dimensional identity matrix is
represented by IM. The absolute value, the Frobenius and ℓ2 norms,
and the expected value operator are, respectively, denoted by ⋅ ,
∥ ⋅ ∥F, ∥ ⋅ ∥2, and E − [ ⋅ ]. The Kronecker, Khatri-Rao, and n-
mode products are represented by ⊗, ♢, and ×n, respectively. O( ⋅ )
represents the Big-O notation.

This work is organised as follows: the system model is
introduced in Section 2 and the proposed beamforming methods
are presented in Section 3. Therein, we also discuss their
computational complexity. Simulation results are shown and
discussed in Section 4, and the work is concluded in Section 5.

2௑System model
Consider a multi-antenna system equipped with a uniform
rectangular array (URA) with Nh antennas in the horizontal axis,

and Nv in the vertical axis. This array of N = NhNv antennas is
distributed along the y–z plane, as illustrated in Fig. 1. Each
antenna element has the same beam pattern g(ϕ, θ), where ϕ and θ
denote the azimuth and elevation angles, respectively [In practical
antenna arrays, the element beampatterns would be different due to
phenomena like mutual coupling, among others. To model such
scenario, one would need to consider individual antenna
beampatterns gn(ϕ, θ) for all n ∈ {1, …, N}.]. The array is
illuminated by R independent narrow-band wavefronts in far-field
propagation arriving from directions (ϕr, θr), r = 1, …, R and
carrying digitally modulated signals. The wavefronts are assumed
to have the same wavelength λ. The modulated signals at discrete-
time instant k are denoted by sr[k] and assumed to be mutually
uncorrelated with zero mean and variance σs

2. 
The received signal at the nth antenna can be modelled as the

superposition of the R incoming wavefronts:

xn[k] = ∑
r = 1

R

g(ϕr, θr)an(ϕr, θr)sr[k] + bn[k], (1)

where an(ϕr, θr) denotes the array response to the r -th wavefront at
the n -th antenna, and bn[k] the complex additive white Gaussian
sensor noise (AWGN) with zero mean and variance σb

2. The inter-
antenna spacing in both the horizontal and vertical axes is
dh = dv = λ/2, thus the array response can be written as

an(ϕr, θr) = e
jπ[(nh − 1)sinϕrsinθr + (nv − 1)cosθr] .

with n = nh + (nv − 1)Nh, nh ∈ {1, …, Nh}, nv ∈ {1, …, Nv}. For
notation simplicity, we define direction cosines with respect to the
horizontal and vertical axis as pr = sin ϕrsin θr and qr = cos θr,
respectively. Then, using matrix notation and assuming omni-
directional antennas, the received signals vector
x[k] = [x1[k], …, xN[k]]T can be represented as

x[k] = ∑
r = 1

R

a(pr, qr)sr[k] + b[k] = As[k] + b[k], (2)

where a(pr, qr) = [a1(pr, qr), …, aN(pr, qr)]
T stands for the array

steering vector, s[k] = [s1[k], …, sR[k]]T the symbols vector, and
b[k] = [b1[k], …, bN[k]]T the AWGN vector. Note that the model
(2) is valid only for a specific angular range where g(ϕr, θr) = 1.
Now the array manifold matrix can be written as

A = [a(p1, q1), …, a(pR, qR)] ∈ ℂN × R . (3)

From our assumptions, it follows that the covariance matrix of the
received signals is given by

Rxx = E[x[k]x[k]H] = ARssA
H + Rbb,

where Rss = E[s[k]s[k]H] = σs
2
IR and Rbb = E[b[k]b[k]H] = σb

2
IN.

The multi-antenna system employs a beamformer to recover a
desired signal among the R incoming signals. We define the signal-
to-noise ratio (SNR) as the desired signal power over the AWGN
variance, i.e. SNR = σs

2/σb
2.

The array response can be separated into horizontal and vertical
contributions owing to the URA bi-dimensionality [13]. More
specifically, the array response with respect to any wavefront can
be factorised as

an(pr, qr) = anh
(pr)anv

(qr), (4)

where anh
(pr) = e

jπ(nh − 1)pr and anv
(qr) = e

jπ(nv − 1)qr. The sub-array
steering vectors are then defined as

Fig. 1௒ Uniform Rectangular Array (URA) in the y – z plane
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ah(pr) = a1(pr), …, aNh
(pr)

T
,

av(qr) = a1(qr), …, aNv
(qr)

T
.

The horizontal and vertical sub-arrays of a URA are depicted in
Fig. 1. The separable representation in (4) leads to the Kronecker
factorisation of the array steering vectors:

a(pr, qr) = av(qr) ⊗ ah(pr),

and, consequently, the array manifold matrix (3) can be written as a
Khatri-Rao product

A = av(q1) ⊗ ah(p1), …, av(qR) ⊗ ah(pR) = Av♢Ah, (5)

where

Ah = ah(p1), …, ah(pR) ∈ ℂNh × R,

Av = av(q1), …, av(qR) ∈ ℂNv × R,

stand for the vertical and horizontal sub-array manifold matrices,
respectively. Equation (5) emphasises the separable structure of the
URA and shall be exploited in beamforming design.

3௑Beamforming methods
We are interested in spatially filtering the received signals x[k] to
extract sd[k], the signal of dth (desired) wavefront, while
attenuating the interfering signals. To this end, we design the
beamforming filter w ∈ ℂN so that its output y[k] = wHx[k]
approximates the desired signal. We choose to optimise this filter
to minimise the mean square error (MSE) function

JMSE(w) = E sd[k] − wHx[k]
2

= σs
2 − pxs

Hw − wH pxs + wHRxxw,
(6)

where pxs = E x[k]sd
∗[k] = ARssed ∈ ℂN denotes the cross-

covariance vector, and er ∈ ℂR the rth canonical vector in the R -
dimensional space. The MMSE beamformer yields the global
minimum of JMSE(w) and is given by the Wiener filter
wopt = Rxx

−1
pxs [19]. For large array systems, the computation of this

filter becomes impractical since it involves the inversion of a very
large covariance matrix. Iterative algorithms, such as the gradient
descent method, can be used to simplify the calculations, however
each of their iterations can still be computationally expensive.

To simplify the calculations of the MMSE beamforming filter,
we impose the following Kronecker structure: w = wv ⊗ wh,
wm ∈ ℂNm, m ∈ {v, h}. Such a representation is motivated by the
computational reduction of the beamformer design, since only
(Nv + Nh) parameters need to be optimised, against NvNh when
separability is not considered. In order to gain more insight into the
array separability, let us consider an example with N antennas and
R = 1 impinging wavefront. The received signal in this case is
given by x[k] = a(pd, qd)s[k] + b[k]. The output signal for the filter
w is then written as

y[k] = wHx[k] = AF × s[k] + wHb[k],

where AF = wHa(pd, qd) is the array factor. Note that it can be
rewritten as

AF = wv
Hav(qd) × wh

Hah(pd) . (7)

Equation (7) shows that the total array factor is given by the
product of the sub-array factors. Note that this property does not
depend on the beam pattern of the antenna elements, since it only

relies on the factorisation of the array factor. The steering vectors
of some array geometries, such as circular arrays, for example, do
not permit a Kronecker factorisation. In this case, we cannot
directly apply the methods proposed in this work.

We present two novel beamforming strategies based on the
MMSE filter that exploits array separability to reduce
computational costs. In the first strategy, we recast the MSE
function (6) using tensor algebra, and then we devise an iterative
beamformer based on alternating minimisation. The reader is
referred to [22, 23] for an introduction to tensor algebra. In the
second strategy, we obtain a closed-form beamforming filter by
employing sub-array MMSE filtering. In the end, we discuss the
computational complexity of the proposed methods.

3.1 Tensor MMSE beamformer

Let us first reformulate the received signal model (1) using tensor
algebra. Considering array separability (4), the received signal at
the nth antenna can be rewritten as

xnh, nv
[k] = ∑

r = 1

R

= anv

(v)(qr)anh

(h)(pr)sr[k] + bnh, nv
[k], (8)

Now, define the received signals matrix [X[k]]nh, nv
= xnh, nv

[k], the
array manifold tensor [A]nh, nv, r = anh

(h)(pr)anv

(v)(qr), and the AWGN
matrix [B[k]]nh, nv

= bnh, nv
[k]. Using tensor modal products [22], the

received signals matrix can be expressed as

X[k] = A ×3 s[k]T + B[k] ∈ ℂNh × Nv . (9)

The array manifold tensor A is a three-dimensional array with
dimensions Nh × Nv × R. The two first array modes refer to the
physical array dimensions, whereas the third one represents the
transmitted signal dimension, i.e. the number of wavefronts. This
tensor can be unfolded into matrices in three different manners
[22]:

[A](1) = ah(p1)av(q1)
T, …, ah(pR)av(qR)T ∈ ℂNh × NvR,

[A](2) = av(q1)ah(p1)
T, …, av(qR)ah(pR)T ∈ ℂNv × NhR,

[A](3) = (Av♢Ah)
T = A

T ∈ ℂR × NvNh .

Let us now rewrite the beamformer output y[k] = wHx[k] in terms
of wh and wv by considering the Kronecker factorisation of w and
the bi-dimensional representation of the received signals (8):

y[k] = ∑
n = 1

N

[w]n
∗
xn[k]

= ∑
nh = 1

Nh

∑
nv = 1

Nv

[wh]nh

∗ [wv]nv

∗
xnh, nv

[k] .

(10)

Using matrix notation, (10) can be rewritten as

y[k] = wh
HX[k]wv

∗ = wv
HX[k]T

wh
∗ .

The MSE function (6) can now be reformulated as the following
bi-linear function

JMSE(wh, wv)

= E sd[k] − wh
HX[k]wv

∗ 2
= E sd[k] − wv

HX[k]T
wh

∗ 2

.
(11)

Unfortunately, minimising (11) is not straightforward. The gradient
of JMSE(wh, wv) with respect to any of its vector variables depends
on the other variable. This coupling disables the direct application
of methods such as gradient descent, calling for alternating
minimisation techniques. To this end, let us define the horizontal
and vertical sub-array input signals
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uh[k] = X[k]wv
∗ ∈ ℂNh, (12)

uv[k] = X[k]T
wh

∗ ∈ ℂNv . (13)

and rewrite (11) as

JMSE(wh, wv) = E sd[k] − wh
Huh[k]

2
(14)

= E sd[k] − wv
Huv[k]

2
. (15)

It is easy to recognise (14) and (15) as linear functions of wh and
wv, respectively, when the other vector variable is fixed. The
proposed beamforming method, referred to as Tensor MMSE
(TMMSE), consists of sequentially minimising (14) and (15) using
the MMSE solution for each sub-filter until a convergence criterion
is satisfied. The sub-beamformers are calculated according to the
following theorem:
 

Theorem 1: The minimisers of (14) and (15) conditioned on wv

and wh are, respectively, given by

wh = Rhh
−1

phs,

wv = Rvv
−1

pvs,

where

Rhh = E uh[k]uh[k]H

= [A](1) Rss ⊗ wv
∗
wv

T [A](1)
H + σb

2 ∥ wv ∥2
2

INh
∈ ℂNh × Nh,

Rvv = E uv[k]uv[k]H

= [A](2) Rss ⊗ wh
∗
wh

T [A](2)
H + σb

2 ∥ wh ∥2
2

INv
∈ ℂNv × Nv

denote the covariance matrices of the sub-array input signals, and

phs = E uh[k]sd
∗[k] = [A](1) Rssed ⊗ wv

∗ ∈ ℂNh,

pvs = E uv[k]sd
∗[k] = [A](2) Rssed ⊗ wh

∗ ∈ ℂNv

the cross-covariance vectors between the sub-array input signals
and the signal of interest.

Proof: See the Appendix.
 

Theorem 1: It can be applied when the signals' statistics (Rss

and Rbb), and the array manifold matrix are known. However, such
information might not be available in practice, and thus the sub-
array covariance matrices and cross-covariance vectors need to be
estimated. It can be done by using sample estimates over K time
snapshots. In this sense, the covariance matrices Rhh and Rvv can be
estimated as

R
^

hh =
1
K

∑
k = 0

K − 1

uh[k]uh[k]H,

R
^

vv =
1
K

∑
k = 0

K − 1

uv[k]uv[k]H,

and the cross-covariance vectors phs and pvs as

p
^

hs =
1
K

∑
k = 0

K − 1

uh[k]sd
∗[k],

p
^

vs =
1
K

∑
k = 0

K − 1

uv[k]sd
∗[k] .

Note that uh[k] and uv[k] can be easily formed by observing
x[k], reshaping into X[k], and using (12) and (13), respectively.
The steps to compute the TMMSE beamformer are summarised in
Algorithm 1.
 

Algorithm 1: Tensor MMSE algorithm

1: Randomly initialise wh and wv

2: repeat
3:  Form Rhh and phs

4:   wh ← Rhh
−1

phs

5:  Form Rvv and pvs

6:   wv ← Rvv
−1

pvs

7 until convergence criterion triggers
8: w ← wv ⊗ wh

3.2 Kronecker MMSE beamformer

Let us consider the following Khatri-Rao product property. Let
A ∈ ℂP × M, B ∈ ℂQ × N, C ∈ ℂM × R, and D ∈ ℂN × R. From [24], it
follows that

(A ⊗ B)(C♢D) = (AC)♢(BD) ∈ ℂPQ × R . (16)

This result suggests that a Kronecker separable beamformer can be
individually applied to the corresponding sub-array manifold
matrix in (5). In this case, the filtering operation y[k] = wHx[k] can
be carried out as

y[k] = (wv ⊗ wh)
H(Av♢Ah)s[k] + wHb[k]

= (wv
HAv)♢(wh

HAh) s[k] + wHb[k] .

Therefore, instead of optimising an N -dimensional beamformer for
A, we can design two independent low-dimensional beamformers
for Ah and Av individually. According to this approach, each sub-
beamformer is fed only with signals from the corresponding
antenna sub-array. In this sense, we define the horizontal and
vertical observed signals:

xh[k] = Ahs[k] + bh[k] ∈ ℂNh

xv[k] = Avs[k] + bv[k] ∈ ℂNv,

where bh[k] ∈ ℂNh and bv[k] ∈ ℂNv represent the additive Gaussian
noise vector observed at the horizontal and vertical sub-arrays,
respectively. These vectors are defined as

[bh[k]]nh
= bnh + (nv − 1)Nh

[k] nv = 1,

[bv[k]]nv
= bnh + (nv − 1)Nh

[k] nh = 1 .

We propose to optimise each sub-beamformer according to the
MMSE criterion. However, the direct application of the MMSE
filter to each sub-beamformer would be prone to numerical
problems. Often in many practical scenarios, e.g. mobile
communications, different signals are closely separated in an
angular domain (azimuth or elevation). In this case, either the
vertical or horizontal sub-array manifold matrices become almost
rank deficient, turning the MSE minimisation problem ill-posed.
To overcome this issue, we resort to Tikhonov regularisation [25],
which avoids singular covariance matrices by penalising large-
norm solutions. The proposed beamforming method, hereafter
referred to as Kronecker MMSE (KMMSE), independently
minimises the following cost functions

JMSE
(h) (wh, ρ) = E sd[k] − wh

Hxh[k] 2 + ρ ∥ wh ∥2
2 , (17)

JMSE
(v) (wv, ρ) = E sd[k] − wv

Hxv[k] 2 + ρ ∥ wv ∥2
2 , (18)
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where ρ ≥ 0 denotes the regularisation parameter. Define

Rm = AmRssAm
H + Rbb, m, (19)

pm = AmRssed, (20)

with Rbb, m = σb
2
INm

 for m ∈ {h, v}. The minimisers for (17) and
(18) are thus given by wm = (Rm + ρINm

)−1
pm for m ∈ {h, v}. Due

to regularisation, the KMMSE output signal is not guaranteed to
have the same power as the desired signal. Thus, we employ the
following scaling to correct the KMMSE output power:
yKMMSE[k] = (σs/σp)p[k], where p[k] = (wv ⊗ wh)

H
x[k] and σp

denotes the standard deviation of p[k]. In a practical
implementation, this scaling correction can be performed by the
automatic gain control circuit. The computation of the KMMSE
filter is summarised in Algorithm 2.

In practice, one might not have a priori knowledge of the sub-
array manifold matrices (Ah and Av) and signals' statistics. One can
estimate (19) and (20) using the received signals from the
horizontal and vertical sub-arrays, represented by

x̄m[k] = Ams[k] + bm[k], m ∈ {h, v} .

For the horizontal sub-array, we define

[x̄h[k]]nh
= xnh + (nv − 1)Nh

[k] nv = 1 = xnh
[k],

with nh ∈ {1, …, Nh} and r ∈ {1, …, R}. Similarly, for the vertical
sub-array:

[x̄v[k]]nv
= xnh + (nv − 1)Nh

[k] nh = 1 = x1 + (nv − 1)Nh
[k],

with nv ∈ {1, …, Nv} and r ∈ {1, …, R}. Now, the covariance
matrices can be estimated as

R
^

h =
1
K

∑
k = 0

K − 1

x̄h[k]x̄h[k]H ,

R
^

v =
1
K

∑
k = 0

K − 1

x̄v[k]x̄v[k]H ,

and the cross-covariance vectors as

p
^

h =
1
K

∑
k = 0

K − 1

x̄h[k]sd
∗[k] ,

p
^

v =
1
K

∑
k = 0

K − 1

x̄v[k]sd
∗[k] .

The proposed closed-form KMMSE beamformer can be seen as a
sub-optimal solution which relies on a covariance matrix
approximation. According to the mixed product property of the
Kronecker product [24], the KMMSE beamformer can be
expressed as

w = (Rv + ρINv
) ⊗ (Rh + ρINh

)
−1

(pv ⊗ ph) . (21)

The Kronecker product of covariance matrices in (21) can be
regarded as an approximation of Rxx. Also, it is straightforward to
see in (21) that the cross-covariance vector pxs can be exactly
factorised into pv ⊗ ph. We now conduct an asymptotic analysis of
KMMSE to provide insights on its performance.

First, consider the classical MMSE filter

wopt = Rxx
−1

pxs = ARssA
H + Rbb

−1

ARssed .

Applying the matrix inversion lemma [20], its Hermitian vector
can be written as

wopt
H = ed

T Rss
−1 + A

H
Rbb

−1
A

−1

A
H
Rbb

−1 .

From the signal statistics assumptions in Section 2, we have

wopt
H = ed

T σb
2

σs
2 IR + A

H
A

−1

A
H . (22)

Now, we rewrite the Kronecker factors of the KMMSE filter using
(22) and for ρ = 0 to obtain

wH = ed
T σb

2

σs
2 IR + Av

H
Av

−1

Av
H

⊗ ed
T σb

2

σs
2 IR + Ah

H
Ah

−1

Ah
H .

(23)

At high SNR, the noise power drops and σb
2 → 0. If the inverse

matrix (Am
H

Am)−1 exists for m ∈ {h, v}, then

wH → ed
TAv

† ⊗ ed
TAh

† . (24)

As expected, each sub-array beamformer converges to a ZF filter.
Using (16) and (24), we see that the KMMSE output signal at high
SNR converges to

y[k] → ed
TAv

†
Av ♢ ed

TAh
†
Ah s[k] = sd[k] .

The inverse (Am
H

Am)−1 exists if and only if Am
H

Am is not rank
deficient, i.e. the wavefronts arrive from different directions.
However, when the wavefronts are closely spaced in the angular
domain, Am

H
Am becomes ill-conditioned and the ZF filter performs

poorly. Fortunately, when ρ > 0, the inverse matrix is defined,
allowing for desired signal recovery.

At low SNR, the term (σb
2 /σs

2)IR dominates and (23) goes to

wH = ed
T σs

2

σb
2 Av

H ⊗ ed
T σs

2

σb
2 Ah

H

=
σs

4

σb
4 av(ϕd, θd)H ⊗ ah(ϕd, θd)H .

(25)

Equation (25) shows that, as in the classical MMSE filter, the
factors of w converge to matched filters which maximise the
desired signal power. In this case, the KMMSE output signal can
be written as

y[k] → (σs
4/σb

4)[(av(ϕd, θd)H
Av)♢(ah(ϕd, θd)H

Ah)]s[k] + wHb[k

] .

If the incoming wavefronts are sufficiently separated in the angular
domain, i.e. if all av and all ah are mutually orthogonal, then
y[k] → (σs

4/σb
4)sd[k] + wHb[k]. The analysis above shows that the

proposed KMMSE filter is able to recover the desired signal from
the received signals despite the covariance matrix approximations.
Note that it is based on the assumption that the incoming signals
are sufficiently separated in the angular domain.
 

Algorithm 2: Kronecker MMSE filter

1: Select ρ ≥ 0
2: Form Rh and ph

3: wh ← Rh + ρINh

−1
ph

4: Form Rv and pv
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5: wv ← Rv + ρINv

−1
pv

6: w ← wv ⊗ wh

The proposed beamforming methods work with low-
dimensional sub-array manifold matrices to decrease their
computational complexity. However, this also reduces their degrees
of freedom, which are important for attenuating interfering signals.
An MMSE filter designed for N antennas has N degrees of
freedom, i.e. it is capable of recovering the desired signal and
rejecting N − 1 undesired sources. Our separable beamforming
framework, by contrast, offers Nh and Nv degrees of freedom for
the horizontal and vertical sub-arrays. Therefore, the separable
filter performance is limited by the least degree of freedom. Hence,
the proposed methods are capable of recovering the desired signal
and rejecting min (Nh, Nv) − 1 undesired sources. The proposed
separable beamforming framework exchanges degrees of freedom
for computational complexity reduction.

3.3 Computational complexity

The MMSE filter is known to be computationally complex.
However, if the array manifold matrix A and the signal statistics
Rss and Rbb are known, one can employ the matrix inversion lemma
to the MMSE filter and obtain the low-complexity MMSE
expression (22), in which a R × R matrix is inverted. However, this
information may not be available, and then sample estimates are
needed to compute the MMSE filter. In this case, the inversion
lemma cannot be applied, and, thus an N × N covariance matrix is
inverted in order to get the MMSE filter coefficients. Such an
operation has complexity O(N3), which can be overwhelming for
massive array systems. In this case, the proposed methods can be
used since they are much less expensive in computational terms, as
we show in the following.

The TMMSE filter calculates its beamformer coefficients
through an iterative process of I iterations, in which Nh – and Nv –
dimensional matrices are inverted. Therefore, the TMMSE filter
requires O(I(Nh

3 + Nv
3)) operations. Therefore, this method is less

complex than the classical approach provided that I, Nh, and Nv are
not too large. The authors in [26] discussed the convergence of
alternating MMSE-based methods and concluded that they are
monotonically convergent. Other numerical properties such as
convergence rate and stability are not discussed and, to the best of
our knowledge, the investigation of these aspects remains a
research challenge. The analytical convergence study of the
proposed method is beyond the scope of this work.

The KMMSE filter is much simpler than the previous methods
since it performs sub-array beamforming using closed-form
solutions. To obtain the beamformer coefficients, one needs to
invert Nh – and Nv – dimensional matrices only once. Thus, this
method carries out O(Nh

3 + Nv
3) operations.

4௑Simulation results
We present numerical results from simulations conducted to assess
the performance of the proposed methods. At each simulation,
signal data are generated as follows: R independent sequences of K
QPSK-modulated symbols are generated to form s[k], for all
k ∈ {1, …, K}. Next, the direction cosines (pr and qr) of the R
wavefronts are randomly generated according to a uniform
distribution in the range [ − 0.9, 0.9] so the array manifold matrix
A is formed. Note that selecting the direction cosines within this
range ensures the omnidirectional propagation assumption of
Section 2. Finally, the observed signals (2) are formed by
contaminating the received symbols with additive noise.

We investigate the computational complexity and source
recovery performance of the proposed beamforming methods in
terms of floating point operations (flops) and uncoded bit error
ratio (BER) of the desired signal. We choose BER as Fig. 2 of
merit because it reveals the noise and interference rejection
performance. Therefore, if the beamforming operation is correctly
carried out, then the interfering wavefronts are attenuated, and the

desired signal BER decreases. The graphs in Figs. 3–5 were
obtained by averaging the results from 105 independent
experiments considering R = 4 wavefronts, Nh × Nv = 8 × 8
antennas, and K = 1000 symbols. Figs. 6–10, however, were
collected from a single experiment with R = 6 wavefronts,
Nh × Nv = 4 × 4 antennas, and K = 1000 symbols. The parameter
selection for the latter figures will be motivated in the following
paragraphs. The convergence of the TMMSE method is achieved
when the normalised filter residual between consecutive iterations
is smaller than a tolerance value ϵ > 0, i.e.
∥ wi/ ∥ wi ∥2 − wi − 1/ ∥ wi − 1 ∥2 ∥2 < ϵ, where i denotes the
iteration number. In all experiments, we set ϵ = 10−3. Preliminary
simulations have shown that the average number of TMMSE
iterations is 5. 

The computational complexity, measured in flops, is plotted as
a function of the array size in Fig. 2. We use the MATLAB
Lightspeed toolbox [27] for flops counting since it provides the
approximate number of operations required for inverting matrices.
This result shows that the proposed method substantially reduces
the computational complexity of beamforming design. For an array
of 16 × 16 antennas, the complexity difference between MMSE
and KMMSE is around three orders of magnitude. While KMMSE
is inexpensive in all scenarios, TMMSE is costly for relatively

Fig. 2௒ Number of flops as function of array size for R = 4 wavefronts
 

Fig. 3௒ KMMSE BER performance for different regularisation parameter
ρ. Nh × Nv = 8 × 8, R = 4 wavefronts
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small arrays due to the iterative optimisation procedure. For arrays
of 8 × 8 antennas, a set-up expected for 5G systems [3], both
separable beamformers are less expensive than MMSE.

We investigate the influence of the regularisation parameter ρ

on the KMMSE BER performance in Fig. 3. We observe that
regularisation plays a little role in the performance for low SNR
(<0 dB). In this case, the noise term on (19) has enough energy to
complete the rank of the covariance matrix, decreasing its
condition number [28], thus making the horizontal and vertical
MMSE beamformers numerically stable. However, for high SNR
( ≥ 0 dB), regularisation is paramount to achieve a satisfactory
performance. This is because the noise term is not strong anymore
to fill the covariance matrix rank in this case, and then the
horizontal and vertical covariance matrices in (19) become ill-
conditioned. To tackle this issue, the regularisation term fills the
covariance matrix rank, decreasing the condition number, and thus
making the regularised MMSE beamformers stable at high SNR.
The link between the covariance matrix condition number and the
regularisation parameter ρ is clarified in Fig. 4. We note that the
covariance matrix becomes more well-conditioned at high SNR as
we increase ρ. More specifically, for ρ = 0, the BER worsens with
the SNR, owing to the increase in the condition number of the
horizontal and/or vertical covariance matrices. For ρ = 0.1,
KMMSE exhibits a bad performance from 0 dB, to 16 dB SNR. In

this range, the regularisation factor is not large enough to avoid
performance deterioration due to ill-condition of the covariance
matrix. Finally, for ρ > 0.1, we observe that KMMSE is not much
affected by the covariance matrix condition. However, the
regularisation term yields a BER bias, which increases with ρ.
Fig. 3 shows that ρ = 0.5 provides the best stability-performance
trade-off, thus we choose this value for the next simulations.

Fig. 4௒ Condition number of (19) for different regularisation parameter ρ.
Nh × Nv = 8 × 8, R = 4 wavefronts

 

Fig. 5௒ Nh × Nv = 8 × 8, R = 4 wavefronts
 

Fig. 6௒ MMSE AF squared magnitude. R = 6 wavefronts, Nh × Nv = 4 × 4.
Asterisk denotes desired signal, cross interfering signal

 

Fig. 7௒ TMMSE AF squared magnitude. R = 6 wavefronts,
Nh × Nv = 4 × 4. Asterisk denotes desired signal, cross interfering signal

 

Fig. 8௒ KMMSE AF squared magnitude. R = 6 wavefronts,
Nh × Nv = 4 × 4, ρ = 0.5. Asterisk denotes desired signal, cross interfering
signal
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Unfortunately, the important computational complexity
reduction observed in Fig. 2 comes with source recovery
degradation, as one can see in Fig. 5. This figure shows that
TMMSE exhibits good performance from −20 dB to 0 dB, while
KMMSE with regularisation parameter ρ = 0.5 performs similarly
to the benchmark only from −20 dB to −8 dB. At high SNR, the
BER performance of the separable beamformers is heavily
penalised compared to the benchmark. When one of the direction
cosines (pr or qr) of the interfering wavefronts is adjacent to those
of the desired signal, the separable beamformers fail to recover it,
yielding a significant number of bit errors. Since the direction
cosines of all wavefronts are randomly selected according to a
uniform distribution, it is rather common that the interfering
wavefronts are close to the desired signal in either p – or q –
domain. As a consequence, beamforming fails due to ill-
conditioned covariance matrices, as discussed in the previous
paragraph. At high SNR, the poor BER performance is especially
accentuated because the noise component does not have enough
power to fill the covariance matrix rank. However, whenever the
wavefronts are sufficiently separated in space, the separable
beamformers exhibit good source recovery performance. The
presented results suggest that the proposed methods are appealing
alternatives to the standard MMSE beamformer. In Fig. 2, the
computational complexity of KMMSE, for example, is two orders
of magnitude smaller than that of MMSE for Nh × Nv = 8 × 8. On
the other hand, Fig. 5 indicates that KMMSE is 5 dB apart from
MMSE for the uncoded BER of 10−3.

To better understand why the separable beamformers are more
sensitive to closely spaced wavefronts, let us investigate their
normalised array factor. We consider a scenario in which the
proposed beamformers fail due to lack of degrees of freedom. For
visualisation easiness, we consider a scenario where a 4 × 4 array
is applied to filter R = 6 wavefronts in the following. In this case,
each sub-array beamformer has only four degrees of freedom and
will fail to filter the R = 6 signals. By contrast, the classical
MMSE beamformer has 16 degrees of freedom and is able to null
the interfering wavefronts and recover the desired signal. Figs. 6–8
show the magnitude of the MMSE, TMMSE, and KMMSE
normalised array factors as functions of the direction cosines,
respectively. One can see that the MMSE filter accurately places
nulls at the interfering wavefronts directions, while a strong beam
is pointed towards the desired signal. This is possible because the
16-dimensional filter has sufficient degrees of freedom to separate
the wavefronts. In contrast to the benchmark method, KMMSE
does not accurately distribute nulls, hindering interference
attenuation. In Figs. 9 and 10, one can see that the KMMSE sub-
beamformers do not have enough degrees of freedom to attenuate
the interfering wavefronts. As a consequence, the undesired signal
at (p, q) = (0.5, − 0.3) is not properly attenuated, as seen in Fig. 8.
We observe that only three nulls are placed to attenuate five
interfering wavefronts in Fig. 9. The same is observed in Fig. 10.
To solve this issue, one would need to increase the number of
antennas to, at least, Nh × Nv = 6 × 6. Fig. 7 reveals that TMMSE
is more accurate than KMMSE at null placement. This is because
the null locations are optimised as the alternating algorithm
iterates. This accuracy is important especially at high SNR, as one
can see in Fig. 5. We conclude that the separable beamformers are
more sensitive to the number of impinging signals and closely
spaced wavefronts than the classical MMSE beamformer due to the
reduced degrees of freedom of the sub-beamformers.

5௑Conclusion
We presented two beamforming methods that exploit array
separability to reduce the computational complexity of the classical
MMSE beamformer. The TMMSE filter is based on tensor algebra
and minimises the MMSE by means of alternating minimisation,
while the KMMSE filter relies on regularised sub-array MMSE
beamforming. Our simulation results show that TMMSE provides
moderate computational complexity reduction with small source
recovery degradation. By contrast, KMMSE is computationally
inexpensive but exhibits poorer BER performance at high SNR.
Therefore, TMMSE should be employed when source recovery

performance is more important than computation efficiency, and
KMMSE on the contrary. This work paves the way to future
contributions, including the extension to massive MIMO
architectures, e.g. hybrid analogue/digital transceivers.
Furthermore, it would be of interest to validate the proposed
methods with array responses simulated in an electromagnetic field
simulator software.
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8௑Appendix
௑
It is well-known that the minimisers of (14) and (15) are given by
the classical MMSE filters wh = Rhh

−1
phs and wv = Rvv

−1
pvs,

respectively. In this appendix, we obtain the covariance matrices
and cross-covariance vectors necessary to calculate these filters. In
our demonstrations, we consider only the horizontal sub-array. The
statistics for the vertical sub-array are analogously derived.

First, let us represent (9) in terms of the matrix unfoldings of A.
Unfolding this tensor along its first mode gives [22]

X[k] = [A](1)(s[k] ⊗ INv
) + B[k] .

Now the horizontal sub-array input (12) can be expressed as

uh[k] =
(a)

[A](1)(s[k] ⊗ INv
) + B[k] (1 ⊗ wv

∗)

=
(b)

[A](1)(s[k] ⊗ wv
∗) + B[k]wv

∗,

(26)

where (a) follows by considering wv
∗ = 1 ⊗ wv

∗, and (b) is the
application of the mixed product property [24]:

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD)

for any matrices A, B, C, D with matching dimensions. The
covariance matrix of (26) is then given by

Rhh = [A](1)(Rss ⊗ wv
∗
wv

T)[A](1)
H + Rcc,

where Rcc = E[c[k]cH[k]], and c[k] = B[k]wv
∗ ∈ ℂNh. Note we have

used the fact that E[A ⊗ B] = E[A] ⊗ E − [B] for matrices A and
B with mutually independent elements, and that the inputs of B[k]
and s[k] are uncorrelated. To calculate Rcc, consider the element-
wise representation of c[k]:

[c[k]]nh
= ∑

nv = 1

Nv

[B[k]]nh, nv
[wv]nv

∗ , nh ∈ {1, …, Nh} .

The elements of Rcc are given by:

[Rcc]nh, n′h = E [c[k]]nh
[c[k]H]n′h

= E ∑
nv = 1

Nv

∑
n′v = 1

Nv

B[k] nh, nv
B[k] n′h, n′v

∗
wv nv

wv n′v
∗

for nh, nh′ ∈ {1, …, Nh}. As the AWGN vector has mutually
independent elements, it follows that

E B[k] nh, nv
B[k] n′h, n′v

∗ = 0

for all nv ≠ nv′ and nh ≠ nh′. Therefore, the off-diagonal elements of
Rcc are zero and those at the main diagonal are given by

[Rcc]nh, nh
= ∑

nv = 1

Nv

E B[k] nh, nv
B[k] nh, nv

∗
wv nv

wv nv

∗

+σb
2 ∑

nv = 1

Nv

wv nv
wv nv

∗ = σb
2 ∥ wv ∥2

2

and, consequently, we get Rcc = σb
2 ∥ wv ∥2

2
INh

, concluding the
derivation of Rhh. From the definition of phs and uh[k], it follows
that:

phs = E [A](1) s[k] ⊗ wv
∗ + B[k]wv

∗
sd

∗[k] ⊗ 1

= [A](1) s[k]sd
∗[k] ⊗ wv

∗ = [A](1) Rssed ⊗ wv
∗ ,

finalising our proof.
□

442 IET Signal Process., 2019, Vol. 13 Iss. 4, pp. 434-442
© The Institution of Engineering and Technology 2019

 17519683, 2019, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-spr.2018.5115 by C

A
PE

S, W
iley O

nline L
ibrary on [12/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/tminka/lightspeed

