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We propose a scheme for implementing a probabilistic controlled-NOT (CNOT) gate for coherent state
qubits using only linear optics and a particular four-mode state. The proposed optical setup works, as
a CNOT gate, near-faithful when |α|2 � 25 and independent of the input state. The key element for
realizing the proposed CNOT scheme is the entangled four-mode state.
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1. Introduction

After Knill et al. [1] showed that linear optics alone would suf-
fice to implement efficient quantum computing, quantum optics,
that had proved to be a fertile field for experimental tests of quan-
tum science, brought a great perspective to quantum information
processing (QIP).

In [1] efficient quantum computation is achieved using single
photon sources and single photon detectors, but the alternate idea
of encoding quantum information on continuous variables [2] has
lead to a number of proposals for realizing multi-photon [3–7] and
hybrid (coherent states and single photon) [8] quantum computa-
tions. The hybrid scheme proposed in [8] is, actually, more efficient
than pure linear optical and pure coherent state quantum comput-
ers.

The main drawback of proposals [3–5] is that “hard”, non-linear
interactions are required in-line of the computation, and these
would be difficult to implement in practice.

The elegant scheme proposed in [6] requires only relatively
simple linear optical networks and photon counting, but, unfor-
tunately, the amplitude of the required superpositions of coherent
states is prohibitively large. On the other hand, the scheme pro-
posed in [7], that was built on the idea found in [6], requires only
“easy”, linear in-line interactions, since all the hard interactions
are only required for off-line production of resource states, and is
based on much smaller superposition states.

The universal set of gates presented in [7] is composed by
a phase rotation gate, a superposition gate (that implements a

* Corresponding author. Tel.: +55 85 3366 9467; fax: +55 85 3366 9468.
E-mail address: joaobrs@ufc.br (J.B.R. Silva).
0375-9601/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.physleta.2013.08.024
rotation of π/2 about X) and a two-qubit controlled phase gate.
If a CNOT gate using coherent states is proposed, the universal set
of gates for [7] can be simplified, since any quantum circuit can be
built using single qubit gates and CNOTs. Our goal here is to pro-
pose a scheme for implementing probabilistically a CNOT gate for
coherent state encoded qubits using an entangled four-mode state,
beam splitters and photon number counters.

Several proposals and experimental implementations of a
CNOT gate for single photon qubits have been done in the last
years [9,10]. Pittman et al. describe in [9] a quantum parity check
and a quantum encoder and show how they may be combined to
implement a CNOT gate using polarizing beam splitters and po-
larization single photon qubits. The experimental demonstration of
this gate can be found in [11]. It is described in [12] the operation
and tolerances of a nondeterministic, coincidence basis, quantum
CNOT gate for photonic qubits. The gate is constructed using lin-
ear optical elements and requires only a two-photon source for its
demonstration. Its success probability is 1/9.

An unambiguous experimental demonstration and comprehen-
sive characterization of quantum CNOT operation in an optical sys-
tem using four entangled Bell states as a function of only the input
qubits’ logical values, for a single operating condition of the gate,
is found in [13]. The gate is probabilistic, but with the addition of
linear optical quantum non-demolition measurements, it is equiv-
alent to the CNOT gate required for scalable all-optical quantum
computation.

In [14] it is reported an experimental demonstration of telepor-
tation of a CNOT gate assisted with linear optical manipulations,
photon entanglement produced from parametric down-conversion,
and postselection from the coincidence measurements. The average
fidelity for the teleported gate is 0.84. Zhao et al. detail in [10] a
proof-of-principle experimental demonstration of a nondestructive
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Fig. 1. Optical setup for performing the CNOT gate for coherent state qubits proba-
bilistically.

CNOT gate for two independent photons using only linear optical
elements in conjunction with single-photon sources and condi-
tional dynamics.

All the examples given above are probabilistic gates. A deter-
ministic CNOT is still not available due to the need of non-linear
operation [15,16]. Here we present a proposal for implementing
probabilistically a CNOT gate inspired by the scheme presented
in [9].

This Letter is outlined as follows: in Section 2 we present
the optical setup for a probabilistic CNOT gate for coherent state
encoded qubits; in Section 3 brings the analysis of success and
fidelity of the proposed CNOT gate; and, at last, we make our con-
cluding remarks in Section 4.

2. Optical setup for a probabilistic CNOT gate

We intend to perform a CNOT gate between the qubits |C〉 =
a|0〉 + b|1〉 and |T 〉 = c|0〉 + d|1〉, where |C〉 and |T 〉 are the
control and the target qubits, respectively. In a coherent state
quantum computer (CSQC), the qubit is encoded as |0〉L = |−α〉
and |1〉L = |α〉 where α is assumed to be real. In this case,
we have |〈0|1〉|2 = |〈−α|α〉|2 = exp(−4|α|2), which ensures the
orthogonality if α � 2 [3–6]. Thus, the states |C〉 and |T 〉 for
coherent state qubits are: |C〉 = Nc(a|−α〉 + b|α〉) and |T 〉 =
Nt(c|−α〉+d|α〉), where Nc = [1 + 2 · �(a∗b)exp(−2|α|2)]−1/2 and
Nt = [1 + 2 · �(c∗d)exp(−2|α|2)]−1/2 are normalization constants.

Schematic of the optical setup for our proposed CNOT gate
is showed in Fig. 1. The state |�〉 in Fig. 1 is an four-mode
state given by |�〉 = NΩ(|−α,−α,−α,−α〉 + |−α,−α,α,α〉 +
|α,α,α,−α〉+ |α,α,−α,α〉), where the normalization constant is

N� = 4[1 + exp(−4|α|2) + 2 · exp(−6|α|2)]−1/2
. This state can be

generated by the quantum circuit shown in Fig. 2 and can be im-
plemented nondeterministically from the optical scheme proposed
in [26]. The success probability of this scheme is 1/4.

In Fig. 1, BS, PS and C are beam splitters, phase shifters and
photon counters, respectively. The set of beam splitters and pho-
ton counters are used to perform Bell-state measurements [17,18].
The unitary operator of a lossless balanced beam splitter is B̂ =
exp[π(â1â†

2 + â†
1â2)/4]. If we send two coherent states |α〉1 and

|β〉2 through the BS, the total state at the output is given by:

B̂|α,β〉1,2 = ∣∣(α − β)/
√

2, (α + β)/
√

2
〉

. (1)
1,2
The PS, by its turn, adds a phase θ to the signal passing through
it. Its unitary operator is Û (θ) = exp( jθ â†â), such that:

Û |α〉 = ∣∣e jθα
〉
. (2)

If θ = π , the PS is a NOT or X gate for a CSQC because if the light
entering the PS is a coherent state |α〉(|−α〉), the output state will
be |−α〉(|α〉).

Still referring to Fig. 1, mode 1 is the control qubit |C〉, mode 6
is the target qubit |T 〉 and modes 2 to 5 correspond to the auxil-
iary resource state |�〉. Before the photon counters, the state |ψ〉,
resulting from the evolution of the input state |C〉1 ⊗|�〉2−5 ⊗|T 〉6
through the optical setup, is given by:

|ψ〉 = N
[
ac

(|0,−√
2α,−α,−α,0,−√

2α〉
+ |0,−√

2α − α,α,
√

2α,0〉
+ |−√

2α,0,α,α,0,−√
2α〉

+ |−√
2α,0,α,−α,

√
2α,0〉)

+ ad
(|0,−√

2α,−α,−α,−√
2α,0〉

+ |0,−√
2α − α,α,0,

√
2α〉

+ |−√
2α,0,α,α,−√

2α,0〉
+ |−√

2α,0,α,−α,0,
√

2α〉)
+ bc

(|√2α,0,−α,−α,0,−√
2α〉

+ |√2α,0,−α,α,
√

2α,0〉
+ |0,

√
2α,α,α,0,−√

2α〉 + |0,
√

2α,α,−α,
√

2α,0〉)
+ bd

(|√2α,0,−α,−α,−√
2α,0〉

+ |√2α,0,−α,α,0,
√

2α〉
+ |0,

√
2α,α,α,−√

2α,0〉
+ |0,

√
2α,α,−α,0,

√
2α〉)], (3)

where N = Nc · N� · Nt . When the photon counter Cx registers nx

photons, we obtain one of the following states on modes 3 and 4:

|χ〉3,4 = 1,2,5,6〈0,n2,0,n4|ψ〉1−6

� ac(−1)n2+n4 |−α,−α〉 + ad(−1)n2 |−α,α〉
+ bc(−1)n4 |α,α〉 + bd|α,−α〉, (4)

|χ〉 = 〈n1,0,n3,0|ψ〉
� ac(−1)n1 |α,−α〉 + ad(−1)n1+n3 |α,α〉

+ bc|−α,α〉 + bd(−1)n3 |−α,−α〉, (5)

|χ〉 = 〈0,n2,n3,0|ψ〉
� ac(−1)n2 |−α,α〉 + ad(−1)n2+n3 |−α,−α〉

+ bc|α,−α〉 + bd(−1)n3 |α,α〉, (6)

|χ〉 = 〈n1,0,0,n4|ψ〉
� ac(−1)n1+n4 |α,α〉 + ad(−1)n1 |α,−α〉

+ bc(−1)n4 |−α,−α〉 + bd|−α,α〉. (7)
Fig. 2. Circuit to generate a four-partite entangled state |�〉 for single photon qubits.
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From (4), we note that photon counters C1 and C3 registered
zero photons whereas photon counters C2 and C4 registered a non-
zero number of photons n2 and n4, respectively. A similar analysis
can be done in (5)–(7). The schematic optical setup here presented
will work correctly if the output state is equal to

|λ〉 = CNOT|C,T〉
= Nλ

(
ac|−α,−α〉 + ad|−α,α〉 + bc|α,α〉 + bd|α,−α〉)

or a state that can be converted to |λ〉 by a unitary operator, with

Nλ = {
1 + 2 · [�{

c∗d
} · (1 + 2 · �{

a∗b
})

+ �{
a∗b

} · exp
(−2|α|2)] · exp

(−2|α|2)}−1/2
.

Therefore, the optical system is successful when measurements in
the photon counters correspond to one of the following mutually
exclusive situations:

(i) n1 = n3 = 0, both n2 and n4 are even and both PS’s are dis-
abled;

(ii) n2 = n4 = 0, both n1 and n3 are even and only PS1 is acti-
vated;

(iii) n1 = n4 = 0, both n2 and n3 are even and only PS2 is acti-
vated;

(iv) n2 = n3 = 0, both n1 and n4 are even and both PS’s are acti-
vated.

3. Analysis of probability of success and fidelity of the optical
setup

In this section, we analyze the probability of success of the pro-
posed CNOT gate, considering each of the four situations listed. For
simplicity, we assume a,b, c,d and α real.

The probability of success for situation (i), pi = |1,2,5,6〈0,n2,

0,n4 | ψ〉1−6|2, is given by

pi = |N|2
4|Nλ|2

(
1 − e−2α2)2

. (8)

It is easy to verify using Eq. (8) that the probability of one success-
ful event is 1/16. The same result is obtained for other situations
(p = pi = pii = piii = piv). Therefore, the total probability of success
is 1/4.

We can use an appropriate displacement operator in the cases
where the CNOT gate fails, achieving the so-called near-faithful op-
eration, i.e., the fidelity of the collapsed state can be almost 1 for a
large enough |α|2, as expected. Suppose that in (4) n2 and n4 are
odd, resulting in a state

|φ1〉 = N1
(
ac|−α,−α〉 − ad|−α,α〉 − bc|α,α〉 + bd|α,−α〉),

N1 = {
1 − 2

[
cd(1 − 2ab) + abe−2|α|2]e−2|α|2}−1/2

. (9)

The state given by Eq. (9) is neither |λ〉 nor it be can con-
verted in |λ〉 by a unitary operator and its fidelity should be less
than 1. Therefore, let us apply the displacement operator D̂2(β) =
exp(βâ†

2 − β∗â2) on mode 2 of the state in (9) to increase the fi-
delity of the collapsed state. If β = − jπ/(4α), the resulting state
is

∣∣φ′
1

〉 = D̂2

(
− jπ

4α

)
|φ1〉

= N1e jπ/4
(

ac

∣∣∣∣−α,− jπ

4α
− α

〉
+ jad

∣∣∣∣−α,− jπ

4α
+ α

〉

+ jbc

∣∣∣∣α,− jπ

4α
+ α

〉
+ bd

∣∣∣∣α,− jπ

4α
− α

〉)
. (10)
Such that the fidelity of the state given by Eq. (10) is

F ′
1 = ∣∣〈φ′

1

∣∣ λ
〉∣∣

= |Nλ| · |N1| · e−π2/(32|α|2)
(
1 + 4 · abcd · e−2|α|2). (11)

Analyzing (11), we notice that the fidelity is almost 1 for a large
enough |α|2 and the probability of success in this case is

p1
′ = |N|2

4|N1|2
(
1 − e−2α2)2

. (12)

Now suppose that in Eq. (4) n2 and n4 are even and odd, re-
spectively, resulting in

|φ2〉 = N2
(−ac|−α,−α〉 + ad|−α,α〉 − bc|α,α〉

+ bd|α,−α〉),
N2 = {

1 − 2
[
cd(1 + 2ab) − abe−2|α|2]e−2|α|2}−1/2

. (13)

If we apply the displacement operator D̂(β) on both modes of (13),
the following state is obtained:

∣∣φ2
′〉 = D̂1

(
− jπ

4α

)
⊗ D̂2

(
− jπ

4α

)
|φ2〉

= N2

(
− jac

∣∣∣∣− jπ

4α
− α,− jπ

4α
− α

〉

+ ad

∣∣∣∣− jπ

4α
− α,− jπ

4α
+ α

〉
+ jbc

∣∣∣∣− jπ

4α
+ α,− jπ

4α
+ α

〉

+ bd

∣∣∣∣− jπ

4α
+ α,− jπ

4α
− α

〉)
. (14)

The fidelity and probability of success in this case are, respectively,

F ′
2 = ∣∣〈φ′

2

∣∣ λ
〉∣∣

= |Nλ| · |N2|e−π2/(16|α|2)
(
1 + 2

(
d2 − c2)ab · e−4|α|2), (15)

p2
′ = |N|2

4|N2|2
(
1 − e−2α2)2

. (16)

For the case that n2 and n4 are odd and even, respectively, the
projected state with the displacement operator applied on mode 1
of (4) is

∣∣φ3
′〉 = −N3

(
ac

∣∣∣∣− jπ

4α
− α,−α

〉
+ ad

∣∣∣∣− jπ

4α
− α,α

〉

+ jbc

∣∣∣∣− jπ

4α
+ α,+α

〉
+ jbd

∣∣∣∣− jπ

4α
+ α,−α

〉)
,

N3 = {
1 + 2

[
cd(1 − 2ab) − abe−2|α|2]e−2|α|2}−1/2

. (17)

The fidelity and probability of success are then:

F ′
3 = ∣∣〈φ′

3 | λ〉∣∣
= |Nλ| · |N3|e−π2/(32|α|2) · (1 + 2cd · e−2|α|2), (18)

p3
′ = |N|2

4|N3|2
(
1 − e−2α2)2

. (19)

Table 1 shows all sixteen possible situations where the pro-
posed CNOT is successful and the operations that we must perform
depending on the number of registered photons. Therefore, the
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Table 1
All sixteen possible situations (distinguished by recorded photon numbers nx and turning on-off of PS’s) and the corresponding recovery operator necessary for the successful
performance of the CNOT.

Possible situations Collapsed state Phase shifters Recovery operator Fidelity Probability of success

n1 n2 n3 n4 PS1 PS2

0 even 0 even Eq. (4) off off I ⊗ I 1 Eq. (8)
0 even 0 odd Eq. (4) off off D̂(β) ⊗ D̂(β) Eq. (15) Eq. (16)
0 odd 0 even Eq. (4) off off D̂(β) ⊗ I Eq. (18) Eq. (19)
0 odd 0 odd Eq. (4) off off I ⊗ D̂(β) Eq. (11) Eq. (12)
even 0 even 0 Eq. (5) on off I ⊗ I 1 Eq. (8)
even 0 odd 0 Eq. (5) on off D̂(β) ⊗ D̂(β) Eq. (15) Eq. (16)
odd 0 even 0 Eq. (5) on off D̂(β) ⊗ I Eq. (18) Eq. (19)
odd 0 odd 0 Eq. (5) on off I ⊗ D̂(β) Eq. (11) Eq. (12)
0 even even 0 Eq. (6) off on I ⊗ I 1 Eq. (8)
0 even odd 0 Eq. (6) off on D̂(β) ⊗ D̂(β) Eq. (15) Eq. (16)
0 odd even 0 Eq. (6) off on D̂(β) ⊗ I Eq. (18) Eq. (19)
0 odd odd 0 Eq. (6) off on I ⊗ D̂(β) Eq. (11) Eq. (12)
even 0 0 even Eq. (7) on on I ⊗ I 1 Eq. (8)
even 0 0 odd Eq. (7) on on D̂(β) ⊗ D̂(β) Eq. (15) Eq. (16)
odd 0 0 even Eq. (7) on on D̂(β) ⊗ I Eq. (18) Eq. (19)
odd 0 0 odd Eq. (7) on on I ⊗ D̂(β) Eq. (11) Eq. (12)
Fig. 3. Total probability of success and fidelity versus |α|2 for a lossless optical setup
and ideal photon number counters. (a) θ = π/4 and φ = π/4; (b) θ = π/4 and
φ = 2π/3; (c) θ = π/3 and φ = 2π/3.

total probability of success and fidelity of the optical system are,
respectively,

pT = 4 · (p + p1
′ + p2

′ + p3
′), (20)

F T = 4 · (p · 1 + p1
′ · F1

′ + p2
′ · F2

′ + p3
′ · F3

′). (21)

Figs. 3, 4 and 5 show plots of the total probability of success
and fidelity as a function of |α|2, θ and φ, where a = sin(θ), b =
cos(θ), c = sin(φ), d = cos(φ) and α is assumed to be real.

As we can see in Fig. 3, if we consider a lossless optical setup
and ideal photon number counters, there is a monotonic rela-
tion between the total probability of success and fidelity, given
by Eqs. (20) and (21), and the average number of photons |α|2,
for several values of θ and φ. Both pT and F T asymptotically ap-
proach 1 in the limit of |α|2 → ∞.

In Figs. 4 and 5, we can see that the proposed CNOT gate is
near-faithful when |α|2 � 25 and independent of θ and φ, i.e., in-
dependent of the input states, |C〉 and |T〉.

As mentioned before, the CNOT gate here proposed may be
used to simplify the universal set of gates for a coherent state
based quantum computer such as described in [7]. Alternatively,
a CNOT gate could be implemented by using a Controlled-Z gate
and two Hadamard gates as proposed in [7] and [5], respectively.
Fig. 4. Total probability of success as a function of θ and φ for |α|2 = 0.25 and
|α|2 = 25.

Fig. 5. Total fidelity as a function of θ and φ for |α|2 = 0.25 and |α|2 = 25.

The main drawbacks to this alternative is the fact that we would
need non-linearity (for the Hadamard gates) and small values of α,
demanding quantum Zeno effect or multiple use of teleportations,
increasing the number of Bell-state measurements, beam splitters
and resource states.

In general, the proposed scheme has the following advantages
compared to gates proposed in [5,7] for coherent state qubits: it
does not require (1) Bell-state measurements with arbitrarily high



M.S.R. Oliveira et al. / Physics Letters A 377 (2013) 2821–2825 2825
precision (that needs three beam splitters and four detectors) [5],
(2) Hadamard gates [5], and (3) beam splitters with reflectivity de-
pendent on the average number of photons [7]; and it uses only
two NOT gates instead of three as used in [5]. Furthermore, the
implementation of this CNOT gate becomes viable with the present
development of silicon photonics technology and multi-pixel coun-
ters (MPPC) that are able to distinguish between 1,2, . . . ,10 pho-
tons [http://www.hamamatsu.com].

In a more recent work, Lund et al. [19] propose a set of gates
for coherent state qubits and study fault tolerance under the ef-
fects of small amplitudes and loss. Their chosen universal set of
quantum gates is composed by a X gate, an arbitrary Z rotation, a
Hadamard gate, and a controlled-Z gate. They show that using er-
ror correction only small amplitudes are required for fault-tolerant
quantum computing. As in the previous work by Ralph et al. [7],
in [19] a CNOT gate is not proposed.

The CNOT gate here presented may be used with one of the two
schemes [7,19] as an alternative to the universal set of quantum
gates. As a future work, one may study if in this case, using er-
ror correction, small amplitudes could be enough for fault-tolerant
computation.

4. Conclusion

We presented a proposal for implementing a probabilistic CNOT
gate for coherent state qubits. The proposed optical setup uses only
linear optical devices, photon number counters and a special en-
tangled four-mode state as an auxiliary resource. An appropriate
displacement operator can be used when the CNOT gate fails, such
that it can work near-faithful, when |α|2 � 25, independent of the
input states. The total efficiency of the optical setup is 1/4, consid-
ering that the entangled four-mode state is supplied.
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