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“There is still violence.” (MARQUES, 2019)



RESUMO

Estudamos a geometria Lipschitz das fibras de aplicações polinomiais complexas de dois pontos

de vista: a equivalência entre as métricas induzida e intrínseca e a existência de estrutura local de

feixe bi-Lipschitz de fibras sobre um conjunto de valores de uma aplicação polinomial. Provamos

que a parte afim de uma curva algébrica projetiva conexa é Lipschitz normalmente mergulhada se,

e somente se, as seguintes três condições são satisfeitas: sua parte afim é conexa; sua parte afim

é localmente Lipschitz normalmente mergulhada em cada um dos seus pontos singulares; e seu

grau é igual seu número de pontos no infinito. Além disso, mostramos que todo valor Lipschitz

trivial de uma aplicação polinomial real ou complexa é a suspensão de um valor regular próprio

de uma aplicação polinomial em menos variáveis. Por último, mostramos que esse resultado não

é estendido para funções racionais.

Palavras-chave: geometria Lipschitz; Lipschitz normalmente mergulhado; valores Lipschitz

triviais.



ABSTRACT

We study Lipschitz geometry of fibers of complex polynomial mappings from two points of

view: the equivalence of inner and outer metrics of an algebraic curve and the existence of a

locally bi-Lipschitz trivial fibre bundle structure over a subset of values of polynomial mappings.

We prove that the affine part of a connected projective algebraic curve is Lipschitz normally

embedded if and only if the following three conditions are satisfied: its affine part is connected,

its affine part is locally Lipschitz normally embedded at each of its singular points; and its degree

equals to the number of its points at infinity. Moreover, we show that any Lipschitz trivial value

of a real or complex polynomial mapping is a suspension of a regular value of properness of a

polynomial mapping in fewer variables. Last, we show that this result cannot extend to rational

mappings.

Keywords: Lipschitz geometry; Lipschitz normally embedded; Lipschitz trivial values.
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1 INTRODUCTION

This PhD thesis explores the Lipschitz geometry of fibers of complex polynomial

mappings from two points of view: the equivalence of inner and outer metrics of an algebraic

curve and the existence of a locally bi-Lipschitz trivial fibre bundle structure over a subset of

values of polynomial mappings.

There are two natural metrics on any arc-rectifiable subset X in Rn: the outer metric,

i.e., the distance induced by the Euclidean metric on Rn and the inner metric, given by the

infimum of the lengths of rectifiable curves in X connecting the given pair of points. The set X is

Lipschitz normally embedded (LNE) when these two metrics are equivalent in the sense that

their ratio is uniformly bounded. This definition was introduced by Birbrair and Mostowski in

[2].

The last decade has shown interest in investigating analytic set germs (X ,0) admitting

LNE representatives. For example, Birbrair and Mendes obtained in [1] a criterion for a closed

semialgebraic set to be LNE via the contact between real arcs on the set. Mendes and Sampaio

proved in their recent paper [24] that the germ of a closed semialgebraic set at a point is LNE

if and only if the family of links of this set at this point is uniformly LNE for any sufficiently

small radius. For a rather exhaustive list of what is known on this topic one can consult [24] and

also the recent short survey [7]. Outside the case of curve germs and isolated complex surface

singularity germs, little is known in the higher dimensional complex setting.

Similarly, only a single paper has adressed when an algebraic set is LNE nearby

infinity in the complex case, and under very restrictive hypotheses [10]. Last, there are very few

results about gobally LNE algebraic subsets of Kn. The only non-trivial example we know of

is from [18]. It has non-isolated singularities, but is a K-cone over a compact LNE set, thus

essentially a projective result.

The first part of the thesis aims at explaining the problem of being globally LNE. It is

devoted to study the case of algebraic curves being LNE as subsets of Cn. We fully characterize

which complex algebraic curves of Cn are LNE and which complex analytic curves of a compact

complex manifold are LNE.

A stepping stone of the bundle-like properties of C∞ mappings is Ehresmann’s

Theorem, stating that a proper C∞ surjective submersion f : X → N between C∞ manifolds

is a locally C∞ trivial fibration. In the case of polynomial functions, where singular points

and non-compact fibers are allowed, Thom in the seminal paper [28] from 1969 proved that
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a polynomial function f : Kn → K is locally trivial at any value outside Bif( f ), a finite set of

values, called the set of bifurcation values.

After Thom’s result, a significant literature about the C0 and the C∞ local triviality

has been developed. For example, Verdier studied the existence of C0 triviality of analytic

mappings in [29]. In 1980, Hardt handled the semialgebraic case in [14]. Rabier generalized

Ehresmann’s Theorem to the cases of infinite dimension and non-proper setting about 25 years

ago in [26]. In 2005, Jelonek and Kurdyka in [17] obtained constructive results about the so

called set of generalized critical values which always contains the set of bifurcation values.

More recently, in 2019, Fernandes, Grandjean and Soares started the investigation

of an intermediate case between C0 and C∞ triviality in the paper [9]. They proved that a non-

constant polynomial mapping f : Cn → C is locally Lipschitz trivial, i.e., admitting bi-Lipschitz

trivialization, at a value if and only if it is a polynomial in a single variable.

In the second part of this thesis we fully characterize the polynomial mappings

f : Kn → Kp taking Lipschitz trivial values in terms of proper and non-bifurcation values,

generalizing the main result of [9].

Chapter 2 reviews some standard (and some less standard) definitions and technical

tools. In Section 2.1 we present some notations that are used throughout the text. Section 2.2

recalls some definitions and properties on sub-manifolds, especially the k-slice criterion for

a subset to be an embedded sub-manifold of a prescribed manifold. In Section 2.3 we recall

some results on critical values including Sard’s Theorem. In Section 2.4 we present the Conical

Structure Theorem and the definition of tangent cone. In Sections 2.5 and 2.6 we recall some

important concepts and properties of multiplicity of analytic sets and degree of algebraic sets,

following [4]. In Section 2.7 we introduce the notion of Lipschitz normally embedded subset in

a Riemannian manifold and provide some important tools to investigate the property of being

LNE for curves. In Section 2.8 we present the definitions of C∞ and C0 local triviality and

the Theorems of Ehresmann and Thom. In Section 2.9 we present the definition of values of

properness and some results of the papers [15], [16], [17] on the set of non-proper values of

polynomial mappings. In Section 2.10 we present the definition of Lipschitz trivial values, the

main object of study in Chapter 4. Sections 2.11 and 2.12 together present three well-known

results that are used in next Chapters: Rademacher’s Theorem, Hadamard’s Inequality and

Puiseux parameterization for curves.

In Chapter 3 we investigate the LNE property for curves. Section 3.1 is devoted
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to obtain a criterion for an isolated singularity germ to be LNE at the singularity (see Lemma

3.1.1). Section 3.2 presents a complete proof of a criterion for curve germs to be locally LNE at

a prescribed point (see Definition 2.7.4). Moreover, we prove that a complex curve in a compact

complex manifold is LNE if and only if it is connected and locally LNE at each of its singular

points. In Section 3.3 we start the investigation of LNE property at infinity. We show that an

analytic curve germ is LNE at infinity if and only if it is transverse to the hyperplane at infinity

and its multiplicity at the prescribed point at infinity is 1. Section 3.4 works with algebraic curves.

We prove the following key result: Let Xa be an affine curve and let X be its projective closure.

Let X∞ = X ∩H∞, where H∞ is the hyperplane at infinity. Assume that deg(X) = card(X∞).

Then, whenever the radius R is large enough, each connected component of Xa \B2n
R is LNE (see

Proposition 3.4.1). Section 3.5 considers the bounded part of affine algebraic curves. We prove

that the bounded part X ∩B2n
R (for large enough radius R) of the affine part of a projective curve

is LNE if and only if it is locally LNE at each of its singular points. Finally, in Section 3.6 we

prove our main result on LNE curves, Theorem 3.6.1: Let X be a connected projective curve of

Pn of degree deg(X) such that X∞ is finite. The affine curve Xa = X \X∞ is LNE in Cn if and

only if the following conditions are satisfied: (1) Xa is connected; (2) Xa is locally LNE at each

of its singular points; (3) card(X∞) = deg(X).

Our goal in Chapter 4 is to decide when a real or complex polynomial mapping takes a

Lipschitz trivial value (see Definition 2.10.1). In Section 4.2 we prove some general properties of

mappings with Lipschitz trivial values. In Section 4.3 we characterize the polynomial mappings

with Lipschitz trivial values, our main result on this topic is Theorem 4.3.1: Let f : Kn →Kp be

a polynomial mapping with dim f−1(c)∞ = n−1−m for a value c ∈Kp. The mapping f attains

c as a Lipschitz trivial value if and only if there exist a polynomial mapping g : Km →Kp which

is proper at c and a linear surjective projection π : Kn →Km such that f = g◦π.

In Section 4.4 we present some consequences of Theorem 4.3.1 in the real and

complex cases emphasizing the difference between them. In Section 4.5 we show that we cannot

extend the category of mappings that satisfy the claim of our main result. We provide an example

of rational function with empty indeterminacy locus that admits Lipschitz trivial values which

are not values of properness of a function of the form described in Theorem 4.3.1.



13

2 PRELIMINARIES

2.1 Notations

Throughout the text we will use following notations.

K: a field which might be R or C.

BnK
r (x): open ball of Kn centred at x with radius r for nK := dimRKn.

BnK
r (x): closed ball of Kn centred at x with radius r for nK := dimRKn.

SnK−1
r (x): Euclidean sphere of Kn centred at x and of radius r.

If the center is the origin we simplify the three last notations to BnK
r , BnK

r and SnK−1
r .

eucl: Euclidean/Hermitian metric tensor over Kn.

S⊥: orthogonal complement of a linear subspace S of Kn.

K0(ϕ) := ϕ(crit(ϕ)): Set of critical values of ϕ .

ŜK(x): The real half-cone over S with vertex x.

Cx(S): tangent cone to S at x.

Tx(S): tangent space to S at x.

m(S,x): multiplicity of S at x.

ix(S,L): intersection index of S and L at x.

H∞: hyperplane at infinity of KPn.

S∞ := S∩H∞: set of points at infinity of S.

clos(S): Euclidean closure of S.

SKPn
: projective closure of S.

dS
inn: inner distance in S.

dS
out : outer distance in S.

GC(n− p,n): Grassmanian of (n− p)-dimensional subspaces of Cn.

∂M: boundary of a manifold M.

gM: Riemannian metric tensor of a Riemannian manifold M.

dM: distance provided by the Riemannian metric tensor of M.

lM(γ): length of the path γ w.r.t. the Riemannian metric gM.

J( f ): Jelonek set of non-proper values of f .

Bif( f ): set of bifurcation values of f .

DpF : derivative of F at p.

S∗:= S\{0}: the set of elements of a subset S of Rn which are different from the origin.
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f (x) = o(g(x)) means that lim
x→0

| f (x)|
|g(x)|

=+∞.

f (x) = o∞(g(x)) means that lim
x→∞

| f (x)|
|g(x)|

= 0.

f (x) = O(g(x)) means that there exists K > 0 such that | f (x)| ≤ K · |g(x)| whenever |x| is small

enough.

f (x) = O∞(g(x)) means that there exists K > 0 such that | f (x)| ≤ K · |g(x)| whenever |x| is large

enough.

2.2 Sub-manifolds

Definition 2.2.1. Suppose M is a C∞ manifold with or without boundary. An embedded sub-

manifold of M is a subset S ⊂ M that is a manifold in the subspace topology, endowed with a

C∞ structure with respect to which the inclusion map ι : S ↪→ M is a smooth embedding, i.e., an

immersion that is a homeomorphism onto its image in the subspace topology.

Remark 2.2.1. An embedded sub-manifold S⊂M is said to be properly embedded if the inclusion

ι : S ↪→ M is a proper map.

Proposition 2.2.1. Suppose M is a C∞ manifold with or without boundary and S ⊂ M is an

embedded sub-manifold. Then S is properly embedded if and only if it is closed.

Proof. See page 100 in [23], Proposition 5.5.

Definition 2.2.2. Let U be an open subset of Rn and k ∈ {0, . . . ,n}. A k-dimensional slice of U

(or simply a k-slice) is any subset of the form

{(x1, . . . ,xk,xk+1, . . . ,xn) ∈U : xk+1 = ck+1, . . . ,xn = ck}

for some constants ck+1, . . . ,cn ∈ R.

Let M be a C∞ n-dimensional manifold, and let (U,ϕ) be a C∞ chart on M . If S is a

subset of U such that ϕ(S) is a k-slice of ϕ(U), then we say that S is a k-slice of U .

Given a subset S of M and a nonnegative integer k, we say that S satisfies the local

k-slice condition if each point of S is contained in the domain of a C∞ chart (U,ϕ) for M such

that S∩U is a single k-slice in U . Any such chart is called a slice chart for S in M, and the

corresponding coordinates (x1, . . . ,xn) are called slice coordinates.
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Proposition 2.2.2. Let M be a C∞ n-dimensional manifold. If a subset S of M is an embedded

k-dimensional sub-manifold, then S satisfies the local k-slice condition.

Proof. See Theorem 5.8 in [23].

The k-slice condition can be adapted to the case of sub-manifolds with boundary.

Definition 2.2.3. Let M be a C∞ manifold and let (U,ϕ) be a C∞ chart. A k-dimensional

half-slice of ϕ(U) is a subset of the form

{(x1, . . . ,xn) ∈ ϕ(U) : xk ≥ 0, xk+1 = ck+1, . . . , xn = cn}.

A subset S of M satisfies the local k-slice condition for sub-manifolds with boundary

if each point of S is contained in the domain of a C∞ chart (U,ϕ) for M such that S∩U is either

an ordinary k-dimensional slice or a k-dimensional half-slice.

Proposition 2.2.3. Let M be a C∞ manifold. If S⊂M is an embedded k-dimensional sub-manifold

with boundary, then S satisfies the local k-slice condition for sub-manifolds with boundary.

Proof. See Theorem 5.51 in [23].

Proposition 2.2.4. Let S be a m-dimensional embedded C∞ sub-manifold in Rn and let p ∈ S.

There is a neighborhood U of p in S and ε > 0 such that S∩U is the graph of a C∞ mapping

TpS∩Bn
ε(p)→ (TpS)⊥,

where TpS is the tangent space to S at p and (TpS)⊥ its orthogonal complement.

Proof. Without loss of generality, let us assume that p = 0 and T0S = Rm × 0. By the slice

criterion and the Local Immersion Theorem, there is a neighborhood U of 0 in S and a ε > 0

such that the projection π : S∩U → TpS∩Bε(p) given by

π(x1, . . . ,xn) = (x1, . . . ,xm)

is a C∞ diffeomorphism.

Let π⊥ : Rn → (TpS)⊥ be the projection over (TpS)⊥ given by

(x1, . . . ,xn) 7→ (xm+1, . . . ,xn),

and consider the inverse π−1 : TpS∩Bn
ε(p)→ S∩U . Notice that S∩U is the graph of π⊥ ◦π−1 :

S∩U → (TpS)⊥.
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2.3 Critical points and critical values

Definition 2.3.1. Let ϕ : M →N be a Ck mapping between Ck manifolds. A point p∈M is critical

if the pushfoward mapping F∗ : TpM → Tϕ(p)N between the tangent spaces is not surjective.

Definition 2.3.2. Let ϕ : M → N be a Ck mapping between Ck manifolds and let crit(ϕ) be the

set of critical points of ϕ . The set

K0(ϕ) := ϕ(crit(ϕ))

is the set of critical values of ϕ . If c /∈ K0(ϕ), we say that c is a regular value.

The two Lemmas below are found on pages 16 and 17 of [25] and will play important

role in the study of Lipschitz normally embeddedingness of affine part of unbounded sets.

Lemma 2.3.1. Let X ⊂ Rn be an algebraic set and let Σ(X) be the set of its singular points.

A polynomial function f : Rn → R restricted to X \Σ(X) can have at most a finite number of

critical values.

Proof. The set of critical points of f |X\Σ(X) has finitely many connected components. Since f is

constant on each of those components, the number of critical values is at most the number of

these connected components.

Lemma 2.3.2. Let X ⊂ Cn be an algebraic set such that Σ(X) is at most finite and let x0 ∈ X.

For a sufficiently small ε > 0 and a sufficiently large R > 0, the spheres S2n−1
ε (x0) and S2n−1

R (x0)

intersect X transversally. Moreover, these intersections are C∞ sub-manifolds.

Proof. Consider the function f : X \Σ(X) → R given by f (x) = |x0 − x|2, which has finitely

many critical values by Lemma 2.3.1. Given ε > 0 such that ε2 ∈ Im( f ) and ε2 is smaller then

any positive critical value, the set

f−1(ε2)∩ (X \Σ(X)) = S2n−1
ε (x0)∩ (X \Σ(X))

is a C∞ sub-manifold since ε2 is a regular value of f |X\Σ(X). The same reasoning works for

S2n−1
ε (x0)∩ (X \Σ(X)) by taking R2 larger than any positive critical value.

Theorem 2.3.1. (Sard’s Theorem) Let ϕ : M → N be a Ck mapping between C∞ manifolds of

dimension m, n, respectively. Then K0(ϕ) has null measure if k ≥ max{m−n+1,1}.

Proof. See [27].
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2.4 The Conical Structure Theorem and tangent cones

Let K be R or C.

Definition 2.4.1. Let Y be a subset of Kn. Given a point p ∈Kn, we define the real half-cone

over Y with vertex p by

Ŷ (p) := {tq+(1− t)p : q ∈ Y, t ∈ [0,+∞)}.

Theorem 2.4.1. (Conical Structure Theorem) Let X ⊂ Kn be an algebraic set and let p be a

point of X. Given ε > 0, let Kε := X ∩S2n−1
ε (p) and let Xε := K̂ε(p)∩B2n

ε (p). There exists ε > 0

and a homeomorphism ϕ : B2n
ε (p)→ B2n

ε (p) such that

1. |ϕ(x)−p|= |x−p|,

2. ϕ|S2n−1
ε (p) is the identity mapping,

3. ϕ−1(X ∩B2n
ε (p)) = Xε .

Moreover, if X has at most an isolated singularity at p, the following property holds true:

4. ϕ|X\{p} and ϕ−1|Xε\{p} are C∞.

Proof. See Theorem 9.3.6 in [3]. See also Theorem 2.10 in [25].

Let X ⊂Kn be an analytic set.

Definition 2.4.2. The geometric tangent cone Cg,0(X) of X at 0 is defined as the set of all v ∈Kn

such that there exist a sequence {xk} ⊂ X \{0} which converges to 0 and a sequence of numbers

{tk} ⊂K for which the sequence tkxk converges to v.

Denote by I(X ,0) the ideal of germs of analytic functions in Kn at 0 which vanish

on (X ,0).

Definition 2.4.3. The algebraic tangent cone Ca,0(X) of X at 0 is the algebraic set defined by all

polynomials in the ideal generated by the initial forms of all analytic functions f whose germs at

0 are in I(X ,0).

Remark 2.4.1. For complex analytic (and algebraic) sets, the algebraic and geometric tangent

cones are unique and coincide (see [30]). Then we use the simpler notation C0(X).
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2.5 Multiplicity of analytic sets

Definition 2.5.1. Let A be a locally closed set on a complex manifold X, i.e., A is the intersection

of an open and a closed subset of X. Let f : A → Y be a continuous proper finite mapping into

another complex manifold Y . The mapping f is an analytic ramified cover if:

1. there exists an analytic subset σ ∈ Y with positive codimension and a natural number

k such that A\ f−1(σ) is a complex sub-manifold in X and f : A\ f−1(σ)→ Y \σ is a

locally biholomorphic k-sheeted cover;

2. the set f−1(σ) is nowhere dense in A.

The next result establishes that every pure p-dimensional analytic set can be locally

represented as an analytic ramified cover of an open subset of Cn.

Theorem 2.5.1. Let A ⊂ Cn be a pure p-dimensional analytic set and let x ∈ A. Then there exist

a neighborhood U of x, an open set V ⊂Cp and a projection π : A∩U →V which is a k-sheeted

analytic ramified cover for some k ∈ N.

Proof. See Theorem 3.7 on page 38 of [4].

Let A ⊂ Cn be a pure p-dimensional analytic set and let x ∈ A. Let L ⊂ Cn be a

(n− p)-dimensional linear subspace such that x is an isolated point of A∩ (x+L). There exist

an open neighborhood U of A and an open subset V of L⊥ ∈ GC(p,n) such that the projection

πL : A∩U →V is a ramified analytic cover, where GC(p,n) is the Grassmanian of p-dimensional

subspaces of Cn.

Definition 2.5.2. We define the intersection index of A and the plane x+L at x as the number of

sheets of πL. It is denoted by ix(A,x+L).

Definition 2.5.3. We define the multiplicity of A at x as

m(A,x) := min{ix(A,x+L) : L ∈ GC(n− p,n)}.

The minimum described in previous definition occurs for L in a open dense subset of

GC(n− p,n). In such a case we say that x+L and A are in general position at x.

Proposition 2.5.2. Let A be a pure p-dimensional analytic set in a neighborhood of 0 ∈ Cn

and let L ∈ GC(n− p,n). The equality m(A,0) = i0(A,L) holds if and only if the plane L is

transversal to A at 0, i.e., C0(A)∩L = {0}.
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Proof. See Proposition 2 on page 122 of [4].

The geometric definition of multiplicity given above is equivalent to the standard

algebraic one in the case of hypersurfaces.

Proposition 2.5.3. If f is the minimal defining function for the set A = { f = 0}, then

m(A,0) = ord0( f ).

Proof. See Corollary on page 122 of [4].

Remark 2.5.1. Let m(A,x) ∈ N≥1 be the multiplicity of A at x. Observe that A is non-singular

at x if and only if m(A,x) = 1.

2.6 Degree of algebraic sets

Let CPn be the complex projective space with coordinates [x1 : . . . : xn+1]. Let

ι : Cn ↪→CPn be the embedding given by ι(x1, ...,xn) = [x1 : ... : xn : 1] and let p : Cn+1 \{0}→

CPn be the projection mapping given by p(x1, . . . ,xn+1) = [x1 : ... : xn+1]. Let H∞ be the

projective hyperplane defined by {xn+1 = 0}.

Let X be an algebraic set in CPn. Denote X̃ := p−1(X)∪{0}. Let A be an algebraic

set in Cn and let ι(A)
CPn

be the closure of ι(A) in CPn.

Remark 2.6.1. Then set X̃ is a homogeneous algebraic set in Cn+1 and ι(A)
CPn

is an algebraic

set in CPn.

Definition 2.6.1. Let X be an algebraic set in CPn. We define the degree of X by

deg(X) := m(X̃ ,0),

where m(X̃ ,0) is the multiplicity of X̃ at 0 ∈ Cn+1.

Definition 2.6.2. Let A be a complex algebraic set in Cn. We define the degree of A by

deg(A) := deg(ι(A)
CPn

).

Proposition 2.6.1. Let X be a pure d-dimensional algebraic set in CPn and let Λ be an arbitrary

(n−d)-dimensional plane in CPn such that the set X ∩Λ is 0-dimensional. Then

∑
x∈X∩Λ

ix(X ,Λ) = deg(X).
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Proof. See Proposition 2 on page 126 of [4].

Proposition 2.6.2. Let A be a pure d-dimensional algebraic set in Cn and let L be an arbitrary

(n−d)-dimensional plane in Cn such that the closures of A and L do not have points at infinity

in common, i.e., ι(A)∩ ι(L)∩H∞ = /0. Then πL : A → L⊥ is an analytic ramified cover with

number of sheets equal to deg(A).

Proof. See Corollary 1 on page 126 of [4].

2.7 Lipschitz normally embedded sets

Let M be Ck or K-analytic manifold for k ∈ N≥2 ∪{∞} of positive K-dimension m,

and let gM be a continuous Riemannian structure on M. The Riemannian metric gM induces

the distance function dM on M: the distance between any pair of points of M is the infimum of

the lengths lg(γ) =
∫ b

a
|γ ′(t)|gdt of rectifiable curves γ : [a,b]→ M connecting the given pair of

points. We say that a subset S of M is arc-rectifiable if any pair of points s,s′ ∈ S can be joined

by a rectifiable path γ : [a,b]→ S. Obviously, any arc-rectifiable set is arcwise connected.

Definition 2.7.1. Let S be a arc-rectifiable subset of M. We define the following two metric

structures on S inherited from (M,gM):

1. The outer distance on S is the distance function dS
out on S×S obtained by restricting dM to

the subset S×S of M×M.

2. The inner distance on S is the function

dS
inn : S×S → [0,+∞)

such that, for any s,s′ ∈ S, dS
inn(s,s

′) is given by the infimum of the lengths of the rectifiable

paths lying in S joining s and s′.

Remark 2.7.1. Notice that we always have dS
out ≤ dS

inn since any rectifiable path joining s,s′ in

S is also a rectifiable path joining these points in M.

Definition 2.7.2. Let d1 and d2 be two metrics on a set X. The metric spaces E1 = (X ,d1) and

E2 = (X ,d2) are said to be equivalent if the identity mapping idX : E1 → E2 is bi-Lipschitz, i.e,

there exists a constant L > 1 such that

1
L
·d1(x,x′)≤ d2(x,x′)≤ L ·d1(x,x′)

for any x,x′ ∈ X.
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The definitions above yield immediately the question: when are the metric spaces

(S,dS
out) and (S,dS

inn) equivalent?

Definition 2.7.3. An arc-rectifiable subset S of the Riemannian manifold (M,gM) is Lipschitz

normally embedded (later shortened to LNE) in M if the metric spaces (S,dS
inn) and (S,dS

out) are

equivalent, i.e., there exists a positive constant LS such that

dS
inn(s,s

′)≤ LS ·dS
out(s,s

′)

for any s,s′ ∈ S. Any constant LS satisfying the inequality above is called a LNE constant of S.

Although we use the abbreviation LNE, it must be never forgotten that it is with

respect to the distance dM obtained from the Riemmanian metric gM of M since the length of a

rectifiable path is defined w.r.t. the outer metric dM.

We can obtain some partial answer to the question above studying whether each

point of S has a neighborhood in S which is LNE. In order to do so, we introduce a new notion.

Definition 2.7.4. A subset S of (M,gM) is locally LNE at the point s ∈ clos(S), the closure of S

in M, if there exists an open neighbourhood U of s in M such that S∩U is LNE. The subset S is

said to be locally LNE if it is locally LNE at each point of clos(S).

This notion is the best we can do to work nearby a point since we might have LNE

and non-LNE representatives to the same germ.

Example 1. The open ball B2
1 centred at 0 of radius r is a LNE representative of the germ (R2,0)

since it is convex, while {(x,y) : y2 − (x− r)3 > 0}∩B2
2r is a non-LNE one (see Lemma 3.2 in

[12]) (see Figure 1).

Figure 1 - The intersection of {(x,y) : y2 − (x−1)3 > 0} with B2
2.

Source: Created by the author.
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The next Lemma slightly generalizes the statement of Proposition 2.4 from [18]

although it has a similar proof. It presents a simple criterion for a compact subset of (M,gM) to

be LNE.

Lemma 2.7.1. Let S be a compact connected subset of (M,gM). It is LNE if and only if it is

locally LNE at every point.

Proof. We follow the proof of [18]. For each s ∈ S, consider a LNE neighborhood Us of s with

Lipschitz constant Ks. Let {Ui}i=1,··· ,l be a finite subcover of {Us}s∈S and let K = max{Ki}.

Consider the function f : (S×S)\∆ → R given by

(s,s′) 7→
dS

inn(s,s
′)

dS
out(s,s′)

.

Let T ⊂
⋃l

i=1(Ui ×Ui) be a neighborhood of the diagonal ∆ = {(s,s) : s ∈ S}. Since

the Ui are LNE, f is continuous on the compact set (S×S)\T and hence bounded in (M×M)\T

by some K′ > 0. Moreover, since T ⊂
⋃l

i=1(Ui ×Ui), f is bounded by K on T \∆. Therefore, f

is bounded by K̃ = max{K,K′} on (S×S)\∆.

Now we see that bi-Lipschitz mappings preserve the property if being LNE.

Proposition 2.7.1. Let E1 := (X ,dX) and E2 := (Y,dY ) be two metric spaces and let S be a LNE

subset of X. If ϕ : E1 → E2 is a bi-Lipschitz mapping, then ϕ(S) is LNE in E2.

Proof. Let L > 1 be a LNE constant for S, then we have

dS
inn(x,x

′)≤ L ·dX(x,x′) (2.1)

for any x,x′ ∈ S. Let K > 1 be a bi-Lipschitz constant for ϕ , i.e.,

1
K
·dY (ϕ(x),ϕ(x′))≤ dX(x,x′)≤ K ·dY (ϕ(x),ϕ(x′)), (2.2)

for any x,x′ ∈ X .

Given y,y′ ∈ ϕ(S), write y = ϕ(x) and y′ = ϕ(x′). By the definition of length of a

path and Estimates 2.2, for any rectifiable path γ : [0,1]→ S joining x and x′, we have

1
K
· lY (ϕ ◦ γ)≤ lX(γ)≤ K · lY (ϕ ◦ γ) (2.3)

where lX and lY are the lengths taken w.r.t. the metrics dX and dY , respectively.

Estimates 2.1, 2.2 and 2.3 altogether yield

dϕ(S)
inn (y,y′)≤ L ·dS

inn(x,x
′)≤ K ·L ·dX(x,x′)≤ K2 ·L ·dY (y,y′).
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In some sense, the corollary below tells that problems for the occurrence of the LNE

property might happen at singularities or outside compact subsets.

Corollary 2.7.1. Let N be a compact connected C∞ embedded k-dimensional sub-manifold (with

or without boundary) of a Riemannian manifold (M,gM). Then N is LNE.

Proof. By Proposition 2.2.2, each point x ∈ N is contained in the domain of a C∞ chart ϕx :

Ux → Bn
1 for M such that N ∩Ux is a single k-slice in Ux. If x ̸∈ ∂N, we set

ϕx(N ∩Ux) = {(x1, . . . ,xn) ∈ Bn
1 : xk+1 = 0, . . . , xn = 0}.

If x ∈ ∂N, we may assume that

ϕx(N ∩Ux) = {(x1, . . . ,xn) ∈ Bn
1 : x1 ≥ 0, xk+1 = 0, . . . , xn = 0}.

In both cases we set ϕx(x) = 0 and denote U ′
x := N ∩Ux.

Let dx be the distance on ϕx(U ′
x) obtained from the Riemannian metric hx :=

(ϕ−1
x )∗gM|U ′

x . Since N is a C∞ sub-manifold, we may assume that ϕx yields a bi-Lipschitz

mapping (U ′
x,gM|Ux)→ (ϕx(U ′

x),eucl|ϕx(U ′
x)
) with respect to the outer metrics. Therefore, the

metric spaces (ϕx(U ′
x), |− |) and (ϕx(U ′

x),dx) are equivalent. By Proposition 2.7.1, since ϕ is

bi-Lipschitz and ϕx(U ′
x) is LNE, so is U ′

x.

Therefore N is locally LNE at x and we conclude by Lemma 2.7.1.

Suppose that (P,gP) is another Ck manifold equipped with continuous Riemannian

metric gP, yielding the distance function dP . The manifold M × P is naturally equipped

with the Riemannian product metric gM×P := gM ⊗gP , whose associated distance function is

dM×P = dM + dP. Let S be a subset of (M,gM) naturally equipped with the metric dS
out and

consider a Lipschitz mapping F : (S,dS
out)→ (P,gP) with Lipschitz constant KF , i.e.,

dP(F(s),F(s′))≤ KF ·dS
out(s,s

′) = KF ·dM(s,s′),

for any s,s′ ∈ S. The metric space S×P comes naturally equipped with the product distance

dS×P := dS
out +dP. We conclude this section with the following very useful and simple result.

Proposition 2.7.2. Let S be a LNE (thus arc-rectifiable) subset of (M,gM). If F : (S,dS
out)→

(P,gP) is a Lipschitz mapping, then its graph is LNE in (M×P,dM×P).
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Proof. Let λ be a LNE constant for S and let KF be a Lipschitz constant for F : for any x,x′ ∈ S,

we have

dS
inn(x,x

′)≤ λ ·dS
out(x,x

′) and dP(F(x),F(x′))≤ KF ·dS
out(x,x

′).

Let Q = M,M ×P. Given a path γ : [0,1] → Q, denote by lQ(γ) the length taken w.r.t. the

Riemannian metric gQ. Given ε > 0, there exists a rectifiable path γε : [0,1]→ S joining x and x′

such that

lM(γε)< dS
inn(x,x

′)+
ε

(1+KF)
.

Consider also the curve γF
ε := (γε ,F ◦ γε) : [0,1]→ S×P. Then we have

dgraph(F)
inn ((x,F(x)),(x′,F(x′))) ≤ lM×P(γ

F
ε )

≤ lM(γε)+KF · lM(γε)

= (1+KF) · lM(γε)

< (1+KF) ·
[

dS
inn(x,x

′)+
ε

(1+KF)

]
= (1+KF) ·dS

inn(x,x
′)+ ε

≤ (1+KF) ·λ ·dS
out(x,x

′)+ ε

≤ (1+KF) ·λ ·dM(x,x′)+ ε

≤ (1+KF) ·λ ·dM×P((x,F(x)),(x′,F(x′)))+ ε.

Therefore,

dgraph(F)
inn ((x,F(x)),(x′,F(x′)))≤ (1+KF) ·λ ·dM×P((x,F(x)),(x′,F(x′))).

When M = Rm and P = Rp, their product distance dM + dP is not the Euclidean

distance of Rm+p, but it is equivalent to the Euclidean distance of Rm+p, and this is how we will

use Proposition 2.7.2 in the complex affine context.

2.8 Locally trivial fibrations and bifurcation values

The following notion lies in the heart of the second part of this thesis.
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Definition 2.8.1. A mapping ϕ : Kn →Kp is topologically trivial at the value c ∈Kp, if there

exist a neighbourhood V of c in Kp and a trivializing homeomorphism

H : ϕ
−1(c)×V→ ϕ

−1(V) (2.4)

which satisfies (ϕ ◦H)(x, t) = t. In other words, the diagram below commutes.

ϕ−1(c)×V ϕ−1(V)

V

H

proj
ϕ

When H is a C∞ diffeomorphism, the mapping ϕ is called C∞ trivial at the value c.

Remark 2.8.1. In particular, the mapping ϕ is locally trivial at any value of the open subset

Kp \ clos(Im(ϕ)), the complement of the closure of the image of ϕ .

Definition 2.8.2. The values at which ϕ is not C∞ trivial are called bifurcation values. Denote

by Bif∞(ϕ) be the set of bifurcation values.

Theorem 2.8.1 ([28]). Let f : Kn →Kp be a polynomial mapping, then Bif∞(ϕ) ̸=Kp. If p = 1,

then Bif∞(ϕ) is at most finite.

The notion of C∞ triviality is generally finer than that of C0 triviality and over the

last fifty years, following the seminal paper [28], a significant literature about the C0 and the C∞

local triviality has been developed (see for instance [29]; [14]; [26]; [20]; [17]).

A critical value c ∈ K0(ϕ) is a bifurcation value, since one cannot have a C∞ trivial

fibration at c. However, if we ask for topologically trivial fibration, we have examples of critical

values which are topologically trivial as Examples 2 and 3.

Example 2. Note that the real polynomial function x 7→ x2023 is topologically trivial at each

c ∈ R, but not C∞ trivial at 0 since x 7→ x
1

2023 is not differentiable at 0.

Example 3. Let f : R2 → R given by f (x,y) = x3 + y2. The value 0 ∈ Im( f ) is a topological

trivial value although it is a critical value (see Figure 2).

Moreover, we also have examples of bifurcation values which are regular.

Example 4. Let f : R2 → R given by f (x,y) = x+ x2y. The value 0 ∈ Im( f ) is a regular

bifurcation value of f since it has three connected components while any other value near 0 has

only two connected components (see Figure 3).
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Figure 2 - Some levels of the mapping (x,y) 7→ x3 + y2.

Source: Created by the author.
Note: The value 0 (orange), negative values near 0 (green) and positive values near 0 (purple) of the mapping
(x,y) 7→ x3 + y2.

Figure 3 - Some levels of the mapping (x,y) 7→ x+ x2y.

Source: Created by the author.
Note: The bifurcation value 0 (orange), three negative values near 0 (green) and three positive values near 0 (purple)
of the mapping (x,y) 7→ x+ x2y.

We finish this section with the following result that provides a case when we obtain

a C∞ locally trivial fibration over a neighborhood of any value.

Theorem 2.8.2. (Ehresmann’s Theorem) Let ϕ : M → N be a proper submersion between C∞

manifolds M and N. Then it is a C∞ locally trivial fibration, i.e., for any c ∈ N there exists a

neighbourhood V of c in N and a trivializing C∞ diffeomorphism H : ϕ−1(c)×V→ ϕ−1(c) such

that (ϕ ◦H)(x, t) = t for any t ∈ V.

Proof. See page 154 in [6].

The phenomenon of being C∞ locally trivial fibration for proper submersions presen-

ted in Theorem 2.8.2 motivates our next sub-section.
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2.9 Values of properness and the Jelonek set

Definition 2.9.1. A polynomial mapping p : Kn →Kp is dominant if its image p(Kn) is Zariski

dense in Kp, i.e., the unique algebraic subset of Kp containing p(Kn) is Kp.

Remark 2.9.1. If Y ⊂Kp contains an open subset of Kp, then it is Zariski dense.

Definition 2.9.2. A continuous mapping ϕ : X → Y between topological spaces is proper if

ϕ−1(K) is compact whenever K is compact.

Definition 2.9.3. A mapping ϕ : Kn → Kp is proper at the value c ∈ Kp, if there exists a

neighbourhood V of c in Kp such that the restriction mapping of ϕ to ϕ−1(V) is proper. In this

case we say that c is a value of properness of the mapping ϕ . The set J(ϕ) of non-proper values

of ϕ is called the Jelonek set.

The Jelonek set of a real or complex polynomial mappings is always contained in an

algebraic set of dimension at most n−1 as we can see in the next results.

Theorem 2.9.1. Let f = ( f1, . . . , fn) : Cn → Cn be a dominant polynomial map. Then the set

J( f ) is either empty or it is a hypersurface. Moreover, Bif( f ) = K0( f )∪ J( f ).

Proof. See Theorem 15 in [15] and Proposition 4.1 in [17] .

Theorem 2.9.2. Let f : Rn → Rp be a non-constant polynomial mapping. Then the set J( f )

is closed, semi-algebraic and for every non-empty connected component S of J( f ) we have

1 ≤ dim(S)≤ n−1. Moreover, if n = p, then Bif( f ) = K0( f )∪ J( f ).

Proof. See [16] and Proposition 4.2 in [17].

Remark 2.9.2. In both real and complex cases in Theorems 2.9.1 and 2.9.2 when n = p, the set

Bif( f ) is a closed semialgebraic set of Lebesgue measure zero (see also Theorem 3.3 in [17] ),

hence of positive codimension.

When a polynomial mapping f is proper and regular at a value c, the mapping f

is C∞ trivial at c by Remark 2.9.2 and Theorem 2.8.2 (Ehresmann’s Theorem). Thus the set

Bif( f )\K0( f ) contains only non-proper values when it is non-empty.
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2.10 Lipschitz trivial values

In this section we start an investigation on an intermediate case between C0 and C∞

triviality: when and over which subset of values the mapping induces a locally bi-Lipschitz trivial

fibre bundle structure. Our goal is to characterize polynomial mappings admitting Lipschitz

trivial values, that is over a neighbourhood of which there is a bi-Lipschitz trivialization, problem

recently raised in [9].

On a product X ×Y of metric spaces we will consider the product metric.

Definition 2.10.1. A Lipschitz trivial value c ∈Kp of the mapping ϕ : Kn →Kp is a value such

that there exists a bi-Lipschitz trivializing mapping

H : ϕ
−1(c)×V→ ϕ

−1(V) (2.5)

over a neighborhood V of c which satisfies (ϕ ◦H)(x, t) = t. Let L(ϕ) be the set of Lipschitz

trivial values of ϕ .

Remark 2.10.1. In light of Definition 2.10.1 and Remark 2.8.1, the subset L(ϕ) is open and

contains Kp \ clos(Im(ϕ)). In particular, the mapping ϕ attains a Lipschitz trivial value only if

its image is Zariski-dense in Kp.

Example 5. Let g : K2 → K2 be the dominant polynomial mapping given by (x,y) 7→ (x,xy).

Given (a,b) ∈ K2, we have g−1(a,b) = {(a, b
a)} if a ̸= 0, g−1(0,0) = {(0,y) : y ∈ K} and

f−1(0,b) = /0 whenever b ̸= 0. Let V= {(a,b) ∈K2 : a ̸= 0}. For points (x,y) ∈ U := g−1(V),

the Jacobian matrix of f is J(g) =
(

1 0
y x

)
. Therefore, g is a proper submersion over U and by

Theorem 2.8.2 (Ehresmann’s Theorem), g|U is a C∞ locally trivial fibration. Since its fibers are

compact and g is C∞, by shrinking neighborhoods of the values in V to precompact ones, we

conclude that g|U is a bi-Lipschitz local trivial fibration, i.e., any value in V is a Lipschitz trivial

value of g.

Example 6. Let ϕ : K3 → K2 be the polynomial mapping defined as (x,y,z) 7→ (x,xy+ xz).

Notice that ϕ = g ◦ π where g is the mapping of Example 5 and π : K3 → K2 is the linear

surjective projection (x,y,z) 7→ (x,y+ z). The set of Lipschitz trivial values of ϕ is the same as

for g: K2 \ ({0}×K). Moreover, there is a single critical value (0,0) (the same for g) whose

level set is {0}×K2, and none of the values (0,b) with b ̸= 0 are taken. Each level (a,b) with

a ̸= 0 is an affine line.
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If W is an open neighborhood of (a,b) in V := K2 \ ({0}×K), the mapping H :

ϕ−1(W)→ ϕ−1(a,b)×W defined as

(x,y,z) 7→
((

a,
y− z

2
+

b
2a

,
z− y

2
+

b
2a

)
,(x,xy+ xz)

)
is a bi-Lipschitz trivializing homeomorphism. The inverse H−1 is given by

(
(a,y′,z′),(c,d)

)
7→

(
c,

y′− z′

2
+

d
2c

,
z′− y′

2
+

d
2c

)
.

For the case of polynomial mappings Cn → C, we have the following result:

Theorem 2.10.1. A non-constant complex polynomial mapping f : Cn → C admits a Lipschitz

trivial value if and only if it is a polynomial in a single variable.

Proof. See [9].

2.11 Puiseux parameterization for curves

We present a version of Puiseux Theorem for analytic curves of any codimension.

Theorem 2.11.1. Let (Y,0) be an analytic curve germ of Cn at 0 ∈ Cn. Assume that Y is

irreducible at 0 and let m be the multiplicity of Y at 0. Let L be the tangent cone of Y at 0, which

is a complex line through 0. After an orthonormal change of complex coordinates we can assume

that

L := {x = (x1, . . . ,xn) ∈ Cn : x2 = . . .= xn = 0}= C×0.

Then there exists a holomorphic map germ F = ( f2, . . . , fn) : (C,0)→ (Cn−1,0) such that

(Y,0) = {(sm, f2(s), . . . , fn(s)) : s ∈ (C,0)},

where f j(s) = sa jΦ j(s), Φ j is a holomorphic function with Φ j(0) ̸= 0 and a j ≥ m+1 for each

j = 2, . . . ,n.

Proof. See Proposition 1 of page 98 in [4].

2.12 Miscellaneous

The two next results will be used in the sequel to prove an interesting fact about the

rank of a mappings admitting Lipschitz trivial values.
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Theorem 2.12.1. (Rademacher’s Theorem) If f : Rm → Rn is a Lipschitz mapping, then it is

differentiable almost everywhere.

Proof. See Theorem 3.1.6 in [8].

Theorem 2.12.2. (Hadamard’s Inequality) Let D be a n×n matrix with complex entries and

columns d1, . . . ,dn. Then

|detD| ≤
n

∏
i=1

|di|.

Proof. See [13] or [22].



31

3 LIPSCHITZ NORMALLY EMBEDDED CURVES

In this chapter we investigate the LNE property for curves and obtain a characteriza-

tion of the algebraic complex curves which are LNE in Theorem 3.6.1.

3.1 A criterion for isolated singularity germs to be LNE

Our first step is to obtain a criterion for isolated singularity germs to be LNE.

Lemma 3.1.1. Let (N1,0), . . . ,(Ns,0) be germs at 0 of C∞ embedded sub-manifolds of Rn of

positive dimensions and co-dimensions. Assume that (Y,0) :=
⋃s

j=1(N j,0) has an isolated

singularity at 0. The germ (Y,0) is locally LNE at 0 if and only if T0N j ∩T0Nk = {0} for each

1 ≤ j < k ≤ s.

Proof. For each j = 1, . . . ,s, let Tj := T0N j and let T⊥
j be the orthogonal complement of Tj. By

Proposition 2.2.4, there exists a radius rY > 0 and a C∞ mapping

G j : Tj ∩Bn
2rY

→ (Tj)
⊥

whose graph Γ j is a representative of (N j,0). Notice that the derivative D0G j is zero since

Ker(D0G j) = Tj. Since G j is C∞, up to shrinking rY the mapping G j is Lipschitz over Bn
r for any

radius 0 < r ≤ rY , with Lipschitz constant tending to 0 as r goes to 0. Denote Y≤r := Y ∩Bn
r . For

j = 1, . . . ,s, we consider the representative of (N j,0) given by

N≤r
j := Γ j ∩Bn

r .

For rY small enough, the N≤r
j are connected compact C∞ embedded sub-manifolds with bounda-

ries

∂N≤r
j := Γ j ∩Sn−1

r

which are diffeomorphic to SdimTj−1. By Corollary 2.7.1, the representatives N≤r
j are LNE.

Given j,k ∈ {1, . . . ,s} such that j < k and a radius r < rY , let x j ∈ (N≤r
j )∗ and

xk ∈ (N≤r
k )∗. Denote r j := |x j| and rk := |xk|. Let 2α be the (non-oriented) angle between x j

and xk. By the Law of Sines, we have∣∣∣∣x j

r j
− xk

rk

∣∣∣∣= 2sinα (3.1)
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and the Law of Cosines yields

|x j −xk|2 = (r j − rk)
2 cos2

α +(r j + rk)
2 sin2

α. (3.2)

By Estimate (3.2) we have

sinα · (r j + rk)≤ |x j −xk| ≤ r j + rk. (3.3)

Assume that Tj ∩Tk = {0}, for each pair j ̸= k. For j = 1, . . . ,s, we consider the

link of Tj at 0

S j := Tj ∩Sn−1
1 .

Since the tangent spaces are transverse to each other we have

δ := min
1≤ j<k≤s

dist(S j,Sk)> 0.

We can require that rY is small enough such that for each j = 1, . . . ,s, and each x j ∈ (N≤rY
j )∗ the

following estimates holds true

dist
(

S j,
x j

r j

)
≤ δ

4
.

For 1 ≤ j < k ≤ s and each x j ∈ (N≤r
j )∗, xk ∈ (N≤r

k )∗, we also find the following estimates∣∣∣∣x j

r j
− xk

rk

∣∣∣∣≥ δ

2
. (3.4)

By the choice of r and j,k, Equations (3.1) and Estimates (3.4), we have∣∣∣∣x j

r j
− xk

rk

∣∣∣∣= 2sinα ≥ δ

2
. (3.5)

By Equation (3.3) and Estimates (3.5) we have

δ

4
(rk + r j)≤ |x j −xk|. (3.6)

Thus, for l = j,k, Estimates (3.6) yields

|xl|= rl ≤
4
δ
|x j −xk|. (3.7)

Let A be a LNE constant for both N≤r
j and N≤r

k . Since 0 is a isolated singularity of Y , we obtain

dY≤r
inn (x j,xk)≤ d

N≤r
j

inn (x j,0)+d
N≤r

k
inn (xk,0). (3.8)
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Estimates (3.8) and (3.7) yields

dY≤r
inn (x j,xk)≤

8A
δ
|x j −xk|.

Since each N≤r
j is LNE, we conclude that Y≤r is LNE.

Assume that (Y,0) is locally LNE at 0. Since (Y,0) has an isolated singularity

at 0, we can assume that rY is small enough so that the following identity holds true whenever

j < k:

(N≤rY
j )∗∩ (N≤rY

k )∗ = /0.

Given any pair 1 ≤ j < k ≤ s, observe that to connect x j to xk within Y≤rY it is necessary to go

through 0. Therefore

dY
inn(x j,xk)≥ r j + rk. (3.9)

Let E := {{i1, . . . , it} : 1 ≤ i1 < ... < it ≤ s , dim
⋂t

j=1 Ti j ≥ 1}. Assume that E is

not empty. Let J be an element of E and let

PJ :=
⋂
j∈J

Tj.

For any p ∈ PJ and each j ∈ J, let x j be the point (p,G j(p)) of N j. Since PJ is tangent at 0 to

each Nl and D0Gl is null, for any l ∈ J, as p goes to 0 in PJ we find that

|x j|, |xk|= |p|+o(|p|) and |x j −xk|= o(|p|)

for any pair j,k of J with j ̸= k. Combining these last equations with Estimate (3.9) we have

dY
inn(x j,xk)

|x j −xk|
≥ 2 · [|p|+o(|p|)]

o(|p|)
→+∞

as p goes to 0. Therefore, the germ (Y,0) cannot admit a LNE representative in any neigh-

bourhood of 0. Necessarily E is empty.

As a immediate consequence of the first part of proof of Lemma 3.1.1, we obtain the

following result about LNE representatives.

Corollary 3.1.1. Let Y be a representative of the germ (Y,0) of Lemma 3.1.1. There exists a

positive radius rY such that for each radius r ∈ (0,rY ], the subsets Y ∩Bn
r and Y ∩Bn

r are LNE.
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3.2 The local case for curve germs

In this section we work in the local complex analytic category. We present in

Proposition 3.2.1 a complete proof for a known local criterion for a complex analytic curve

germ to be LNE (see also [5]). This result together with Proposition 3.2.1 fully characterize

complex curves which are LNE in a given compact complex manifold. Let us set the following

convention:

Convention 1. A curve germ is a complex analytic curve germ at a prescribed point.

Let (Y,0) be a curve germ of Cn at 0 ∈ Cn. Assume that Y is irreducible at 0. Let

m be the multiplicity of Y at 0. Let L be the tangent cone of Y at 0, which is a complex line

through 0. The restriction to (Y,0) of the (orthogonal) projection Cn → L is a complex analytic

finite mapping pL : (Y,0)→ (L,0) inducing a holomorphic m-sheeted covering (Y ∗,0)→ (L∗,0).

After an orthonormal change of complex coordinates we can assume that

L := {x = (x1, . . . ,xn) ∈ Cn : x2 = ...= xn = 0}= C×0.

By Theorem 2.11.1 (Puiseux Theorem for curves), there exists a holomorphic map

germ F : (C,0)→ (Cn−1,0) such that

(Y,0) = {(sm,F(s)) : s ∈ (C,0)}. (3.10)

More precisely, writing F = ( f2, ..., fn), for each j = 2, . . . ,n, we know that

f j(s) = sa jΦ j(s), with Φ j(0) ̸= 0 and a j ≥ m+1

with the convention a j = ∞ if and only if f j ≡ 0. Moreover we require that gcd(m,a2, . . . ,an) = 1

in order to have a reduced representation.

Proposition 3.2.1. Let (X ,0) be a curve germ of (Cn,0) and let (X1,0), . . . ,(Xs,0) be its local

irreducible components and let m1, . . . ,ms be their respective multiplicities at 0. The germ (X ,0)

admits a representative which is locally LNE at 0 if and only if the following conditions are

satisfied:

(i) m j = 1 for each j = 1, . . . ,s,

(ii) L j ∩Lk = {0} for each pair ( j,k) such that 1 ≤ j < k ≤ s where L j is the tangent cone to X j

at 0.
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Proof. For each j = 1, . . . ,s, let L j be the tangent cone of X j at 0, thus a complex line through

0. For each j = 1, . . . ,s, the (orthogonal) projection π j : (X j,0)→ (L j,0) is a complex finite

mapping and it induces the germ of a holomorphic cover (X∗
j ,0)→ (L∗

j ,0) with m j ≥ 1 sheets.

Let λ1, . . . ,λt be complex lines of Cn passing through the origin. We define the

following ‘angle’

δ ((λ j) j=1,...,t) := min
1≤ j<k≤t

{|u j −uk| : u j ∈ λ j ∩S2n−1
1 and uk ∈ λk ∩S2n−1

1 }.

Observe that condition (ii) holds true if and only if δ ((L j) j=1,...,s)> 0.

Assume that (i) and (ii) are satisfied. By condition (i), each (X j,0) is a non-singular

germ. Condition (ii) means that the lines L j are pairwise transverse. By Lemma 3.1.1, the germ

(X ,0) is locally LNE at 0.

Assume that (i) or (ii) is not satisfied. We prove that (X ,0) is not locally LNE at 0.

First, we deal with the case where at least two components of (X ,0) are pairwise tangent.

Claim 3.2.1. Assume (X ,0) is not irreducible and that L := L1 = . . .= Lp for some p ≥ 1 and

Ll ̸= L1 for any l ≥ p+1. Assume that m j = 1, for j = 1, . . . , p. If p ≥ 2, then X does not admit

any representative locally LNE at 0.

Proof of Claim 3.2.1. Assume p ≥ 2. Up to a complex linear change of variables we can

assume that L is not orthogonal to any of the L j for j ≥ p+1 and also that L = C×0. Using

parameterization (3.10), for each j = 1, . . . ,s we obtain a holomorphic map germ F j : (C,0)→

(Cn−1,0) such that

(X j,0) := {(tm j , f j
2 (t), . . . , f j

n (t)) : t ∈ (C,0)}

and each f j
k has multiplicity a j

k at 0 with a j
k ≥ m j. More precisely, if j ≤ p (case where

L j = C×0), we have a j
k ≥ m j +1 for k = 2, . . . ,n, while for j ≥ p+1 (case where L j ̸= C×0),

there exists k ≥ 2 such that a j
k = m j.

We can assume that there exists a positive radius rX such that for each 1 ≤ j < k ≤ s

the following holds true

(X j ∩B2n
rX
)∩ (Xk ∩B2n

rX
) = {0}.

Therefore to connect a point x ∈ X∗
j ∩B2n

rX to the point x′ ∈ X∗
k ∩B2n

rX it is necessary to go through

0, and thus

dX
inn(x,x

′)≥ |x|+ |x′|. (3.11)
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Let (Y,0) :=
⋃p

j=1(X j,0). We have p = ∑
p
j=1 m j. The orthogonal projection π : Cn → L induces

a germ of a holomorphic p-sheeted cover Y ∗ → L∗ at 0.

Let y = (y,0, . . . ,0) be any point of L∗ and let x1, . . . ,xp be the points of π−1(y)∩Y .

For any 1 ≤ j ≤ p, we may assume that

x j = (y, f j
2 (y), . . . , f j

n (y))

where the multiplicity a j
k of f j

k is at least 2. Thus

|x j −y|= |(0, f j
2 (y), . . . , f j

n (y)| ≤ const · |y|2 = const · |y|2 (3.12)

For 1 ≤ j < k ≤ p, we have p+1
p ≤ 2. Then Estimate (3.12) yields

|x j −xk| ≤ |x j −y|+ |xk −y| ≤ const · |y|
p+1

p . (3.13)

Finally, by Estimates (3.11), for 1 ≤ j < k ≤ p, we obtain

dX
inn(x j,xk)

|x j −xk|
≥ 2|y|

const · |y|
p+1

p

=
2

const · |y|
1
p
→ ∞

as |y| goes to 0. Thus (X ,0) is not locally LNE at 0.

Finally, we deal with the case when the multiplicity of an irreducible germ at 0 is

higher than 1.

Claim 3.2.2. If m1 ≥ 2, then the irreducible germ (X1,0) does not admit any representative

locally LNE at 0.

Proof of Claim 3.2.2. Assume that m := m1 ≥ 2 and that L1 = C×0. Let y be any point of L∗
1.

Let x1, . . . ,xm be the points of π
−1
1 (y). By definition of L1 and using Puiseux Parametrization

(3.10), whenever |y| is small enough we obtain the following estimate for each j = 1, . . . ,m

|x j −y| ≤ const · |y|
m+1

m

after the same computations done in previous proof. Furthermore, for any 1 ≤ j < k ≤ m we get

|x j −xk| ≤ const · |y|
m+1

m .

Let γ be any path on X1 connecting x j to xk. Since X∗
1 is a m-sheeted covering over L∗

1 and the

points x j and xk are in different sheets, the projection γ1 of γ in L∗
1 is not contractible. Thus we

obtain the following estimates

l(γ)≥ l(γ1)≥ 2|y|.
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Therefore,
dX1

inn(x j,xk)

|x j −xk|
≥ 2|y|

const · |y|m+1
m

=
2

const · |y| 1
m
→ ∞

as |y| goes to 0 and thus (X1,0) cannot admit a representative locally LNE at 0.

The case where (X ,0) is irreducible is covered by Claim 3.2.2. Therefore, Claims

3.2.1 and 3.2.2 combined show that both conditions (i) and (ii) are necessary for X to be LNE.

Definition 3.2.1. Let M be a complex manifold. A complex curve of M is a complex analytic

subset of M, thus closed, and which is of local (complex) dimension 1 at each of its points.

When the complex manifold M is compact, any complex curve X of M is compact.

Therefore the set Xsing of singular points of X is either empty or consists of finitely many points.

It is important to remember that Proposition 3.2.1 describes when the germ of X at a singular

point is locally LNE.

Proposition 3.2.2. A complex curve X of a compact complex Riemannian manifold M is LNE if

and only if X is connected and is locally LNE at each point of its singular locus.

Proof. If X is LNE, it is connected by definition and it is locally LNE at each of its points by

Lemma 2.7.1.

Let Xsing := {x1, . . . ,xs}. For each j = 1, . . . ,s, let U j be an open neighborhood of x j

such that X ∩U j is LNE in M. If
⋃s

j=1 X ∩U j = X , then we conclude that X is LNE by Lemma

2.7.1 since it is compact. Otherwise, any point x of X \
⋃s

j=1 X ∩U j is a non-singular point of X

and by the slice criterion (Proposition 2.2.2) there exists an open neighborhood U of x in M and

a chart Ψ : U→ B2m
2 of M such that Ψ(x) = 0 and

Ψ(X ∩U) = {(x1, . . . ,x2m) ∈ B2m
2 : x3 = 0, . . . , xn = 0}.

Observe that V1 := {(x1, . . . ,x2m) ∈ B2m
1 : x3 = 0, . . . , xn = 0} is LNE w.r.t. eucl|B2m

1
since it

is convex. Let e1 := Ψ∗(eucl|B2m
1
) be the pull-back of the Euclidean metric restricted to B2m

1 .

Let W1 := Ψ−1(B2m
1 ). Since the restriction Ψ|W1 : (W1,dW1) → (Bm

1 , | − |) is bi-Lipschitz,

the distances provided by the Riemannian metrics h1 := gM|W1 and e1 are equivalent. Thus

Ψ−1(V1) = X ∩Ψ−1(B2m
1 ) is LNE in (M,gM). We conclude by Lemma 2.7.1.
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3.3 Preliminaries at infinity

In this section we start the investigation for the LNE property at infinity. We

determine when an irreducible curve germ at a point at infinity is locally LNE at infinity. This

notion was introduced in [10].

Definition 3.3.1. A subset S of Cn is locally LNE at infinity (w.r.t. the euclidean metric of Cn) if

there exists a compact subset K of Cn such that S\K is LNE (w.r.t. the euclidean metric of Cn).

Convention 2. Unless mentioned otherwise, being LNE is to be understood as being LNE as a

subset of Cn w.r.t. the Euclidean metric.

In light of Definition 3.3.1, we start this section with the following necessary result.

Lemma 3.3.1. For any positive radius R, the subsets Cn \B2n
R and Cn \B2n

R are LNE.

Proof. It is the same proof for both. We do only the first case.

Let x,y ∈ Cn \B2n
R . Assume that |x| ≤ |y|. If |x| ≤ |x−y|, we have

dCn\B2n
R
(x,y) ≤ |y|− |x|+π|x|

≤ |x−y|+π|x−y|

= (π +1)|x−y|.

Now assume |x−y|< |x| ≤ |y|. Therefore, the angle θ between the vectors x and

y is less than π/3. The length of the circular arc joining x and
|x|
|y|

y is θ · |x|. If θ = 0, then

dCn\B2n
R
(x,y) = |x−y|. For 0 < θ < 1

3 , we have

dCn\B2n
R
(x,y) ≤ |y|− |x|+θ · |x|

≤ |x−y|+θ · |x|

= |x−y|+ θ√
2−2cos(θ)

·
∣∣∣∣x− |x|

|y|
y
∣∣∣∣

≤ |x−y|+ π

3
·
∣∣∣∣x− |x|

|y|
y
∣∣∣∣

≤ |x−y|+ π

3
· |x−y|

=
(

1+
π

3

)
· |x−y|.
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The affine space Cn embeds in CPn as x 7→ [x : 1], that is CPn =Cn⊔H∞. Any point

of H∞ is called a point at infinity. Let S be a subset of CPn, the affine part Sa of S is defined

as Sa := S∩Cn = S \H∞. The subset S is said to be affine if S = Sa. When S is affine we can

consider (S,H∞) as subset germ of S in Cn and just write (S,∞) for (S,H∞). Similarly if λ is a

point of H∞, we might consider (S,λ ) as a subset germ in Cn.

Let (Y,y0) be a curve germ at the point y0 of CPn. We will denote by Y any

representative of the germ (Y,y0) in CPn.

Let λ be a point of H∞ and let (Y,λ ) be an irreducible curve germ at λ which is not

contained in H∞. Thus the tangent cone to Y at λ is a line L of the vector space TλCPn. The line

L is either transverse to H∞ or contained in Tλ H∞, we will investigate both cases.

After a linear change of coordinates in Cn, we can assume that

λ := [1 : 0 : . . . . : 0].

Let A1 be the affine chart of CPn defined as {z1 ̸= 0}. Let [1 : w : z] be affine coordinates in A1.

We further write w = (v,w′) ∈ C×Cn−2. We identify TλCPn with A1 as well. Since x are the

affine coordinates of Cn, in Cn ∩A1 we write

[x1 : y : 1] = [x : 1] = [1 : w : z].

If L is contained in {z = 0}, after a linear transformation of {z = 0} in A1 ( corresponding to a

linear transformation of {x1 = 0} in Cn) we can further require that

L = {[1 : w1 : 0 : . . . : 0] : w1 ∈ C}.

The line L is transverse to H∞ at λ if and only if there exists a ∈ Cn−1 such that

L = {[1 : za : z] : z ∈ C}.

After the affine translation x 7→ (x1,y−a) in Cn, corresponding to the linear change of coordinates

(w,z) 7→ (w′,z) = (w− za,z) in A1, we can assume that the line L has the following equation

L = {[1 : 0 : . . . : 0 : z] : z ∈ C}.

The multiplicity m := m(Y,λ ) is not affected by this linear change of coordinates. Let

Y ∗ := Y \{λ} and L∗ := L\{λ}.

The projection pL : (Y ∗,λ )→ (L∗,λ ) is a holomorphic m-sheeted covering.

First, we investigate the LNE property of (Y,λ ) in the case of transversality of Y to

H∞ at λ .
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Lemma 3.3.2. Let λ ∈ H∞ and let (Y,λ ) be an irreducible curve germ with multiplicity m at λ .

Assume that the tangent cone L to Y at λ is transverse to H∞. The germ (Y a,λ ) is locally LNE

at infinity if and only if m = 1.

Proof. Since λ is transverse to H∞, we may assume that the line L has the following equation

L = {[1 : 0 : . . . : 0 : z] : z ∈ C}.

Using parameterization (3.10) we find

(Y,λ ) = {[1 : F(z) : zm] = [1 : O(zp) : zm] : z ∈ (C,0)}

for a positive integer p ≥ m+1 maximal for this property. In this case, F ≡ 0 would mean p = ∞,

which corresponds to the case Y a = L. In the affine point of view, where x1 =
1
z , we obtain

(Y a,λ ) = {
(
xm

1 ,x
m
1 F(x−1

1 )
)
=
(

xm
1 ,O∞

(
x−(p−m)

1

))
: x1 ∈ (C,∞)}

in such a way that if (x1,y) ∈ (Y a,∞), then y → 0 as x1 → ∞. Let us consider the holomorphic

map germ (C,∞)→ (Cn−1,0) given by

x1 7→ G(x1) := xm
1 F

(
x−1

1
)
= O∞

(
x−(p−m)

1

)
.

Assume that m = 1. In this case, the germ (Y,λ ) is non-singular at λ and hence

w = zp
α(z)

where p ≥ 2 and α(z) ∈ C{z}n−1 with α(0) ̸= 0. In affine coordinates we have

y = G(x1).

Since G is a power series in x−1
1 converging for |x1| ≥ R1 > 0, it goes to 0 as x1 goes

to infinity. Thus its derivative goes to 0 as x1 goes to infinity, therefore G yields a Lipschitz

mapping C\B2
R → Cn−1 for any radius R ≥ R1. Proposition 2.7.2 and Lemma 3.3.1 together

imply that {(x1,G(x1)) : |x1| ≥ R} is LNE since it is the graph of a Lipschitz mapping over a

LNE subset of C. Therefore the germ (Y a,λ ) is locally LNE at infinity.

Assume that m ≥ 2. Let z ∈C∗ and let ζ be a m-th root of z. Let x0 := [1 : F(ζ ) : z]

and x1 := [1 : F(ωζ ) : z] where ω = e
2πi
m and let xa

0 :=
(

1
z ,

F(ζ )
z

)
and xa

1 :=
(

1
z ,

F(ωζ )
z

)
their

respective coordinates in Cn. Recall that F(z) = O(zp) for p ≥ m+1. Therefore, for |z| small

enough we have

|xa
1 −xa

0|=
∣∣∣∣F(ζ )

z
− F(ωζ )

z

∣∣∣∣≤ const · |z|
p
m−1 = const · 1

|x1|
p−m

m
(3.14)
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where p−m
m > 0. We can further consider a representative of (Y a,λ ) taken outside a large

Euclidean closed ball B2n centred at 0 in such a way that the projection mapping

π : Y a \B2n → C\B2, [x1 : y : 1] 7→ x1

is a m-sheeted holomorphic covering, where B2 is the Euclidean ball of C centred at 0 which is

the image of B2n under the projection onto the x1-axis.

Let γ : [0,1] → Y a be a rectifiable path from xa
0 = γ(0) to xa

1 = γ(1). We write

γ(t) = (x1(t),y(t)). The path π ◦ γ : t 7→ x1(t) is well defined over [0,1] and is a loop since

π(xa
0) = π(xa

1) ∈ C∗. Therefore it is not contractible in C∗ and

l(π ◦ γ) =
∫ 1

0
|x′1(t)|dt ≤ l(γ).

Since xa
0 and xa

1 are in different sheets of the covering, the path π ◦ γ has to avoid B2 in C, then it

is not contractible. Thus the following estimate holds true

2|x1(0)| ≤ l(π ◦ γ)≤ l(γ)

whenever |x1(0)| is big enough, i.e., when xa
0 and xa

1 are taken sufficiently ‘close to infinity’.

Combining this last estimate with Estimate (3.14), we obtain

dY a

inn(xa
0,x

a
1)

|xa
0 −xa

1|
≥ 2

const
· |x1|
|x1|

m−p
m

=
2

const
· |x1|

p
m

which goes to ∞ as |x1| goes to ∞ since p ≥ m+ 1. Therefore, no representative of the germ

(Y a,λ ) can be locally LNE at infinity.

The next result presents the case of tangency of Y to H∞. Its proof will follow from

arguments similar to those used for the transverse case.

Lemma 3.3.3. Let λ ∈ H∞ and let (Y,λ ) be an irreducible curve germ at λ which is not

contained in H∞. Assume that the tangent cone L to Y at λ is contained in Tλ H∞. Then the germ

(Y a,λ ) is not locally LNE at infinity.

Proof. Since L is contained in Tλ H∞ we have

L = {[1 : w1 : 0 : . . . : 0] : w1 ∈ C}.

Using parameterization (3.10) again we find

(Y,λ ) = {[1 : wm
1 : F(w1)] = [1 : wm

1 : O(wm+1
1 )] : w1 ∈ (C,0)}.
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Since the curve germ is not contained in H∞, there exist a positive integer p ≥ m+1, a function

ϕ ∈ C{w1} satisfying ϕ(0) ̸= 0 such that

z(w1) = wp
1 ·ϕ(w1).

Writing F =(w′,z)= (w3, . . . ,wn,z), for each j = 3, . . . ,n, there exists an exponent q j ∈N≥m+1∪

{∞} and a function Ψ j ∈ C{w1} such that

w j(w1) = wq j
1 ·Ψ j(w1)

where Ψ j(0) ̸= 0 whenever the function w j is not the null function, equivalently if q j < ∞. Recall

that by parameterization (3.10) we know that gcd(m,q3, . . . ,qn, p) = 1.

Since ϕ(0) ̸= 0, we can reparameterize the affine part (Y a,λ ) as

(Y a,λ ) =
{
[sp : O∞

(
|s|p−m) : 1] : s ∈ (C,∞)

}
.

Since q j > m for all j, for (x1,y) ∈ (Y a,λ ) from the affine point of view where x1 = sp, we

obtain

|y|= |x1|
p−m

p [1+o(1)]

whenever |x1| is large enough. We can further consider a representative of (Y a,λ ) taken outside

a large Euclidean closed ball B2n centred at 0 in such a way that the projection mapping

π : Y a \B2n → C\B2, [x1 : y : 1] 7→ x1

is a p-sheeted holomorphic covering whenever |x1| is large enough, where B2 is the Euclidean

ball of C centred at 0 image of B2n under the projection on the x1-axis. Let x,x′ in Y a such that

π(x) = π(x′) = x1.

Since p ≥ m+1 ≥ 2, we assume that x ̸= x′. If |x1| is large enough, we find

|x|, |x′|= |x1|(1+o∞(1))

and then we obtain

|x−x′|= O∞

(
|x1|

p−m
p

)
.

The reasoning done in the proof of the case m ≥ 2 of Lemma 3.3.2 (taking a path γ joining x and

x′ and bounding its length by the length of its projection π ◦ γ) yields the same type of estimate

in this case:
dY a

inn(x,x′)
|x−x′|

≥ 2
const

· |x1|
|x1|

m−p
m

=
2

const
· |x1|

p
m
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which goes to ∞ as |x1| goes to ∞ since p ≥ m+ 1. Therefore, no representative of the germ

(Y a,λ ) can be locally LNE at λ .

3.4 Unbounded part of affine curves

In this section we pass to the algebraic category. It is a continuation of Section 3.3,

but working with explicit representatives of germs at infinity.

Convention 3. A curve in Cn is an affine algebraic curve. A curve in CPn is a projective

algebraic curve.

Let X be a curve of CPn. We assume that X∞ = X ∩H∞ consists of finitely many

points λ1, . . . ,λp. Then p ≤ deg(X). The germ of the affine part Xa at infinity is

(Xa,∞) = ⊔p
j=1(X

a,λ j).

Given any positive radius R, let us consider

XR := X ∩S2n−1
R = Xa ∩S2n−1

R .

Using the Euclidean inversion inv2n : x 7→ x
|x|2 , the euclidean closure of the image

inv2n(Xa) of Xa is a real algebraic set of R2n ⊃ inv2n(Cn), with an isolated singularity at 0.

The Local Conic Structure at 0 (see Theorem 2.4.1) when combined with the inversion yields

a Conical Structure Theorem at infinity, which implies that there exists a positive radius RX

such that for R,R′ ≥ RX the links XR and XR′ are diffeomorphic. Moreover for R ≥ RX the

sub-manifold with boundary

Xa
≥R := Xa \B2n

R

is C∞ diffeomorphic to the cylinder XR × [R,+∞), mapping Xr onto XR × r. Let C be a connected

component of Xa
≥R. Therefore the closure of C in CPn intersects the hyperplane at infinity H∞

in a single point λC since X is a complex curve. Two such connected components C1,C2 may

accumulate at the same point at infinity, i.e., λC1 = λC2 .

For R ≥ RX , let CR
1 , . . . ,C

R
e , be the connected components of Xa

≥R. Necessarily we

have e ≤ deg(X). A first key piece to your main result is the following:

Proposition 3.4.1. Let Xa be an affine curve and let X be its projective closure. Assume that

deg(X) = card(X∞). Then, for large enough radius R, each connected component CR
j is LNE,

for j = 1, . . . ,deg(X).
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Proof. Let d := deg(X) and let iλ (X ,H∞) be the local intersection index of the germ (X ,λ ) with

(H∞,λ ). Proposition 2.6.1 yields

∑
λ∈X∞

iλ (X ,H∞) = deg(X).

By hypothesis, we obtain card(X∞) = ∑λ∈X∞ iλ (X ,H∞). Since iλ (X ,H∞) ≥ m(X ,λ ) ≥ 1, we

conclude that iλ (X ,H∞) = 1 for any λ ∈ X∞. The curve germ (X ,λ ) is non-singular and, by

Proposition 2.5.2, it is in general position with H∞ at λ for each λ ∈ X∞ , i.e., the tangent cone

to X at λ is transverse to H∞. Thus we are in the hypotheses of Lemma 3.3.2.

Let X∞ = {λ1, . . . ,λd} and assume that (Xa,λ j) = (CR
j ,λ j) for each j = 1, . . . ,d, and

each R ≥ RX . Let L j be the line tangent to X at λ j . Since it is transverse to H∞ we can consider

L j as an affine line of Cn. Let e j be a unit vector of Cn such that the point λ j ∈ H∞ corresponds

to the complex line Ce j. Let H j be the complex hyperplane orthogonal to Ce j. Since L j is

transverse to H∞ there exists a j ∈ H j such that

L j = Ce j +a j.

From the proof of Lemma 3.3.2, we deduce that (Xa,λ j) is a Lipschitz and holomorphic graph

over C\B2
r j
= Ce j \B2

r j
for each j = 1, . . . ,d.

Let

rX := max
j=1,...,d

r j.

For each R ≥ rX , let

Y R
j := {(s,G j(s)) = se j +G j(s) ∈ Ce j ×H j : s ∈ C\B2

R}

where G j : C\B2
r j
→ Cn−1 is the holomorphic mapping taking values in Cn−1 = H j, as the one

obtained in the proof of Lemma 3.3.2. We recall that

G j(s) = g j

(
1
s

)
where g j(t) ∈ C{t}n−1 and g j(0) = a j. Therefore,

lim
|s|→∞

G′
j(s) = 0.

Since G j goes to a j and its derivative goes to 0 as s goes to ∞, for every ε > 0, there exists

rε ≥ max{RX ,rX} such that

|G j(x1)−G j(x′1)|< ε|x1 − x′1| and |G j(x1)|2 < |a j|2 + ε
2
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whenever x1,x′1 ∈ Ce j \B2
rε

. Thus the mapping Γ j : s 7→ se j +G j(s) is holomorphic over C\B2
rε

and is Lipschitz, with Lipschitz constant smaller than (1+ ε). Since Γ j is bi-holomorphic, up

to taking a smaller ε we find that p j := Γ
−1
j , that is the projection onto Ce j, is Lipschitz with

constant larger than (1− ε).

If ε and rε are given, for each j = 1, . . . ,d, we obtain the inclusions

Y R j,ε
j ⊂ C

R j,ε
j ⊂ Y R

j where R j,ε :=
√

R2 + |a j|2 + ε2

whenever R ≥ rε .

By Lemma 2.3.2, ∂CR
j is a C∞ sub-manifold. Then we consider the following smooth

Jordan curve of L j:

ZR
j := p j(∂C

R
j ),

which is diffeomorphic to S1. Let DR
j be the open disk bounded by ZR

j . In order to use Lemma

2.7.2 we prove the following:

Claim 3.4.1. L j \DR
j is LNE.

Proof of Claim 3.4.1. We know that DR
j contains the closed ball B2

(1−ε)R centred at 0 ∈ L j. Since

ZR
j is a compact connected sub-manifold of L j it is LNE with LNE constant KZ . Let z and z′ be

two points of E. The only case to deal with is when the segment I = [z,z′] intersects DR
j . In this

case we can assume that z′ ̸∈ ZR
j .

Let z1, . . . ,zk−1 be the points of ZR
j which belong to I. If z is not in ZR

j let z0 := z and

zk := z′. The indexation is done in such a way that the (real) vector z j − zi is positively co-linear

to z′− z whenever i < j. Observe that for i = 1, . . . ,k−1, we have

d
L j−DR

j
inn (zi,zi+1)≤ d

ZR
j

inn(zi,zi+1)≤ KZ · |zi+1 − zi|,

since ZR
j = ∂ (L j−DR

j ). Let a0 be the minimum of the indices i such that zi ∈ I, that is a0 ∈ {0,1}.

Since KZ ≥ 1, we deduce

d
L j−DR

j
inn (z,z′)≤

k−1

∑
i=a0

d
L j−DR

j
inn (zi,zi+1)≤

k−1

∑
i=a0

KZ · |zi+1 − zi|= KZ · |z′− z|.

Since B2
R ∩Ce j ⊂ DR j,ε

j and the mapping Γ j is Lipschitz over Ce j \B2
R, it is also

Lipschitz over Ce j \DR
j . The result follows from Proposition 2.7.2.
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There are two cases when card(X∞) < deg(X). The first one has already been

mentioned in Lemma 3.3.3, when the germ (X ,λ ) is irreducible and with tangent cone L at λ

contained in the hyperplane at infinity. The second is when (X ,λ ) is not irreducible.

Lemma 3.4.1. Let X be a curve of CPn. Let λ be an isolated point of X∞. If the germ (X ,λ ) is

not irreducible then Xa is not LNE.

Proof. We can assume that λ = [1 : 0 : . . . . : 0]. Let (X1,λ ), . . . ,(XN ,λ ) be the irreducible

components of (X ,λ ). Fix R ≥ RX so that S := Xa
≥R is not connected. Notice that (Xa,λ ) =

(S,λ ). For each connected component C of S accumulating at λ , there exists a unique index

j ∈ {1, . . . ,N} such that (C,∞) = (Xa
j ,λ ).

Let C1,C2 be two connected components of S whose germ at ∞ are (Xa
1 ,λ ),(X

a
2 ,λ ),

respectively. Let (xk)k ⊂ C1 and (x′k)k ⊂ C2 be two sequences converging to ∞ and such that

xk = (k,yk) and x′k = (k,y′k).

Therefore we obtain

|xk −x′k|= o∞(k).

Let γk be a rectifiable path on Xa connecting xk and x′k. Since the sequences are in different

connected components of S, the length of γk satisfies the following inequality

l(γk)≥ dist(xk,∂S)+dist(x′k,∂S),

where ∂S is the boundary of S, which is compact. Moreover, for k large enough we have

dist(xk,∂S)≥ k
2

and dist(x′k,∂S)≥ k
2
.

Therefore,
l(γk)

|xk −x′k|
≥ k

o∞(k)
→ ∞

as k goes to ∞. We conclude that Xa cannot be LNE.

3.5 Bounded part of affine curves

In this section we use the exact same objects, notations and hypotheses from Section

3.4. We investigate the LNE property to a ‘bounded part’ of Xa, the affine part of an algebraic

projective curve X .
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Let Xsing be the singular locus of X , consisting at most of finitely many points.

Observe that the affine part (Xsing)
a of Xsing is exactly the set of singular points (Xa)sing of the

affine part Xa of X . Let us denote it by Xa
sing.

Recall that we consider a positive radius RX such that for R,R′ ≥ RX the links XR

and XR′ are diffeomorphic. For R ≥ RX the subset

Xa
≤R := Xa ∩B2n

R

is a semi-algebraic subset of Cn with C∞ boundary XR := X ∩S2n−1
R . If the affine part Xa is

connected, then for R ≥ RX the subset Xa
≤R is also connected.

The next result is another key piece of our main result on LNE curves.

Proposition 3.5.1. Let X be a projective curve such that its affine part Xa is connected and not

empty. For R ≥ RX , the subset Xa
≤R is LNE if and only if Xa is locally LNE at each point of Xa

sing.

Proof. Let S := Xa
≤R. Since S×S is connected, compact and semi-algebraic (thus arc-rectifiable),

the function dS
inn admits a maximum lS.

If S is LNE, than we can take S as a LNE neighborhood of each point. Therefore, S

is locally LNE at each point of Xa
sing.

Assume that Xa is locally LNE at each point of Xa
sing. Let x be a point of Xa \Xa

sing.

If |x|< R, the germ (S,x) is bi-holomorphic to the germ (C,0). In the other case, when |x|= R,

we recall that Xa
≤R ∩S2n−1

R is a C∞ sub-manifold by Lemma 2.3.2 and then the germ (S,x) is C∞

diffeomorphic to the germ (R× [0,∞),0). In both cases, S is locally LNE at x by Proposition

2.7.1. Therefore S is locally LNE at each of its points. Since it is compact, we conclude that S is

LNE by Lemma 2.7.1.

3.6 Characterization of affine LNE curves

Now that we have all the ingredients, we prove our main result on LNE property :

Theorem 3.6.1. Let X be a connected projective curve of CPn of degree deg(X) such that X∞ is

finite. The affine curve Xa is LNE if and only if the following conditions are satisfied:

1. Xa is connected;

2. Xa is locally LNE at each of its singular points;

3. card(X∞) = deg(X).
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Proof. Assume Xa is LNE. It is connected and it is locally LNE at each of its point, thus we

obtained (1) and (2). By Lemma 3.4.1, for each λ ∈X∞, the germ (X ,λ ) is irreducible. Moreover,

by Lemma 3.3.3 we deduce also that (X ,λ ) is transverse to H∞ at each λ of X∞. By Lemma

3.3.2, we conclude that, for each λ ∈ X∞, the germ (X ,λ ) is non-singular, thus m(X ,λ ) = 1.

Since X is transverse to H∞ at λ , by Proposition 2.5.2, we have

iλ (X ,H∞) = m(X ,λ ) = 1

for each λ ∈. By Proposition 2.6.1,

deg(X) = ∑
λ∈X∞

iλ (X ,H∞) = card(X∞).

Assume that conditions (1), (2), (3) are satisfied. Then there exists RX such that

Xa
≤R is a connected and XR is a C∞ compact embedded sub-manifold whenever R ≥ RX . In this

case, hypothesis (2) and Proposition 3.5.1 guarantee that Xa
≤R is LNE.

Condition (3) together with Proposition 3.4.1 yields that each connected component

of Xa
≥R is LNE whenever R is large enough. Denote d := deg(X). Let X∞ = {λ j} j=1,...,d

and let C1, . . . ,Cd be the connected components of Xa
≥R, indexed in such a way that λ j is the

accumulation point at infinity of C j.

Let C0 := Xa
≤R. Since each C j is LNE, we may consider a positive constant A which

is a LNE constant for each C j, i.e., for any j = 0, . . . ,d we have

dC j
inn(x,x

′)≤ A|x−x′|

whenever x,x′ ∈ C j.

Claim 3.6.1. There exists a positive constant A′ such that for any 0 ≤ j < k ≤ d we have

dXa

inn(x j,xk)≤ A′|x j −xk|

for any x j ∈ C j and xk ∈ Ck.

Proof of Claim 3.6.1. For j ≥ 1, let C j be the complex line of Cn corresponding to the complex

line direction λ j. Let S j := C j ∩S2n−1
1 be the unit circle of C j centred at the origin. Whenever

j ̸= k, the complex lines C j and Ck only meet at 0, therefore the intersection S j ∩Sk is empty.

For any 1 ≤ j < k ≤ d, let

δ j,k := dist(S j,Sk)> 0,
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the Euclidean distance between S j and Sk, and let

δ := min
1≤ j<k≤d

δ j,k > 0.

Since C j accumulate at λ j at infinity, we can assume that R is large enough so that

sup
{

dist
(

S j,
x
|x|

)
: x ∈ C j

}
≤ δ

4

for each j = 0, . . . ,d.

Let x j ∈ C j and xk ∈ Ck, for a given pair of indices 1 ≤ j < k ≤ d. For l = k, j we

define

ul :=
xl

|xl|
and rl := |xl|.

Let 2α ∈ [0,π] be the non-oriented angle between u j and uk. We split the proof in two cases.

Case 1: 1 ≤ j < k ≤ d.

For l = j,k, let yl be a point of ∂Cl ⊂Xa
R which realizes the minimum of dC j

inn(xl,∂Cl),

dC j
inn(xl,∂Cl) = dC j

inn(xl,yl).

Observe that the set of points yl satisfying this condition is closed, thus compact.

By choice of R and j, k and the Law of Sines we have

|u j −uk|= 2sin(α)≥ δ

2
.

Assume that r j ≥ rk. We recall identity (3.2)

|x j −xk|2 = (r j + rk)
2 sin2

α +(r j − rk)
2 cos2

α

from which we deduce again Estimate (3.6)

δ

4
(rk + r j)≤ |x j −xk|.

Since r j,rk ≥ R, for l = j,k, Estimate (3.6) yields the following estimate

|xl −yl| ≤ rl +R ≤ 4
δ
· |x j −xk|. (3.15)

as well as

|y j −yk| ≤ 2R ≤ 4
δ
· |x j −xk|. (3.16)
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Since, we obviously have

dXa

inn(x j,xk)≤ dC j
inn(x j,y j)+dC0

inn(y j,yk)+dCk

inn(yk,xk),

combining Estimates (3.15) and (3.16) with C0, C j , Ck being LNE with LNE constant A yield

the following expected inequality

dXa

inn(x j,xk)≤
16A
δ

· |x j −xk|.

Case 2: j = 0 and 1 ≤ k ≤ d. We can assume r0 < R < rk. For l = 0,k, we define the following

distances

δ := dXa

inn(x0,xk) and δl := dCl
inn(xl,∂Ck).

If rk ≤ 2R, we obtain a LNE constant from Xa
≤2R. Let us concentrate in the case

when rk ≥ 2R. Then we find that

rk

2
≤ |xk −x0| ≤ 2rk.

Since Ck and C0 are LNE, we have the following estimates

rk

2
≤ dCk

inn(xk,∂Ck)≤ 2Ark and dC0
inn(x0,∂Ck)≤ 2AR.

Since rk ≥ 2R, we therefore deduce the following estimate

dXa

inn(x0,xk)≤ dC0
inn(x0,∂Ck)+dCk

inn(xk,∂Ck)≤ Ark +2Ark ≤ 6A|x0 −xk|

proving the second case.

Claim 3.6.1 establishes the desired LNE properties between any pair of points

belonging to different subsets C j . Since each of these subset is LNE, the result is proved.

Example 7. Let [x : y : z] be projective coordinates of CP2 so that C2 is the affine chart given by

z ̸= 0. Consider the non-singular quadrics

P := {[x : y : z] ∈ CP2 : yz− x2 = 0} and H := {[x : y : z] ∈ CP2 : xy− z = 0}.

The parabola P and the hyperbola H are isomorphic via the linear change of coordinates

(x,z)→ (z,x). The affine parts are

Pa := {(x,y) ∈ C2 : y− x2 = 0} and Ha := {(x,y) ∈ C2 : xy−1 = 0}.
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Thus,

1 = card(P∞)< deg(P) = deg(H) = card(H∞) = 2.

By Theorem 3.6.1, the hyperbola Ha is LNE since H∞ = {[1 : 0 : 0], [0 : 1 : 0]} while the parabola

Pa is not LNE because P∞ has only the point [0 : 1 : 0].

Given a polynomial function f : Cn → C, we denote its leading term by f ∗. As

consequence of Theorem 3.6.1, we obtain next result.

Corollary 3.6.1. Let f = ( f1, ..., fn) : Cn+1 → Cn be dominant polynomial mapping and let

d := ∏deg( f j). The following are equivalent:

1. All non-singular fibers of f over Cn \K0( f ) are LNE.

2. There exists a LNE fiber of f over Cn \Bif( f ).

3. The vanishing set {x ∈ Cn : f ∗1 (x) = . . .= f ∗n (x) = 0} consists of d distinct lines, where

f ∗j is the leading term of f j.

Proof. The implication (1)⇒ (2) is obvious.

Let c = (c1, . . . ,cn) ∈ Cn \Bif( f ) such that f−1(c) is LNE. Since c is generic and f

is dominant, the fiber f−1(c) is an algebraic curve. Moreover, for each t = (t1, . . . , tn) ̸∈ K0( f ),

the polynomials ( f j − t j) are square free. Therefore, the degree of the fiber f−1(c) is equal to

deg( f ). By Theorem 3.6.1, {x ∈ Cn : f ∗1 (x) = . . .= f ∗n (x) = 0} consists of d distinct lines.

Let t ̸∈ K0( f ). Since card( f−1(t)∞) is maximal, by Theorem 3.6.1 we conclude that

f−1(t) is LNE.

Next we present an example of polynomial mapping which has an LNE singular

fiber while its generic non-singular fibers are not LNE.

Example 8. Let f :C2 →C be the polynomial mapping defined as f (x,y)= (xy)2. For each t ∈C,

denote Xt := f−1(t). If t ̸= 0, then Xt = {(x,y) ∈C2 : xy−
√

t = 0}∪{(x,y) ∈C2 : xy+
√

t = 0}

is not connected, thus not LNE. Yet the germ (X0,0) is LNE. By Theorem 3.6.1, X0 is LNE since

card(X∞
0 ) = deg(X0) = 2.
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4 LIPSCHITZ TRIVIAL VALUES OF POLYNOMIAL MAPPINGS

4.1 Statement of the main result

Our main result on Lipschitz trivial values, Theorem 4.3.1, when combined with

Proposition 4.2.2 implies the following

Theorem 4.1.1. Let f : Kn →Kp be a polynomial mapping and let n−1−m be the dimension of

the set of accumulation points at infinity of the fibre f−1(c). The mapping f attains the Lipschitz

trivial value c if and only if

f = g◦π,

for a linear surjective projection π : Kn → Km and a polynomial mapping g : Km → Kp for

which c is a regular value of properness.

In the complex case, the statement equivalently requires that m = p and the polyno-

mial mapping g : Cp → Cp be dominant and generically finite (see Corollary 4.4.1). Therefore,

either almost all values of a complex polynomial mapping are Lipschitz trivial or there are none.

In contrast with the complex case, there exist non-proper real polynomial mappings admitting

values of properness.

Moreover, we show that the Theorem 4.3.1 cannot extend without further hypotheses

to a wider class of rational mappings.

4.2 General properties for mappings with Lipschitz trivial values

In this section we present general properties of differentiable mappings with Lipschitz

trivial values. Let ϕ : Kn →Kp be a mapping. The next result emphasizes the rigid asymptotic

behaviour of levels near a Lipschitz trivial value.

Proposition 4.2.1. Assume that c is a Lipschitz trivial value of ϕ : Kn → Kp. There exists a

neighbourhood V of c such that the following properties hold:

(i) the mapping ϕ is Lipschitz on ϕ−1(V);

(ii) there exist 0 < δ < ε such that

Tδ (ϕ
−1(c))⊂ ϕ

−1(V)⊂ Tε(ϕ
−1(c)),
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where the open tube Tr(S) of radius r around a subset S of Kn is defined as

Tr(S) := {x ∈Kn : dist(x,S)< r}.

Proof. Let dc := d f−1(c)
out be the outer metric on ϕ−1(c) and let U := ϕ−1(V). Since ϕ has

a Lipschitz trivial value at c, there exist an open ball V = Bp
r (c) of Kp and a bi-Lipschitz

homeomorphism

G = (ϕ,ψ) : U 7→ V×ϕ
−1(c).

Therefore, there exists L > 1 such that for any x,x′ ∈ U we have

1
L

∥∥x−x′
∥∥≤

∥∥G(x)−G(x′)
∥∥≤ L

∥∥x−x′
∥∥ . (4.1)

Point (i) follows from inequalities (4.1) since for all x,x′ ∈ U we find

∥ϕ(x)−ϕ(x′)∥ ≤ ∥ϕ(x)−ϕ(x′)∥+dc(ψ(x),ψ(x′))≤ L
∥∥x−x′

∥∥ .
To prove (ii), define the following radii

δ :=
r
L

and ε := Lr.

Given x′ ∈ Tδ (ϕ
−1(c)) and x ∈ ϕ−1(c), we have ∥x−x′∥< δ . Inequalities (4.1) yields

∥ϕ(x)− c∥= ∥ϕ(x)−ϕ(x′)∥ ≤ L∥x−x′∥< Lδ = r.

Therefore, Tδ (ϕ
−1(c))⊂ U. Note that for t ∈ V and x′ ∈ ϕ−1(t), there exists x ∈ ϕ−1(c) such

that ψ(x) = ψ(x′). Therefore, estimates (4.1) provide

1
L

∥∥x−x′
∥∥≤

∥∥G(x)−G(x′)
∥∥= ∥c− t∥+dc(ψ(x),ψ(x′)) = ∥c− t∥.

Thus we obtain ∥x−x′∥< rL = ε and hence U⊂ Tε(ϕ
−1(c)).

Remark 4.2.1. Point (i) of Proposition 4.2.1 implies that each first order partial derivative of

each component of the mapping ϕ is bounded over ϕ−1(V).

Property 4.2.1. Let τ : Km →Kp be a mapping Lipschitz trivial at the value c and let π : Kn →

Km be a linear surjective projection. Then the mapping τ ◦π : Kn →Kp is Lipschitz trivial at

the value c.
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Proof. Let ϕ := τ ◦π . Up to a K-linear change of coordinates in Kn, we can assume that for any

subset V of Kp the following holds true

ϕ
−1(V ) = τ

−1(V )×Kn−m.

Denote (u,v)∈Km×Kn−m =Kn. If the bi-Lipschitz homeomorphism G : τ−1(V) 7→V×τ−1(c)

provides trivialisation of τ over a neighbourhood V of c, then the mapping

H : ϕ
−1(V)→ V×ϕ

−1(c), (u,v)→ (G(u),v)

is a bi-Lipschitz homeomorphism trivialising ϕ over V.

Property 4.2.2. Let ϕ : Kn → Kp be a smooth mapping with a nowhere dense set of critical

values. Any regular value of ϕ that is also a value of properness is a Lipschitz trivial value.

Proof. Let V be a non-empty open subset of Kp such that ϕ is proper over V. Since K0(ϕ) is

closed and nowhere dense we can further assume that clos(V) does not intersect with K0(ϕ).

Therefore, the mapping ϕ is C∞ locally trivial over V by Ehresmann’s Theorem (see Theorem

2.8.2). The restriction of any C∞ trivialisation of ϕ over V to any open subset U relatively

compact in V is necessarily bi-Lipschitz over U.

In Examples 2 and 3 we observed that a mapping might admit a topologically trivial

value that is critical. In the next result we show that such a phenomenon cannot happen if we

require bi-Lipschitz triviality.

Proposition 4.2.2. Let ϕ : Rn → Rp be a Ck mapping with k ≥ max(n− p+1,1). Any Lipschitz

trivial value of ϕ is a regular value.

The proof will follow from the next result.

Lemma 4.2.1. Let f : U→ V be a C1 mapping, where U and V are open subsets of Rn and Rp

respectively. If there exists a bi-Lipschitz homeomorphism

( f ,ψ) : U→ V×F

where F is a C1 sub-manifold of some Rq, then f has no critical points in U.

Proof. Let H : V×F → U be the inverse of the bi-Lipschitz homeomorphism ( f ,ψ). Since H

is bi-Lipschitz, it is differentiable almost everywhere by Rademacher’s Theorem (see Theorem

2.12.1).
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Let x0 ∈ V×F be a point at H is differentiable so that H−1 is differentiable at

y0 := H(x0). Let ψ : W→ Bn
1 be a coordinate chart for V×F defined in a neighborhood of W

of x0.

Let H̃ := H ◦ψ−1. Since H is bi-Lipschitz, H̃ is also bi-Lipschitz and thus there

exists K > 1 such that

0 <
1
K

≤
∣∣∣∣∂ H̃−1

i
∂x j

(y0)

∣∣∣∣≤ K,

where ∂ H̃−1
i

∂x j
(y0) are the entries of the Jacobian matrix of Dy0H̃−1. By Theorem 2.12.2 (Hada-

mard’s Inequality), we have

1

|det(Dψ(x0)H̃)|
= |det(Dy0H̃−1)| ≤

(√
nK2

)n
.

Thus,

|det(Dψ(x0)H̃)| ≥ 1(√
nK2

)n > 0.

Therefore, for a sequence (xn)n of points at which the computations above hold, any

limit of the form D = limxn→x DynH at the given point y of V×F has also rank n. Thus, the

differential of f must have rank p at each point of U.

Proof of Proposition 4.2.2. Let c be a Lipschitz trivial value of ϕ . If c does not lie in Im(ϕ), the

image of ϕ , then it belongs to Rp \ clos(Im(ϕ)), thus is a regular value.

Assume c is a value taken by ϕ . Let V be an open neighbourhood of c over which ϕ

is Lipschitz trivial. By hypothesis ϕ satisfies Sard’s Theorem (see Theorem 2.3.1), then there

exists a regular value t in V. Let F := ϕ−1(t) and let H : ϕ−1(V)→ V×F be the bi-Lipschitz

mapping trivializing ϕ over V. Thus, by Lemma 4.2.1, the mapping ϕ has no critical point in

ϕ−1(V), therefore c is a regular value.

Definition 4.2.1. Given S ⊂Kn, we define its accumulation set at infinity as

S∞ := SKPn
∩H∞.

The next Property shows the rigidity of the asymptotic behavior at infinity of the

fibers taken over a Lipschitz trivial neighborhood.
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Property 4.2.3. Let ϕ : Kn →Kp be a mapping locally Lipschitz trivial over the connected open

subset V⊂Kp. Then the family (ϕ−1(t)∞)t∈V of accumulation sets at infinity of the levels of ϕ

is constant, i.e.

ϕ
−1(t)∞ = ϕ

−1(V)∞, ∀t ∈ V.

Proof. Consider two sequences (xk)k and (x′k)k of Kn satisfying the following property: there

exists a positive constant A such that

|xk −x′k| ≤ A for k ≫ 1.

If furthermore |xk| goes to ∞ and does so such that [xk : 1]→ [λ : 0] ∈ H∞ as k → ∞, then we

deduce that |x′k| goes to ∞ and [x′k : 1]→ [λ : 0] as k goes to ∞.

Let c ∈ V be a Lipschitz trivial value of ϕ . Up to taking a smaller V containing c,

point (ii) of Proposition 4.2.1 states that ϕ−1(V) is contained in the open tube Tε(ϕ
−1(c)) for

some positive radius ε . The first part of the proof then gives the result.

4.3 Characterization of polynomial mappings with Lipschitz trivial values

Let f : Kn →Kp be a polynomial mapping. The level f−1(t) is denoted by Ft. We

use the convention that dim /0 = −1. In this section we prove our main theorem on Lipschitz

trivial values.

Theorem 4.3.1. Let f : Kn →Kp be a polynomial mapping with dimF∞
c = n−1−m for a value

c ∈ Kp. If the mapping f attains c as a Lipschitz trivial value, then there exist a polynomial

mapping g : Km →Kp proper at c and a linear surjective projection π : Kn →Km such that

f = g◦π.

We start with the following key result.

Lemma 4.3.1. Let f :Kn →Kp be a polynomial mapping and assume that the point [1 : 0 : · · · : 0]

lies in F∞
c . If there exists a neighbourhood V of c such that f satisfies points (i) and (ii) of

Proposition 4.2.1, then the mapping f does not depend on the coordinate x1.

Proof. Since [1 : 0 : · · · : 0] ∈ F∞
c , there exists an arc γ : I → Fc parametrized as

γ(t) = (td, p(t)+A0(1/t)) ∈K×Kn−1,
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where I is a connected component of the complement of an Euclidean ball of K, the mapping

p : K → Kn−1 is polynomial of degree ≤ d −1, and A0 is a K-analytic map germ (K,0)→

(Kn−1,0).

Consider the following dominant polynomial mapping

Γ : K×Kn−1 →Kn, (t,ε) 7→ (td, p(t)+ ε).

Let γε : K→Kn be the polynomial arc

γε : t 7→ γε(t) := Γ(t,ε).

Since A0(1/t)→ 0 as |t| → ∞, we conclude that

∥γε(t)− γ(t)∥= ∥ε −A0(1/t)∥→ ∥ε∥.

Take a neighbourhood V of c in Kp such that f satisfies points (i) and (ii) of Proposition 4.2.1.

Point (ii) of Proposition 4.2.1 and the definition of Γ guarantee the existence of constants δ > 0

and R > 0 such that

γε(t) ∈ f−1(V)

for any ∥ε∥< δ and t ∈ I such that |t|> R. Since f is Lipschitz on f−1(V), we get

∥ f (γε(t))− c∥ ≤ L · ∥ε −A0(1/t)∥→ L · ||ε∥

as |t| → ∞. Therefore, whenever ∥ε∥ < δ , the polynomial mapping t 7→ f ◦ γε(t) is bounded,

thus constant. Writing x = (x1,y), we deduce

0 ≡ d
dt
( f ◦ γε)(t) = d · td−1 ·∂x1 f (γε(t))+∂y f (γε(t)) · p′(t). (4.2)

By Remark 4.2.1, the first order partial derivatives of f are bounded along γε , thus ∂y f (γε(t)) is

bounded. Since p has degree at most d −1, the term d · td−1 ·∂x1 f (γε(t)) would be the unique

term of maximal degree d −1. By equation 4.2, we conclude that

(∂x1 f )◦ γε ≡ 0.

Since the subset K×{ε : ∥ε∥< δ} ⊂Kn is open and non-empty and the mapping Γ is dominant,

we conclude that the mapping ∂x1 f is identically null.
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Proof of Theorem 4.3.1. Note that f satisfies the claim of Proposition 4.2.1. If dimF∞
c = −1,

then the fibre Fc is compact and from point (ii) of Proposition 4.2.1 the subset f−1(V) is compact

for a small compact neighbourhood V of c. Thus f is proper at c and taking π as the identity

mapping of Kn yields the claim.

Assume F∞
c is of dimension n− 1−m ≥ 0. Thus there exist n−m points [v1 :

0], . . . , [vn−m : 0] of F∞
c such that the vectors v1, . . . ,vn−m are K-linearly independent in Kn. Take

a K-linear change of coordinates ℓ : Kn →Kn such that ℓ(v j) = e j for j = 1, . . . ,n−m, where

{e1, . . . ,en} is the standard orthonormal basis of Kn. Applying Lemma 4.3.1 we conclude that

the polynomial mapping f ◦ ℓ depends only on u := (xn−m+1, . . . ,xn). Let g be the polynomial

mapping restriction of f ◦ ℓ to Km, the subspace of Kn generated by en−m+1, . . . ,en. Let π0 :

Kn →Km be the orthogonal projection of Kn onto the subspace Km. Therefore, we find

f = g◦π0 ◦ ℓ−1.

Note that ( f ◦ ℓ)−1(t) =Kn−m ×g−1(t). Since

n−1−m = dimF∞
c = n−m+dimg−1(c)∞,

we deduce that g−1(c) is compact. From point (ii) of Proposition 4.2.1 applied to the levels of

f ◦ ℓ over V we get that g−1(V) is bounded. Thus c is a value of properness of g.

Corollary 4.3.1. If polynomial mapping f : Kn →Kp attains a Lipschitz trivial value c, then the

connected components of its fibers over a neighbourhood V of c are LNE.

Proof. By Theorem 4.3.1, there exist a polynomial mapping g : Km →Kp which is proper at c

and a linear surjective projection π : Kn →Km such that

f = g◦π.

By Proposition 4.2.2, all the values in V are regular. Therefore, for any c′ ∈ V, the level set

g−1(c′) is a compact sub-manifold of Km (thus LNE by Corollary 2.7.1) and f−1(c′) is a cylinder

over this set, thus LNE.

4.4 The set of Lipschitz trivial values of real and complex mappings

This section presents some consequences of Theorem 4.3.1. In particular, complex

polynomial mappings admitting Lipschitz trivial values have a very rigid structure, while the

real setting allows for more variety.
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Corollary 4.4.1. A complex polynomial mapping f : Cn → Cp attains a Lipschitz trivial value

if and only if there exist a dominant polynomial mapping g : Cp → Cp and a linear surjective

projection π : Cn → Cp such that

f = g◦π.

In such a case we get

L( f ) = Cp \Bif(g).

In particular, the set of regular Lipschitz trivial values is either empty or the complement of an

algebraic hypersurface.

Proof. Assume there exists a dominant polynomial mapping g : Cp →Cp such that f = g◦π for

some linear surjective projection π : Cn →Cp. Therefore g is generically finite and by Properties

4.2.1 and 4.2.2, the set L( f ) of Lipschitz trivial values of f is not empty. For the converse

statement, note that f is dominant since a Lipschitz trivial value is attained. Moreover, we have

n− p = dimFc = 1+dimF∞
c for a generic level c of f , so Theorem 4.3.1 gives the claim.

For the second part of the assertion, L(g)∩K0(g) is empty by Proposition 4.2.2 and

since g is generically finite L(g)∩ J(g) is empty as well. Thus L(g)∩ (J(g)∪K0(g)) is empty.

We recall that J(g)∪K0(g) =Bif(g) and if non-empty, it is an algebraic hypersurface by Theorem

2.9.1. Finally, by Property 4.2.2 we have L(g) =Cp\Bif(g). Therefore, L( f ) =Cp\Bif(g).

As a consequence, we recover the main result of [9], see Theorem 2.10.1. The real

case is more nuanced than the complex one and Lipschitz trivial values admit a richer structure.

Corollary 4.4.2. Let f : Rn → Rp be a polynomial mapping admitting a Lipschitz trivial value.

There exists a polynomial mapping g : Rm → Rp and linear surjective projection π : Rn → Rm

such that f = g◦π and

L( f ) = Rp \ (J(g)∪K0(g)).

Moreover, the mapping g is unique up to linear changes of coordinates.

Proof. Let c be a Lipschitz trivial value of f . By Theorem 4.3.1 there exists a polynomial

mapping g :Rm →Rp proper at c and linear surjective projection π :Rn →Rm such that f = g◦π .

Moreover, up to a linear change of coordinates in Rn, we have D f = Dg⊕0 : Rm ×Rn−m → Rp,

thus K0(g) = K0( f ). By Property 4.2.1 and Theorem 4.3.1, the Lipschitz trivial values of g are
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values of properness and by Proposition 4.2.2 they are regular. Thus, L(g)⊂Rp \ (J(g)∪K0(g)).

The other inclusion is given by Property 4.2.2. Therefore,

L( f ) = L(g) = Rp \ (J(g)∪K0(g)).

To show uniqueness take g : Rm → Rp proper at c such that f = g ◦π for a linear

surjective mapping π : Rn → Rm. For any polynomial mapping h : Rk → Rp and a linear

surjective projection σ :Rn →Rk such that f = h◦σ , we get, up to a linear change of coordinates

ℓ : Rk → Rk, that

(h◦ ℓ)−1(t) = g−1(t)×Rk−m

for t ∈ Rp, since at least the level c of g is compact. Thus either m < k and h does not attain a

proper value, or m = k and h◦ ℓ= g.

Example 9. Let f : R3 → R be the suspension at infinity of the Motzkin polynomial given by

f (x,y,z) = x4y2 + x2y4 −3x2y2 +1.

In notations of Theorem 4.3.1, we have f = g◦π where π(x,y,z) = (x,y) and g(x,y) = f (x,y,z).

We have J(g) = [1,∞) and K0(g) = {0,1}. Moreover,

L( f ) = R\ (J(g)∪K0(g)) = (−∞,0)∪ (0,1).

Indeed, the values of [1,+∞) are not Lipschitz trivial values of f , since f does not satisfy the

necessary condition (ii) of Proposition 4.2.1.

Figure 4 - Some levels of the function (x,y) 7→ x4y2 + x2y4 −3x2y2 +1.

Source: Created by the author.
Note: In green we have three values larger than 1 and, in blue we have three values smaller than 1. The value 0
consists of four points (black) while the value 1 is the union of the two axes with a circle (red).
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Example 9 illustrates that the set of Lipschitz trivial values of a real polynomial

mapping can be open and not dense in the image, whereas for complex mappings Lipschitz

trivial values follow a local-global principle as stated in Corollary 4.4.1.

For polynomial mappings Property 4.2.3 is refined as the following necessary condi-

tion on the fibres.

Property 4.4.1. Let f : Kn →Kp be a polynomial mapping locally Lipschitz trivial over the

connected open subset V⊂Kp. There exists a K-linear subspace A of Kn of positive codimension

such that

F̂∞
t = A, for all t ∈ L( f )∩ Im( f ),

where F̂∞
t is the K-cone of Kn over F∞

t with vertex at the origin, and where the cone over the

empty set is defined as the null subspace.

Example 10. The polynomial mapping f :K3 →K2, defined as (x,y,z) 7→ (x,xy+z), is surjective

and C∞ trivial at each t ∈K2. For each t = (a,b), we have the fibre

Ft = {(a,y,b−ay) ∈K3 : y ∈K}

which is an affine line. Taking F0 as model fibre, we have a global C∞ trivialization H : F0×K2 →

K3 given by

H((0,y,0),(a,b)) = (a,y,b−ay).

The accumulation set at infinity of the value t = (a,b) is F∞
t = {[0 : 1 : −a]}. Moreover,

F̂∞
t = {(0,λ ,−λa) : λ ∈K}.

Yet, the K-linear subspace (F̂∞
t )t∈K2 is nowhere locally constant. Therefore Property 4.4.1

implies that this mapping cannot admit any Lipschitz trivial value.

Given a real polynmial mapping f : Rn → Rp we consider its complexification

fC : Cn → Cp, the complex mapping defined by the same polynomial expressions. We will see

that every real Lipschitz trivial value of fC is a Lipschitz trivial value of f .

Proposition 4.4.1. If fC admits a Lipschitz trivial value, then L( f ) is a semi-algebraic dense

open subset of Rp. More precisely,

L( fC)∩Rp ⊂ L( f ).
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Proof. Denote FC,t := f−1
C (t). Since L( fC)∩ Im( fC) is not empty, Corollary 4.4.1 and Pro-

perty 4.2.1 imply the existence of a C-linear subspace AC of Cn of dimension n− p such that

for each t ∈ Cp \Bif( fC), the level FC,t is a disjoint union of finitely many affine subspaces of

C-dimension n− p, parallel to AC. Moreover, by Lemma 4.2.1, fC has full rank on the preimage

f−1
C (V) of an open set V of Lipschitz trivial values. Therefore f has full rank on f−1

C (V)∩Rp

and thus f (Rn) contains an open subset of Rp. Therefore, there exists an open set V′ in Rp such

that the level Ft is of dimension n− p for any t ∈ V′. As the intersection of the complex fibre FC,t

with Rn, the fibre Ft is necessarily a disjoint union of parallel real affine subspaces. Therefore,

dim f−1(V′)∞ = n−1− p. Note that f , as the restriction of fC to Rn, satisfies assumptions (i)

and (ii) of Lemma 4.3.1 since f−1(t) = f−1
C (t)∩Rn. Using Theorem 4.3.1 we get that f = g◦π

for some real linear surjective projection π : Rn →Rp and real polynomial mapping g : Rp →Rp.

Thus fC = gC ◦πC and necessarily gC is generically finite. Since Corollaries 4.4.1 and 4.4.2

yield

L( fC) = Cp \Bif(gC) and L( f ) = Rp \Bif(g),

we get the claim since Bif(g) = J(g)∪K0(g) is semi-algebraic of positive codimension by

Theorem 2.9.2.

4.5 Rational functions and Lipschitz trivial values

It is natural to ask whether we can extend the category of mappings that satisfy

the claim of our main result. We answer negatively, as Proposition 4.5.1 demonstrates that

Theorem 4.3.1 is sharp in the sense that it does not hold for rational but non-polynomial

mappings.

Let f : Kn 99KK be a rational function, n ≥ 2. Its indeterminacy locus I( f ) is the

subset of Kn where denominator and numerator vanish simultaneously (for all representations of

f as a fraction). Let K be the compactification of K defined as follows

C := C∪{∞} and R := R∪{±∞}.

Property 4.5.1. Assume that the rational function f : Kn 99KK does not extend continuously

through the point x0 ∈Kn, i.e., the subset Jx0 := {limx→x0 f (x)} ⊂K of accumulation values of

f at x0 does not reduce to a single value in K. Then L( f )∩ Jx0 = /0.
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Proof. If K= C then Jx0 = C. When K= R, we have [a,b]⊂ Jx0 for any two values a,b ∈ Jx0 ,

hence the set Jx0 is closed and has non-empty interior . Suppose Jx0 ∩L( f ) is non-empty, thus

it is open. In such a case, there exists an open subset V of Jx0 ∩L( f ) such that f is Lipschitz

trivial over V. Then any trivializing bi-Lipschitz homeomorphism satisfies Estimates (4.1),

contradicting the fact that x0 lies in the closure of any level f−1(t) when t ∈ V.

Corollary 4.5.1. A complex rational function with Lipschitz trivial values has empty indetermi-

nacy locus.

Proof. Let f : Cn 99K C be a rational function with Lipschitz trivial values. Assume that f does

not extend continuously through x0 ∈ C. Then Jx0 = C, thus Jx0 ∩L( f ) has non-empty interior.

By Property 4.5.1, we have L( f )∩ Jx0 = /0, a contradiction.

On the other hand, the real setting is more flexible. Real rational functions may

extend continuously (or even smoothly) through their indeterminacy locus onto Rn, in such a

case they are called regulous.

Proposition 4.5.1. There exist rational functions f : Kn 99KK with empty indeterminacy locus

that admit Lipschitz trivial values which are not values of properness, and are never of the form

g◦π with g : Km 99KK a rational function and π : Kn →Km a linear surjective projection with

n > m.

Proof. Let h : Rn−1 → R be the non-constant function x 7→ h(x) := 1+∑
n−1
i=1 x2

i and consider

the rational C∞ function f : Rn → R defined as

f (x,y) = y− 1
h(x)

.

We have I( f ) = /0 and f has no critical point. Observe that the partial derivatives of f are

uniformly bounded over Rn, thus f is a Lipschitz function over Rn.

For c ∈ R define the following mapping

G : Rn → R× f−1(c), (x,y) 7→
(

f (x,y),
(

x,c+
1

h(x)

))
.

It is a Lipschitz homeomorphism with inverse

G−1
(

t,
(

x,c+
1

h(x)

))
=

(
x, t +

1
h(x)

)
.

The inverse G−1 is also Lipschitz, thus each value c of R is Lipschitz trivial for f . Since any

level of f is a graph over Rn, the function f cannot be proper at c. Last, there exists no vector v

of Rn \0 such that ∂v f ≡ 0 since f is C∞, ∂x j f =
2x j

[h(x)]2
and ∂y f ≡ 1.
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Remark 4.5.1. The function f defined in the proof of Proposition 4.5.1 is regulous [21]; [19];

[11].
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5 CONCLUSION

We first proved that the affine part Xa of a connected projective algebraic curve

X is Lipschitz normally embedded if and only if the following three conditions are satisfied:

Xa is connected, Xa is locally Lipschitz normally embedded at each of its singular points;

and deg(X) = card(X∞). This result deals only with the case of complex algebraic sets with

dimension 1. We shall find families of complex algebraic sets with dimension higher than 1

which are LNE. A natural step toward this target is to look for families of non-singular sets,

because we only need to deal with the accumulation set at infinity. A nice first step would be to

find properties at infinity which are sufficient to guarantee the LNE property.

We also proved that a polynomial mapping f : Kn →Kp attains a Lipschitz trivial

value c if and only if there exist a polynomial mapping g : Km →Kp, for which the value c is a

regular value of properness, and a linear surjective projection π : Kn →Km such that f = g◦π .

We observed that this statement might not be true for non-polynomial mappings. The next step

on this topic is to investigate the existence of some intermediate property for non-polynomial

mappings.
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