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We measured polycyclic aromatic hydrocarbons (PAHs) in bulk precipitation in the Fortaleza metropolitan
area, Ceará, Brazil, for the first time. Because little information is available concerning PAHs in tropical climat-
ic regions, we assessed their spatial distribution and possible sources and the influence of urban activities on
the depositional fluxes of PAHs in bulk precipitation. The concentrations of individual and total PAHs (ΣPAHs)
in bulk precipitation ranged from undetectable to 133.9 ng.L−1 and from 202.6 to 674.8 ng.L−1, respectively.
The plume of highest concentrations was most intense in a zone with heavy automobile traffic and favorable
topography for the concentration of emitted pollutants. The depositional fluxes of PAHs in bulk precipitation
calculated in this study (undetectable to 0.87 μg.m−2.month−1) are 4 to 27 times smaller than those
reported from tourist sites and industrial and urban areas in the Northern Hemisphere. Diagnostic ratio an-
alyses of PAH samples showed that the major source of emissions is gasoline exhaust, with a small percentage
originating from diesel fuel. Contributions from coal and wood combustion were also found. Major economic
activities appear to contribute to pollutant emissions.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) are distributed through-
out the environment by atmospheric dispersion. Thus, they have been
found in remote areas far from their sources (Macdonald et al., 2005).
These molecules are produced in the atmosphere as byproducts of the
incomplete combustion of fossil fuels or pyrolysis of organic material
(Macdonald et al., 2005). Once PAHs are released into the atmo-
sphere, they are redistributed between the gaseous and particulate
phases. Low-molecular-weight (LMW) PAHs tend to be more concen-
trated in the vapor phase, while those with higher molecular weights
(HMW) are often associated with particulates (Bidleman, 1988;
Harner and Bidlemam, 1998; Pankow, 1998). Dry and wet deposition
and volatilization from the water and soil are the main processes that
contribute to air/water and air/soil exchange of PAHs (Godish, 1991).
These molecules are predominantly found in the environment
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surrounding urban zones with high vehicular density and industrial-
ized areas (Godish, 1991; Macdonald et al., 2005).

Studies performed in recent decades have shown that PAHs from
different combustion sources vary significantly in composition and
that their molecular “fingerprints” can be used to identify their sources
(Li and Kamens, 1993; Khalili et al., 1995; Simcik et al., 1999; Tsapakis et
al., 2002). Thus, PAH diagnostic ratios have been used to evaluate the
relative contributions of coke furnaces, coal combustion, wood combus-
tion, incineration and diesel and gasoline engine emissions in industrial
and urban zones (Caricchia et al., 1999; De Martinis et al., 2002).

The complex morphology of an urban area creates highly disturbed
airflows up to several meters above the height of the buildings (Louka
et al., 1998). According to Godish (1991), the urban topography signifi-
cantly reduces wind speeds and consequently pollutant dispersion, be-
cause pollutant sources (e.g., vehicles) are situated within “street
canyons”. The term “street canyons” refers to relatively large and narrow
streets (also called “avenue canyons”)with buildings continuously lining
both sides (Nicholson, 1975). Vardoulakis et al. (2003) have comprehen-
sively reviewed the impact of urban topography on air quality in cities.

The city of Fortaleza is the fourth most economically important city
in Brazil. The city exhibits heavy traffic (520,000 vehicles) and a popu-
lation of over 2.5 million people distributed across 313 km2. In addition
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to vehicle exhaust, anthropogenic emissions arise from the local harbor,
industrial facilities and petroleum extraction and refining.

The first studies of organic atmospheric pollutants in Fortaleza have
reported high levels of carbonyls (Cavalcante et al., 2006; Sousa et al.,
2011). High levels of organic contaminants originating from urban
activities have been verified in the sediments and water of the local
rivers and along the adjacent oceanic coast (Cavalcante et al., 2008;
Cavalcante et al., 2009; Viana et al., 2009; Cavalcante et al., 2010).

No previous study has evaluated the distribution of PAHs in the
Fortaleza region. Due to the rapid industrialization (petrochemical
and steel) and growth of the vehicular fleet (4.5%.year–1) in this
area, this information is urgently needed. The few studies performed
in major Brazilian cities [Porto Alegre (Dallarosa et al., 2008); Rio de
Janeiro (Quiterio et al., 2007); Campo Grande (Ré-Poppi and Santiago-
Silva, 2005); Niteroi (Pereira Netto et al., 2002); Salvador (De Andrade
et al., 2002); São Paulo (De Martinis et al., 2002)] have reported high
PAH levels from vehicular and industrial emissions.

Thus, the primary goal of this study was to evaluate the spatial dis-
tribution and possible sources of PAHs in bulk precipitation in the
Fortaleza metropolitan area and to examine the influence of urban ac-
tivities on these depositional fluxes. This study was prompted by the
scarcity of data concerning PAHs in tropical climatic regions, and our
results will provide a useful baseline for future assessments of air
quality in Fortaleza.

2. Materials and methods

2.1. Sampling site

The city of Fortaleza is located along the Atlantic coast of north-
eastern Brazil (Fig. 1). It is a tropical city with temperatures between
25 and 32 °C (mean 26 °C) and a climate characterized by rainy and
dry seasons. The rainy period occurs from February through July; a
Fig. 1. Locations of bulk prec
total of 1200 to 1400 mm of rain falls during this period, with an av-
erage of around 200 mm.month–1. The dry period extends from Au-
gust through December, and very little rain falls during this time
(Gusev et al., 2004). There are approximately 520,000 vehicles, from
which; 370,000 are light-duty vehicles, 52,000 are heavy-duty diesel
vehicles (buses and trucks) and 94,000 are motorcycles. Approxi-
mately 74.9% of these vehicles use a mixture of gasoline and ethanol
(gasohol), 10.5% are fueled with hydrated ethanol and 4.5% are
diesel-powered (Ministry of Cities, 2011). The flexible-fuel vehicles
represents about 5.3% of the total fleet, and is rapidly growing
(Abrantes et al., 2009; Ministry of Cities, 2011). An average flow of
1500 vehicles.hour−1 is observed in the major intersections of the
city. It is estimated that 80% of the vehiclefleet cross the city of Fortaleza
on weekdays (PMF, 2011).

We sampled the rainwater in the urban and suburban Fortaleza
metropolitan area (Fig. 1). Bulk precipitation samples were collected
at seven sites from February to July 2005. Samples were collected
monthly in 1.5–2 L dark glass bottles using a 0.0283-m2 (area of the
mouth of the funnel) following the methods of Manoli et al. (2000)
and Ollivon et al. (2002). The sampled rainwater ranged from 0.5 to
1.2 L in each of the rain events and was stored in a refrigerator at
2 °C until analysis. When the volume reached 2 L, the bottles were
immediately transported to the laboratory. After that, samples were
filtered with pre-cleaned (heated at 450 °C for 24 h) Whatman GF/F
filters (0.7 μm, 47 mm i.d.).

The sampling sites BP1, BP3, BP4 and BP6 are placed on residen-
tial/commercial zones of the city while site BP2 is located in the coast-
al area. These sites present intense traffic of light and heavy vehicles.
The sampling sites BP5 and BP7 are located in the city's outskirts,
which are mostly residential areas and that now present a slight traf-
fic of light and heavy vehicles. The main sources of all above sites are
vehicular emissions, but depending on the weather condition site BP2
can also receive input from the port and refinery zone.
ipitation sampling sites.
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2.2. Extraction and analysis

Spe-ed™ C18 (500 mg, Applied Separations) cartridges were used
in solid-phase extraction (SPE) for purification and concentration
according to the second optimized method of Cavalcante et al.
(2007). Firstly, the sorbent cartridges were conditioned with 5 ml of
Milli-Q water (Millipore) and 5 ml of 30% acetone in Milli-Q water.
A volume of 2 L of sampled rainwater was passed through the car-
tridge at a flow of 20 mL.min−1. The cartridge was centrifuged and
then eluted with 1 mL of acetone:tetrahydrofuran (THF) (1:1 v/v).

Bulk precipitation extract was evaporated to 100 μL, and then 2 μL
was injected into a gas chromatograph with a flame ionization detector
(GC–FID). For quantification, we used internal standards obtained from
Supelco and Merck. The studied PAHs were naphthalene (Nap), ace-
naphthylene (Acy), acenaphthene (Ace), fluorene (Fl), phenanthrene
(Phen), anthracene (Ant), fluoranthene (Flr), pyrene (Pyr), benzo[a]an-
thracene (BaA), chrysene (Chry), benzo[b]fluoranthene (BbF), benzo[k]
fluoranthene (BkF), benzo[a]pyrene (BaP), indeno[1,2,3-cd]pyrene
(IncdP), dibenzo[a,h]anthracene (DahA) and benzo[ghi]perylene
(BghiP). A surrogate standard (acenaphthene-d10, phenanthrene-d10,
chrysene-d12 and perylene-d12) purchased from Supelco/Aldrich was
added to each sample before extraction. The concentrations of PAHs
were determined using a Shimadzu CG 17A instrument. The separation
was performed on a J&W Scientific DB-5 column (30 m, 0.25 mm inter-
nal diameter, film thickness 0.25 μm). The initial oven temperature was
60 °C (10 min), increasing to 120 °C at 5 °C min−1 and then to 300 °C at
3 °C.min−1. The injector and detector temperatures were 280 °C and
300 °C, respectively. A calibration solution was prepared from the 16
PAHs standards (0.5 to 100 μg.mL−1), deuterated PAH solution
(d10-acenaphthene, d10-phenanthrene, d12-chrysene and d12-perylene)
and the internal standard (2-fluoro-biphenyl). The chromatographic
conditions used in the GCMS-QP5050, such as column, flow, amount
of sample injected and injector temperature, are similar to the GC–FID.

The correlation coefficient (R) varied from 0.9899 to 0.9989. The
limits of detection (LOD)were set at a value three times the background
noise obtained for blank samples, and the limits of quantification (LOQ)
were set at a value ten times the background noise. The LODs and LOQs
ranged from 20.0 to 50.0 ng.mL−1 and from 63.4 to 157.3 ng.mL−1, re-
spectively. The repeatability of the GCmethod was determined by ana-
lyzing a standard solution at 0.5 μg.mL−1, within-day and between-day.
It is important to assess the repeatability of at least two parameters in
the gas chromatographic method: the retention time (confirming the
identity of the analyte of interest) and the peak area or height (quanti-
fying the analyte of interest). The repeatability of the method ranged
from 1.5 to 4.8% of the peak area (quantitative analysis) and from 0.02
to 0.19% of the retention time (qualitative analysis), showing satisfacto-
ry precision. Between-day repeatability, expressed as RSD, was also
evaluated during two consecutive weeks and no significant alteration
was observed. Therefore, the repeatability achievedwith the chromato-
graphicmethod under the study conditionswas satisfactory (Fernandes
et al., 2009).
2.3. Quality control

All data were subjected to strict quality control procedures. Each
sample was analyzed in duplicate and their RSD did not exceed 5%.
Confirmation of PAH identities was performed using a CG 17A gas
chromatograph coupled to a mass spectrometry detector (Shimadzu
model GCMS-QP5050) and the Wiley/NBS Registry of Mass Spectral
Data. The two samples presenting lower concentrations (BP2 and
BP7) were qualitatively determined and the PAH identities con-
firmed. Deuterated surrogates were used throughout the analytical
procedure to compensate for losses and contamination during sample
extraction and instrumental analysis. Spiked recoveries from extracts
ranged from 56.4 to 91.2% for all targeted analytes (Table 1). Analysis
of a reagent blank demonstrated that the analytical system and glass-
ware were free of contamination.

3. Results and discussion

3.1. PAH concentrations and fluxes in bulk deposition

Individual PAH concentrations in bulk precipitation ranged from
undetectable to 133.9 ng.L−1 (Flr), while the total PAH concentrations
(ΣPAHs) ranged from 202.6 to 674.8 ng.L−1 (Table 1). The average
ΣPAH value for bulk precipitation in Fortaleza (582.3 ng.L−1) is substan-
tially higher than reported values for rural areas, such as Chesapeake
Bay in the United States (12.17 ng.L−1; Dickhut and Gustafson, 1995).
However, it is lower than the value reported for Paris, France
(995.0 ng.L−1; Ollivon et al., 2002), and is similar to the level reported
for Tihany, Hungary (571.2 ng.L−1; Kiss et al., 2001). The most fre-
quently detected PAHs were Phen, Flr, Pyr and Chry. This result is con-
sistent with previous results reported for Germany (De Rossi et al.,
2003), Italy (Olivella, 2006), Hungary (Kiss et al., 2001), Poland
(Polkowska et al., 2000) and Scandinavia (Fernandez et al., 2003).

Wet deposition flux Fwet (μg.m−2 rainy.period−1) was calculated
by multiplying the concentration C (ng.L−1) of each PAH compound
in rainwater (bulk precipitation) by the precipitation flux P (mm)
for the sampling event (i) using an equation similar to that of Pekey
et al. (2007):

Fwet ¼
Xi¼n

i¼1

Ci � Pi
:

Themeanfluxes of individual PAHs (FPAHs) ranged fromundetectable
to 0.87 μg.m−2.month−1 (ΣPAHs=5.6 μg.m−2.month−1) (Table 2). Be-
cause we have not found any comparable data (PAH levels in precipita-
tion) for other Brazilian cities or tropical regions, we compared our
results to previous reports from areas with different climates (Table 2).

The mean flux of the total PAH concentration (FΣPAHs) in the city of
Fortaleza was approximately half the value reported by Kiss et al.
(2001) and 4 to 27 times smaller than the values reported for other
tourist sites and urban and industrial areas (Table 2). Variation in
PAH fluxes between tropical and temperate areas can be attributed
to several factors (Kiss et al., 2001). Meteorological conditions during
the winter in cold-climate regions result in thermal inversions and
low solar intensities. Consequently, concentrations of OH radicals
are low, and the efficiency of photochemical decomposition is de-
creased, favoring the accumulation of pollutants in the atmosphere
(Hoyau et al., 1996). High PAH deposition levels in snow can be
explained by the larger surface areas of snowflakes compared to rain-
drops (Hoff et al., 1998). Snowstorms can remove particles from 0.2
to 2.0 μm in size, and the resulting atmospheric cleansing is 5 to 10
times more efficient than that produced by rain events (Franz and
Eisenreich, 1998).

3.2. Spatial distribution

The spatial distribution of PAH concentrations, based on a kriging
model, was calculated with the program Surfer 7 (Golden Software)
(Fig. 2). Based on the surface plot of total PAH concentrations in
bulk precipitation, the levels increase from the outskirts toward the
center of the city. Our analysis of the spatial distribution of PAHs
showed that the plume of highest concentrations was most intense
in the same zone (Fig. 2). In addition to the considerable vehicular
emissions in this zone, Fortaleza is surrounded by two industrial
areas, a refinery to the northeast and other industries to the south-
west (Maracanaú city) (see Fig. 1). Nevertheless, we did not observe
any correlation between the plume of highest concentrations and the
frequency of winds from the industrial areas. In fact, winds blew from



Table 1
Concentrations of individual PAHs (ng.L−1), total PAH concentration (ΣPAHs) in bulk precipitation and spiked recoveries (%).

# of rings Classification PAH BP1 BP2 BP3 BP4 BP5 BP6 BP7 Spiked
recoveriesa

2 rings LMW-PAH Nap Nd Nd Nd Nd Nd Nd Nd 56.4±7.4
Acy+Ace Nd Nd Nd Nd Nd Nd Nd 69.2±2.5

3 rings Fl 35.7±5.2 Nd 45.4±5.9 40.5±6.9 31.2±6.3 39.0±5.1 Nd 88.8±9.7
Phen 60.3±8.2 98.3±4.2 52.0±4.9 82.9±7.8 74.2±6.1 89.9±6.7 38.0±4.5 91.2±8.3
Ant Nd Nd Nd Nd Nd Nd Nd 72.1±9.5

4 rings HMW-PAH Flr 76.4±6.5 133.9±5.9 56.7±6.3 114.9±8.8 66.2±7.3 102.7±9.3 75.2±5.4 86.0±8.1
Pyr 63.2±7.2 73.8±6.2 76.4±6.2 98.3±7.9 53.9±5.3 96.1±8.3 34.5±4.6 77.9±10.6
BaA Nd Nd Nd Nd Nd Nd Nd 72.7±18.1
Chry 55.5±5.3 69.4±7.2 58.1±5.4 92.6±9.4 56.2±6.5 97.5±7.1 54.9±5.1 75.0±22.4

5 rings BbF 51.5±6.2 Nd 62.3±7.9 47.2±6.5 33.2±7.2 43.2±5.3 Nd 71.1±22.7
BkF 34.7±6.7 Nd 65.6±6.5 43.2±5.9 35.1±6.1 40.6±5.5 Nd 81.0±16.3
BaP Nd Nd 42.5±7.9 Nd 31.3±6.5 49.6±5.4 Nd 77.3±16.6
DahA Nd Nd Nd Nd Nd Nd Nd 70.1±13.5

6 rings IncdP 51.0±7.3 Nd 89.1±9.3 67.8±6.7 30.5±4.9 61.6±6.3 Nd 76.5±7.1
BghiP 40.9±5.6 35.4±5.1 84.5±7.9 58.6±5.9 30.6±4.6 54.6±5.7 Nd 74.4±10.3
ΣPAHs 469.2 410.8 632.6 646.0 442.4 674.8 202.6

LMW-PAH=low molecular weight PAH.
HMW-PAH=high molecular weight PAH.
Nd=not detected.

a Average.
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the southeast throughout the year (see the wind rose in Fig. 2).
Therefore, our data suggest that the spatial distribution of PAHs in
Fortaleza originates locally and is not transported from elsewhere in
the region.

The existence of urban street canyons with heavy automobile traffic
is the main cause of the urban heat island (UHI) effect in Fortaleza
(Malveira, 2003; Filho, 2011) and other cities (Sarrat et al., 2006;
Solecki et al., 2006). The UHI effect is common in many urban centers
(Sarrat et al., 2006). This phenomenon is primarily due to the replace-
ment of vegetation with urbanized areas and is aggravated by pollutant
emissions (generally vehicular) and heavier use of air conditioning in
often poorly ventilated cities (Crutzen, 2004).

Even air movements such as sea breezes in coastal areas and anticy-
clonic episodes are not sufficient to disperse pollutants or to decrease
the UHI effect in urban centers with complex topography (Kambezidis
et al., 1995; Sarrat et al., 2006). Highly disturbed airflows up to several
meters above the height of the buildings do not remove the gaseous
and particulate pollutants emitted and trapped within the street can-
yons (Louka et al., 1998).

Although the PAH plume with the highest concentrations found in
this study is located within the UHI zone reported by Malveira (2003)
Table 2
PAH fluxes in Fortaleza and other areas (μg.m−2.month−1).

PAH Massachusetts,
United States1

Bursa,
Turkey2

Tihany,
Hungary3

Mount Taishan,
China4a

Fortaleza,
Brazil5

Nap – – – Nd
Acy+Ace 0.29 7.65 – Nd
Fl 0.16 3.30 0.76 0.37
Phen 0.13 30.00 3.33 0.69
Ant 0.37 2.34 0.10 Nd
Flr 0.10 33.00 1.90 0.87
Pyr 1.46 19.80 2.20 0.69
BaA 1.19 2.85 0.13 Nd
Chry 2.25 18.00 0.36 0.67
BbF 2.34 3.00 0.56 0.46
BkF 8.92 2.94 0.20 0.43
BaP 0.05 2.55 0.30 0.40
IncdP 5.45 3.00 – 0.58
DahA 1.62 1.65 0.16 Nd
BghiP – 8.40 0.40 0.49
FΣPAHs 24.3 138.5 10.4 8.17 5.6

Sources: 1Golomb et al. (1997); 2Esen et al. (2007); 3Kiss et al. (2001); 4Wang et al.
(2010); and 5this study.

a Only recorded the total.
and Filho (2011), complex studies involving physical and chemical
models are necessary to determine whether the urban topography
is responsible for inhibiting the dispersion of pollutants emitted on
city streets (Vardoulakis et al., 2003). Although no study has evaluat-
ed the effect of urban street canyons on pollutant dispersion in Forta-
leza, our data suggest that the plume is concentrated in the city center
(Fig. 2) due to the heavy traffic and favorable topography for the con-
centration of pollutants emitted in this zone.

3.3. Evaluation of PAH sources in Fortaleza

Table 3 shows some of the PAH ratios that are commonly used to
determine the sources of pollutants in the atmosphere and the corre-
sponding ratios found in the bulk deposition samples studied here
and in China (Wang et al., 2010).

The diagnostic ratios of Flr/(Flr+Pyr) (0.56) and BaP/(BaP+Chry)
(0.37) found in this study indicate the significant contributions of gaso-
line, diesel exhaust and catalyst equipped cars (Tsapakis et al., 2002;
Manoli et al., 2004; Sienra et al., 2005; Quiterio et al., 2007) (Table 3),
although the diagnostic ratio of Flr/(Flr+Pyr) can also indicate the con-
tribution of coal combustion (Stroher et al., 2007).

The diagnostic ratios of BghiP/IncdP (0.90), BaP/BghiP (0.81) and
IncdP/(IncdP+BghiP) (0.53) can be attributed to emissions from
wood, diesel oil, gasoline and coal combustion (Li and Kamens, 1993;
Simcik et al., 1999; De Martinis et al., 2002; Stroher et al., 2007).

The profile of pollutants emitted from light-duty vehicles can be
considered unique, since Brazil is the only place where a mixture of
gasoline and ethanol (gasohol), pure ethanol and vehicular natural
gas are used (Abrantes et al., 2009). Our results indicate that vehicu-
lar emissions are the main sources of atmospheric PAHs in Fortaleza,
especially when compared to studies about other metropolitan areas
of Brazil (De Martinis et al., 2002; Quiterio et al., 2007; Stroher et al.,
2007). PAH ratios corresponding to coal and wood combustion were
also found. This pattern has two possible causes: the atmospheric
transport of pollutants originating from burning in rural areas (less
probable) or the use of coal and wood as energy sources in commercial
activities, especially bakeries and restaurants. It has been estimated that
40 bags of coal are used in a single week by restaurants (in traditional
barbecue preparation) in the city of Fortaleza. The contributions of
these economic activities to pollutant emissions are verified by the di-
agnostic ratios of PAHs found in sediments from the two major rivers
in the region (Cavalcante et al., 2008; Cavalcante et al., 2009). Although
the relative contribution of atmospheric deposition to surface waters in
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urban areas is poorly understood (Motelay-Massei et al., 2006), aquatic
environments around urban centers are influenced by urban activities,
and streets supply major deposits of PAHs (Motelay-Massei et al.,
2006).
Table 3
Diagnostic ratios of PAHs attributed to specific sources.

BghiP/IncdP BaP/BghiP

Gasoline exhaust 3.5–3.81;a;b

0.907;b

Diesel exhaust 1.1–1.21;a;b 0.46–0.815a;b

Wood combustion 0.801;a;b

Coal combustion 0.9–6.62;b

Catalyst equipped cars

Mount Taishan, China9

Fortaleza, Brazil10 0.90±0.08 0.81±0.27

Sources: 1Li and Kamens (1993); 2Stroher et al. (2007); 3Manoli et al. (2004); 4Sienra et
8Quiterio et al. (2007); 9Wang et al. (2010); and 10this study.
Type: agaseous PAHs; bparticle PAHs and cdeposition PAHs.
4. Conclusion

The PAH levels in Fortaleza are similar to those reported for other
developing cities, but they are substantially lower than those found in
Flr/(Flr+PYR) IncdP/(IncdP+BghiP) BaP/(BaP+Chry)

0.378;b 0.505;a;b 0.368;b

0.40–0.606;b

0.433;b 0.356;b

0.672;b 0.692;b 0.482;b

0.582;b 0.53–0.562;b

0.378;b 0.368;b

0.474;b

0.569;c 0.319;c

0.56±0.09 0.53±0.02 0.37±0.04

al. (2005); 5Simcik et al. (1999); 6Tsapakis et al. (2002); 7De Martinis et al. (2002);

image of Fig.�2
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large metropolises such as Paris. Urban activities, such as vehicular
emissions and wood and coal burning (in bakeries and restaurants,
for example), combined with the complex topography of areas and
dense clusters of buildings are responsible for the highest PAH con-
centrations in the central portion of the city of Fortaleza.
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