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a b s t r a c t

Stephen LeRoy, Jan Werner and David Luenberger have developed a geometric approach
to the capital asset pricing model (CAPM) in terms of projections in a Hilbert space
onto a mean–variance efficient frontier. Using this projection method, they were able to
elegantly deduce a geometric interpretation of CAPM and factor asset pricing models. In
this paper we extend their geometric methods to non-Euclidean divergence geometries.
This extension has relevant consequences. First, it permits to deal with higher order
moments of the probability distributions since general statistical divergences could
encode global information about these distributions as is the case of the entropy.
Secondly, orthogonal Euclidean projections and the corresponding least squares problem
give place to Riemannian projections onto a possibly curved efficient frontier. Finally,
our method is flexible enough to deal with huge families of probability distributions. In
particular, there is no need to assume normality of the returns of the financial assets.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The formulation of a non-extensive Statistical Physics by C. Tsallis [1,2] and collaborators has been developed along
the last two decades in a wide range of applications to complex systems, particularly in Finance topics [3–7].

As highlighted by J. Naudts, deformed exponentials play a central role in the foundations of that Generalized Thermo-
statistics. Indeed, Naudts’ work established deep and fruitful connections between Statistical Physics and Information
Geometry [8–11]. For instance, both Rényi’s and Tsallis’ entropies are described by Naudts in terms of statistical
divergences in the family of q-exponential distributions which includes the q-Gaussian distributions, defined in details by
A. Plastino and C. Vignat [11–15].
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The analytic and geometric features of deformed exponentials suggest that they are well suited to model non-normally
distributed returns of contingent claims. In this direction, for instance, a non-Gaussian option pricing theory has been
successfully proposed in terms of diffusion processes associated to q-Gaussian distributions [6,7,16–18]. Other related
developments are also summarized in [4,5].

Up to our knowledge, however, a systematic theory of portfolio optimization and asset pricing in the context of
deformed exponentials has not yet been fully formalized. The classical Markowitz’s mean–variance model of portfolio
selection relies on the assumptions that the returns of assets are normally distributed and that the investor preferences
are described by constant risk-aversion utility function.

The traditional criticism to the normality assumption in Markowitz’s theory raises the need of alternative models for
dealing with non-Gaussian distributions. This question has been addressed since then under different methods. In [19,20],
the authors extended the Markowitz’s model to the wider family of exponential distributions, replacing the mean–
variance by a mean–divergence model. The idea is that Bregman divergences replace the variance as risk measures for
non-Gaussian distributions, eventually encompassing information from higher order moments. On the other hand, since
statistical divergences define geometric notions on the statistical manifold of exponential distributions, their method has
a geometric interpretation in terms of a steepest descent by the natural gradient of the risk premium [21–23].

In [24], the authors propose a model of portfolio selection of financial assets that explores the non-additivity and non-
normality aspects of Tsallis’ Thermostatistics. More precisely, they have extended the mean–divergence model in [19,20]
to the deformed exponentials families.

This paper is a natural sequel of [24] in the sense we propose here a generalization of beta (systematic risk) pricing
models adapted to a mean–divergence portfolio selection [25–27]. In particular, we present an extension of the Capital
Asset Pricing Model (CAPM) by Sharpe [25], Lintner [26] and Moussin [27], one of the cornerstones of the modern Finance
Theory. In spite of its quite restrictive underlying assumptions, CAPM is still one of the most pervasive tools in the financial
market since it establishes a simple linear relation between the risk premium for risky assets and the market risk premium.
The coefficients in those linear relations are usually denominated betas and indicate the share of the systematic risk (the
market risk, say) as a component of the variance of the excess return of a particular financial asset. The generalized model
we propose is flexible enough to be applied for financial returns with deformed exponential distributions. Our method
relies on a geometric approach to the classical mean–variance analysis developed by S. LeRoy and J. Werner [28] and D.
Luenberger [29], see also [30] and [31].

This paper is structured as follows. In Section 2 we define the geometric setting of the space of contingent claims M
and the subspace of traded financial assets M in terms of statistical manifolds of probability distributions as the manifold
of φ-deformed exponentials and some geometric features of that manifold are summarized in this section. Section 3 is
devoted to the description of the notation used in the derivations of the paper and to highlight the main results of the
work. Discussion on the model of pricing based on the projection and its relation with the mean–divergence optimization
model is presented in Section 4. We deduce in Section 5 an expression of a minimum divergence portfolio in the efficient
frontier. As in the classical beta pricing models, the proportions of market portfolio and risk-free assets in this optimal
portfolio are dictated by a linear regression coefficient but in our case we consider the Riemann curvature to encompass
the third and fourth order moments of the distribution of returns, generalizing the variance which is the case for flat
(Euclidean) spaces. Section 6 is dedicated to one of our main results, namely the generalized CAPM and the efficient
market portfolio. Finally, we state our conclusions and discuss on some new directions of research in Section 7.

2. The space of financial assets

Following [28,29,31], one models the set M spanned by traded financial assets as a subspace of a Hilbert space H of
contingent claims. More precisely, every point in M corresponds to the payoff z of a contingent claim at a fixed time, say
t = 1, that is, a random variable

z = z(s),

where s are the states of the world with probability distribution specified by some density p(s; ϑ). Here, ϑ is the
distribution parameter of a family of probability distributions whose densities define a n-dimensional statistical manifold

S = {p(s,ϑ) : ϑ ∈ U ⊂ Rn
},

where ϑ = (ϑ1, . . . , ϑn) takes values in some open subset U of the n-dimensional Euclidean space Rn. In the sequel,
the fact that the random variable z depends on the states of the world s whose probability distribution is p(s,ϑ) will be
summarized by the notation z ∼ p(s,ϑ). Sometimes we also express this by writing z(s,ϑ).

Example 1. Suppose that M is spanned by finitely many assets and that the space of states of the world is also finite-
dimensional. Then each z ∈ M is determined by their possible payoffs in distinct (and also finitely many) states of the
world, say, {s1, . . . , sN}. In other terms, each z ∈ M is described by a N-dimensional vector

z = (z(s1), . . . , z(sN )).
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The (discrete) probability distribution of the states of the world is denoted by pi = p(si; ϑ), i = 1, . . . ,N , where ϑ
indicates the parameters of this distribution. For the sake of simplicity, in what follows we will restrict ourselves to a
finite-dimensional asset span M. The case of infinite-dimensional Hilbert spaces can be handled with some notational
and technical adjustments.

In sum, a point z ∈ M corresponds to the possible payoffs of a given asset under the distinct states of the world. The
probability distribution of these states is given by a probability density in a statistical manifold.

2.1. Geometry of statistical divergences

In [28] and [29], S. LeRoy, J. Werner and D. Luenberger have developed a geometric approach to the capital asset
pricing model (CAPM) in terms of a Hilbert space geometry of projections onto a mean–variance efficient frontier. Using
this projection method, they easily deduce an elegant geometric interpretation of CAPM and factor pricing models.

In what follows, we extend their geometric methods to divergence geometries in M more general than the Euclidean
geometry induced from the Hilbert space norm. Denoting by ⟨·, ·⟩ the inner product in M induced from H, we can assume
that D is a Bregman divergence of the form

D(z|w) = K (z) − K (w) − ⟨∇K (w), z − w⟩ (1)

for some convex function K : M → R. Here ∇K is the Fréchet differential of K on M, which corresponds to the usual
gradient in the case when M is finite-dimensional and ⟨·, ·⟩ is the Euclidean inner product.

A trivial yet fundamental example of statistical divergence is the square of the Euclidean L2-norm in H restricted to
M, that is

Deuc(z|w) =
1
2
|z − w|

2, z, w ∈ M. (2)

In the sequel we are going to consider more general examples, not necessarily quadratic. For instance, we may fix the
Kullback–Leibler divergence [21]

DKL(z(·,ϑ)|w(·,ϑ′)) =

∫
p(s,ϑ) log

(
p(s,ϑ)
p(s,ϑ′)

)
ds. (3)

The following example is naturally linked to the statistical manifolds of deformed exponentials with probability densities
of the form

p(s,ϑ) = expφ(⟨T (s),ϑ⟩ − K (ϑ)) p0(ϑ), ϑ ∈ Rn, (4)

where T is a given smooth function of the random variable z(s) ∼ p(s,ϑ) and K is the cumulant function. Here, p0 is a
fixed reference density and expφ is the φ-exponential defined as the inverse function of the φ-logarithm [8,9]

logφ(t) =

∫ t

1

1
φ(s)

ds,

where φ : (0,+∞) → (0,+∞) is a strictly positive, nondecreasing and continuous real function. A particular case of this
deformed exponential is given by the q-exponential function

expq(t) = (1 + (1 − q)t)
1

1−q

with q > 0, q ̸= 1, what corresponds to set φ(t) = tq, Hence, the q-logarithm is defined by

logq(t) =

∫ t

1

1
s
ds =

1
1 − q

(t1−q
− 1).

Setting φ(t) = t one gets the family of exponential distributions, in particular multivariate Gaussian distributions. For any
choice of φ as above, we set the statistical divergence given by the relative φ-entropy

Dφ(z(·,ϑ)|w(·,ϑ′)) = Ep̂(·,ϑ)
[
logφ p(·,ϑ)/p0 − logφ p(·,ϑ

′)/p0
]
, (5)

where p̂(s,ϑ) is the escort distribution [8,9] given by

p̂(s,ϑ) =
1

h(ϑ)
ψ

(
⟨T (s),ϑ⟩ − K (ϑ)

)
p0(s)

with

h(ϑ) =

∫
φ

(
p(s,ϑ)/p0(s)

)
ds

and

ψ(t) = φ
(
expφ(t)

)
.
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Note that DKL in (3) corresponds to Dφ in (5) for the particular choice of φ(t) = t .
In all of those examples, namely (2), (3) and (5), the cumulant function K defines a Bregman divergence as in (1)

where the probability distributions of the random variables z(s) and w(s) are respectively given by the densities p(s,ϑ)
and p(s,ϑ′). By a slight abuse of notation, we will sometimes write K (z) instead of K (ϑ) to indicate that K is evaluated at
the random variable z ∈ M whose probability density is p(·, ϑ).

The Hessian of the cumulant function K defines a Riemannian metric g in M whose contravariant version g∗ is the
Hessian of the dual cumulant function K ∗, that is, the Legendre transform of K defined by

K ∗(z(s, η)) = max
ϑ

(
⟨ϑ, η⟩ − K (z(s,ϑ))

)
.

In the case of φ-deformed exponentials (4)–(5) the dual function K ∗ is given by the relative negative φ-entropy [32]

K ∗(z(· , η)) = Eφ[logφ p(· ,ϑ)/p0(·)]

where Eφ[·] is the expectation taken over the deformed exponential φ (also called φ-expectation) [24] and η is the dual
affine coordinate defined by

η = ∇K (z(· ,ϑ)).

In the particular example of q-exponential distributions one has

K ∗(z(· , η)) =
1

1 − q

(
1

h(ϑ) − 1

)
with

h(ϑ) =

∫ (
p(s,ϑ)/p0(s)

)q p0(s) ds,
where ϑ is the statistical parameter of the distribution p(s,ϑ) of the payoff z = z(s,ϑ). In the particular case of φ(t) = t
that corresponds to the exponential family of distributions (that includes Gaussian distributions) we have

g|z= var[z],

the variance taken with respect to the probability density

p(s,ϑ) = exp(⟨T (s),ϑ⟩ − K (s,ϑ)) p0(ϑ)

when z ∼ p(s,ϑ). As we will discuss in the sequel, Gaussian and, more generally, exponential distributions correspond to
the choice of the Euclidean divergence (2) in the geometric projection approach to the asset pricing, [28,29].

In general, the metrics g and g∗ define a dually flat structure with affine connections whose geodesics are Euclidean
lines in terms of the coordinates ϑ, η in M. We refer the reader to [21,33] for a comprehensive account of those concepts
in terms of Information Geometry. One of the fundamental results in Information Geometry is the Pythagorean Theorem
that can be stated in the following form

Theorem 1 (Theorem 1.2 and Theorem 1.3, [21]). Given o, z, w ∈ M such that the dual affine geodesic connecting z and w
is orthogonal to the affine geodesic connecting w and o, the following generalized Pythagorean relation holds

D(z|o) = D(w|o) + D(z|w). (6)

Similarly, if the affine geodesic connecting z and w is orthogonal to the dual affine geodesic connecting w and o we have the
dual relation

D∗(z|o) = D∗(w|o) + D∗(z|w), (7)

where D∗ is the dual Bregman divergence

D∗(z|w) = K ∗(z) − K ∗(w) − ⟨∇K ∗(w), z − w⟩. (8)

This geometric relation will be used in what follows to deduce a general single factor model for asset pricing in M.
Other versions of the previous Theorem can be found in [15,34] where additional requirements about the pairs of points
o, z and w are assumed/imposed. Such versions are more suitable for our purposes in this work so will use the one
provided in [15].

The rationale of the Pythagorean Theorem in Finance applications can be found, for example, in [35] and references
therein.
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3. Notation and main results

A statistical divergence in M as in (1) defines a Riemannian metric given by the Hessian of the convex function K , that
is,

g|z= ∇
2K (z). (9)

This means that for each z ∈ M we have a inner product g|z , that is, a symmetric bilinear positive definite form acting
on vectors tangent to z. Since M is (at least locally) represented by a linear space we can think of a vector ξ tangent to
M at z as a displacement vector of the form w − z for some w ∈ M. Hence, the action of g|z can be expressed in local
coordinates as

g|z(ξ, ξ ) = gij(z)ξ iξ j,

where (gij(z)) is a positive definite symmetric matrix whose components depend smoothly on the coordinates of z ∈ M.
Here, ξ i represent the coordinates of the tangent vector ξ . Note that

gij(z) =
∂2K
∂z i∂z j

⏐⏐⏐⏐
z
·

Fixed this notation, we consider an expectation kernel, that is, an asset in M that yields the expected payoffs of the assets
in M. More precisely

g|z(ke, z) = E[z] (10)

for any z ∈ M. We also fix a pricing kernel kq as an asset in M that gives the price of any contingent claim z ∈ M as the
expected discounted payoff

g|z(kq, z) = E[µz] = q(z), (11)

where µ is a stochastic discount factor. Here q : M → R is the price functional, that is, the present value of the expected
returns of the asset, discounted at rate µ. Since the expectation is not necessarily taken with respect to risk-neutral
probabilities, µ is a risk-adjusted discount rate, possibly distinct from the risk-free return rate [28,36].

In geometric terms, the kernels ke and kq are tangent vector fields in M that represent the linear functionals E and q
using the Riemannian metric g in M as in (10) and (11), respectively. Denote by E the subspace in M spanned by ke and
kq. The projection zE of z ∈ M onto E is defined by

D(z|zE ) = min
w∈E

D(z|w).

It follows from the generalized Pythagorean Theorem for divergences (Theorem 1) that fixed a reference point o ∈ M
one has

D(z|o) = D(zE |o) + D(z|zE ), (12)

for z ∈ M. One of the requirements to Eq. (12) hold is that one of the pairs (z, zE ) or (zE , o) must lie on a geodesic which
is affine as a function of expectation while the other pair lies on a geodesic which is affine as a function of the parameters.

In the particular case of the divergence given by the Euclidean L2-norm in M

Deuc(z|w) =
1
2
|z − w|

2 (13)

expression (12) reduces to the Euclidean decomposition

|z|2 = E[z]2 + var[z], (14)

where

var[z] = E[(z − E[z])2]

is the variance, the classical risk measure in Portfolio Theory [36,37]. In this case, the orthogonal projection onto E is the
solution of the following least squares optimization problem: given z ∈ M, to find zE in E such that

|z − zE |
2

= min
w∈E

|z − w|
2 (15)

the solution of which minimizes the variance amongst all the payoffs z whose orthogonal projection in zE .
Motivated by the analogy between (12) and (14), we define the projection

P(z) = D(z|zE )

as a geometrically natural surrogate of the variance in the setting of general statistical divergences. This replacement has
relevant consequences. First, it permits to deal with higher order moments of the probability distributions since general
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statistical divergences could encode global information about these distributions as is the case of the entropy. Secondly,
orthogonal Euclidean projections and the corresponding least squares problem give place to Riemannian projections onto
principal curves and surfaces. Finally, this proposal is flexible enough to deal with huge families of probability distributions
going far beyond normality assumptions about returns of financial assets.

Now we are able to state our main results. The following theorem states that the two reference assets ke and kq
determine the efficient frontier for portfolios of assets in M. Hence, it generalizes the projection pricing method to the
context of non-Euclidean statistical divergences. Indeed we have

Theorem 2. Let E be the subspace in M spanned by the expectation kernel ke and the pricing kernel kq. Given z ∈ M we
have

E[zE ] = E[z]

and

P[zE ] ≤ P[z]

where zE is the projection of z onto E in the sense that

D(z|zE ) = min
w∈E

D(z|w). (16)

Denote by Re and Rq the returns of ke and kq, respectively. Hence, the counterpart of the pricing equations in [29] in
the context of the mean–divergence efficient frontier E reads as

Theorem 3. The minimum divergence portfolio in M is given by

z = Re + (1 − β)(Rq − Re) (17)

where

β = −
g(Rq − Re, Re)

g(Rq − Re, Rq − Re)
(18)

with

g = ∇
2K (z).

It is worth to note that it is convenient for practical purposes to work with the expansion of the Riemannian metric
around a fixed reference point o ∈ M as

g|z∼ ∇
2K (o) + o(|z|2), (19)

where quadratic terms are determined in terms of the Riemann curvature of the Riemannian manifold (M, g), see [38].
Then, one can replace g by the Hessian matrix ∇

2K (o) ignoring higher order corrections.
In the case when there is a risk-free asset 1 in M with return R̄ we obtain from Theorem 3 a generalized CAPM

expression of the form

E[z] = R̄ + β(E[Rq] − R̄) (20)

as a consequence of our projection method based on minimizing a given statistical divergence. The expression (20) extends
the classical CAPM formula to the setting of non-normal distributions. Besides that, this general formula is not necessarily
deduced from a least squares minimization since we are considering divergences other than the Euclidean one.

For instance, in the particular case when we suppose that the returns of traded assets are distributed accordingly a
q-Gaussian distributions it holds that

g|z= ∇
2K (z(·,ϑ)) = Σq

for every z ∈ M, where the q-variance matrix Σq is defined in Section 7. Hence, we get the following consequence of
Theorem 3.

Corollary 1. Suppose that the traded financial assets in M are distributed according to a q-Gaussian distribution. Hence the
minimum divergence portfolio is given by

z = Re + (1 − β)(Rq − Re)

where

β = −
g(Rq − Re, Re)

g(Rq − Re, Rq − Re)



A.F.P. Rodrigues, C.C. Cavalcante and V.L. Crisóstomo / Physica A 534 (2019) 122181 7

with

g = Σq,

being the q-variance matrix defined as

Σq = γqC1−q
q,n |Σ |

1−q
2 Σ (21)

with

γq =
1
2

(
(n + 4) − (n + 2)q

)
, (22)

where n is the number of considered assets in the portfolio and

Cq,n =

⎧⎪⎨⎪⎩
Γ ( 1

q−1 −
n
2 )

√
π

Γ ( 1
q−1 )

( 1
q−1

) n
2
(
(n + 4) − (n + 2)q

)
)
n
2 , for 1 < q < n+4

n+2 ,

Γ ( 2−q
1−q )

√
π

Γ ( 2−q
q−1 +

n
2 )

( 1
1−q

) n
2
(
(n + 4) − (n + 2)q

)
)
n
2 , for q < 1.

(23)

Here Σ is the variance–covariance matrix of the returns on the assets and |Σ | is the determinant of Σ . We refer the reader
to [12] for further details in q-multivariate Gaussian distributions.

Now, we describe a couple of other important facts that stem from the definition of the mean–divergence efficient
frontier. In Section 5.1 we prove that beta pricing equations similar to (17)–(18) are still valid if one replaces the returns
of the expectation and pricing kernels by the returns of two assets in the mean–divergence efficient frontier that are
orthogonal with respect to g . This is the case of assets with zero correlation in the classical setting [28,29].

Finally, we observe that (20) becomes an exact counterpart of the CAPM equation if we could replace Rq by the return
of an efficient market. This is the content of Theorem 4 in Section 6 where we present a generalized CAPM equation based
on the maximization of a utility function. For that, we assume that the utility function describes the preferences of a risk
averse agent that is strictly decreasing with respect to the risk measure. For such utility functions, it is possible to prove
that the market equilibrium portfolio lies on the mean–divergence efficient frontier.

4. Projection pricing and mean–divergence frontier

In this section, we sketch the proof of Theorem 2.
Recall that E is the (one or two) dimensional subspace in M spanned by given payoff vectors ke and kq in M. More

precisely, the vector fields ke and kq define a (one or two dimensional) distribution and E is a fixed integral leaf of this
distribution. Given z ∈ M we suppose that there exists zE ∈ E such that

D(z|zE ) = min
w∈E

D(z|w). (24)

Fixed an arbitrary point o ∈ M it follows from Theorem 1, and also considering that o ∈ E [34], that

D(z|o) = D(zE |o) + D(z|zE ). (25)

At this point, it is worth to highlight the formal resemblance with the usual Pythagorean expression that takes place in
the case of the Euclidean L2-divergence (associated with the Hilbert metric)

Deuc(z|w) =
1
2
|z − w|

2, z, w ∈ M.

In this case, (25) is nothing but the ordinary least squares decomposition

|z|2 = E[z]2 + var[z], (26)

with E[z] = ⟨z, 1⟩, where 1 indicates a risk-free asset whose payoff is 1 in every state of the world. Recall that the variance

var[z] = E[(z − E[z])2]

is the classical risk measure in Portfolio Theory [36,37]. Moreover, up to a constant factor, it is the risk premium for risky
assets under the assumption of normally distributed returns. As we mentioned before, comparing (25) and (26) suggests
to adopt a general definition of risk premium as

P(z) = D(z|zE ) (27)

in the context of non-Euclidean divergences. In this way, (24) and (25) imply that

P(zE ) ≤ P(z) (28)

with equality only and only if z = zE . We denote zE = πE (z).
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We now deduce an infinitesimal version of the condition (24) in the case when D is a Bregman divergence with
cumulant function K as in (1). Fixed z ∈ M and a curve w(t) in E with w(0) = zE we have

0 =
d
dt

⏐⏐⏐
t=0

D(z|w(t)) =
d
dt

⏐⏐⏐
t=0

(
K (z) − K (w(t)) − ⟨∇K (w(t)), z − w(t)⟩

)
= −⟨∇K (zE ), w′(0)⟩ + ⟨∇K (zE ), w′(0)⟩ − w′(0)⊤∇

2K (zE )(z − zE ),

where a⊤ denotes the transpose of a matrix a. We conclude that

w′(0)⊤∇
2K (zE )(z − zE ) = 0 (29)

for an arbitrary vector w′(0) tangent to E at zE . Therefore, denoting by ε the asset

ε = z − zE (30)

and denoting

g|zE= ∇
2K (zE ), (31)

a inner product in the tangent space TzE E due to the convexity of K , we conclude that ε is perpendicular to TzE E . Since
E is indeed a vector space we note that TzE E = E . Hence, we conclude that ε is perpendicular to E at the point zE with
respect to the inner product g|zE . In particular, it follows that

0 = g|zE (ε, ke) = g|zE (z, ke) − g|zE (z
E , ke)

and

0 = g|zE (ε, kq) = g|zE (z, kq) − g|zE (z
E , kq).

Therefore

g|zE (z, ke) = g|zE (z
E , ke) (32)

and

g|zE (z, kq) = g|zE (z
E , kq) (33)

for any z with projection zE , that is, z of the form zE + tε, t ∈ R. This means that we may extend the Riemannian metric
g|zE in points of E to a Riemannian metric in the whole space M simply declaring that it is invariant with respect to
translations in directions ε perpendicular to E . In other terms, the Riemannian metric g in M is fixed in such a way that
M becomes the Riemannian product M = E × F , where F is ruled by Euclidean lines of the form zE + tε, t ∈ R, with
zE ∈ E and ε perpendicular to the tangent space TzE E at zE with respect to g|zE .

This choice of a product Riemannian metric permits to interpret expressions (32) and (33) in terms of expected values
and prices of assets. Indeed, the vector field ke tangent to E can be interpreted as an expectation kernel in the sense that

g|zE (ke, z) = E[z] =

N∑
i=1

piz(si). (34)

In the same way one interprets the vector field kq tangent to E as the pricing kernel that must satisfy

g|zE (kq, z) = E[µz] =

N∑
i=1

piµ(si)z(si) = q[z]. (35)

Here, µ is a stochastic discount factor. Hence,

ke|zE=
(
g|zE

)−1 (
p1, . . . , pN

)
(36)

and

kq|zE=
(
g|zE

)−1 (
µ(s1)p1, . . . , µ(sN )pN

)
, (37)

where µ(si) is the discount rate in the scenario relative to the state of the world si, i = 1, . . . ,N . This interpretation of ke
and kq implies that we can rewrite (32) and (33) respectively as

E[z] = E[zE ],

q[z] = q[zE ].
(38)

In particular E[ε] = 0. In sum, payoffs in M have the same expected values and prices than their orthogonal projections
on E with respect to the Riemannian metric g .

It also follows from the fact that g is a Riemannian product metric that the Riemannian curvature of M is determined
by the Gaussian curvature K of E in the case when ke and kq are linearly independent and M is a two-dimensional vector
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space. In this case, considering for instance a local coordinate system given by the principal directions of ∇
2K (zE ) one

has

K|zE= −
1

2
√
λ1λ2

(
∂1

(
∂1λ2

√
λ1λ2

)
+∂2

(
∂2λ1

√
λ1λ2

))
, (39)

where λ1, λ2 > 0 are the eigenvalues of g|zE= ∇
2K (zE ). Note that the Gaussian curvature involves third and fourth

moments of the distributions p(s,ϑ) ds. In particular, E and M become flat spaces if we consider statistical divergences
that depend only on second order moments as is the case of the Euclidean divergence (2). Indeed, if K is quadratic, as in
the example of the Euclidean divergence Deuc, we have

∇
2K (zE ) = ∇

2K (o),

where o ∈ M is an arbitrarily fixed reference point. In this case,

g = ∇
2K (o)

and M is a flat Riemannian manifold. This is exactly the context of the classical Euclidean theory. In the general case we
have an expansion of the form

∇
2K (zE ) ≃ ∇

2K (o) + o(|z|2),

where the quadratic remainder encodes the Riemannian curvature of M and its covariant derivatives. In statistical terms,
these curvature terms can be associated to the contribution of higher moments of the underlying probability distributions.

5. Minimum divergence portfolio

In this section, we present the proof of Theorem 3.
We have proved in Section 4 that E = span{kq, ke} is the mean–divergence frontier in M. Now we address the problem

of minimizing the risk measure

P(z) = D(o|z)

among points in z ∈ E only, that is,

min
z∈E

D(o|z), (40)

where o ∈ M is an arbitrarily fixed reference point. Any point z ∈ E is of the form

z = akq + bke,

for some a, b ∈ R. The price of this portfolio is

q(z) = E[µz] = aE[µkq] + bE[µke] = aq(kq) + bq(ke) (41)

Fixing the constraint that the price of the portfolio is q(z) = 1, we denote

β = aq(kq)

and therefore

1 − β = bq(ke).

Therefore the portfolios with unit price are parameterized by

z = β
kq

q(kq)
+ (1 − β)

ke
q(ke)

= βRq + (1 − β)Re = Re + β(Rq − Re) (42)

with β ∈ R. Here, Rq and Re are the returns of kq and ke, respectively. Then, minimizing the risk premium among payoffs
in E with unit price turns out to be equivalent to the one-dimensional minimization problem

min
β

D(o|Re + β(Rq − Re)),

whose first order necessary condition is

0 =
d
dβ

D(o|Re + β(Rq − Re)) = −(Rq − Re)⊤∇
2K (Re + β(Rq − Re))(Re + β(Rq − Re)).

We conclude that the optimal portfolio with unit price is determined by

β = −
(Rq − Re)⊤∇

2K (Re + β(Rq − Re))Re

(Rq − Re)⊤∇2K (Re + β(Rq − Re))(Rq − Re)
· (43)
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Considering the approximation

∇
2K (Re + β(Rq − Re)) ≃ ∇

2K (o),

we fix an approximate value of β that determines the choice of optimal portfolio z0 ∈ E with unit price by

β0 := −
(Rq − Re)⊤∇

2K (o)Re

(Rq − Re)⊤∇2K (o)(Rq − Re)
(44)

Note that the expected return of this portfolio is

E[z0] = E[Re] + β0 E[Rq − Re] (45)

We have in the case when the risk-free asset 1 with riskless return R̄ is an element in M that

ke = 1

and Re = E(1) = R̄. Hence, in this case

E[z0] = R̄ + β0 (E[Rq] − R̄), (46)

which is similar to the classical beta pricing equation obtained when we consider the Euclidean divergence (2) for which
∇

2K (o) equals the variance.

5.1. Generalized beta pricing

From now on, we assume that E is two-dimensional. Hence, it is convenient to rewrite the pricing equations above
using two linearly independent assets other than ke and kq. We fix such assets, say kλ and kµ, with respective returns

rλ = Re + λ(Rq − Re)

and

rµ = Re + µ(Rq − Re)

in such a way that

g|o(rλ, rµ) = 0. (47)

Hence, µ is given by

µ = −
g|o(Re, Re) + λg|o(Rq − Re, Re)

g|o(Rq − Re, Re) + λg|o(Rq − Re, Rq − Re)
(48)

Note that µ is well-defined if and only if λ ̸= β0 in (44), that is, if kλ is not the (approximate) minimum divergence
portfolio in E .

Given an asset z ∈ M with unit price we have the decomposition

z = zE + ε

where

zE = akλ + bkµ

with ε perpendicular to E at zE and E[ε] = 0. It follows that

E[z] = aE[kλ] + bE[kµ] = aq(kλ)E[rλ] + bq(kµ)E[rµ]
=: E[rµ] + β(E[rλ] − E[rµ])

with β = aq(kλ). Since z has unit price the return r of z is given by

r = z = aq(kλ)rλ + bq(kµ)rµ + ε = rµ + β(rλ − rµ) + ε

from which it follows that

g|zE (r, rλ) = g|zE (rµ, rλ) + βg|zE (rλ − rµ, rλ) + g|zE (ε, rλ)
= g|o(rµ, rλ) + o(|z|2) + βg|zE (rλ − rµ, rλ)
= βg|zE (rλ − rµ, rλ) + o(|z|2).

We conclude that

β =
g|zE (r, rλ)

g|zE (rλ − rµ, rλ)
+ o(|z|2) =

g|o(r, rλ)
g|o(rλ − rµ, rλ)

+ o(|z|2) =
g|o(r, rλ)
g|o(rλ, rλ)

+ o(|z|2),
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where g|o= ∇
2K (o). In sum, we have obtained a generalized beta pricing equation

E[z] = E[rµ] + β(E[rλ] − E[rµ]) (49)

for assets in z ∈ M, where the generalized beta coefficient is approximated (up to quadratic remainder terms) by

β =
g|o(r, rλ)
g|o(rλ, rλ)

· (50)

If the risk-free asset 1 with return R̄ lies in the space of traded contingent claims M, we fix rµ = 1. With this choice, (49)
reduces to

E[z] = R̄ + β(E[rλ] − R̄), (51)

a generalized beta pricing equation written in terms of an asset kλ instead of the return of the pricing kernel kq as in (46).

5.2. Optimal portfolio for q-exponentials

In this section, we focus on the particular example of the statistical manifold of φ-exponential probability densities
defined in (4), recalling the results from [24].

Recall that setting φ(t) = t in (4) one gets the family of exponential distributions, in particular multivariate Gaussian
distributions. For this family, R. Nock, B. Magdalou, E. Bryis and F. Nielsen [19,20] represented the key concepts of Portfolio
Selection theory in terms of the cumulant function and the associated Bregman divergence. More precisely, they proved
that for CARA utility functions the certainty equivalent and risk premium of risky assets are respectively given by

C =
1
a

(
K (z) − K (w)

)
and

P =
1
a
D[z|w],

where a > 0 is a risk-aversion parameter. Hence they extended the classical mean–variance portfolio selection to a general
mean–divergence model for which an optimal allocation α is a solution of the minimization problem

min
α

(
⟨∇K (z(s,ϑ − aα)),α⟩ +

1
a
D(z(s,ϑ)|z(s,ϑ − aα))

)
.

In the particular case of Gaussian distributed returns, one recovers the classical Markowitz’s optimal portfolio allocation
vector

α =
Σ−11

1TΣ−11
,

where Σ is the variance–covariance matrix of the returns on the assets.
In [24], the authors extended this mean–divergence approach to φ-exponential distributions, in particular to q-

exponential distributions. They proved that the optimal portfolio for their extended mean–divergence model is given
in terms of the cumulant function by

α =
∇

2K (z(s,ϑ))−11
1T∇2K (z(s,ϑ))−11

· (52)

Note that the Hessian ∇
2K of the cumulant (convex) function K is positive-definite and plays the role of the variance–

covariance matrix in the Gaussian case. In the particular case of q-Gaussian distributions [12], the optimal allocation
portfolio is given by

α =
Σ−1

q 1

1TΣ−1
q 1

(53)

where Σq is defined according to (21). It is evident that one reobtains the Markowitz’s portfolio as q → 1 in (53).
In view of (52), the authors have elaborated in [24] a steepest descent algorithm by the natural (Riemannian) gradient

of the risk premium. Some empirical support to the proposed method is provided by comparing the cumulated returns
and the evolution of the divergence for optimal portfolios according to the mean–divergence model and the classical one
by Markowitz. The numerical evaluations in [24] show the proposed method yields better tracking of deep changes in
the stock market, such as the ones present in economic crisis.
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6. Efficient market portfolio and generalized CAPM

As in the classical CAPM, we can take rλ as the market return rm since it is possible to prove under some assumptions
that rm is in the mean–divergence efficient frontier E . In this case, both (49) and (51) define a generalized security market
line [28,39].

Suppose that every agent in the market has consumption preferences given by a time-separable utility function of the
form

u(c0, c1) = u0(c0) + u1(E[c1], g|c1 (c1, c1)) (54)

where u1 is strictly decreasing with respect to the second variable. Here c0 is the agent’s consumption plan at time t = 0
and c1 = c1(s) is a random variable in M that describes the consumption plan of the agent at time t = 1.

The optimal agent’s consumption plan is a solution of the constrained intertemporal optimization problem

max
c0,c1,α

u(c0, c1)

subject to the constraints

c0 ≤ w0 − α · µz,
c1 ≤ w1 + α · z

where z is a portfolio of risky traded assets in M, α is the portfolio allocation vector and w0 and w1 are, respectively, the
agent’s endowments at time t = 0 and t = 1. If we suppose for the sake of simplicity that we have an interior optimal
solution then the first-order condition reads as

µz =
∂c1u
∂c0u

z,

where the ratio on the right hand side is the marginal rate of substitution for the utility function u, see [40]. Taking
expected values on both sides one gets

q(z) = E
[
∂c1u
∂c0u

z
]

for the optimal agent’s consumption plan c1. Suppose without loss of generality that c1 is tradable, that is, it is asset in
M. We then prove that c1 lies in the mean–divergence frontier E . We consider the orthogonal decomposition

c1 = πE (c1) + c⊥

1

where

g|c1 (c
⊥

1 , E) = 0.

Then we define an alternative consumption plan by c̃1 = πE (c1). Suppose by contradiction that c⊥

1 > 0. We conclude that

c̃1 − w1 < c1 − w1.

Moreover since q(c⊥

1 ) = E(c⊥

1 ) = 0 we have

q(̃c1 − w1) = q(c1 − w1)

and

E[̃c1 − w1] = E[c1 − w1].

We also have πE (c1) = πE (̃c1) and

g |̃c1 (̃c1, c1) ≤ g|c1 (c1, c1).

Since the agent’s preferences are described by an utility function that is strictly increasing with respect to the risk measure
(the second variable), we conclude that c̃1 is strictly preferred to c1. This contradicts the optimality of the consumption
plan c1. From this contradiction, we conclude that c1 ∈ E for every agent. Since the market payoff zm is by definition the
sum over agents of the tradable components of agents’ consumption plans, the market return lies on the mean–divergence
frontier as well.

In view of the above, we now deduce a generalized CAPM equation.

Theorem 4. The equilibrium prices for efficient assets z with returns r in a market with agents’ preferences described by an
utility function of the form (54) are given by

E[r] − E[rµ] = β̃(E[rm] − E[rµ]), (55)
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where rm is the return of the market portfolio and

β̃ =
g(r, rm)
g(rm, rm)

· (56)

Proof. We have proved that the tradable component of the optimal consumption plan lies in the mean–divergence
efficient frontier E . Then for each agent, labeled by k = 1, . . . ,M , we have

c0,(k) ≤ w0,(k) − q(α(k)) · z − bi,(k),

where the portfolio α · z(k) lies in the mean–divergence efficient frontier and satisfies g(α(k) · z, rµ) = 0 for every
k = 1, . . . ,M . Here, bi,(k) is the share invested in the asset with return rµ (that could represent the risk-free asset, in
the case when it is available in the market M). Hence, at time t = 1 this inequality becomes

c1,(k) ≤ w1,(k) + α(k) · z + bi,(k)rµ.

Since q(α(k) · z) = α(k) · µz we have

E[c1,(k)] = E[c1,(k)] = (w0,(k) − c0,(k))E[rµ] + α(k) · (E[z] − µE[rµ])

and using that g(α(k) · z, rµ) = 0 we have

g(c1,(k), c1,(k)) = g(α(k) · z,α(k) · z) + b2kg(rµ, rµ).

Differentiating u(k), the utility function for the preferences of the kth agent, at an equilibrium portfolio with respect to
the allocation parameter α one obtains the vector equation

∂1u(k)(E[zi] − µiE[rµ]) + 2∂2u(k)α
j
(k)g(zi, zj) = 0

from what follows that the optimal allocation for each agent is given by

α
j
(k) = −

∂1u(k)

∂2u(k)
g(zi, zj)−1(E[zj] − µiE[rµ])

Summing up on k = 1, . . . ,M , one gets

γ−1g(zi, zj)−1(E[zj] − µjE[rµ]) = 1

where

γ = −

( M∑
k=1

∂1u(k)

∂2u(k)

)−1

Denoting gij = g(zi, zj) one concludes that the market equilibrium price for each asset zi is given by

µi =
1

E[rµ]

(
E[zi] − γ gij1j

)
Hence we have

E[ri] =
1
µi

E[zi] = E[rµ] +
γ

µi
gij1j = E[rµ] + γ g

( zi
µi
,
∑

i

zi
)
= E[rµ] + γ g

( zi
µi
, zm

)
.

We conclude that

E[ri] − E[rµ] = γµmg(ri, rm)

where µm = zm/rm is the value of the market payoff at t = 0. Denoting

β̃i =
g(ri, rm)
g(rm, rm)

(57)

one obtains

E[ri] − E[rµ] = γ β̃iµmg(rm, rm).

In particular,

E[rm] − E[rµ] = γµmg(rm, rm).

Therefore

E[ri] − E[rµ] = β̃i(E[rm] − E[rµ]). (58)

This finishes the proof. □
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7. Conclusions and future works

In this paper we have proposed a generalization of the capital asset pricing model. For this sake, we defined expectation
and price kernels in terms of a statistical divergence, particularly the Bregman divergence, in a manifold which contains
the assets and used the Riemannian metric derived from the used divergence. This idea is motivated by the consideration
of the divergence as an alternative risk measure, instead of the using the variance which is the natural metric for normal
distributions.

Hence, we deduced an expression of a minimum divergence portfolio in the efficient frontier. As in the classical beta
pricing models, the proportions of market portfolio and risk-free assets in this optimal portfolio are dictated by a linear
regression coefficient. However, in our model, we take into account the Riemannian metric in the manifold M, defined
by the traded assets, which is given by the Hessian of the cumulant function K of the deformed exponential probability
density. This approach makes possible to generalize the Gaussian distribution cases, where the flat metric considers only
the variance (second order moments) of the portfolio. In our general approach, the Riemann curvature of M encodes third
and fourth order moments of the distribution of returns.

We are currently obtaining further developments for applications of the theoretical models elaborated in this work.
One of those ongoing projects are related to estimation techniques of the generalized beta factors, specially useful for
valuation models in Corporate Finance.
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