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RESUMO

Uma clique em um grafo é um conjunto de vértices no qual todos são dois a dois adjacentes. O

problema da Clique Máxima é um problema clássico de otimização em Teoria dos Grafos no

qual deseja-se encontrar uma clique máxima em um grafo de entrada. Embora existam diversos

resultados de dificuldade teórica sobre o problema, experimentos computacionais mostram que

ele parece ser mais fácil do que o esperado. Neste trabalho, nós abordamos uma classe de

algoritmos de Branch and Bound para o problema e como eles tornam Clique Máxima mais

fácil na prática. Também, analisamos a correlação entre cliques e colorações e a diferença de

dificuldade na enumeração dessas estruturas. Além disso, propomos instâncias cuja solução

via enumeração é mais complexa em comparação com a média. Por fim, analisamos uma

família de instâncias de pior caso para uma classe mais específica de algoritmos e propomos

um pré-processamento que torna o tempo de solução dessas instâncias polinomial, além de uma

construção não-determinística de grafos imunes a este pré-processamento.

Palavras-chave: Teoria dos Grafos. Clique Máxima. Branch and Bound. Coloração de Grafos.



ABSTRACT

A clique in a graph is a set of vertices in which all of its elements are pairwise adjacent. The

Maximum Clique problem is a classic optimization problem in Graph Theory in which the

objective is to find a maximum clique in a input graph G. Despite the existence of several

theoretical hardness results for this problem, several experiments paint it as easier than one would

expect. In this work, we approach a class of Branch and Bound algorithms for this problem,

and how they make Maximum Clique often easier in practice. Furthermore, we analyze the

correlation between cliques and colorings and the hardness difference in enumerating these

structures. Besides that, we present instances whose solution via enumeration is more complex

when compared to the average. Finally, we analyze a family of worst case instances for a more

specific class of algorithms and propose a pre-processing that makes it possible for these instances

to be solved in polynomial time, as well as a randomized construction that builds instances that

are immune to this pre-processing.

Keywords: Graph Theory. Maximum Clique. Branch and Bound. Graph Coloring.
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1 INTRODUCTION

1.1 Hardness results

A clique in a graph is a subset of vertices in which any two elements are adjacent. In

the Maximum Clique problem, the objective is to find the largest clique in a given graph G.

Its decision version, denoted by Clique, consists in deciding, given an input graph G and a

integer k, if G has a clique of size at least k; it is a fundamental NP-complete problem (KARP,

1972) and also W[1]-complete under the natural parametrization over k (DOWNEY; FELLOWS,

1995). Furthermore, besides being NP-hard, Maximum Clique is also n1�"-inapproximable in

polynomial time (unless P D NP) for any " > 0, where n denotes the number of vertices in the

input graph (ZUCKERMAN, 2006).

Although Maximum Clique is drawn intractable by these theoretical hardness

results, several authors report exact algorithms that are able to tackle large instances of practical

interest for several application domains in reasonable time (CARRAGHAN; PARDALOS, 1990;

KONC; JANEŽIČ, 2007; JR. et al., 2010; SAN SEGUNDO et al., 2016). This interesting contrast

has been studied in (CARMO; ZÜGE, 2018), where the authors focus on a widely used class of

Branch and Bound (B&B) algorithms and prove that their time complexity is highly concentrated

around the sub-exponential (quasi-polynomial, in fact) nO.lgn/ growth rate.

1.2 Relation with Vertex Colorings

A related problem is the Minimum Vertex Coloring, in which the objective is

to partition the vertices of a graph in the least amount of parts in such a way that no adjacent

vertices are on the same part. This is also a classic NP-hard problem, its decision version also

being one of the 21 original Karp’s NP-complete problems (KARP, 1972). Moreover, it is also

n1�"-inapproximable in polynomial time for any " > 0, unless P D NP (ZUCKERMAN, 2006).

In 1992, the second DIMACS Implementation Challenge was held to encourage

the development of algorithmic results on three NP-hard problems, namely Satisfiability,

Minimum Vertex Coloring and Maximum Clique. Comparing the selected papers, the

conclusion was that the coloring problem was much harder than the clique one, although both are

similar difficulty-wise (JOHNSON; TRICK, 1996); in this work, we offer an explanation to the

this phenomenon.
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In (CARMO; ZÜGE, 2018), the authors prove an upper bound on the expected

number of cliques in a random graph, which ties the average complexity of the best known

algorithms. Here, we present the asymptotic behavior of the expected number of colorings in

random graphs and compare it to the number of cliques to explain the hardness disparity between

the coloring and the clique problems. Moreover, we use a polynomial reduction from Minimum

Vertex Coloring to Maximum Clique to obtain a family of graphs with n‚.n3=5�"/ cliques

on average, for any " 2 .0; 1=10�, and these instances should be harder to solve than ordinary

random graphs given the higher expected number of cliques.

1.3 Algorithms with an upper bound based on the chromatic number

Even though the worst case for Maximum Clique is not expected to be solved

in polynomial time, presenting instances that attend to this complexity is a non-trivial issue.

In (LAVNIKEVICH, 2013), the author focus on an even more restricted class of algorithms,

B&B algorithms with an upper bound based on the chromatic number. This particularization is

justified, since among the best algorithms for Maximum Clique the vast majority uses (directly

or indirectly) an estimate of this upper bound. The author, then, introduces a family of graphs

that require �.2n=5/ steps to be solved by any such algorithm, where n is the size of the graph.

These instances, however, are artificial, in a sense that it would be very unlikely to find one of

those graphs in a real problem and, besides that, its recognition is straightforward polynomial.

We go a little further and present a pre-processing heuristic that reduces solution

time for graphs that are disconnected or whose complement is and prove that it enables the

mentioned algorithms to solve Lavnikevich’s instances in polynomial time. Finally, we describe

a randomized construction based on Lavnikevich’s family such that the final graph still exhibits

worst case behavior, but is also unaffected by the proposed pre-processing.

1.4 Structure of this work

In Chapter 2, we give some basic definitions that are essential to the understanding

of this work. In Chapter 3, we introduce the B&B algorithms that we use throughout the text.

Moreover, we present some of their basic properties and what is known about their average

performance. In Chapter 4, we present correlations between the Maximum Clique and the

Minimum Vertex Coloring problems. Moreover, we prove a theorem on the expected
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number of colorings of random graphs and show that it is possible to build instances with more

cliques than average using this result together with a previous construction in the literature.

In Chapter 5, we shift our attention to a specific type of B&B algorithms that are among

the best options for handling Maximum Clique in practice. We give some basic definitions

and properties of these algorithms and present some important known results. Furthermore,

we analyze a family of graphs that are reported as exponential running time inducing instances

for the these algorithms. We also propose a pre-processing heuristic that is able to break the

said instances into smaller problems in a way that they can all be solved in polynomial time.

Furthermore, we present a non deterministic construction based on the family analyzed that also

induces exponential running time for the fore mentioned algorithms and prove that it is sufficient

to ensure that the final graph will survive our heuristic.

Finally, in Chapter 6 we present a few concluding remarks about the problem and

future research topics.



12

2 NOTATION

A graph G is defined by a pair .V;E/ of vertices and edges, where an edge is a set

of two vertices. Two vertices u; v are said adjacent (or neighbors) if uv 2 E.G/. The set of

all neighbors of a vertex v in a graph is denoted by N.v/. A clique in G is a set of vertices in

which any two of them are adjacent. The size of the largest clique in G is denoted by !.G/. An

independent set in G is a set of vertices in which no two of them are adjacent. The size of the

largest independent set in G is denoted by ˛.G/. A (proper) vertex coloring in G is a partition of

V.G/ in which every part is an independent set inG. The size of the smallest coloring inG is the

chromatic number ofG and is denoted by �.G/. The chromatic gap of a graphG is the difference

�.G/ � !.G/. A subgraph H of G is a graph where V.H/ � V.G/ and E.H/ � V.G/, and

it is denoted by H � G. H is said to span G if V.H/ D V.G/, and we call H a spanning

subgraph. H is said to be induced by S � V.G/ if V.H/ D S and E.H/ D E.G/ \
�
S

2

�
, and

we call H a induced subgraph.

A path on n vertices, denoted by Pn, is a graph in which its vertices can be ordered

as .v1; : : : ; vn/ and viviC1 2 E.Pn/ for 1 ⩽ i ⩽ n � 1, but no other edge exists. A cycle on

n vertices, denoted by Cn, is a graph in which its vertices can be ordered as .v1; : : : ; vn/ and

viviC1 2 E.Cn/ for 1 ⩽ i ⩽ n � 1, but also vnv1 2 E.Cn/ and no other edge exists. A graph G

is said to be connected if between any two vertices u and v there is an induced path in G starting

in u and ending in v. A component Gi of G is a subgraph that is both connected and maximal,

i.e., for any connected H � G (H ¤ Gi ), we have Gi › H .

The complement of a graph G, denoted by G, is the graph with the same vertices as

G such that E.G/ D fuv 2
�
V

2

�
j uv … E.G/g. The join of two graphs G and H , denoted by

G _H , is a copy of G together with a copy ofH in which every vertex in G is adjacent to every

vertex in H .

A random graph is a graph whose structure is not deterministic. In the binomial

model, denoted by G.n; p/, a graph has n vertices and every possible edge occurs independently

with probability p. If a graph G belongs to the G.n; p/ model, we say G � G.n; p/. In the

uniform model, detoned by G.n;m/, a graph has n vertices and m edges chosen uniformly at

random from the collection of all possible edges. Similarly, if a graph G belongs to the G.n;m/

model, we say G � G.n;m/. Finally, we say an event Xn occurs with high probability (w.h.p.) if

P.Xn/! 1 when n!1.
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3 A BRANCH AND BOUND FRAMEWORK

We will study here a specific family of B&B algorithms. First, we define a clique

subinstance for a graph G, which we call simply a subinstance for G, as a pair .Q;K/ of

disjoints subsets of V.G/ where Q is a clique and every vertex in K is adjacent to every vertex

in Q. In each subinstance .Q;K/, the objective is to find the largest clique C of G such

that Q � C � Q [K. Note that the instance G for Maximum Clique corresponds to the

subinstance .;; V .G//.

Intuitively, any vertex is either in the largest clique containing Q or not, we will

enumerate the possibilities as follows. If a subinstance .Q;K/ of G is not already solved, then

K ¤ ;, a pivot vertex v 2 K is chosen and this subinstance branches into two others:

a) .Q [ fvg; K \ N.v//, which considers all cliques that contain v (and do not

contain any vertices that are not adjacent to v);

b) .Q;K n fvg/, which considers all cliques that do not contain v (and may or may

not contain some of its neighbors).

Note that no bounding rule is defined yet. We call any algorithm that implements this

scheme (and possibly a bounding rule) a standard algorithm. A standard algorithm that does not

have a bounding rule simply enumerates all feasible solutions. Figure 1 illustrates the branching

of a node in a standard algorithm.

v

.Q;K/

v

.Q [ fvg; K \N.v//

v

.Q;K n fvg/

Figure 1 – A subinstance .Q;K/ and its left and right children.

Definition 1. Given a graph G, a clique search tree T of G is a binary tree such that:

a) The root of T is the subinstance .;; V .G//;

b) A subinstance .Q;K/ is a leaf of T only if K D ;;
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c) If a subinstance .Q;K/ is not a leaf, there is a vertex v 2 K such that the left

and right children of the subinstance are .Q [ fvg; K \N.v// and .Q;K n fvg/

respectively.

A clique search tree of a graph G can be seen as the result of an execution of a

standard algorithm with no bounding rule. We say an execution E of a standard algorithm is

contained in a clique search tree T of a graphG if the instances analyzed in E induce a connected

subgraph in T , this subgraph contains the root of T and every pivot choice is the same in any

subinstance of E and its equivalent node in T . Using this notation, Carmo and Züge prove the

following.

Proposition 1 (Carmo and Züge (2018)). Let G be a graph and C be the set of all its cliques. If

T is a clique search tree of G, then T has 2jCj � 1 nodes. Furthermore, each execution of a

standard algorithm for the Maximum Clique Problem on G is contained in some clique search

tree of G.

Note that, by definition, in every leaf .Q;;/ of a clique search tree T of G, Q is a

(not necessarily maximal) clique in G. Moreover, each clique Q of G is represented in exactly

one leaf .Q;;/ of T , because each vertex v 2 V.G/ will be chosen as pivot at some point (just

consider the rightmost path from the root to a leaf), so when the first vertex u 2 Q is chosen as

pivot, follow the node’s left child and keep following left whenever the chosen pivot v is in Q,

but follow the right child if v … Q. When the last vertex of the clique is selected as pivot, the

rightmost leaf in the node’s subtree is .Q;;/.

The authors approach the gap between theoretical and empirical hardness results

regarding Maximum Clique by analyzing the average behavior of B&B algorithms through

clique search trees. Indeed, by Proposition 1, the size of a clique search tree is an upper bound

on the number of instances considered by any standard algorithm. With that in mind, they prove

the following lemma.

Lemma 2 (Carmo and Züge (2018)). For any n 2 N and constant p 2 .0; 1/, if G � G.n; p/,

then the average number of cliques in G is nO.lgn/.

Now, as the size of any clique tree grows as fast as the number of cliques in the graph,

their size is, on average, quasi-polynomial. This explains why standard algorithms seem to be

much faster than they should, for if the time to process a node it at most quasi-polynomial, the

final execution time will still be quasi-polynomial and far away from the worst case.
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In (CHVÁTAL, 1977), the author defined a structure that is very similar to a clique

search tree. The f -driven tree is a binary tree whose nodes are subinstances for the Maximum

Independent Set and the children of a node is defined in an analogous way to nodes in

the clique search tree. With this notion, Pittel proved that the size of a f -driven tree is quasi-

polynomial with high probability (PITTEL, 1982). Adapting this result to clique search trees,

Carmo and Züge proved the following.

Theorem 3 (Carmo and Züge (2018)). For any n 2 N and constant p 2 .0; 1/, if G � G.n; p/,

then any clique search tree of G has size nO.lgn/ w.h.p.

Theorem 3 strengthens the explanation of the easiness in practice of Maximum

Clique, in the sense that not only in average the time complexity is quasi-polynomial, but almost

always.

These results raises the following question: “If almost always a maximum clique is

found in quasi-polynomial time, when does it take more time to find it?” The natural approach is

to find instances that induce worse scenarios than average to algorithms. Our first result concerns

a family of instances that have asymptotically more cliques and, thus, are harder to enumerate.
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4 USING VERTEX COLORINGS TO BUILD CLIQUES

In (CAMPÊLO et al., 2008), the authors introduce a linear integer programming

formulation for Minimum Vertex Coloring. This model, called the “Asymmetric Representa-

tives Model” establishes a connection between colorings and independent sets (and, consequently,

between cliques as well.)

Given a graph G and a linear order � over its vertices, a coloring S can be expressed

by representatives, one for each color class. The representative vi of the color class Si is the

minimum vertex with respect to � in the class, i.e., vi � u;8u 2 Si n fvig. Every vertex is

either a representative or is represented by exactly one other vertex. This model was explored by

Cornaz and Jost, who prove the following theorem.

Theorem 4 (Cornaz and Jost (2008)). For any graph G with n vertices and m non-edges, we can

build a graph G� together with a bĳection f from cliques of G� to colorings of G such that for

each clique C of G� f .C / is a coloring of G with n � jC j colors.

G� has a vertex for each non-edge in G. If uv … E.G/, then u and v could be in the

same color class, and if u � v, then u could represent v. Given uv; uw … E.G/ such that u � v

and u � w, if vw 2 E.G/, then u cannot represent both v and w and the vertices uv and uw in

G� are not adjacent. Moreover, if uv;wv … E.G/, u � v and w � v, then u and w cannot both

represent v and the vertices uv and wv in G� are not adjacent.

Now, note that a coloring of G defines uniquely a sets of its representatives and who

they represent, and the converse is also true. Figure 2 shows the relation between a coloring and

its representatives.

1

3

5

S1

2

4

8

S2

6

7
S3

: : : :::

:::

(a) Coloring S of a graph G.

1

3

5

2

4

8

6

7

(b) Representatives of S.
Figure 2 – Modeling a coloring through its representatives, where the arc from a vertex u to a

vertex v indicates that the former represents the latter.
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In other words, a set of representative vertices is defined and so are the non-edges

connecting a representative and one of its represented vertices. By the construction of G�, the

set of vertices fuv 2 V.G�/ j u represents vg is a clique in G�.

With that in mind, we search for graphs with a high enough number of colorings in

order to apply the bĳection and obtain a family with a high number of cliques. It turns out that

random graphs have, on average, enough colorings for this purpose.

4.1 Counting colorings in random graphs

Following the observations given in (JOHNSON; TRICK, 1996) about the hardness

disparity between Maximum Clique and Minimum Vertex Coloring, we study the

hardness to enumerate colorings on average, in a similar fashion to what was done to cliques.

In order to obtain this average, we shall consider random graphs, namely graphs in the G.n; p/

model. Our first main result is the following.

Theorem 5. For any ˛ 2 Œ0; 1=3/ and n 2 N, if p ⩽ 1 � n�˛, then the expected number of

colorings of a graph G � G.n; p/ is n‚.n/.

Proof. We note that the number C of proper colorings is bounded from above by the total number

of partitions of V.G/, which is equal to the Bell number Bn. We prove the upper bound using

the following bound of Bn from (BEREND; TASSA, 2010):

Bn <

�
0:792n

ln .nC 1/

�n
D nO.n/:

Now, let Ck be the number of different k-colorings of G. To prove the lower bound,

we note that C ⩾ Ck , for any k. We consider the case when

k D

�
1

2˛

ln .1=q/
lnn

n

�
; where q D 1 � p

and we note that k ⩽ n=2 when q ⩾ n�˛.

Following a similar approach of that on (GRIMMETT; MCDIARMID, 1975), let

d D bn=kc and note that kd ⩽ n < k.d C 1/. We say that a partition of V.G/ into k parts is

balanced if each part of the partition has size d or d C 1. Let N.r/ be the number of balanced

partitions with k parts of a set of size r and note that N.n/ ⩾ N.kd/. We remark that Ck is at

least the number of k-colorings of G with k parts which are balanced. Hence,

EŒCk� ⩾ N.n/qk.
dC1

2 / ⩾ N.kd/q
1
2
kd.dC1/ ⩾

.kd/Š

.d Š/k kŠ
q

1
2.n

2=kCn/:
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Using Stirling’s approximation for factorials (ROBBINS, 1955), we have

.kd/Š

.d Š/k kŠ
>

p
2�kd�p

2�d
�kp

2�k

�
kd
e

�kd�
k
e

�k �d
e

�kd exp
�

1
12kdC1

�
exp

�
1
12k
C

k
12d

�
D

1

.2�/k=2 d .k�1/=2
kk.d�1/ exp

�
k C

1

12kd C 1
�

1

12k
�

k

12d

�
⩾
kk.d�1/C.k�1/=2

n.k�1/=2
exp

�
12kd � k

12d
�
k

2
ln .2�/C

1

12kd C 1
�

1

12k

�
D exp ..n � k/ lnnCO.n//

D exp
�
1
2
n lnnCO.n/

�
:

Finally, we get

EŒCk� ⩾ exp
�
1
2
n lnnCO.n/

�
qn.n=kC1/=2

D exp
�
1
2
n lnnCO.n/ �

�
n2

2k
C
n

2

�
ln .1=q/

�
D exp

�
1
2
n lnn �

n2

2k
ln .1=q/ �

n

2
ln .1=q/CO.n/

�
D exp

�
1
2
n lnn � ˛n lnn � 1

2
˛n lnnCO.n/

�
D exp

�
1
2
n lnn .1 � 3˛/CO.n/

�
D exp .� .n lnn//

D n�.n/:

which finishes the proof of the lower bound.

Theorem 5 gives an intuition on the hardness difference between enumerating

colorings and enumerating cliques, as there are nO.lgn/ cliques versus n‚.n/ colorings on graphs

in the G.n; p/ model with constant p and most state-of-the-art algorithms implement some kind

of enumeration. Note that if G � G.n;m/ instead and m ⩽
�
n

2

�
.1 � n�˛/ the conclusion is still

valid for any ˛ 2 Œ0; 1=3/.

Proving that there are more colorings than cliques is the first step towards applying

the bĳection given by Theorem 4. In fact, G� need not have the same number of vertices as G,

so the number of cliques in G� as a function of jV.G�/j has to be translated into a function of

jV.G/j and this could potentially harm the desired number of cliques too badly. Fortunately, this

is not the case and the number of cliques in G� is still asymptotically higher than that of G.
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4.2 Instances with more cliques than average

We will apply the given bĳection between colorings of a random graphG into cliques

of G� and analyze the expected number of cliques in the latter.

Corollary 6. For any " 2 .0; 1=10� and n 2 N, there is a random process to build a graph with n

vertices and whose expected number of cliques is n‚.n3=5�"/.

Proof. For any 0 < " ⩽ 1=10, let "0 D 25"=.9 � 15"/ so that 3=.5C 3"0/ D 3=5 � " and note

that 0 ⩽ "0 < 1=3. Let q D n�.1=3�"0/, now we can build our random graph G � G.n;m/ where

m D

 
n

2

!
q D ‚.n5=3C"

0

/

and expected number of colorings equal to

n‚.n/ D m‚.m3=5�"/;

according to Theorem 5. Now, as there is a bĳection between colorings of G and cliques of G�,

the expected number of cliques of the latter is equal to the expected number of colorings of the

former.

So, when p is constant, a graph G � G.n; p/ on n vertices has nO.lgn/ D 2O.lg2 n/

cliques w.h.p, but a graph G� on n vertices built by the described process on a random graph

(with constant p) has n‚.
p
n/ D 2‚.

p
n lgn/ expected number of cliques, because in this scenario

m D ‚.n2/. This means that our non deterministic instances should be harder to enumerate than

ordinary random graphs given the expected higher number of cliques.
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5 STANDARD ALGORITHMS WITH A CHROMATIC UPPER BOUND

We now turn our attention to a more specific type of standard algorithms.

5.1 Introducing a bounding rule

Recall that standard algorithms are enumerative but need not implement any kind

of upper bound in order to avoid branching when it is not necessary. Introducing such bounds

can be very beneficial to the algorithm’s efficiency, provided the bound does not take up much

time to be evaluated. A very common strategy to stop a node from branching in our scenario is

comparing the size of the largest clique already found to the fewest number of colors needed to

color the graph induced by a node, where a graph G induced by the node .Q;K/ is GŒQ [K�.

It is a well known fact that if a graph G has a clique Q, then any proper coloring

of G uses at least jQj colors, as each vertex on Q must have its own color. Furthermore, if

a node .Q;K/ is such that �.GŒQ [ K�/ ⩽ jQ0j where Q0 is an already found clique, then

!.GŒQ [K�/ ⩽ jQ0j and there is no real reason to keep branching after this node.

Note that computing the chromatic number of the graph induced by some instance is

not trivial in general, so, in order to keep the upper bound feasible time-wise, a possibly non

optimal number of colors is computed by some heuristic instead. When a standard algorithm

applies this strategy to avoid unnecessary branching, we call it a �-bounded algorithm. We

remark that some of the best algorithms for Maximum Clique are �-bounded. We now define

a substructure of clique search trees.

Definition 2. Given a graph G and a clique search tree T of G, the �-pruned subtree of T ,

denoted by T�, is the (unique) subtree of T such that

a) T� is minimal in size;

b) The node .;; V .G// 2 T�;

c) In every leaf .Q;K/ of T�, we have �.GŒQ [K�/ ⩽ !.G/.

The following result establishes a relation between �-bounded algorithms and

�-pruned subtrees.

Proposition 7. For any execution E of a �-bounded algorithm on a graph G, there is a clique

search tree T of G such that E is contained in T and the subinstances considered in E contain

V.T�/.
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Proof. Let �.G/ be the upper bound on the chromatic number used by the �-bounded algorithm,

k be the number of pivot choices made in E and T be the clique search tree of G in which its first

k pivot choices are equal to the choices made in E . It is clear that all nodes in E must be in T ,

or there would have been a subinstance generated by a pivot choice not made in T . Moreover,

note that no subinstance in T generated after the kth choice of pivot will appear on E , as all of

its choices have already been used up. Therefore, E induces a subgraph of T that is, indeed,

connected and, thus, it is contained in T . Now, note that if a T� node .Q;K/ is not a leaf, then

�.GŒQ [K�/ > !.G/ ⩾ jQ0j where Q0 is the largest clique found so far and, because �.G/

is an upper bound on �.G/, �.GŒQ [K�/ > jQ0j and .Q;K/ is a node on E and is not a leaf,

thus, E contains T�.

So, essentially, the number of subinstances considered in an execution of a �-bounded

algorithm is bounded from above by the size of a clique search tree T and bounded from below

by the size of the �-pruned subtree T�.

5.2 Exponential running time inducing graphs

We now define the class of Lavnikevich graphs. This notion was introduced

in (LAVNIKEVICH, 2013) and Figure 3 provides an example.

Definition 3. For any n � 0 .mod 5/, the Lavnikevich graph on n vertices, denoted by Ln, is

obtained by the graph join between n=5 C5’s.

C5

C5

C5

: : :

:::

:::

Figure 3 – The L15 graph, where each vertex in a C5 is connected to all other vertices in the
other 2 C5’s.

With a different notation, the author proves the following.

Proposition 8 (Lavnikevich (2013)). The �-pruned subtree of any clique search tree of Ln has

size �.2n=5/.
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But the number of instances considered in a �-bounded algorithm is at least the size

of a �-pruned subtree that contains it by Proposition 7.

Corollary 9 (Lavnikevich (2013)). Any �-bounded algorithm onLn has�.2n=5/ time complexity.

Indeed, even if the algorithm takes O.1/ time to process each node, it still needs to

process an exponential number of nodes. This essentially establishes Lavnikevich graphs as

worst case instances for �-bounded algorithms.

5.3 A pre-processing heuristic

A Lavnikevich graph is indeed hard to solve by �-bounded algorithms, but its

structure allows us to implement a simple pre-processing step that speeds up the solving process.

Proposition 10. Given a graph G, we have

!.G/ D maxf!.Gi/ j Gi is a component of Gg:

Proof. As there are no edges between components, any clique in G is contained in a single

component, so its largest clique is also the largest clique in some component Gi .

So, if a graph is given as input to a �-bounded algorithm, instead of solving the

problem in the graph as a whole, it can simply solve for each of its components and return the

largest value. Note that if the input graph is connected, this heuristic is not useful.

Proposition 11. Given a graph G that is the join between G1; : : : ; Gk , we have

!.G/ D

kX
iD1

!.Gi/:

Proof. For any clique Q of Gi , each vertex of Q is adjacent to every vertex in a clique Q0 of

Gj . That means that Q1 [ � � � [Qk, where Qi is a clique in Gi , is a clique of G and if we

chose each Qi to be a maximum clique in Gi , we have a maximum clique in G, as if there was

a largest clique Q0 in G, we would find a clique Q0 \ V.Gi/ that is largest than Qi for some

i 2 f1; : : : ; kg.

Now, if a graph G is such that G is disconnected and has G1; : : : ; Gk as its

components, we can write G D G1 _ � � � _Gk . This means that if a connected graph G is given
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as input to a �-bounded algorithm and the first heuristic fails but G is disconnected, one can split

the problem in G’s components and return the sum of the results.

These heuristics can be computed in polynomial time, as one could naively implement

depth-first searches in G and G in time O.n2/. Besides that, if the pre-processing is applied

before a �-bounded algorithm with any Ln as the input graph, the problem would be greatly

reduced. This is because Ln D C5 _ � � � _ C5 where the join is done n=5 times and, thus, the

algorithm has to solve Maximum Clique in the C5 a linear number of times. The process

would take polynomial time, which is a great improvement from the original exponential time

needed.

As the final step of this work, we focus our attention in graphs that maintain the

exponential solving time requirement for any �-bounded algorithm and resist the pre-processing

described above.

5.4 Worst case instances with connected complement

Essentially, we search for graphs that are connected and whose complement is also

connected, so that none of the heuristics proposed can be applied. This can be achieved by a

random perturbation on a Ln.

Theorem 12. For any n; d 2 N, if G is a spanning subgraph of Ln where ˛.G/ ⩽ 2 and

ı.G/ ⩾ n � 1 � d , then the �-pruned subtree of every clique search tree of G has �.2n=.5d//

nodes.

Proof. Note that !.G/ ⩽ 2n=5 and ˛.G/ ⩽ 2, so if at most n=5 vertices have been discarded

due to branch operations, then �.G/ ⩾ n�n=5

2
D 2n=5 and the chromatic gap is still linear. Now,

each branching operation may discard 1 vertex if it excludes the pivot from the current clique and

at most d if the pivot is included, as there are at most d vertices non adjacent to it. Therefore,

more than 2n=.5d/ branch operations are needed before the current search tree node becomes a

leaf and, thus, the height of the search tree is at least 2n=.5d/ and there are �.2n=.5d// nodes to

be analyzed.

We want to remove edges from a Ln in order to ensure its complement is connected,

of course this process should not disconnect Ln itself. We remark that Ln is n � 3-regular and,

thus, ifG is a spanning subgraph ofLn with ı.G/ ⩾ n�3, thenG D Ln. AsLn is disconnected,
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we need d ⩾ 3 in order to ensure that the pre-processing step fails. When d D 3, we have the

following.

Corollary 13. For any n 2 N, there is a random process to build a connected graph G with

n vertices whose complement is connected and such that the �-pruned subtree of every clique

search tree of G has �.2n=15/ nodes.

Proof. We want to build a spanning subgraph G of Ln such that ˛.G/ ⩽ 2 and ı.G/ ⩾ n � 4

(d D 3 in this case), we initially set G D Ln and proceed to remove some of its edges. Let

H be a connected graph with n=5 vertices where each of its vertices represents a C5 from Ln.

There are many possible choices for H , but we are only interested in those where �.H/ ⩽ 5.

For each uv 2 E.H/, let C u5 and C v5 be the C5’s in Ln associated with u and v, respectively,

and xy 2 E.G/ be some edge where x 2 C u5 , y 2 C v5 ; we will add xy to E.G/ (and remove it

from G) if this addition does not create a triangle in G nor increases �.G/ above 3, this can be

achieved if neither x nor y have already been chosen in another iteration. Note that no isolated

C5 in G will be created, as �.H/ ⩽ 5 and no vertex v 2 V.G/ has to be chosen twice, so G’s

connectivity is kept. Moreover, G will be connected at the end of the process, because if there

was no path from some C5 to all others, no edge from H was added there, but such an addition

between any two isolated C5’s cannot create a triangle. Also, no triangle occurs in G, as no

edge between vertices of the same C5 is inserted and a vertex gains at most one neighbor (in a

C5 different from his) in the process, but a triangle demands a vertex with two neighbors in a

different C5 (or in two other different C5’s.) Therefore, as ˛.G/ ⩽ 2 and each vertex of G loses

at most one edge (i.e., ı.G/ ⩾ n � 4), from Theorem 12 we conclude that the �-pruned subtree

of any clique search tree of G has size �.2n=15/ for any B&B algorithm with a coloring upper

bound and both G and G are connected.

Finally, we remark that if one chooses H to be a tree such that �.H/ ⩽ 5, the

resulting graph G satisfies the conditions we need, but if H has as many edges as possible (and

each vertex has degree at most 5), then G will have more edges and it will be harder to exploit

its strucutre. Thus, one could even allow H to have parallel edges in order to keep its vertices’

degrees as close as possible to 5 and disturb both G’s and G’s structure as much as possible.
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6 CONCLUSIONS

In this work, we presented results concerning both cliques and colorings in graphs.

This topic of research is still very active and we believe our contribuitions provide some ground

for future works. It is worth mentioning some points that could still be explored. For example,

testing the graphs described in Corollary 6 with state-of-the-art solvers to verify the impact of the

higher number of cliques; there are asymptotically more cliques than average, but their structure

could somehow be explored by some heuristic applied in those solvers. Another point is testing

the graphs constructed in Corollary 13 in solvers that implement �-bounded algorithms and the

described pre-processing in order to compare the results to those due to Lavnikevich. Finally, a

theoretical aspect that can be pursued is improving Theorem 5 from the average case to a high

probability scenario.
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