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Abstract—This paper addresses the problem of initial synchro-
nization of users in an indoor mm-Wave scenario. By using a
massive number of antenna elements at access nodes, the result-

ing beams have narrow beamwidth. However, the transmission
of individual narrow beams may cause poor coverage in some
areas as the energy is concentrated over the direction of their
main lobes. To cope with that, a beam sweep procedure using
phased arrays is adopted. Access nodes simultaneously transmit
individual beams until a certain area of interest is thoroughly
scanned. The goal is to find the minimum power setting by
adjusting the individual power levels so that users over the
scanned area can observe a minimum received power level. The
problem is formulated as a total consumed power minimization,
suitably modeled for the standard min-sum algorithm. The
proposed graph-based algorithm features some modifications in
the message computation to decrease computational complexity,
and adopts a random message-passing scheduling to deal with
convergence issues. Simulation results indicate that the proposed
algorithm usually outperforms a baseline iterative one, consum-
ing about 13% less power in a typical simulation setup adopted.

I. INTRODUCTION

The millimeter wave (mm-Wave) band [1] (e.g. 60 GHz)

is expected to provide many benefits for fifth-generation (5G)

systems. The small wavelength allows the transceivers to have

a more compact hardware due to the fact that the antenna

element separation is a function of the wavelength. Many

antenna elements may then be used to form narrow beams and

concentrate all the power in a specific/desired direction. On

the other hand, initial synchronization of users in a mm-Wave

network has to overcome some potential issues. The use of

narrow beams in this context may provide good signal quality

only to a small fraction of the area to be covered. If a new

user equipment (UE) arrives in poorly-covered area, it may

not manage to join the network as it cannot detect and decode

satisfactorily any signal from access nodes (ANs). For exam-

ple, the left-hand side of Fig. 1 shows an AN transmitting a

narrow beam and two UEs waiting for synchronization signals.

By chance, the narrow beam is transmitted towards one of the

UEs, while the other may not listen to the transmitted signal.

The challenge is to make sure that whenever a new UE tries to

join such a network at least one AN should be able to provide

it good enough signal quality to establish a connection, and

using as little power as possible.

Assuming the use of all antenna elements available, the

idea is to minimize the total consumed power by adjusting

the beam power levels in each transmit-time interval so that

every UE can perform initial synchronization. A beam sweep

procedure is then adopted, in which narrow beams, one at each

AN, are simultaneously transmitted in contiguous transmit-

time intervals, namely beam sweep instances, in order to

radiate energy over the area where UEs may appear and try

to establish connection, until the whole area is scanned.

In order to minimize the total consumed power during initial

synchronization, an optimization problem is formulated so

that the objective is to minimize the sum of all the transmit

power levels to be used during the beam scan. The objective

is subject to a set of signal-to-interference-plus-noise ratio

(SINR) constraints and a set of transmit power constraints.

From the resulting beam power setting, the beam sweep pattern

is determined. By nature, this problem is combinatorial with

high computational complexity for large-scale networks. The

exhaustive search of it grows exponentially with the number

of SINR constraints. Thus, its optimal solution is hard to

be found. One low-complexity approach is to find the beam

sweep pattern at random with no power optimization, as in [2].

However, it would make ANs to transmit synchronization

signals to areas where UEs rarely appears. Then, unnecessary

power is consumed and UEs may experience high interference

levels. The beam pattern and the beam power setting can

be designed and optimized, respectively, based on historical

statistics of UEs provided by the system, as in [3]. From such

a data set, ANs find a power setting sufficient to provide good

synchronization signal quality for UEs to synchronize. How-

ever, the algorithms proposed in [3] are performed centralized

and provide solutions usually far from the optimum.

The key contribution of this work is the proposal of a

low-complexity message-passing (MP) algorithm to solve the

underlying problem. MP algorithms [4] have been widely used

in probabilistic modeling of the relationship of interdependent

parameters. For instance, it has been successfully applied

for low-density parity-check (LDPC) decoding [5]. Beyond

that, variations of the sum-product algorithm based on the

generalized distributive law [6] have also been used to solve

many problems in wireless communications. For example,

the min-sum algorithm has been applied for the problem of

downlink precoding selection [7] and for power control in

very-large scale networks [8]. Here, the proposed MP is based

on the min-sum algorithm. To apply it to the underlying prob-

lem, the constrained total consumed power minimization is
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Fig. 1. Example of a mm-Wave indoor scenario. On the left, new UEs try
to synchronize with an AN transmitting a narrow beam. On the right, UE
records collected by ANs determine an area with relevant UE locations.

reformulated in order to plug constraints into the objective. A

convenient factorization of the resulting objective is provided

so that the standard MP framework can be directly applied. To

deal with continuous variables in the message computation,

interference is neglected, which is eventually shown to be

a reasonable assumption. Consequently, computed messages

are step functions, which facilitates the message exchange via

parameterization or encoding. The proposed MP algorithm is

compared with a baseline algorithm presented in [3].

II. SYSTEM MODEL

Consider an indoor mm-Wave network where ANs are

arbitrarily placed to provide an adequate coverage to UEs for

initial synchronization. Let N be the set of N ANs, and let K
be the set of K UE records, collected over time as historical

statistics and available to ANs, as in [3]. Such UE records

denote the received signal power per beam direction reported

by synchronized UEs. From those records, a relevant area is

estimated where UEs are most likely to arrive and request

connectivity. The ANs can then rely on the historical data and

radiate energy only over the relevant area. For instance, the

right-hand side of Fig. 1 illustrates an open-plan office with

four ANs that provide good coverage only in the relevant area

from where it has collected UE records (orange crosses). A

new UE in the relevant area can then satisfactorily detect and

decode signals from the ANs. Each AN has M ×M antenna

elements, vertical and horizontally spaced by d , through the

use of 2-dimensional (2D) uniform planar antenna arrays [9].

Moreover, each UE is assumed to be a single-antenna receiver,

which ideally receives signals omni-directionally. Also, M2 is

assumed to be large (e.g., 64).

Accordingly, each AN is able to sweep its surroundings by

varying the azimuth and elevation angles associated with its

antenna array. The sets of azimuth and elevation angles are

pre-determined and discrete in [0 2π], where each ordered

pair of angles defines a beam direction. Also, all the ANs

simultaneously transmit beams, but only one beam per AN

is transmitted in a given beam sweep instance. One by one,

beams are sequentially transmitted at each AN and eventually

the entire relevant area is swept and properly covered.

For simplicity, beams are ordered as a linear sequence. Let

L be an index set enumerating the beams available at each

AN. That is, L , {1 , 2 , . . . , L} , where L is the number of

beam directions. Also, let (n, l) be the ordered pair that refers

to the AN n ∈ N and its beam direction l ∈ L. Each (n, l) is

mapped as (n, l) → m ∈ M , so that

m = L(n− 1) + l , ∀n ∈ N , ∀l ∈ L , (1)

and, reversely,

n = ⌈m/L⌉ , (2a)

l = mod[m− 1, L] + 1 , (2b)

where ⌈·⌉ and mod[·, ·] stand for the ceiling function and the

modulo operation, respectively, and M , {1 , 2 , . . . , NL} . It

eases the representation of beams through their corresponding

power levels in a factor graph. Eventually, when a UE is

assigned to a beam indexed by m , it can easily map m back

into (n, l) . Further, a pre-determined discrete codebook of

precoding weight vectors wn,l is considered, defined as follow:

wn,l =

√

Pn,l

M

[

e−j 2π
λ

x
T
n,1al . . . e

−j 2π
λ

x
T

n,M2al

]T

, (3)

where Pn,l denotes the transmit power that AN n sets to trans-

mit its beam l , al =
[

cos θl sinφl sin θl sinφl cosφl
]T
,

column vector xn,{1,...,M2} collects the 3-dimensional (3D)

Cartesian coordinates of antenna elements at AN n with re-

spect to the center point of the array, λ denotes the wavelength,

and θl and φl are the azimuth and elevation angles that specify

the relative phase excitation between antenna elements of AN

n . The lth beam sweep instance is thus defined as the transmit-

time interval when AN n transmits wn,l , for all n. Note that

power levels Pn,l and vectors wn,l can also be mapped into

Pm and wm , according to (1) and (2).

A. Optimization problem formulation

Each UE record is treated as a virtual UE that emulates a UE

in the optimization problem, to be described in the following,

with SINR as a function of spatial directions synchronization

signals may be transmitted in.

For each virtual UE k, let Ak be an index set of beams that

virtual UE k is capable of listening to during synchronization

and reported data of. For each beam m, let Bm be an index

set of virtual UEs that the system is capable of receiving data

from regarding beam m transmitted from its associated AN.

Moreover, for each beam m, an individual power level Pm,

subject to a maximum power constraint Pmax, is calculated

so that there exists at least one vector wm that provides good

synchronization signal quality for all the virtual UEs. Let Gm,k

denote the equivalent channel gain between virtual UE k and

AN transmitting beam m. The SINR observed by virtual UE

k ∈ K listening to beam m ∈ M is then defined as

Γm,k =
PmGm,k

∑

m′∈Mm
Pm′Gm′,k + σ2

k

, (4)

where Mm is the set of beams that interfere beam m , defined

as Mm = {m′ ∈ M | mod[|m′ −m|, L] = 0 , m′ 6= m} .
The interfering beams of beam m are those in the same beam
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Fig. 2. Examples of power consumption model function Ψm vs. Pm . On
the right side, Ψm(Pm) is a linear relation, while on the right it is based
on a priori information. Variable node m knows the power levels P̄m,k and

P̄m,k′ to individually satisfy virtual UE k and UE k′ , respectively.

sweep instance from neighboring ANs. To deal with the SINR

constraints, an indicator function 1k is defined as

1k [Γm,k ≥ γ] =

{

0 ∃m,Γm,k ≥ γ ,

+∞ otherwise,
(5)

where γ is a SINR threshold of what every Γm,k must be

above for successful synchronization and robust decoding of

synchronization signals. The indicator function penalizes any

infeasible power setting by returning +∞.

A power consumption model function Ψm(Pm) is intro-

duced to account for the relation between the transmit power

and the consumed power at each AN. In general, it can

have any shape to take into account nonlinearities and power

dissipation, but it can be simply a linear relation so that

the power consumption depends only on the transmit power.

Another aspect is that some a priori information ANs obtain

from the historical statistics can be incorporated into each Ψm.

As an example, virtual UEs may inform to the system what

power ANs should transmit with in order to satisfy every SINR

constraint. Let P̄m,k denote the minimum power level that

beam m should be transmitted with in order to satisfy the

SINR constraint of virtual UE k ∈ K, defined as

P̄m,k =
γ

Gm,k





∑

j∈Mm

PjGj,k + σ2
k



 , ∀m ∈ M . (6)

Note that each P̄m,k depends on its set of interfering beams

Mm . If such information is taken into account, then the

search space of the best power setting becomes a function of

every P̄m,k. In other words, ANs do not have any incentive to

transmit a beam with any power different from the minimum

power levels P̄m,k. Consequently, each function Ψm looks like

a sum of step functions, each step being a function of an

individual minimum power level. Fig. 2 shows two examples

of power consumption model function Ψm(Pm) , where, on

the left side, Ψm is a linear relation, while on the right it is

based on a priori information from two neighboring UEs.

The total consumed power function f is formulated as an

objective that comprises univariate factors, represented by the

functions Ψm , and multivariate checks, represented by the

functions 1k , as follows:

f
(

{Pm}m∈M

)

=
∑

m∈M

Ψm +
∑

k∈K

1k . (7)

Note that f factorizes into a sum of NL factor terms and

...

AN 1

...

AN 2

... ...

AN N

......

UE 1 UE 2 UE k UE k+1 UE K

Fig. 3. Factor graph with check nodes, variable nodes and factor nodes.
Curved rectangles delimit the local beams at ANs. Squares in gray denote
check nodes, while squares in white denote factor nodes.

into a sum of K check terms, each set Ak determining the

interdependency of them. Finally, the problem of minimizing

the total consumed power can then be stated as

minimize
{Pm∈[0Pmax]}m∈M

f
(

{Pm}m∈M

)

. (8)

The historical statistics are assumed to be rich enough so that

every beam in M has at least one UE in K that listens to it.

III. MP FRAMEWORK FOR INITIAL SYNCHRONIZATION

Due to the structure of Eq. (8), the min-sum algorithm is

applied to find the beam power setting that minimizes the total

consumed power in the network. The function f defined in (7)

is graphically modeled by a bipartite graph, namely factor

graph, comprising factor nodes, check nodes and variable

nodes. Each check node represents a virtual UE, while each

variable node represents a beam direction, at a particular AN,

where the transmit power level for the beam is the variable.

Besides, each factor node is attached to the corresponding

variable node so that it represents the power consumption

model function of the respective beam. More precisely, check

node k, with neighboring variable nodes in Ak , acts as the

constraint checker of virtual UEs k, while variable node m ,

with neighboring check nodes in Bm , acts to establish the

transmit power levels of their respective beams. Fig. 3 shows

an example of factor graph modeling a network with N ANs,

L beams per AN, and K virtual UEs, which means that there

are NL variable nodes, NL factor nodes, and K check nodes.

A. Granular MP algorithm

To decrease computational complexity, the interference

terms in (4) and in (6) are neglected, as narrow beams can

be assumed to cause very low interference to one another, and

also that the SINR threshold γ is usually small (e.g., -10 dB)

for robust decoding and detection. Thus, Γk,m and P̄m,k are

approximated as

Γk,m ≈
PmGm,k

σ2
k

(9)

and

P̄m,k ≈
γσ2

k

Gm,k

, ∀m ∈ M , k ∈ Bm . (10)

Further, let D be the degree of every check node, i.e., the

number of incident edges to each check node. The value of D
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is determined so that each set Ak comprises only the variable

nodes whose corresponding beams are those providing the D
largest equivalent channel gains.

In general, a user does not need to be served by more than

one beam. Thus, a message from a virtual UE k to a beam

m can be defined as a piecewise function. A threshold is then

defined as the minimum power level needed for that beam m
to serve virtual UE k, i.e., P̄m,k . Above such a threshold, the

power of the other neighboring beams are hypothesized so that

they consume as little power as possible. Otherwise, virtual UE

k hypothesizes the minimum power consumed by the other

beams if at most one of them would serve. With this in mind,

let αk→m denote the message to be passed from check node

k to variable node m, and let βm→k denote the normalized

message to be passed from variable node m to check node

k. The min-sum algorithm then simply iterates between the

following two kinds of message computations and exchanges:

• Summary message, from check node to variable node:

αk→m(Pm) =







0 if Pm ≥ P̄m,k ,

min
j∈Ak\{m}

(

min
Pj≥P̄j,k

βj→k(Pj)

)

otherwise.

(11)

• Aggregate message, from variable node to check node:

βm→k(Pm) = Ψm(Pm) +
∑

j∈Bm\{k}

αj→m(Pm)− κ , (12)

where κ is a normalizing constant to prevent messages

from increasing endlessly, herein defined as the minimum

of each corresponding message.

The expression of summary messages above has a low com-

putational complexity. Each check node k has to do only a

few number of checks to compute its summary messages.

The algorithm begins with variable node m computing

outgoing aggregate message βm→k to check node k, for

k ∈ Bm , assuming all the incoming summary messages

initialized to zero. That is, the aggregate messages initially

equal their respective power consumption model functions.

Upon receipt of messages, check node k computes outgoing

summary message αk→m to variable node m, for m ∈ Ak .

Then, summary messages are sent to variable nodes. This

back-and-forth message exchange defines an iteration of the

MP algorithm. At the end of a MP iteration, each variable node

computes its approximate min-marginal ψm , herein defined as

ψm (Pm) = Ψm(Pm) +
∑

j∈Bm

αj→m(Pm) , m ∈ M , (13)

and then determine its power level that minimizes it by

P ∗
m = argmin

Pm

{ψm (Pm)} , m ∈ M . (14)

The algorithm then iterates until a stopping criterion is

reached, either a predetermined maximum number of iterations

or when the beam power setting computed at the end of each

iteration converges to a fixed state.

Eventually, UEs can observe some interference since multi-

ple ANs can be transmitting in the same beam sweep instance.

However, interference can be treated after running the MP

algorithm via some power control technique. This is reason-

able due to the fact that, after finding the best power setting

via message passing, UE assignment can be straightforwardly

performed. Then, at each beam sweep procedure, any power

control function can readjust the power setting to satisfy

every constraint in terms of SINR. Regarding convergence

issues, a random MP scheduling is adopted, where on average

only some percentage of check nodes computes and passes

messages over MP iterations.

IV. SIMULATION RESULTS

The total consumed power and some convergence aspects

are evaluated. The granular MP algorithm is assessed and

compared with the iterative baseline algorithm present in [3].

The number of simulation runs was 100 . In each run, Pmax

was set to 1 mW and γ to −10 dB. The channel responses

in 60 GHz frequency band were obtained from the ray-tracing

channel model (please refer to [10] for some brief description

and to [3] for the channel characteristics setup adopted). Each

AN has an array with 8 × 8 antenna elements, d = λ/2,

pointing down to the floor, with L = 256 beams available

per AN. UE records are assumed to be measured by UEs

equipped with an ideal omni-directional receive antenna each.

Random channel components and UE positions varies from

one simulation run to another. The indoor scenario was a

9× 9× 3 cubic meter open-plan office containing nine 1× 2
square meter desks at height of 0.75 meters, conveniently

placed, and N = 4 ANs symmetrically placed close to the

ceiling. K = 81 virtual UEs were uniformly spread over

the office, such that there was one UE per square meter at

a constant height of 0.75 meter. D was equal to 3, 5, 7 or 9,

while random MP scheduling percentage was 100% or 80%.

The result provided by the baseline algorithm is repeated

for every value of D and random scheduling percentage.

Regarding the granular MP, as it is not guaranteed to converge,

it is evaluated at every MP iteration. If it converges, the

result provided at the last iteration is considered, labeled as

”MP (conv.)”. Otherwise, every power setting found over the

iterations that satisfies the constraints are taken. Then, the

minimum one is considered as the result, labeled as ”MP

(no conv.)”. Both are individually shown in terms of total

consumed power. At last, the convergence rate (percentage of

convergent runs) for both baseline and granular MP algorithms

is measured. Also, the average number of iterations demanded

until convergence is calculated. Convergence is considered

when the power setting stabilizes for 10 consecutive iterations

with an arbitrary numerical precision of 10−5 .

The granular MP algorithm, when it converges, outperforms

the baseline algorithm for any D and any random scheduling

percentage. Otherwise, it provides a worse performance for

D larger than 5 and for 100% random scheduling, what can

be seen in Fig. 4, due to the presence of cycles in the graph.

For 80% random scheduling, it has approximately the same

performance independently of convergence, which indicates

that every power setting calculated over the MP iterations
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Fig. 5. Convergence rate vs. D for 100% and 80% random scheduling.

should be checked. For D = 9 and 80% random scheduling,

the average total consumed power of granular MP algorithm is

0.08926 mW when it converges, while the baseline algorithm

consumes 0.1028 mW, around 15% more power. With respect

to convergence, for 100% random scheduling, the granular MP

algorithm converges in 90% of the cases for D = 3 and 14%
for D = 9 , as shown in Fig. 5. For 80% random scheduling

percentage, it tends to converge less often as D increases, but

converges in 100% for D = 3 . For D = 9 , it converges in

74% of the cases, which can also be seen in Fig. 5. However,

it demands more iterations to converge as D increases. For

instance, it converges within approximately 12 iterations for

D = 3 and 28 for D = 9, for 100% random scheduling, as

shown in Fig. 6. Besides, it converges within approximately

5 iterations for D = 3 and 12 for D = 9 for 80% random

scheduling, as also shown in Fig. 6. The baseline solution

converges in 100% within 3 iterations on average. At last,

the maximum square error of SINR when it is below γ was

observed to be approximately 4 · 10−5 , which can justify the

interference neglect in the MP formulation.

V. CONCLUSION

This paper addressed the UE initial synchronization problem

in a mm-Wave indoor scenario. Narrow beams, due to antenna

arrays with a massive number of elements at ANs, may provide

poor coverage in some areas. To cope with that, the adjustment

of beam power levels along with a beam sweep procedure was

described. Relying on historical statistics, the beam sweep in

3 4 5 6 7 8 9
0

5

10

15

20

25

30

Degree of Check Nodes

N
u

m
b

er
 o

f 
It

er
at

io
n

s 
u

n
ti

l 
C

o
n

v
er

g
en

ce

 

 
MP − 80%

Baseline

MP − 100%

Fig. 6. Average number of iterations until convergence vs. D for 100% and
80% random scheduling.

the indoor scenario can then be optimized. To decrease com-

plexity, interference was neglected. A graph-based model for

beam sweep was proposed, which comprises a low-complexity

MP algorithm, namely granular MP, based on the min-sum

algorithm, featuring a low-complexity message computation.

Simulation results showed that the granular MP algorithm

usually outperforms an iterative baseline algorithm, consuming

about 13% less power in a particular simulation setup. At last,

interference neglect was shown to be a reasonable assumption

due to narrowness of beams and low SINR threshold.
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