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ABSTRACT

This paper addresses the optimization of a multicell network where

each cell needs to select precoding matrices for beamforming in a

distributed way. A modified version of the adaptive min-sum algo-

rithm that considers reduced-size messages in the message-passing

procedure is proposed. The message-passing technique, where each

message is reduced to convey only part of usual information, is ap-

plied to maximize the system throughput leading to a faster adap-

tation procedure. Simulation results show this reduction leads to

a small average performance loss in system throughput of approxi-

mately 6%, while generally reduces the message size in about 73%.

Also, the proposed method still outperforms the baseline greedy

technique.

1. INTRODUCTION

The deployment of dense networks in new generations of wireless

communication systems is still an open problem to be solved. Hun-

dreds of cells in a cellular network make the notion of optimality in

terms of data rate a hard challenge. In many cases, each cell needs to

dynamically coordinate a set of parameters. An example of param-

eter coordination is the selection of precoders to overcome channel

impairments. A joint optimization in such scenario would demand a

huge signaling load and high computational burden in order to reach

the globally optimal solution. On the other hand, each cell may opti-

mize its own objective in a selfish manner to decrease both the com-

putational complexity and the signaling load. However, the network

in a global sense would experience a poor performance. Intuitively,

any approach lying in between would possibly satisfy the demand

for dense network deployment and still obtaining high data rate.

The work in [1] proposed an iterative method to precoder se-

lection for beamforming purposes based on a message-passing algo-

rithm, namely min-sum algorithm, in factor graphs [2] considering

ideal message pass. However, the message size can be large and may

cause an undesired overhead over the channel, as we have discussed

in [3], where we analyze the signaling load and the computational

burden of the message-passing algorithm with full message compu-

tation. Compared to a centralized (exhaustive search) solution, the

message-passing algorithm with full message computation has much

lower signaling load, but still higher when compared with a greedy

approach. To decrease even more the overhead for the adaptation of

messages, this paper addresses a distributed technique to the prob-

lem of precoder selection in a multi-cell network, where a modified

message-passing technique that considers the exchange of reduced-

size messages is proposed. Different degrees of message size reduc-

tion are assessed, which affects the overall network performance but

significantly decreases the signaling load among access nodes.

2. SYSTEM MODEL

Let N be the number of (communication) nodes in a network with

N cells. A node, each one in a cell, represents a base-station (BS)

that has Nt transmit antennas and is associated with a user equip-

ment (UE) that has Nr receive antennas. Each node i has a local dis-

crete parameter pi , whose value is drawn from a finite set P . Each

parameter pi represents a precoding matrix index (PMI) for BS i in-

dicating which precoder BS i should select and use at a certain radio

resource block to transmit signals.

Each node i has a list Ni of neighboring nodes whose choices of

parameter values can affect its local performance. For convenience,

also let Ai ≡ Ni ∪ {i} denote the “inclusive” neighbor list of node

i . Let pAi
denote the vector of those parameters of nodes in Ai ,

with its ordering of parameters determined by the sorted indices in

Ai . Besides, each BS i transmits precoded and spatially multiplexed

vector xi to its associated UE i . The Nt × 1 vector xi is defined as

xi = Wisi , where si is the Ns×1 symbol vector, Ns is the number

of data streams, and Wi ∈ W is the Nt ×Ns precoding matrix in-

dexed by the parameter pi . Symbols are assumed to be uncorrelated

and signals to have unit average magnitute, i.e. E{xH
i xi} = 1 . The

codebook W is the finite set of all precoding matrices available for

every communication node for beamforming purposes.

The sampled incoming signal vector yi at UE i is given by

yi =
√
giiHiixi +

∑

j∈Ni

√
gjiHjixj + vi , (1)

where Hji denotes the Nr × Nt multiple-input-multiple-output

(MIMO) channel matrix between the BS j and UE served by BS

i in downlink, and vi is a Nr × 1 zero-mean circularly symmet-

ric complex Gaussian noise vector. The parameter gji is the path

gain of each signal, here modeled in a simplified way as being

gji =
(

1
dji

)α

, where the constant α refers to the path loss expo-

nent and dji is the distance between BS j and UE i . Each MIMO

channel matrix is obtained from a data set of measured channel ma-

trices [4, 5], whose elements are further transformed into zero-mean

random variables of unit variance, which yields each matrix Hji (see

more details in [1]). In turn, the path gain gji is inserted to the re-

sulting matrix Hji according to (1). This way, such a channel model

provides a suitable scenario for precoder selection, which usually

benefits from the characteristics of spatially-correlated channels.

The second term on the right-hand side of (1) refers to the interfer-
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ence caused by neighboring nodes.

Associated with each node i is a local performance metric or

cost Mi (pAi
), which is a function of those parameters in Ai . It

represents the negative of the data throughput [6, 7] of the cell cor-

responding to BS i measured by

Mi (pAi
) = − log det

(

I+ |gii|R−1
i HiiWiW

H
i H

H
ii

)

, (2)

whereRi denotes the covariance matrix of the noise-plus-interference

at the UE served by BS i. Each node i is assumed to be capable of

communicating with all nodes in Ai .

2.1. Ideal Message Pass to Precoder Selection

Let p ≡
[

p1 p2 · · · pN
]T

be a vector collecting all the pa-

rameters in the network, where pi ∈ P , i = 1, 2, . . . , N . Then,

each node i aims at finding, in a distributed fashion, its own optimal

parameter p∗i , which is the corresponding component of the optimal

global parameter vector p∗ that minimizes the global performance

metric M given by

M (p) ≡
N
∑

i=1

Mi (pAi
) . (3)

The min-sum algorithm [1] is executed on a loopy factor graph to

marginalize out the global performance metric M (p) in an iterative

and efficient fashion. Such a factor graph is comprised by N fac-

tor nodes and N variable nodes. Factor node i is associated with

local performance metric Mi (pAi
) and variable node i is associ-

ated with local parameter pi . Besides, each factor node i connects

to the variable nodes in its neighbor list Ai . That is, varible nodes

pass messages only to neighboring factor nodes. The (aggregated)

message from variable node k to factor node i is defined as

µpk→Mi
(pk) =

∑

j∈Ak\{i}

µMj→pk (pk) . (4)

Similarly, factor nodes pass messages only to neighboring variable

nodes. The (summary) message from factor node i to variable node

k is defined as

µMi→pk(pk) = min
pAi\{k}







Mi (pAi
) +

∑

j∈Ai\{k}

µpj→Mi
(pj)







, (5)

which is normalized to have zero mean to not increase endlessly.

The notation \{k} means the underlying operator is performed over

all associated indexes except to index k .

Then, the algorithm iterates by computing and passing mes-

sages following a simultaneous message-passing scheduling, which

is based on the flooding schedule [8]. Upon receipt of the mes-

sage µMi→pk (pk), each variable node k then compute message

µpk→Mi
(pk) to factor node i for each i ∈ Ak . The parameter for

node i is determined at its variable node i by

p∗i = argmin
pi







∑

j∈Ai

µMj→pi (pi)







. (6)

The algorithm runs until a stopping criterion is reached, either a pre-

determined maximum number of iteration or when the set of param-

eters computed in (6) converges to a fixed state, i.e.,

p
(n+1)
i = p

(n)
i , ∀i = 1, 2, . . . , N , (7)

for sufficiently large n, where n is an iteration index.

3. REDUCED-SIZE MESSAGE PASS

Assume each message can be represented by a table of values with

each entry corresponding to one of the possible values of its associ-

ated single variable. Since each parameter pk has L = |P| possible

values, then each message of variable pk is simply a table with L
entries. To be passed on an edge, each of the L entries may be con-

verted into a sequence of bits. Consider that each entry is represented

by Nb bits. Then, each table of L entries roughly has Lb = NbL
bits. The amount of Lb bits may cause an undesired overhead over

the channel represented by an edge. To overcome this, a reduction

in the size of messages formulated in (4) and (5) is proposed.

The main idea here is to allow only the J smallest values of

each message to be passed on, where 1 ≤ J ≤ L . Table 1 shows

an example of message as a table of values for different values of J ,

and P = {1, 2, 3}. A message with no reduction in size is obtained

by setting J = 3 , as it would convey its 3 possible values. For

J < 3 , the message conveys only its J smallest values and a size

reduction is then obtained.

Table 1. Example of Message as a Table of Values

Message Value

Parameter value J = 3 J = 2 J = 1
1 −2.9 - -

2 −5.3 −5.3 −5.3
3 −3.1 −3.1 -

Basically, an additional step is considered after the computation

of each message to be passed on. Let m
(l)
Mi→pk

be a message vec-

tor that conveys the lth smallest value of each message µMi→pk ,

computed in (5), and its associated parameter value, given by

m
(l)
Mi→pk

=
[

min
pk

(l){µMi→pk} argmin
pk

(l){µMi→pk}
]T

, (8)

where min(l){·} and argmin(l){·} denote the lth smallest quantity

in the bracket and the argument associated with the smallest quantity

in the bracket, respectively. To comprise the J smallest values, mes-

sage vectors are stacked to generate the message matrix M
(J)
Mi→pk

,

which is given by

M
(J)
Mi→pk

=
[

m
(1)
Mi→pk

· · · m
(J)
Mi→pk

]

. (9)

Note that the same formulation in (8) and (9) can be applied to gen-

erate message vectors m
(l)
pk→Mi

and message matrices M
(J)
pk→Mi

,

respectively, for each message µpk→Mi
computed in (4).

To keep the same framework of the min-sum algorithm, incom-

ing message matrices must be mapped back onto full-size messages.

Then, the update rules defined in (4) and (5) can be properly used.

Let mj,l be an auxiliary variable which stands for the (j, l)th entry

of message matrix M
(J)
Mi→pk

. Then, each incoming message from

factor node i to variable node k is redefined as µ̃Mi→pk (pk) , which

is given by

µ̃Mi→pk(pk)

∣

∣

∣

∣

pk=m2,l

=

{

m1,l , for l = 1 , . . . , J ,

0 , otherwise.
(10)

Analogously, let m′
j,l be an auxiliary variable which stands for the
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(j, l)th entry of message matrix M
(J)
pk→Mi

. Then,

µ̃pk→Mi
(pk)

∣

∣

∣

∣

pk=m′
2,l

=

{

m′
1,l , for l = 1 , . . . , J ,

0 , otherwise.
(11)

It is worth mentioning that message values not conveyed by message

matrices M
(J)
Mi→pk

and M
(J)
pk→Mi

are set to zero in both messages

µ̃Mi→pk(pk) and µ̃pk→Mi
(pk) . However, they could be set to any

nonnegative value.

3.1. Reduction in Size

From the formulation above, the size (in bits) of each message matrix

can then be given by

Lreduced = J (Nb + ⌈log2 L⌉) , (12)

where ⌈·⌉ stands for the ceiling function. The second term on the

right-hand side of (12) comes from the fact that any value of variable

pk may be assumed to be an integer index. To measure the reduction

in number of bits, let η be the percentage ratio of Lreduced to Lb,

defined as

η = 1− Lreduced

Lb

. (13)

In fact, effective size reduction is obtained whether J is upper

bounded by

J < L/ (1 +K) ,

where K = ⌈log2 L⌉ /Nb and assuming that Nb and L may be fixed

in the long run. Table 2 shows the behavior of η for Nb = 32 and

different values of L and J . For instance, if L = 4 and J = 1 , the

reduction is about 73%.

Table 2. Message Size Reduction for Nb = 32
Percentage ratio η

L J = 1 J = 2 J = 3 J = 4
3 0.646 0.291 - -

4 0.734 0.468 0.203 -

5 0.781 0.562 0.343 0.125

The motivation for characterizing each message by its J smallest

values comes from the intuition that they convey the most significant

part of the message from one node to the other. Clearly, the decrease

in the amount of information needed to be passed on is considerable.

4. SIMULATION RESULTS

The global performance metric defined in (3) for the precoder selec-

tion problem is investigated in order to evaluate how it behaves sta-

tistically in terms of cumulative distribution functions (CDFs). The

reduced-size message-passing technique, for J ranging from 1 to

3, is compared with the greedy solution [9], which is expected to

provide a sub-optimal result, and with the coordinate descent tech-

nique [10], which is expected to reach a near-optimal solution. For

the coordinate descent technique, a total of ten iterations was con-

sidered as its stopping criterion. The graph-based technique [1] with

full-size message pass is also assessed. Moreover, the 50th CDF

percentile of the system throughput is evaluated to realize how much

gain each distributed technique obtains over the iterations. The con-

vergence speed, inversely proportional to the average number of iter-

ations until convergence per simulation run, of both distributed ap-

proaches is qualitatively assessed in terms of CDF curves for only
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Fig. 1. Performance analysis of graph-based technique for the pre-

coder selection problem in terms of system throughput in 19-node

network.

the cases in which the algorithms converge. Additionally, the con-

vergence rate, defined as the ratio of the number of runs in which the

algorithms converge to the total number of simulation runs, is shown

for both distributed techniques. A total of 850 runs (independent

simulations) were conducted for statistical purposes considering a

simultaneous message-passing scheduler for both algorithms.

A hexagon layout with N = 19 cells and a single communica-

tion node in each cell was adopted. The position of each communica-

tion node is at random following a uniform distribution. The MIMO

setup is such that each transmitter has Nt = 2 available transmit an-

tennas and Ns = 1 data streams to be transmitted, and each receiver

has Nr = 1 receive antennas. Then, the codebook W is defined as

W =

{

1√
2

[

1
1

]

,
1√
2

[

1
−1

]

,
1√
2

[

1
j

]

,
1√
2

[

1
−j

]}

. (14)

Consequently, the parameters to be coordinated are four PMIs for all

the cells. Each MIMO channel matrix was drawn from a set contain-

ing 324,000 samples of measured channel. The channel responses

were kept constant over iterations. The average signal-to-noise ra-

tio (SNR) value was set to 20dB, the pathloss exponent equals 3.76

and the cell radius equals 500 meters (and consequently the intercell

distance equals 500
√
3). In the greedy technique, the parameter ini-

tialization is at random, i.e. nodes pick one of the PMIs randomly

at the beginning of each simulation run. In the graph-based tech-

nique, the initial messages defined in (4) are equal to zero and an

ideal error-free message pass is considered. The maximum number

of iterations allowed in each simulation run is 100.

The graph-based technique outperforms the greedy technique

for any value of parameter J , while for full-size message pass it

obtains the same performance as the coordinate descent approach.

Those results can be realized in the CDF curves shown in Figure 1.

Also, the larger the parameter J , the closer the performance com-

pared to the full-size message case, but the smaller the reduction

in size. For example, the ratio η equals 73.4% for J = 1 , 46.9%

for J = 2 and 20.3% for J = 3 . The maximum achievable sys-

tem throughput is about 8.14 bits per channel use and per cell site,

reached by both the coordinate descent and the graph-based tech-

niques. The graph-based technique for J = 1 reaches about 7.76

and the greedy technique reaches about 7.48 bits per channel use

and per cell site at the most.
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Fig. 2. CDF percentile of system throughput per iteration in 19-node

network. It shows how much gain the graph-based technique obtains

over the greedy.
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Fig. 3. Performance analysis of graph-based technique for the pre-

coder selection problem in terms of convergence speed in 19-node

network.

In general, the graph-based technique obtains most of the gain

in system throughput during the first three iterations. Figure 2 shows

the 50th percentile of CDF of system throughput obtained per itera-

tion. Particularly, at the first iteration the graph-based technique for

J = 1 outperforms the greedy solution with a percentage gain of

4.9%, while for full-size message pass it does with a gain of 13.2%.

Further, at the third iteration it outperforms the greedy approach with

a percentage gain of 7.2% for J = 1 and 14.7% for full-size mes-

sage pass. On the other hand, a loss in system throughput of 6.5%

can be observed by setting J = 1 compared to the full-size message

pass at the third iteration.

In terms of convergence, Figure 3 shows that the graph-based

technique demands more number of iterations to converge than the

greedy solution. On average, its convergence speed is about 4.8 it-

erations. It is worth mentioning that it does not converge only in

a small number of simulation runs. Specifically, it converges with

95% probability for J = 1, and with 97% probability for the full-

size message case. Conversely, the greedy solution converges with

100% probability satisfying the stopping criterion always at the sec-

ond iteration.

5. CONCLUSIONS

The graph-based method for distributed parameter coordination con-

siders the impact of nodes decisions on their neighboring nodes. The

message pass is only among neighbors. Without message-size reduc-

tion, such a technique reaches the (near) optimal solution. To reduce

the message size, a modified version of the graph-based method-

ology was proposed. In this new approach, each income message

conveys only part of the values along with their associated indices.

After reception, each message is padded with zeros in order to be

computed to generate new messages. Numerical results show that

the graph-based technique with message size reduction still provides

good gains in the global cost over the greedy solution. A loss in sys-

tem throughput is observed in comparison with the full-size message

pass case, whereas the resulting message size reduction proposed in

this work is significantly large. It is worth noting that in general the

graph-based approach is totally adaptable to any discrete problem of

parameter coordination and it is scalable to any network size.
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