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RESUMO

A atividade de compreensão do código-fonte é fundamental na manutenção e evolução de

software, impactando em várias tarefas como: a correção de bugs, a reutilização de código e

a implementação de novas funcionalidades. Um Átomo da Confusão (AC) é considerado a

menor porção de código capaz de causar confusão em programadores, dificultando a correta

compreensão de um código-fonte. Estudos anteriores mostraram que esses átomos podem ter

um impacto significativo na presença de bugs em programas em C/C++ e aumentar o tempo e o

esforço para a compreensão do código em sistemas C/C++ e Java. Para obter mais evidências

sobre a difusão de ACs no ecossistema Java, essa pesquisa de mestrado realizou um estudo para

analisar a prevalência, a co-ocorrência (a nível de classe), e a evolução de ACs em 27 bibliotecas

tradicionais em Java. Para apoiar a investigação, foi desenvolvida uma ferramenta de pesquisa

automática de ACs chamada BOHR. Esta ferramenta visa: (i) ajudar na identificação de ACs em

sistemas Java; (ii) fornecer relatórios de prevalência desses ACs; e (iii) fornecer um API para o

desenvolvimento de novos localizadores personalizados para a captura de novos ACs, bem como

melhorar as identificações de átomos já implementadas. A ferramenta BOHR é capaz de detectar

10 dos 14 tipos de ACs apontados por Langhout e Aniche (LANGHOUT; ANICHE, 2021).

Além da ferramenta, foi fornecido um conjunto de dados de projetos Java, anotado manualmente,

utilizado para validar a precisão da ferramenta. Usando a ferramenta BOHR, foram encontradas

11.404 ocorrências nas bibliotecas estudadas. O Conditional Operator e o Logic as Control

Flow foram os átomos mais prevalentes entre os 10 tipos de ACs avaliados. Observou-se que o

Conditional Operator e o Logic as Control Flow foram mais suscetíveis a co-ocorrer em uma

mesma classe. Por fim, a prevalência de ACs não diminuiu ao longo do tempo nos projetos

analisados. Pelo contrário, em 13 bibliotecas, a presença cresceu proporcionalmente mais do que

o tamanho da biblioteca em termos de linhas de código. Além disso, em 15 bibliotecas, a fração

de classes Java contendo pelo menos um átomo também aumenta ao longo do tempo.

Palavras-chave: estudos empíricos; compreensão de código; átomos de confusão; projetos Java

de longa duração.



ABSTRACT

Program comprehension is a fundamental activity in software maintenance and evolution, im-

pacting several tasks such as bug fixing, code reuse and implementation of new features. The

Atom of Confusion (AC) is considered the smallest piece of code that can confuse programmers,

difficulting the correct understanding of the source code under consideration. Previous studies

have shown that these atoms can significantly impact the presence of bugs in C/C++ programs

and increase the time and effort to code understanding in C/C++ and Java programs. To gather

more evidence about the diffusion of ACs in the Java ecosystem, we conduct a study to analyze

the prevalence, co-occurrences (at the class level), and evolution of ACs in 27 long-lived Java

libraries. To support our investigation, we developed an ACs automatic search tool called BOHR.

This tool aims to: (i) aid in the identification of ACs in Java systems; (ii) provide prevalence

reports of these ACs; and (iii) provide an API for the development of new custom finders to

capture new ACs, as well as improve already implemented ACs identifications. BOHR is able to

detect 10 of the 14 types of ACs pointed out by Langhout and Aniche (LANGHOUT; ANICHE,

2021). We also provide a dataset, manually annotated, used to validate BOHR accuracy. Using

BOHR, we found 11,404 occurrences in the studied libraries. The Conditional Operator and

Logic as Control Flow ACs were the most prevalent among the 10 types of ACs assessed. Our

findings show that Conditional Operator and Logic as Control Flow were more likely to co-occur

in the same class. Finally, we observed that the prevalence of ACs did not decrease over time.

On the contrary, in 13 libraries, the presence grew proportionally more than the size of the library

in lines of code. Furthermore, in 15 libraries, the fraction of Java classes containing at least one

AC also increases over time.

Keywords: empirical study; program comprehension; atoms of confusion; long-lived Java

projects.
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1 INTRODUCTION

1.1 Context and Motivation

Code comprehension is the activity in which software engineers seek to understand

a computer program having its source code as the main reference (BENNETT et al., 2002).

Understanding source code is critical in software development, both in creating new features and

in maintaining existing ones. Increasing knowledge about the code helps software engineers to

better perform maintenance activities such as fixing bugs, code refactoring, code reusing, and

even documentation writing (RUGABER, 1995).

In software development, developers frequently deal with code snippets they had not

written themselves. Most of the time, the developers’ cognitive process involves identifying,

understanding, and analyzing code written by other developers. Therefore, it is not rare in

cases where the human understanding of a particular code snippet diverges from the machine

interpretation, leading to an erroneous conclusion about the code snippet outcome in a future

execution (GOPSTEIN et al., 2017).

Previous studies showed that code comprehension is the most dominant activity in

the development process, consuming about 58% of the total time spent (MINELLI et al., 2015;

XIA et al., 2018). When programmers are involved in high comprehension effort, they navigate

and make edits at a significantly slower rate (RAHMAN, 2018). Moreover, code reviewers

often do not understand the change being reviewed or its context (EBERT et al., 2017). In this

circumstance, confusing code impacts code comprehension and, also, the development process.

In addition, developers tend to understand specific code structures more quickly than other ones

(more challenging), e.g., for loops take more time to be understood than sequences of ifs

(AJAMI et al., 2019). Also, some programming practices affect the code readability (SANTOS;

GEROSA, 2018).

Gopstein et al. (2017) identified code patterns responsible for creating confusion in

developers. These patterns were named Atoms of Confusion (ACs), considered the smallest piece

of code that can confuse programmers, hindering the correct understanding of the source code

under consideration. The authors conducted two surveys to assess the impact of these confusing

patterns. First, code snippets written in the C language were analyzed, with and without the

presence of ACs, comparing the correctness of their execution results. The researchers concluded

that codes containing ACs make understanding more complex compared to codes with equivalent
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functions that do not include these atoms, often leading to unexpected results (GOPSTEIN et al.,

2017). This seminal work showed that these patterns could significantly impact correctness, and

the time and effort of program understanding. Despite the importance shown by Gopstein et al.

(2017), ACs studies are still few. For example, the impact caused by ACs in other programming

languages, such as Java, and how this phenomenon is spread to software systems calls for further

investigation.

Different contexts of use of programming languages in software development can

influence the way ACs manifest themselves in code. Aspects such as technical characteristics and

programming styles, often formalized in guidelines, used by the developer communities of each

language have a direct impact on the occurrence of ACs. Atoms defined in a given language may

not apply or may need to be adapted for another language. Similarly, developer communities may

encourage programming practices that insert atoms into the source code. Therefore, expanding

the study of ACs to programming languages other than C and C++ is important for understanding

how this phenomenon occurs and also its consequences in more specific contexts.

Based on the study of Gopstein et al. (2017), Langhout e Aniche (2021) defined

Atoms of Confusion in the context of the Java programming language. This study analyzed and

translated the 19 ACs of confusion defined by Gopstein et al. (2017), resulting in a list of 14

reproducible ACs in Java (LANGHOUT; ANICHE, 2021). Inspired by the studies of Langhout

e Aniche (2021) and Gopstein et al. (2017), we decided to investigate whether the phenomena

found in C and C++ systems also occurred in the Java ecosystem.

1.2 Study Methodology

Our study investigates the prevalence of ACs in open-source long-lived Java libraries.

The goal is to quantify to what extent ACs are prevalent in Java libraries and make this information

available to researchers and practitioners as the first step for further investigation concerning

causality issues and how to address this phenomenon adequately.

To achieve this goal, we developed a tool for searching ACs in Java source code:

BOHR. This tool works on top of Spoon1, which is a Java source code analysis and transforma-

tion library. With BOHR, we investigated the (1) prevalence, (2) co-occurrence, and (3) evolution

of ACs in 27 well-known and widely adopted long-lived Java libraries from open-source ecosys-

tems (21 libraries from Apache Software Foundation plus six other traditional libraries: Gson,
1 https://spoon.gforge.inria.fr/

https://spoon.gforge.inria.fr/
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Figure 1 – Prevalence and Evolution study workflow
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Source: The author.

Hamcrest, Jsoup, JUnit, Mockito, and X-Stream). It is worth pointing out that these libraries are

developed under a rigorous quality assurance process, with high test coverage.

Figure 1 shows our study’s main phases. First, we selected 27 long-lived Java

libraries (see Section 4.1) to serve as subjects in our empirical evaluation. We also investigated

in those projects the co-occurrence of ACs. Finally, we selected 24 projects to investigate the

evolution of the prevalence of ACs over time. We did not consider three projects since they did

not have a sufficient number of versions for analysis.

1.3 Research Questions

The research questions we investigated in the study were:

RQ1. What is the prevalence of Atoms of Confusion in long-lived Java libraries?

The purpose is to provide a first insight into the prevalence of ACs. We checked their

occurrences in the 27 selected libraries. The study measured for each library the amount of ACs

present and the occurrence of distinct ACs’ types.

RQ2. To what extent do different types of Atoms of Confusion co-occur, at the class file level, in

long-lived Java libraries?

Besides measuring the prevalence of ACs, we computed the co-occurrence of ACs

in the same Java file (a class). The goal is to observe tendencies for certain types of ACs to
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occur together in a Java class. ACs co-occurrence may indicate similarities in ACs code snippets

structures and also if classes with ACs co-occurrences are changed by more than one developer,

or, even if the role implemented by a class contributes to the presence of ACs (e.g., Does a class

implementing mathematical operations is more likely to have ACs?). At this first moment, we

chose not to evaluate co-occurrence at the method level or by proximity, since this would add

more complexity to the study.

RQ3. How the prevalence of Atoms of Confusion evolve over time in long-lived Java libraries?

We studied the evolution of the occurrences of the ACs in 24 libraries from the set of

27 selected. The goal is to evaluate how long ACs prevail during the life span of a library. We

observed the prevalence of ACs over time in these libraries. The analysis was made over a total

of 455 versions of all 24 libraries studied.

1.4 Goals and Contributions

There are some studies about Atoms of Confusion including definitions and confusion

in code comprehension (GOPSTEIN et al., 2017; CASTOR, 2018), prevalence of ACs in C/C++

software projects (GOPSTEIN et al., 2018), ACs in context of Java programming language and

its impacts on code comprehension (LANGHOUT; ANICHE, 2021), etc. Nevertheless, there

could not be found researches that focus on prevalence of ACs in Java software projects yet.

This dissertation aims to provide a first insight into the prevalence of ACs in Java

programs. We also intent to provide a tool to automatic ACs detection in Java programs, which

generate CSV reports and also give an API for developing new custom finders to capture new

ACs and any new code patterns. In addition, we provide a double-checked gold standard AC

dataset that was used to validate this tool accuracy. Hence, we expected to achieve the following

contributions:

• a prevalence, co-occurrence and evolution analysis of ACs in long-lived Java

libraries.

• a tool for automatic ACs detection in Java programs.

• an API for developing new custom ACs finders.

• a double-checked gold standard ACs dataset.

During our analysis, we detected the prevalence of 11,404 ACs in 449,885 lines of

code analyzed. Our tool found 9 types of ACs in these long-lived Java libraries. Apache libraries
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like Math and Compress had 9 types of ACs, while Gson library had 7 types. We found the

Logic as Control Flow and the Conditional Operator atoms in all studied libraries. On the other

hand, the Arithmetic as Logic and Repurposed Variables ACs appeared only in 3 of them, and

we did not find the Omitted Curly Braces in any library. Our findings shows that Conditional

Operator and Logic as Control Flow ACs are more likely to co-occur in the same class. In the

evolution analysis we showed the presence of ACs occurred since the first version of analyzed

projects. The absolute number of ACs has increased in all studied projects except for JUnit (This

library has undergone structural changes, its main class module has decreased in terms of LoC,

which explains this condition). Thus, we were able to observe that the number of ACs grows

proportionately (or more highly) than the size of the libraries in lines of code.

1.5 Document Organization

The remainder of this work is organized as follows. Chapter 2 discuss the background

and related work. In Chapter 3, we present BOHR, the tool we built to support our study. Next,

in Chapter 4, we describe the study results and implications. Finally, Chapter 5 presents the final

considerations and proposals for further investigation.
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2 BACKGROUND AND RELATED WORK

This chapter discusses general concepts and definitions related to Code Comprehen-

sion and Atoms of Confusion, providing the theoretical foundation for this study. This chapter is

organized as follows: Section 2.1 presents the works about Code Comprehension; Section 2.2

discusses the concepts of Atoms of Confusion; in Section 2.3, we discuss the concepts of Atoms

of Confusion in the context of Java programming language; and, finally, Section 2.4 concludes

the chapter.

2.1 Code Comprehension

Code comprehension is the process in which developers constantly gain knowledge

about a system by exploring and researching software artifacts, reading source code and system

documentation. This acquired knowledge helps support other software engineering activities,

such as bug fixing, enhancement, reuse, and documentation (XIA et al., 2018). Previous studies

have shown that the activity of code comprehension is essential and time-consuming in the

development and maintenance of systems. Minelli et al. (2015) analyzed over 700 hours of

work by 18 developers, 7 professionals and 11 graduate students, and concluded that about

70% of the programming time is spent understanding the system. Xia et al. (2018) went further

and conducted a large-scale study with 78 professional developers, for a total of 3,145 hours

worked on 7 real industry projects, and concluded that about 58% of the time was spent on code

comprehension activities.

In another work, Ajami et al. (2019) used an experimental platform modeled as

an online game-like environment to measure how quickly and accurately 220 professional

programmers can interpret code snippets with similar functionality, but different structures. The

snippets that took longer to understand or produced more errors were considered more difficult.

This study showed that some code structures are more difficult to understand than others, for

example, for loops are significantly more difficult than ifs, and countdown loops are a bit more

complicated to understand than count up loops. This demonstrates how different ways of writing

code affect the process of understanding the program.

Santos e Gerosa (2018) evaluated the impact of a set of programming practices in

Java on code readability. For each coding practice, a pair of code snippets was defined in a way

that one snippet adhered to the practice and the other violated it. The results showed that of the 11
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coding practices evaluated, 8 affected the perceived readability of the surveyed developers, while

for 3 of these practices there was insufficient evidence to claim that they affect code readability.

In another previous work, Rahman (2018) related the program comprehension effort

to programming activities. This research observed that when programmers are involved in a high

comprehension effort they navigate and make edits at a significantly slower rate. Hence, the

study showed the impact that confusing code can have on programmers’ productivity in software

development.

In the context of code review Ebert et al. (2017) presented a framework to identify

confusion in comments left in code by reviewers. This study showed that reviewers often do not

understand the change being reviewed and its context. Furthermore, the research also showed

that confusion can be reasonably well-identified by reviewers. These results highlight a negative

impact caused by confusing codes, which are susceptible to different interpretations on the code

review process.

Finally, using an electrophysiological approach, Yeh et al. (2017) used an electroen-

cephalogram device to record the brain activity of individuals during the program comprehension

process. The results indicated a higher average in magnitude when solving more confusing codes

when compared to non-confusing codes. It was also found that there was no difference in the

mean magnitudes between resolutions of the same type of code snippet. Therefore, there is

evidence of a relationship between magnitude and cognitive workload, also that understanding

confusing codes requires more brain activity.

2.2 Atoms of Confusion

In (GOPSTEIN et al., 2017) was introduced the concept of Atom of Confusion (AC),

in which an AC can be defined as the smallest piece of code capable of causing confusion

in developers, causing erroneous conclusions about their behavior. The hypothesis is that

the existence of these atoms affects the understanding of the source code and can hinder the

development process, leading programmers to take longer in programming activities and to make

mistakes in maintenance tasks, introducing bugs in the system.

To assist researchers interested in the study of Atoms of Confusion, Castor (2018)

defined an AC as a code pattern that is:

• precisely identified;

• likely to confuse;
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• replaceable by a functionally equivalent code pattern that is less likely to cause

confusion; and

• indivisible.

In addition to providing this structured definition of atoms of confusion, Castor

(2018) identified some sources of confusion that exist in the original atoms catalog and presented

a preliminary atom catalog for Swift.

Gopstein et al. (2017) pointed out 15 ACs that cause significant confusion when

present in source code. In complementary work was performed a study of prevalence of confusing

code of the most popular and influential open source C/C++ software projects. In this work was

observed that the 15 known types of ACs occur millions of times in programs like the Linux

kernel and GCC, appearing on average once every 23 lines. It has also been noted a strong

relationship between lines of code containing ACs and the occurrence of bugs, showing that

bug-fix commits removed more ACs when compared to other commit types. Similarly, they

observed that the lines containing ACs caused more confusion, as these pieces of code tended to

be more commented than others (GOPSTEIN et al., 2018).

In a more recent work, was conducted a qualitative study that noted that quantitative

studies may be underestimating the amount of misunderstanding that occurs during the studies

assessments, since correct answers on assessment tasks do not guarantee that there was no

confusion in the process of understanding source code (GOPSTEIN et al., 2020).

In another recent research was evaluated code interpretations with and without ACs

using an eye tracker. From an aggregate perspective, a 43.02% increase in time required to

understand code correctly and a 36.8% increase in gaze transitions were observed in code snippets

with ACs. The authors also observed that the regions that received the most eye attention were

the regions containing ACs (OLIVEIRA et al., 2020).

2.3 Atoms of Confusion in Java

Based on the study of Gopstein et al. (2017), Langhout e Aniche (2021) defined

Atoms of Confusion in the context of the Java programming language. This study analyzed

and translated the 19 ACs of confusion defined by (GOPSTEIN et al., 2017), resulting in a

list of 14 reproducible ACs in Java. They also evaluated the perceptions and impacts of ACs

on novice developers. The results showed developers are 4.6 to 56 times more likely to make

misunderstandings in 7 of the 14 ACs studied. Furthermore, when the authors confronted the
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study participants with two versions of code, with and without AC, they reported that the version

containing ACs is more confusing and less readable in 10 of the 14 ACs investigated. Thus,

the study shows that these ACs can confuse novice developers (LANGHOUT; ANICHE, 2021).

Table 1 presents the list of the 10 ACs based on that work, their respective Java translations, and

the code with the confusion removed.

The study of Langhout e Aniche (2021) in the context of the Java ecosystem moti-

vated our research to investigate the incidence of ACs using an automated search tool developed

by us.

Table 1 – Atoms of Confusion in Java adapted from (LANGHOUT; ANICHE, 2021)

Atom Name Snippet with AC Snippet without AC

Infix Operator Precedence 2 + 4 * 2; 2 + (4 * 2);

Post-Increment/Decrement a = b++;
a = b;
b += 1;

Pre-Increment/Decrement a = ++b;
b += 1;
a = b;

Conditional Operator b = a == 3 ? 2 : 1;
if(a == 3){b = 2;}
else{b = 1;}

Arithmetic as Logic (a - 3) * (b - 4) != 0 a != 3 && b != 4

Logic as Control Flow a == ++a > 0 || ++b > 0
if(!(a + 1 > 0)) {

b += 1;}
a += 1

Change of Literal Encoding a = 013; a = Integer.parseInt("13", 8);

Omitted Curly Braces if(a) f1(); f2(); if(a){ f1(); } f2();

Type Conversion a = (int) 1.99f; a = (int) Math.floor(1.99f);

Repurposed Variables

int a[] = new int[5];
a[4] = 3;
while (a[4] > 0) {
a[3 - v1[4]] = a[4];
a[4] = v1[4] - 1;}

int a[] = new int[5];
int b = 5;
while (b > 0) {
a[3 - a[4]] = a[4];
b = b - 1;}
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2.4 Conclusion

In this chapter, we presented the concept of Code Comprehension, its goals, and

how this process takes place in software development. The concept of Atoms of Confusion were

clarified and discussed, as well as their impacts on software development, especially on the

activity of code comprehension. The Table 2 presents a summary of the background and related

works showed in this chapter.

Table 2 – Projects used in the Precision and Recall Evaluation

Research Programming
Language Method Main Findings

Gopstein et al. (2017) C/C++ Manual code analysis
Introduction of the concept
of Atom of Confusion and
proposition of its types

Gopstein et al. (2018) C/C++ Prevalence analysis through
automatic code analysis

ACs are prevalent, buggy,
confusing, unique and wan-
ing

Castor (2018) Swift Manual code analysis
Structured definition of AC
and a preliminary catalog of
ACs for Swift.

Gopstein et al. (2020) C/C++

Focus on the ‘how’ and
‘why’ of programmer mis-
understanding through inter-
views

Correct answers about the re-
sults of a code do not guar-
antee that there was no con-
fusion in its comprehension
process

Oliveira et al. (2020) C/C++

Eye-tracking camera to de-
tect the visual attention of
the participants while solv-
ing the tasks

Increase in time required
to understand code correctly
and in number of gaze transi-
tions in code snippets with
ACs. Code regions with
atoms receives most of the
eye attention

Langhout (2020) Java

translation of ACs from
C/C++ to Java and evalua-
tion of the perceptions and
impacts of ACs on novice de-
velopers through surveys

Developers are more likely
to make misunderstandings
in 7 of the 14 ACs stud-
ied and they reported that
versions containing ACs are
more confusing and less read-
able in 10 of the 14 ACs in-
vestigated.

Source: the author.

Although there are some studies on Atoms of Confusion, no research was found that

focused on the prevalence of ACs in Java programs. Our study aims to contribute to this research

area by investigating the prevalence of ACs in Java software projects and providing a tool to

automatic ACs detection in Java programs.
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3 BOHR TOOL

This chapter presents BOHR, a tool for searching ACs in Java source code. Section

3.1 shows an overview of this tool. Section 3.2 presents BOHR’s architecture. Section 3.3

details all the AC types covered and each case of AC occurrence detected by BOHR. Section 3.4

presents the process of dataset creation to BOHR evaluation. Next, Section 3.5 describes BOHR

accuracy evaluation process. Finally, Section 3.6 concludes the chapter.

3.1 The Atoms of Confusion Hunter

To answer our research questions, we developed a tool to search ACs in programs

written in Java automatically. BOHR aims to check for the presence of ACs in Java classes

and provides information about them. The information found can be exported in a report as a

Comma Separated Values (CSV) file. This CSV file shows the code snippets that contain ACs,

their types, class names and the lines in which they were found. The image 2 shows a CSV file

sample of the generated report.

Figure 2 – CSV File Sample

Source: The author.

The use of the CSV file type allows the data to be exploited by various types of

software compatible with this format (spreadsheet-generating software, software APIs, database

systems, business intelligence softwares, etc.). Thus, researchers can manipulate the generated

data in any way they wish. From this report it is possible, for example, to check the prevalence

of ACs and extract data that can substantiate different analyses of the impacts caused by their

presence.

Currently, BOHR is able to detect 10 of the 14 types of ACs presented by Langhout

e Aniche (2021): Infix Operator Precedence (IOP), Post-Increment/Decrement (Post-Inc/Dec),
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Pre-Increment/Decrement (Pre-Inc/Dec), Conditional Operator (CO), Arithmetic as Logic (AaL),

Logic as Control Flow (LaCF), Change of Literal Encoding (CoLE), Omitted Curly Braces

(OCB), Type Conversion (TC) and Repurposed Variables (RV). The detection of Repurposed

Variables is partially covered. This atom consists of “misusing” of an existing variable for

another purpose. In this sense, automatically detecting the use of a variable for another purpose

is not trivial due its “semantic” evaluation. Hence, our tool covers only two of the three cases of

this atom as described in (LANGHOUT, 2020). All rules defined for each AC covered by BOHR

are presented in detail on Section 3.3 and also in the BOHR’s source code repository available in

the following link: https://github.com/wendellmfm/bohr.

Langhout (2020) argues that are some kind of ACs that can be more easily avoided

in the Java context, such as Remove Indentation, Indentation, and Dead, Unreachable, Repeated.

For example, developers can avoid the Remove Indentation and Indentation atoms by using

automatic code formatters present in most code editors. Dead, Unreachable, Repeated atom

is detectable by static code tools (linters) available as a plugin for most IDEs, which inform

the presence of this ACs through warning messages. Also, the Constant Variable atom was not

shown to be statistically significant, both in (GOPSTEIN et al., 2017) and (LANGHOUT, 2020).

Therefore, we decided not to include the detection of these four ACs in this version of our search

tool.

3.2 BOHR Main Components

BOHR was developed using Spoon, an open-source library to analyze, rewrite,

transform and transpile Java source code. Spoon parses source files to build a well-designed

AST ( Abstract Syntax Tree), a tree-based representation of source code, with powerful analysis

and transformation API. It fully supports modern Java versions up to Java 16 (PAWLAK et al.,

2015).

BOHR performs inspection of Java systems from the directory path of the code

repository files. From this informed path, processors responsible for the detection of specific

atoms, called Finders, act in the search for ACs. This tool allows the analyst to select the desired

Finders at each inspection execution. Data about the atoms found is stored and can be exported

in a report as a CSV file.

Since studies on ACs is still recent, new confused code patterns may emerge, so

BOHR also includes an API that allows the researchers to implement their own Finders for the

https://github.com/wendellmfm/bohr
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detection of new code patterns. In this way, our tool can extend its capability and cover new

types of atoms that may arise.

To validate the ACs detection rules, we built a set of automated unit tests, using the

JUnit testing framework (JUNIT, 2021). This set of tests was based on the code examples from

the work of Langhout (2020) and, in addition, through in-depth studies of the occurrences of

each of the ACs types, we refined and added more test cases throughout our study.

Figure 3 presents an overview of the tool workflow.

Figure 3 – BOHR’s Workflow Overview

Java Files

Programmer

Report

Source: The author.

Code snippet 1 shows BOHR usage. The findAoC method of the BohrAPI class

returns a collection of AoCSuite that contains information about ACs occurrences. This method

receives as parameters the source code path, a boolean indicating whether the report will be

generated and the report’s destination path.

Source code 1 – BOHR usage

1 Collection<AoCSuite> suiteList = BohrAPI.findAoC("C:\\Project\\src\\main", true, "REPORT_PATH");

The source code 2 presents the implementation of a Finder responsible for identifying

the Conditional Operator atom. The process method receives a Java Class as a parameter, where

it first checks if this element is valid, then a filter is set to capture conditional expressions using

the "?" operator (ternary expressions). Finally, all the ternary conditional expressions contained

in the analyzed Class are stored in a Dataset object.

Programmers can create their own custom Finders by extending the abstract class

AbstractProcessor from Spoon (PAWLAK et al., 2015) and implementing its process method.

Then, to use the newly implemented Finder, the findAoC method of the BohrAPI class is used.
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This method can receive as parameter a list of Strings, where each item in this list specifies the

qualified name of the class that implements the newly Finder. The source code 3 shows the use

of a custom Finder.

Source code 2 – Conditional Operator Finder

1 public class ConditionalOperatorFinder extends AbstractProcessor<CtClass<?>> {

2

3 public void process(CtClass<?> element) {

4 if (Util.isValid(element)) {

5 String className = element.getQualifiedName();

6

7 TypeFilter<CtConditional<?>> filter = new TypeFilter<CtConditional<?>>(CtConditional.class);

8 for (CtConditional<?> condOpr : element.getElements(filter)) {

9 if ((condOpr.getParent() != null) {

10 if((condOpr.getParent() instanceof CtAssignment)

11 || condOpr.getParent() instanceof CtLocalVariable)) {

12 int lineNumber = condOpr.getParent().getPosition().getLine();

13 String snippet = condOpr.getParent().prettyprint();

14 Dataset.store(className, new AoCInfo(AoC.CoO, lineNumber, snippet));

15 }

16 }

17 }

18 }

19 }

20 }

Source code 3 – Custom Finder usage

1 String[] customFinders = new String[] { "br.ufc.mdcc.CustomFinder" };

2 Collection<AoCSuite> suiteList = BohrAPI.findAoC("C:\\Project\\src\\main", customFinders, false, null);

3.3 Atoms of Confusion and BOHR Detection Rules

This section presents all types of ACs covered, detailing each case of AC occurrence

detected by BOHR. Pseudo codes describing the Finders’ behaviors are also presented, as well

as their examples in Java code.

3.3.1 Infix Operator Precedence

This AC occurs when more than one type of binary operator is used in a code

instruction. The confusion is caused by a misunderstanding of the order of execution of these

operators. The multiplication, division and modulus operators have execution precedence over
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the addition and subtraction operators, as well as the and operator (&&) have execution precedence

over the or operator (||). The transformed variant of this atom includes parentheses around the

operations to clarify the order of these operations, making the code expression more readable

and easier to understand.

BOHR detects this atom when arithmetic and logical expressions do not have paren-

theses around operations with higher precedence.

Algorithm 1: Infix Operator Precedence Finder pseudo code

if operation is binary then

if operation is of type arithmetic then

if type of binary operator is equal to multiplication, division or modulo then

if binary operator has another binary operator as its parent then

if type of binary operator parent is equal to addition or subtraction then
if the binary operation is not enclosed in parentheses and it is not the

case of a concatenation of strings then
store Infix Operator Precedence occurrence

end

end

end

end

end

if operation is of type logical then

if type of binary operator is equal to && or || then

if binary operator has another binary operator as its parent then
if type of binary operator is equal to && and its parent is equal to || or

type of binary operator is equal to || and its parent is equal to && then

if binary operation is not enclosed in parentheses then
store Infix Operator Precedence occurrence

end

end

end

end

end

end
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Source code 4 – Arithmetic expressions

int a = 2 + 2 * 4;

Source code 5 – Logical expression

if(a || b && c) {

System.out.println("true");

} else {

System.out.println("false");

}

3.3.2 Pre-Increment/Decrement

This AC consists on the use of the pre-increment/decrement unary operators (++ and

- -). The pre-increment/decrement unary operator increments/decrements the variable associated

with and returns the result of the expression. The lack of familiarity with this operator generates

doubts about its operation, which can confuse. Moreover, another possible confusion is due to

the pre-increment/decrement operator that can be confused with the post-increment/decrement

operator, which returns the result of the operation only returns the variable’s value.

BOHR detects occurrences of this atom when the pre-increment/decrement operator

appears in:

1. Variable assignments.

2. Binary operations.

3. Parameter in method invocations.

4. An index on reading arrays.

5. Returns of methods.
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Algorithm 2: Pre Increment Decrement pseudo code

if operation is unary then

if unary operation has parent then
if parent of a unary operation is a binary operation, an assignment, a local

variable, a method invocation, an array access or a return statement then

if unary operator is type of pre increment or decrement then
store Pre Increment Decrement occurrence

end

end

end

end

Source code 6 – Variable assignments

int a = 2;

int b = ++a;

System.out.println(a +" "+ b);

Source code 7 – Variable assignments

int a = 2;

int b = --a;

System.out.println(a +" "+ b);

Source code 8 – Binary operations

int a = 1;

int b = 3 + --a;

System.out.println(b);

Source code 9 – Binary operations

int a = 0;

if(++a == 0) {

System.out.println("true");

}

Source code 10 – Parameter in method in-

vocations

System.out.println(method(++a));

Source code 11 – An index on reading ar-

rays

int a = 1;

int[] array = {0, 1, 2, 3, 4};

System.out.println(array[++a]);
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Source code 12 – Returns of methods

private static int method() {

int a = 1;

return ++a;

}

3.3.3 Post-Increment/Decrement

The Post-Increment/Decrement atom is, in a sense, complementary to the Pre-

Increment/Decrement explained earlier. Likewise, this atom is also based on the use of a unary

operator, but in this case, it is the post increment/decrement operator. As explained before,

the difference is that instead of the result of the expression the original value of the variable

is returned. The confusion caused by this atom is also due to a lack of familiarity with how it

works, as well as the fact that the post-increment/decrement operator can be confused with the

pre-increment/decrement operator.

BOHR detects occurrences of this atom when the post increment/decrement operator

appears in:

1. Variable assignments.

2. Binary operations.

3. Parameter in method invocations.

4. An index on reading arrays.

5. Returns of methods.
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Algorithm 3: Post Increment Decrement pseudo code

if operation is unary then

if unary operation has parent then
if parent of a unary operation is a binary operation, an assignment, a local

variable, a method invocation, an array access or a return statement then

if unary operator is type of post increment or decrement then
store Post Increment Decrement occurrence

end

end

end

end

Source code 13 – Variable assignments

int a = 2;

int b = a++;

System.out.println(a +" "+ b);

Source code 14 – Variable assignments

int a = 2;

int b = a--;

System.out.println(a +" "+ b);

Source code 15 – Binary operations

int a = 1;

int b = 3 + a--;

System.out.println(b);

Source code 16 – Binary operations

int a = 0;

if(a++ == 0) {

System.out.println("true");

}

Source code 17 – Parameter in method in-

vocations

System.out.println(method(a++));

Source code 18 – An index on reading ar-

rays

int a = 1;

int[] array = {0, 1, 2, 3, 4};

System.out.println(array[a++]);
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Source code 19 – Returns of methods

private static int method() {

int a = 1;

return a++;

}

3.3.4 Conditional Operator

This atom is based on the use of the ternary operator (?:), which is a shortened form

of the if-then-else code structure. The syntax of the ternary operator can cause confusion in

developers who are not familiar with this structure.

BOHR captures all occurrences of the ternary operator as Condition Operator atom.

Algorithm 4: Conditional Operator pseudo code

if operation is of type conditional then
store Conditional Operator occurrence

end

Source code 20 – Conditional operator on

assignment

int a = 4;

int b = a == 3 ? 2 : 1;

System.out.println(b);

Source code 21 – Conditional operator on

return statement

public int method() {

int a = 1;

return a == 3 ? 2 : 1;

}

3.3.5 Arithmetic as Logic

Consists of using arithmetic operators instead of logical operators. In Java, the result

of the operation must generate a boolean value, for that we must explicitly add a comparison to

the expression. Thus, in order to have equivalence between arithmetic and logical operations, the

BOHR detects arithmetic expressions, involving variables, composed as follows:
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1. Multiplication operations equal to or not equal to zero.

2. Addition or subtraction operations equal to or not equal to zero.

Algorithm 5: Arithmetic as Logic pseudo code

if operation is binary then

if operation has equals or not equals operator then

if left or right hand operand equals to "0" then

if operation has arithmetic as logic expression then
store Arithmetic as Logic occurrence

end

end

end

end

Source code 22 – Multiplication operation

equal to zero

if(a * b == 0) {

System.out.println("true");

} else {

System.out.println("false");

}

Source code 23 – Multiplication operation

not equal to zero

int a = 8;

if((a - 3) * (7 - a) != 0) {

System.out.println("true");

} else {

System.out.println("false");

}

Source code 24 – Addition operations equal

to zero

int a = 5;

if(a + 5 == 0) {

System.out.println("true");

} else {

System.out.println("false");

}

Source code 25 – Subtraction operations not

equal to zero

int a = 5;

if(a - 5 != 0) {

System.out.println("true");

} else {

System.out.println("false");

}
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3.3.6 Logic as Control Flow

This atom is based on the “lazy” behavior of the logical operators && and ||, where

depending on the value of the left-hand side expression, the right-hand side expression may or

may not be executed. In this way, these logical operators can also be used as conditionals.

BOHR considers the code snippet to be Logic as Control Flow when there is, on

the right-hand side of the logic operation, some operation that indicates or may indicate some

change of values of system variables. BOHR considers the following types of these operations:

1. Unary operators.

2. Method invocations.

3. Variable assignments.

Therefore, if any of these types of instructions occur on the right-hand side of a

logical operation of the && and || operators, the BOHR will understand it as an occurrence of

Logic as Control Flow atom.

Algorithm 6: Logic as Control Flow pseudo code

if operation is binary then

if type of binary operator is equal to && or || then
if operation has unary operation, assignment or method invocation in right hand

operand then
store Logic as Control Flow occurrence

end

end

end
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Source code 26 – Unary operator

int a = 1;

int b = 2;

if(a > 0 && ++b > 2) {

a = a - 1;

b = b + 2;

}

System.out.println(a +" "+ b);

Source code 27 – Method invocations

int a = 1;

if(a > 0 && method()) {

a = a * 2;

}

System.out.println(a);

Source code 28 – Variable assignments

int a = 1;

int b = 4;

if(a > 0 && (b = 3) != 4) {

System.out.println(b);

}

3.3.7 Repurposed Variables

Usually, in programming, variables are created for specific purposes. This atom

consists of reusing an existing variable for another purpose in the program. In this way, when

a variable is used in different roles across the life time of a program, its correct understanding

may be compromised. Due to the complexity of detecting this atom because of the difficulty of

automatically inferring the semantics of the variables, our tool detects this atom only in two case

pointed out in (LANGHOUT, 2020), in these cases we define well defined structures of their

occurrences. This atom is detected when:

1. An index check of an object of type Array appears as a stop condition in a loop,

for or while, and also, in this same loop, this same object has a write operation.

2. In a nested for, when the same update variable is used in both loops, the inner

and the outer.



38

Algorithm 7: Repurposed Variables pseudo code

if there is a for or awhile loop then

if there is an array reading in loop expression then

if there is an array writing in loop body then
store Logic as Control Flow occurrence

end

end

end

if there is a for loop that has another for loop as parent then

if there is an array reading in loop expression then
if the same variable is initialized in the outer for as update variable of the inner

for then
store Repurposed Variables occurrence

end

end

end

Source code 29 –An index check of an array

as stop condition and write operation

int v1[] = new int[5];

v1[4] = 3;

while (v1[4] > 0) {

v1[3 - v1[4]] = v1[4];

v1[4] = v1[4] - 1;

}

System.out.println(v1[4]);

Source code 30 – Inner and outer For loops

with the same update variable.

int a = 3;

for(int i = 0; i < 2; i++) {

for(int j = 0; i < 2; i++) {

a = 4 * i + j;

}

}

System.out.println(a);

3.3.8 Change of Literal Encoding

To represent numerical values in programs we tend to use decimal format and,

occasionally, binary, hexadecimal or octal for specific cases. Even if they contain the same

number, these different representations can create confusion in understanding the values. In this
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sense, this atom is based on the use of different formats to represent numeric values that can

cause confusion in the understanding of the program.

BOHR detects cases of this atom when:

1. A literal numeric value beginning with zero is located, indicating that it is an

octal representation.

2. A binary bitwise operation, bitand, bitor or bitxor (&, | or ^), where at least

one of the operands is a literal and is in decimal format.

Algorithm 8: Change of Literal Encoding pseudo code

if there is a literal in variable assignment then

if the literal is in octal base then
store Change of Literal Encoding occurrence

end

end

if operation is binary then

if type of binary operator is equal to bitand, bitor or bitxor (&,| or ^) then

if there is at least one operand in decimal base then
store Change of Literal Encoding occurrence

end

end

end

Source code 31 – Literal numeric value be-

ginning with zero

int a = 013;

System.out.println(a);

Source code 32 – Binary bitwise operation

with literal in decimal format.

int a = 11 & 32;

System.out.println(a);

3.3.9 Omitted Curly Braces

Consists of the confusion that can be caused due to a lack of clarity in the separation

of code blocks. In Java, the code structures if-then-else, for and while have a flexibility

in their declarations when they only have one code statement, in this case the use of braces
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for encapsulating this statement is optional. In this sense, not using braces in these cases can

imply unclear separation between blocks of code and cause confusion in the understanding of

the program.

BOHR detects Omitted Curly Braces when the if-then-else, for and while

structures satisfy all the following conditions:

1. Have a single code statement;

2. Do not have curly braces encapsulating this statement; and

3. The next statement of the program must appear on the same line as the instruction

belonging to that structure (if-then-else, for or while).
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Algorithm 9: Omitted Curly Braces pseudo code

if code block then

if code block belongs to an if then
call IfOmittedCurlyBracesDetection

end

if code block belongs to an else then

if there is just one else statement then

if does not have curly braces encapsulating then

if next statement is on the same line then

if does not have else block then
store Omitted Curly Braces occurrence

end

else
call IfOmittedCurlyBracesDetection

end

end

end

end

end

end

Function IfOmittedCurlyBracesDetection():

if there is just one if statement then

if does not have curly braces encapsulating then

if next statement is on the same line then
store Omitted Curly Braces occurrence

end

end

end
End Function
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Source code 33 – Next statement on the

same line as a single If statement

int a = 2;

if(a <= 4) a++; a++;

System.out.println(a);

Source code 34 – Next statement on the

same line as a single If statement

int a = 2;

if(a <= 4)

a++; a++;

System.out.println(a);

Source code 35 – Next statement on the

same line as a single For statement

int a = 2;

for(int i = 0; i <= 4; i++) a++;

a++;

System.out.println(a);

Source code 36 – Next statement on the

same line as a single For statement

int a = 2;

for(int i = 0; i <= 4; i++)

a++; a++;

System.out.println(a);

Source code 37 – Next statement on the

same line as a single While statement

int a = 2;

while(a < 4) a++; a++;

System.out.println(a);

Source code 38 – Next statement on the

same line as a single While statement

int a = 2;

while(a < 4)

a++; a++;

System.out.println(a);

3.3.10 Type Conversion

This atom occurs when there is a conversion from a larger data type to a smaller

type, this type of conversion is known as Narrowing Conversion, for example, the conversion of

a data type from float to int. In these cases there can be losses of precision, causing results

that may be unexpected by the programmer. In Java we have several situations where there can

be losses of precision in data conversions between primitive types.

BOHR detects all possible cases of Type Conversion between primitive types in Java.

Here is the list of possible situations:
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1. short to byte or char.

2. char to byte or short.

3. int to byte, short or char.

4. long to byte, short, char or int.

5. float to byte, short, char, int or long.

6. double to byte, short, char, int, long or float.

Conversions involving the primitive type char add another layer of complexity, since

it is the only type that is unsigned, and converting characters to numbers is not intuitive.

Using APIs in explicit Narrowing conversions, such as java.lang.Math and java.

lang.Character, for example, tends to make the code more readable. Also in this type of

conversion, the use of the % (modulo) operator can indicate a treatment on the data to be converted.

This is achieved by modulo operation of the data of larger type, data to be converted, with the

number of possible values that the data of smaller type can represent, 256 numbers in the case of

byte, for example.

To be considered a Type Conversion the data conversion must be explicit and:

1. not present method invocation in this process. A method invocation may indicate

a possible use of APIs or some treatment for handling the conversion;

2. not present a modulo operation of the data to be converted; and

3. if the data to be converted is a literal and its value is outside the possible range of

representations of the converted type.
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Algorithm 10: Type Conversion pseudo code

if there is cast expression then

if there is narrowing conversion then

if does not have method invocation and modulo operation on converted data then
store Type Conversion occurrence

end

end

if expression is literal then
if there is narrowing conversion and the literal value is out of representation

range then
store Type Conversion occurrence

end

end

end

Source code 39 – Short to byte

short a = 288;

byte b = (byte) a;

System.out.println(b);

Source code 40 – Char to short

char a = '4';

short b = (short) a;

System.out.println(b);

Source code 41 – Int to char

int a = 4;

char b = (char) a;

System.out.println(b);

Source code 42 – Long to int

long a = 2147483648L;

int b = (int) a;

System.out.println(b);

Source code 43 – Float to long

float a = 1.99f;

long b = (long) a;

System.out.println(b);

Source code 44 – Double to long

double a = 1.99;

long b = (long) a;

System.out.println(b);
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Source code 45 – Int to char

public char method(int v) {

System.out.println(v);

return (char) v;

}

Source code 46 – Float to int

public int method(float v) {

System.out.println(v);

return (int) v;

}

3.4 BOHR’s Precision and Recall Dataset

To minimize bias in the automatic identification of ACs, we also manually built a

double-checked gold standard dataset to assess the precision and recall of our tool. Figure 4

shows the workflow of this evaluation. The dataset creation was divided in two steps: projects

selection and manual inspection.

Figure 4 – Precision and Recall study workflow

Projects Selection Repositories
Download

Double Manual
Atoms of Confusion

Verification

Tool Precision and
Recall Validation

Tool Tuning

Criteria Dataset
Precision and Recall

Results

Source: The author.

To create the dataset, we selected four open-source Java projects that met the fol-

lowing criteria: (i) projects having more than 50% Java source code; (ii) having up to twenty

thousand Lines of Code (LoC), excluding tests; (iii) possessing at least one thousand stars on

GitHub, (iv) having commits and releases in 2021; and (v) containing at least five different types

of ACs. We applied criterion (ii) to make it more feasible to check the occurrences of ACs

manually and compare them with those ACs detected by BOHR. In this sense, observing the

classification of Pinto et al. (2015) (PINTO et al., 2015), we choose small projects (i.e., LoC ≤

20,000). To check criterion (v), we ran BOHR on several candidate projects that met the previous
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four criteria and and checked whether the desired condition was fulfilled.

Four projects satisfied the inclusion criteria: FastUtil1, Moshi2, Jimfs3, and uCrop4.

As none of these projects contained the Repurposed Variables and Arithmetic as Logic atoms,

we created a sample project, by extracting Java files containing these two ACs types from the

Guava (version 31.0.1)5 and Redisson (version 3.6.16)6 projects. Table 3 presents the selected

projects and their respective versions used in the evaluation.

Table 3 – Projects used in the Precision and Recall Evalua-
tion

FastUtil Moshi Jimfs uCrop Sample

Version 8.5.6 1.12.0 1.2 2.2.7 -
LoC 1,622 5,783 7,823 4,309 850
Classes 42 30 59 32 5
Classes with AC 13 15 30 17 5
AC 86 151 118 111 23
AC Types 7 6 7 5 6

Source: the author.

We manually checked all Java files in these projects’ main source code package,

excluding the test files, to search for ACs. Two master students performed this verification

independently. In this process, perspective alignment meetings were held at the end of the

verification of each project to ensure both students had the same understanding concerning the

occurrences of ACs. The final result was a dataset of ACs occurrences, containing the code

snippet of each AC, its types, the class name in which it was found, and the line number in which

it was located. Table 4 shows the numbers of ACs by type per project we found.

3.5 Precision and Recall Evaluation

We ran BOHR on the selected projects and compared its results with manually

annotated information in the dataset to verify its precision and recall. In the first iterations, we

did not identify precision problems. All the ACs detected by BOHR were also tagged manually.

Therefore, there was no identification error. However, some issues with the tool recall appeared.

For example, BOHR did not was able to identify all occurrences of the Type of Conversion and
1 https://github.com/vigna/fastutil
2 https://github.com/square/moshi
3 https://github.com/google/jimfs
4 https://github.com/Yalantis/uCrop
5 https://github.com/google/guava
6 https://github.com/redisson/redisson

https://github.com/vigna/fastutil
https://github.com/square/moshi
https://github.com/google/jimfs
https://github.com/Yalantis/uCrop
https://github.com/google/guava
https://github.com/redisson/redisson
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Table 4 – ACs occurrences in Precision and Recall Evaluation
dataset
AC Type FastUtil Moshi Jimfs uCrop Sample

Infix Operator Precedence 8 5 5 31 1
Pre-Increment/Decrement 3 - 8 - -
Post-Increment/Decrement 20 10 4 8 -
Conditional Operator 18 74 31 31 1
Omitted Curly Braces 1 - - - -
Logic as Control Flow 12 65 58 28 7
Arithmetic as Logic - - - - 4
Change of Literal Encoding - 2 9 - 2
Type Conversion 24 4 3 13 3
Repurposed Variables - - - - 2

Source: the author.

Infix Operator Precedence atoms.

In the case of Type of Conversion, the recall issue occurred due to unsupported types

of conversions (i.e., literals, unary operations, and binary operations). In the Infix Operator

Precedence case, we needed to improve the detection of the operation’s parenthesis hierarchy, as

well as deal with the ambiguous interpretation of ‘+‘ character, which could indicate an addition

operation or a string concatenation operation. Therefore, we fixed it and added new rules in

our tool to guarantee 100% of precision and correctly identify all the ACs previously found and

registered in the dataset. All detection rules are described in the subsection 3.3.

3.6 Conclusion

In this chapter, we presented the tool proposed in this work, BOHR - The Atoms

of Confusion Hunter, which aims to obtain the prevalence information of ACs in Java systems.

We described the structures of the BOHR, their functioning and their features. The list of ACs

covered by our tool was detailed, as well as the cases in which BOHR detects ACs occurrences.

The precision and recall evaluations of BOHR were also detailed. In addition, we

presented the double-check gold standard dataset used in this evaluation process.
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4 PREVALENCE STUDY

Once the effectiveness of BOHR was confirmed, we started the study on the preva-

lence of ACs in long-lived Java libraries. This chapter describes the prevalence study of our

research using the tool detailed in the previous chapter. Section 4.1 describes the selection of

long-lived Java libraries analyzed. Section 4.2 details materials, procedures and methods of

this study. Section 4.3 shows prevalence results. Section 4.4 presents co-occurrences findings.

Section 4.5 shows evolution analysis results. Section 4.6 discusses the study results and their

implications. Finally, Section 4.7 concludes the chapter.

4.1 Selection of Long-lived Java Libraries

We performed our analysis using the same set of long-lived Java libraries used in

the study of Lima et al. (2021). This set comprises 27 libraries, 21 libraries from the Apache

Commons1 ecosystem and six well-known libraries from other ecosystems. In addition, these

projects present an automatically executable test suite and Maven (or Gradle) as their build

system, which helps us correctly handle them with Spoon (PAWLAK et al., 2015).

These 27 libraries are used on thousands of systems and are long-lived Java projects

over ten years old. Despite this, most have had recent releases within the last two years. These

libraries are, therefore, projects that are constantly updated. Consequently, we believe that

investigating the presence of ACs in these projects provides a good indication of how this

phenomenon occurs and evolves in Java projects. Table 5 summarizes the selected libraries for

this study.

4.2 Materials, Procedures and Methods

To conduct this study we developed BOHR, the tool described in the previous chapter,

to automatically search for ACs in Java programs. Thus, we were able to check for the presence

of ACs in Java files and provide information about them. The BOHR’s source code repository

available in the following link: https://github.com/wendellmfm/bohr.

To validate our tool we manually built a double-checked gold standard dataset to

assess its precision and recall. This validation process was detailed in Section 3.4 and Section

3.5. The dataset generated in this experiment is available in: https://zenodo.org/record/7065842#
1 https://commons.apache.org/

https://github.com/wendellmfm/bohr
https://zenodo.org/record/7065842#.YxvJh2zMJD8
https://zenodo.org/record/7065842#.YxvJh2zMJD8
https://commons.apache.org/
https://zenodo.org/record/7065842#.YxvJh2zMJD8
https://zenodo.org/record/7065842#.YxvJh2zMJD8
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.YxvJh2zMJD8

Finally, to conduct the prevalence study of ACs, we downloaded a total of 455

releases of long-lived Java libraries for this study. These downloads were performed manually

from official repositories. After that, we built a script to extract the main directory of code from

the projects, excluding auxiliary and test modules. Then, we built another script that used BOHR

to analyze the releases. As a result, we obtained ACs prevalence reports that supported our

study. Reports in CSV and XLSX files are available in: https://zenodo.org/record/7065882#

.YxvQzmzMJD8. All release versions analyzed in this study are available in Appendix A.

4.3 RQ1. What is the prevalence of Atoms of Confusion in long-lived Java libraries?

To provide a first insight into the prevalence of ACs, we computed the number of

ACs present in each library and the amount of ACs per type. Table 5 shows the results for all

selected libraries, number of classes containing ACs, number of ACs found, and number of types

present in each library. 11,643 ACs were found, with an average ≈ 2.1 ACs per class and a rate

≈ 1.00 AC per 40 lines of code.

Figure 5 brings two interesting information: (1) the distribution of AC types over all

occurrences of ACs (left) and (2) the prevalence of AC types across libraries (right). On one hand,

regarding (1), the Logic as Control Flow, Infix Operator Precedence, and Conditional Operator

represent together more than 86% of all occurrences. In contrast, Pre-Increment/Decrement,

Change of Literal Encoding, Repurposed Variables, and Arithmetic as Logic combined rep-

resent less than 2,50% of all ACs occurrences. On the other hand, concerning (2), we found

that Conditional Operator and Logic as Control Flow had 100% of prevalence. The Pre-

Increment/Decrement and Infix Operator Precedence reached 81,48% and 70,37% of prevalence,

respectively. Type Conversion and Post-Increment/Decrement achieved average prevalence rate,

with 66,67% and 59,26%, respectively. The Arithmetic as Logic and Repurposed Variables

reached both 11,11% of prevalence, the lowest rate.

Figure 6 shows the absolute number of occurrences of each AC type per library.

This figure cross the information we first presented separately in Figure 5. There it is possible

to visualize how the ACs types are diffused across libraries and the number of each AC type

occurrence in every studied library. Thus, it is not difficult to see that Logic as Control Flow,

Conditional Operator and Infix Operator Precedence shows high prevalence in both cases,

presence across libraries and overall number of occurrence, while Arithmetic as Logic and

https://zenodo.org/record/7065842#.YxvJh2zMJD8
https://zenodo.org/record/7065842#.YxvJh2zMJD8
https://zenodo.org/record/7065842#.YxvJh2zMJD8
https://zenodo.org/record/7065842#.YxvJh2zMJD8
https://zenodo.org/record/7065882#.YxvQzmzMJD8
https://zenodo.org/record/7065882#.YxvQzmzMJD8
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Table 5 – Projects Information and Prevalence Results

Library Version LoC Classes Classes w/ACs ACs Types
BCEL 6.5.0 31,686 391 76 322 7
BeanUtils 1.9.4 11,644 111 36 174 5
CLI 1.5.0 2,151 23 12 84 3
Codec 1.15 9,313 72 37 436 7
Collections 4.4 28,955 326 96 565 6
Compress 1.2.1 44,730 359 174 1,155 9
Configuration 2.7 28,011 260 92 342 6
DBCP 2.9.0 14,454 66 31 127 2
DbUtils 1.7 3,074 46 19 29 2
Digester 3.2 9,917 168 39 94 5
Email 1.5 2,815 23 12 50 5
Exec 1.3 1,757 32 11 38 4
FileUpload 1.4 2,425 39 7 26 5
Functor 1.0 5,861 158 111 495 3
IO 2.11.0 14,024 180 77 358 7
Lang 3.12.0 29,745 215 80 880 8
Math 3.6.1 100,364 990 390 4,174 9
Net 3.8.0 20,199 212 86 389 6
Pool 2.11.1 5,905 49 16 80 5
Proxy 1.0 2,072 43 10 15 4
Validator 1.7 7,619 64 41 167 5
Gson 2.8.9 8,342 77 33 263 7
Hamcrest 2.2 3,505 80 9 17 3
Jsoup 1.14.3 13,714 73 39 323 6
JUnit 5.8.2 30,977 645 133 284 4
Mockito 4.3.0 20,298 467 87 249 5
X-Stream 1.4.19 21,859 361 164 507 6

Source: the author.

Repurposed Variables achieved the lowest rate in both.

Figure 7 presents the proportion of classes with and without ACs for each library.

We observed that 23 of the 27 libraries had ACs in more than 20% of their classes. Functor has

the highest number of classes containing ACs (111 out 158), over 50% of the classes in Functor

library had at least one AC. On the other hand, Hamcrest had the lowest number of classes with

ACs (9 out 80), only 11.2% of the total classes.

We found a strong correlation2 between the number of LoC and the number of ACs

(r = 0.9244) and a high degree of correlation between the number of classes and the number of

ACs (r = 0.7793). For instance, the Math library has the largest number of classes containing
2 We computed only Pearson’s correlation in this study.
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Figure 5 – Summary of ACs’ prevalence. Left: Distribution of AC types over all the occurrences
of ACs. Right: Prevalence of AC types across the studied libraries.
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Figure 6 – The absolute number of occurrences of ACs per library.
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ACs (390 of 990 classes). Also, it has the largest absolute number of occurrences of ACs (4.174),

as well as the largest number of LoC (100.364). It also contains the largest number of ACs types

found (9), tied with the Compress library, the second-largest library in terms of LoC (44.730).

The Proxy library possesses the fewest number of ACs occurrences (15), and is the second

smallest library in terms of LoC (2.072). Finally, the DBCP and DbUtils libraries have the fewest

number of distinct ACs types (2).

Table 6 shows each AC type’s occurrences found in the libraries. The most common

type was the Logic as Control Flow with 3.800 occurrences. This atom was also quite frequent in

the C and C++ projects analyzed by Gopstein et al. (2018). The wide usage of Logic as Control

Flow may be due to the short form of expressing a conditional structure, rather than using the
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Figure 7 – Proportion of classes with and without ACs per library.
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if-else statement (LANGHOUT, 2020).

Infix Operator Precedence was the second most common atom, with 3.148 occur-

rences. The Math library was the main responsible for this result. Miscellaneous math-related

methods in this library contributed to a multiplicity of occurrences for this AC. There were 2,753

occurrences in the Math project alone, while the second library with the most occurrences of this

atom, the Lang library, had only 138 occurrences. This AC was also the second most common

in the C and C++ projects studied in (GOPSTEIN et al., 2018). Infix Operator Precedence is

encouraged to some extent by the software engineering community. It is common for IDEs and

code formatters to offer a feature for removing “unnecessary” parentheses. Unfortunately, this

ends up automatically adding ACs in the source code (GOPSTEIN et al., 2018).

The Conditional Operator was the third most frequent atom, with 2.874 occurrences,

as also observed in (GOPSTEIN et al., 2018). In that study, it was also one of the most

common atom. The Conditional Operator is also encouraged by the software engineering

community. Kernighan e Pike (1999) state that the use of the ternary operator (<condition>

? <expression> : <expression>) is good for short expressions. In a similar prevalence
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Table 6 – Prevalence Results by AC Type

Library IOP Pre-
Inc/Dec

Post-
Inc/Dec CO LaCF AaL CoLE TC RV

BCEL 9 3 14 117 145 - 1 33 -
BeanUtils 5 - 3 77 87 - - 2 -
CLI - - 1 23 60 - - - -
Codec 13 7 123 53 157 - 6 77 -
Collections 42 9 22 220 270 - - 2 -
Compress 88 56 139 279 360 1 20 197 15
Configuration 2 1 5 152 181 - - 1 -
DBCP - - - 46 81 - - - -
DbUtils - - - 11 18 - - - -
Digester 5 5 5 13 66 - - - -
Email - - 1 14 32 1 - 2 -
Exec 2 - - 7 28 - - 1 -
FileUpload - 1 6 1 17 - - 1 -
Functor 18 - - 163 314 - - - -
IO 11 5 8 146 133 - 2 53 -
Lang 138 16 52 242 369 - 13 49 1
Math 2,753 34 129 616 484 5 32 119 2
Net 7 29 69 64 147 - - 73 -
Pool 7 - 2 20 47 - - 4 -
Proxy 1 - 1 7 6 - - - -
Validator - 1 - 37 122 - 2 5 -
Gson 5 3 12 142 91 - 2 8 -
Hamcrest - - 1 3 13 - - - -
Jsoup 19 4 6 111 170 - - 13 -
JUnit 3 - 1 100 180 - - - -
Mockito 7 3 16 56 167 - - - -
X-Stream 16 9 16 231 218 - - 17 -

Source: the author.

study, the authors omitted the Conditional Operator atom in their experiment because of its high

number of occurrences in practice (MEDEIROS et al., 2019).

We did not find the Omitted Curly Braces in any studied library, in contrast to what

was observed in (GOPSTEIN et al., 2018). In that study, the Omitted Curly Braces was the most

common atom in C and C++ projects. However, omitting curly braces is not always considered a

bad practice in general. One of the projects analyzed by Gopstein et al. (GOPSTEIN et al., 2018)

was the Linux operating system and the Linux Kernel coding style recommends that regarding

placing braces: “Do not unnecessarily use braces where a single statement will do” (KERNEL,

2022). In Java, on the other hand, conventionally, the use of curly braces is encouraged in

the code standards defined by Apache and Google. The Apache Commons Coding Standards
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states that: “Brackets should begin and end on a new line and should exist even for one-line

statements” (APACHE, 2022). The Google Java Style Guide states: “Braces are used with if,

else, for, do and while statements, even when the body is empty or contains only a single

statement” (GOOGLE, 2022). Thus, the different development contexts of the Java and C/C++

languages may explain the big difference in the results of Omitted Curly Braces prevalence.

The Repurposed Variables had a significant frequency in (GOPSTEIN et al., 2018) in

contrast to what we observed in our study, in which this atom was rare, with just 18 occurrences.

The Arithmetic as Logic was also rare in our study with only 7 occurrences, but this AC was not

included in the study of Gopstein et al. (2018).

4.4 RQ2. To what extent do different types of Atoms of Confusion co-occur, at the class

level, in long-lived Java libraries?

We measured the co-occurrence of ACs in the same class. Our goal was to observe

tendencies for certain atoms to occur together in the same Java file. Figure 8 presents a co-

occurrence matrix of ACs at the class level for all libraries. We learned that the Conditional

Operator, Logic as Control Flow and Infix Operator Precedence are more likely to co-occur in

the same class. These results confirm a trend pointed out by the RQ1 results, as these three ACs

that co-occur more frequently at the class level are also the three most common atoms in the

libraries studied.

Once again, we can see the influence of the Math library on these results, boosting

the Infix Operator Precedence numbers in this analysis. De facto, we found a strong correlation

between the number of LoC and the number of AC co-occurrences (r = 0.9130) and a high degree

of correlation between the number of classes and the number of ACs (r = 0.7538). However, we

found a low degree of correlation between the number of contributors in the repository and the

number of AC co-occurrences (r = 0.0623).

The Arithmetic as Logic had the lowest numbers of co-occurrences. We expected

this behavior since, as also shown by the RQ1 results, this AC was the least common in the

libraries. The Arithmetic as Logic co-occurred only with the Conditional Operator and Infix

Operator Precedence.

We found 7 different AC types in a single class in the Compress and Math libraries.

Moreover, Lang, Net, and Jsoup libraries had 6 AC types. Not so differently, we observed classes

with 5 AC types in the Codec, Collections, and Gson projects.
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Figure 8 – Atoms of confusion co-occurrence
matrix for all libraries.
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Figure 9 shows code snippets extracted from the studied libraries in which our tool

detected a co-occurrence of ACs. The code snippet 1 was extracted from the Mockito library and

presented two Logic as Control Flow atoms. The code snippet 2, from the Collections library,

shows two Conditional Operator atoms. The code snippet 3 has three Infix Operator Precedence

atoms in the Compress library. The code snippet 4, which our tool found in the Functor project,

contains one Logic as Control Flow and one Conditional Operator. Finally, in the code snippet

5, extracted from Math, we have one Infix Operator Precedence and one Conditional Operator.

4.5 RQ3. How the prevalence of Atoms of Confusion evolve over time in long-lived Java

libraries?

Finally, we studied the prevalence evolution of the ACs in 24 libraries. As mentioned

before, we did not evaluate three libraries (i.e., Functor, Proxy, and Hamcrest) in this phase. This

is because we didn’t find enough versions of these three libraries to assess the ACs’ evolution

over time. Table 7 shows data from the first and last versions of this 24 libraries. The analysis

covered a total of 455 releases. While Gson and Jsoup libraries had the highest number of
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Figure 9 – Atoms of confusion co-occurrence code snippets.

Source: the author.

versions analyzed (39 and 38), Exec and CLI libraries had the lowest version numbers (5 and 7).

Our tool detected the presence of ACs since the first releases of the 24 libraries. We

observed that as libraries have grown in size (LoC), the presence of ACs also has increased. Only

the JUnit library decreased the number of ACs, which can be explained by the 41.55% reduction

in its size (LoC).

The Math and Compress libraries had the highest insertion of ACs between the first

and last versions analyzed. Math, for example, currently has 4.009 more ACs than the first

release analyzed. On the other hand, the Exec, DBUtils, and FileUpload libraries had the smallest

absolute increase. DBUtils, for instance, has 13 more ACs, although developers had added more

than two thousand LoC.

In 12 libraries, the number of ACs grew proportionately more than the growth of

their LoC. For example, the Gson library had a 1,778.57% increase in the presence of ACs and

its LoC number only increased by 222.96%. However, in 10 libraries, this growth was relatively

lower. For example, DBUtils library increased its number of classes by 170.59%, but the number



57

of ACs only augmented by 81.25%.

Table 7 – Evolution of ACs and LoC in the 24 projects
First Release Last Release Variation

Library Version Classes LoC ACs Version Classes LoC ACs Classes LoC ACs
BCEL 5.2 335 23.631 276 6.5.0 391 31.686 322 16.72% 34.09% 16.67%▲
BeanUtils 1.5 62 5.196 34 1.9.4 111 11.644 174 79.03% 124.10% 411.76%▲
CLI 1.0 18 1.498 29 1.5.0 23 2.151 84 27.78% 43.59% 189.66%▲
Codec 1.1 14 937 107 1.15 72 9.313 436 414.29% 893.92% 307.48%▲
Collections 1.0 26 4.326 90 4.4 326 28.955 565 1153.85% 569.33% 527.78%▲
Compress 1.0 61 7.437 229 1.2.1 359 44.730 1.155 488.52% 501.45% 404.37%▲
Configuration 1.0 29 5.229 57 2.7 260 28.011 342 796.55% 435.69% 500%▲
DBCP 1.0 32 4.349 68 2.9.0 66 14.454 127 106.25% 232,35% 86,76%▲
DbUtils 1.0 17 1.002 16 1.7 46 3.074 29 170.59% 206,79% 81,25%▲
Digester 1.5 37 3.631 37 3.2 168 9.917 94 354.05% 173.12% 154.05%▲
Email 1.0 9 1.338 17 1.5 23 2.815 50 155.56% 110.39% 194.12%▲
Exec 1.0 29 1.675 33 1.3 32 1.757 38 10.34% 4.90% 15.15%▲
FileUpload 1.0 11 1.230 12 1.4 39 2.425 26 254.55% 97.15% 116.67%▲
IO 1.0 34 2.041 48 2.11.0 180 14.024 358 429.41% 587.11% 645.83%▲
Lang 1.0 26 4.319 100 3.12.0 215 29.745 880 726.92% 588.70% 780.00%▲
Math 1.0 106 7.162 165 3.6.1 990 100.364 4.174 833.96% 1301.34% 2429.70%▲
Net 1.0.0 103 8.714 132 3.8.0 212 20.199 389 105.83% 131.80% 194.70%▲
Pool 1.0 19 1.713 16 2.11.1 49 5.905 80 157.89% 244,72% 400%▲
Validator 1.0 17 1.874 87 1.7 64 7.619 167 276.47% 306.56% 91,95%▲
Gson 1.0 54 2.583 14 2.8.9 77 8.342 263 42.59% 222.96% 1,778.57%▲
Jsoup 0.1.1 25 2.079 78 1.14.3 73 13.714 323 192.00% 559.64% 314.10%▲
JUnit 4.12 195 9.317 104 5.8.2 95 5.446 45 −51.28% −41,55% −56,73%▼
Mockito 2.25.0 453 15.920 208 4.3.0 467 20.298 249 3.09% 27.50% 19.71%▲
X-Stream 0.2 50 1.235 12 1.4.19 361 21.859 502 622.00% 1669.96% 4083.33%▲

Source: the author.

Table 8 shows the evolution of the ratio number of ACs to the number of LoC over

time and, also, the spread of ACs in library classes over time. The libraries indicated different

behaviors for the two variables observed. In 11 libraries, the ratio of ACs to LoC decreased.

In the case of the Codec and Validator libraries, this reduction was more significant than 50%.

The curves of these projects indicate a decrease, almost constant, of this ratio over time. On the

contrary, 13 libraries had a growth in this ratio. 4 of them, BeanUtils, CLI, Gson, and X-Stream,

showed an increase of ACs to LoC greater than 100%.

We observed a particular behavior in 8 libraries regarding the percentage of classes

with ACs. The variation of the ratio of classes with ACs between the first and last versions

was inferior to 7%. Although the phenomenon seems stable comparing just the first and later

versions, there was variation over time in these 8 libraries. For example, the CLI, Compress,

Exec, and Jsoup projects had both increases and decreases in this variable over time.

In 15 libraries the percentage of Java classes with AC increased in the observed

period. 4 libraries had more than 100% increases: BeanUtils, IO, Gson, and X-Stream. Moreover,

in the last two libraries the percentage grew practically with each new version. On the other

hand, in 5 libraries, we saw a reduction of more than 10%. The most notable case was of the

Collection library, in which in the first analyzed version, there were 53% of classes with ACs
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and, in the last version, 29,54%.

Table 8 – Evolution of ACs/LoC and Classes with ACs in the 24 projects

Library

First Release Last Release Variation

ACs/
LoCs

Classes
with
AC

ACs/
LoCs

Classes
with
AC

ACs/
LoCs

Classes
with
AC

Evolution

ACs/LoCs Classes with AC

BCEL 0.01168 18.51% 0.01016 19.44% -12.99% 5.02%

BeanUtils 0.00654 11.30% 0.01494 32.40% 128.36%186.73%

CLI 0.01936 50.00% 0.03905 52.20% 101.72% 4.40%

Codec

Collections

Compress

Configuration

0.11416 42.90% 0.04682 51.40% -58.99% 19.81%

0.0208 53.80% 0.01951 29.40% -6.20% -45.35%

0.03079 47.50% 0.02582 48.50% -16.14% 2.11%

0.0109 48.30% 0.01221 35.40% 12.01% -26.71%

DBCP 0.01563 28.10% 0.00879 47.00% -43.80% 67.26%

DbUtils 0.01597 35.30% 0.00943 41.30% -40.92% 17.00%

Digester 0.01019 27.00% 0.00948 23.20% -6.98% -14.07%

Email 0.0127 55.60% 0.01776 52.20% 39.80% -6.12%

Exec 0.0197 34.50% 0.02163 34.40% 9.78% -0.29%

FileUpload 0.00976 27.30% 0.01072 17.90% 9.90% -34.43%

IO 0.02352 17.60% 0.02553 42.80% 8.55% 143.18%

Lang 0.02315 50.00% 0.02959 37.20% 27.78% -25.60%

Math 0.02304 29.20% 0.04158 39.40% 80.50% 34.93%

Net 0.01515 31.10% 0.01926 40.60% 27.13% 30.55%

Pool 0.00934 21.10% 0.01355 32.70% 45.05% 54.98%

Validator 0.04643 58.80% 0.02192 64.10% -52.78% 9.01%

Gson 0.00542 16.70% 0.03153 42.90% 481.65%156.89%

Jsoup 0.03752 52.00% 0.02355 53.40% -37.24% 2.69%

JUnit 0.01116 22.10% 0.00826 20.60% -25.97% -6.79%

Mockito 0.01307 18.80% 0.01227 18.60% -6.11% -1.06%

X-Stream 0.00972 20.00% 0.02297 45.40% 136.38%127.00%

Source: the author.
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4.6 Results Discussion

As we mentioned, GOPSTEIN et al. introduced the concept of Atom of Confusion

(AC). Previous work has shown that ACs can affect code comprehension and hinder software

maintenance and evolution in C and C++ projects (GOPSTEIN et al., 2017). From the Java code

patterns of these atoms (LANGHOUT; ANICHE, 2021), our study found 11,404 occurrences in

the 27 projects studied.

Our results showed that 23 of the 27 analyzed libraries had atoms in more than 20%

of their classes (RQ1). There was a presence of ACs in all the analyzed projects. The Conditional

Operator and Logic as Control Flow were present in all the libraries studied, while Arithmetic as

Logic and Repurposed Variables appeared in only three projects. Moreover, BOHR, our tool, did

not find Omitted Curly Braces occurrences.

Concerning the co-occurrence of ACs at the class level, we observed that there

is a tendency for certain AC types to occur together in the same class (RQ2). For instance,

Conditional Operator, Logic as Control Flow and Infix Operator Precedence are more likely to

co-occur in the same class. This phenomenon may be related to the code style of developers who

modified the same class.

Finally, in the analysis of ACs evolution over time (RQ3), we observed that the

number of ACs increased. However, this phenomenon did not occur similarly in the analyzed

projects. In 10 projects, the number of ACs grew more than the size of the system. In other

projects, there was a decrease in the ACs number per LOC. It is noteworthy that, in the way we

studied prevalence evolution, we can only confirm that the number of ACs inserted over time

was more significant than the number of ACs removed. Even so, it is interesting to note that its

occurrence has not decreased (in absolute terms) in these systems. As already stated in previous

work, ACs negatively impact code readability; their presence probably affects developers during

maintenance tasks in these 27 libraries.

The detection of Logic as Control Flow atom proved particularly challenging because

it is very common to use methods just to read values into the program, such as ’get’ and ’equals’

methods. We noticed that these methods proved to be very common, appearing as right hand

operand in logic operations in the analyzed systems. Since these methods do not change values

in the program, they only read the values to be tested in the logic operation, it is up to the

programmer to observe whether the right-hand operand method is actually performing a write

operation by changing the values in its body. Therefore, accurate and automatic identification of
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this type of atom remains a challenge.

The Repurposed Variable detection is strictly related to the semantics of program

variables. Detecting the change of purpose of variables in a program during its life cycle is

not a trivial task. The detection of this AC by our tool occurs only in two cases pointed out in

(LANGHOUT, 2020), where there is a well-defined code structure that enables its detection.

Hence, automatically inferring this change in purpose continues to be a challenge.

4.6.1 Implications for Researchers

The presence of ACs in long-lived Java libraries grows over time. This phenomenon

needs further investigation into why developers insert ACs into code. For example, what are the

causes (developers’ experience? developer’s code style?) and consequences of this phenomenon

(bugs? time of maintenance? code readability?).

Furthermore, some types of ACs were prevalent and showed an increasing trend in

the number of occurrences. However, other types of ACs are rare. In this sense, these results may

influence the efforts to create tools focused on detecting and refactoring more prevalent ACs.

4.6.2 Implications for Practitioners

As we stated before, previous work has shown that confusing code impacts code

comprehension and, hence, the development process. When programmers are involved in high

comprehension effort, they navigate and make edits at a significantly slower rate (RAHMAN,

2018). Code reviewers often do not understand the change being reviewed or its context (EBERT

et al., 2017). Also in the context of software development, programmers tend to understand

certain code structures more slowly than other ones, e.g., for loops take more time to be

understood than sequences of if (AJAMI et al., 2019). As well as some programming practices

also affect the code readability (SANTOS; GEROSA, 2018). In the context of ACs was observed

that there is a strong relationship between ACs and bug fix commits and also pointed out that

atoms tend to be more commented in source code (GOPSTEIN et al., 2018). Hence, it is

important to disseminate this knowledge among developers, alerting them to the presence of

these ACs in code.

Since ACs can lead to problems related to code understanding during software

development, maintenance and evolution, such as an increase in effort and time to understand

the source codes of programs, as well as possible misunderstandings in this process, this work
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can help programmers avoid writing source code that contains atoms and also help promote

refactoring actions aimed at removing ACs from the source code of systems.

In addition, developers can use BOHR in continuous integration and code review

processes to be aware of the existence of ACs. Additionally, IDEs plugins could use our tool to

perform static code analysis, checking for the presence of atoms in the source code at the time of

writing, even before this code is compiled and executed.

4.7 Conclusion

This chapter presented the results of the prevalence, co-occurrence and evolution

analyses of ACs in long-lived Java libraries. 455 releases of this Java libraries were downloaded,

according to selection criteria described, to evolution analysis. The methods and procedures for

conducting this research were detailed, as well as the materials used and provided.



62

5 CONCLUSIONS

This chapter presents the conclusions of this study. Section 5.1 presents main

contributions of this work. Section 5.2 discusses the threats to validity. Section 5.3 shows our

final considerations. Finally, Section 5.4 presents proposals for further investigations.

5.1 Main Contributions

The main contributions of this work are summarized below:

• BOHR: a tool to automatically search ACs in programs written in Java available

in: https://github.com/wendellmfm/bohr

• Double-checked gold standard dataset of ACs: a dataset that enables further

validations of new tools for ACs identification. Available in: https://zenodo.org/

record/7065842#.YxvJh2zMJD8

• Prevalence study: prevalence, co-occurrence and evolution analyses of ACs in

long-lived Java programs. Results of this study available in: https://zenodo.org/

record/7065882#.YxvQzmzMJD8

In addition, 2 papers were published along the development of this work:

• W. Mendes, W. Viana, and L. Rocha, "BOHR-Uma Ferramenta para a Identifi-

cação de Átomos de Confusão em Códigos Java" Anais do IX Workshop de

Visualização, Evolução e Manutenção de Software. SBC, 2021.

• W. Mendes, O. Pinheiro, E. Santos, W. Viana and L. Rocha, "Dazed and Con-

fused: Studying the Prevalence of Atoms of Confusion in Long-Lived Java

Libraries" 2021 IEEE International Conference on Software Maintenance

and Evolution (ICSME), 2022.

5.2 Threats to Validity

The threats to the validity of our investigation are discussed using the four threats

classification (conclusion, construct, internal, and external validity) presented by Wohlin et al.

(2012) (WOHLIN et al., 2012).

https://github.com/wendellmfm/bohr
https://zenodo.org/record/7065842#.YxvJh2zMJD8
https://zenodo.org/record/7065842#.YxvJh2zMJD8
https://zenodo.org/record/7065882#.YxvQzmzMJD8
https://zenodo.org/record/7065882#.YxvQzmzMJD8
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5.2.1 Conclusion Validity

Threats to the conclusion validity are concerned with issues that affect the ability to

draw correct conclusions regarding the treatment and the outcome of an experiment. To avoid

this threat, we use known metrics already used in previous studies on the prevalence of code

patterns in software (GOPSTEIN et al., 2018) (MEDEIROS et al., 2019) (FILHO et al., 2019).

Thus, we use the count, frequency and proportion of ACs in the studied softwares as metrics.

5.2.2 Internal Validity

Threats to internal validity can affect the independent variable concerning causality

without the researcher’s knowledge. Thus, they threaten the conclusion about a possible causal

relationship between treatment and outcome. In this paper, we do not seek to demonstrate causal

relationships, but only to discuss occurrences and co-occurrences of ACs. Hence, this kind of

threat does not apply to our study.

5.2.3 Construct Validity

Construct validity concerns generalizing the result of the study to the concept or

theory behind the study. We adopted a peer debriefing approach for research design validation

and document review. Our goal was to avoid inconsistencies in the interpretation of the results.

Additionally, we developed a tool that automates our study’s data collection, seeking to prevent

or alleviate the occurrence of human-made mistakes in this stage. To improve the confidence

in our tool, we also evaluated its precision and recall looking to avoid bias caused by possible

false-positives and false-negatives results.

5.2.4 External Validity

Threats to external validity are conditions that limit our ability to generalize the

results of our study to industrial practice. The main threats to this validity are related to the

domain and sample size (i.e., the 27 open-source projects) we used in this study. Concerning the

sample domain, we try to deal with this threat by arguing that those projects present several usage

scenarios. Additionally, concerning the sample size, we dealt with this threat using diversity

and longevity criteria. We chose Apache Commons and picked up other well-known libraries

developed by different teams to get more diversity regarding team knowledge, skills, and coding
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practices. Finally, we chose open-source projects that are long-lived as a way to guarantee a

degree of maturity and stability.

5.3 Final Considerations

In this study, we investigated the prevalence and evolution over the time of Atoms of

Confusion in 27 open source long-lived Java libraries. In the prevalence analysis, our results

showed that ACs were present in all the studied libraries. However, we also show a non-

homogeneous presence of ACs in the projects. Three ACs were the most prevalent in almost all

projects, and we rarely found some ACs. This work can aid developers to avoid writing source

code that contains atoms, as it may lead to code comprehension-related problems during software

development, maintenance and evolution.

In addition to the results of this work, we also provide essential infrastructure

for conducting future research. We give a manfully verified dataset and a validated tool for

identifying ACs in Java-based systems. This dataset enables the validation of new tools for atoms

identification, while our tool, BOHR, enables programmers to find and remove ACs from Java

source code.

5.4 Future Work

In future work, we intend to study the impact of ACs on software quality attributes,

such as bug occurrence, technical debt, code complexity, and maintainability effort. We also plan

to improve the co-occurrence analysis of ACs and refine our atom detection tool.

We aim to analyze the relationship of ACs to the occurrence of bugs, looking at the

correlation of removing ACs in bug-fix commits, comparing to other types of commits. We also

intend to investigate the presence of ACs as an indicator of technical debt, since these atoms can

compromise the legibility of the code and consequently its maintainability.

Confusing code can lead to misunderstandings and increase effort and time in

software development. ACs can cause a recursive effort where the presence of these patterns

can lead to more code modifications. We aim to evaluate the impact on development time and

system maintenance effort. In addition, we intend to investigate whether codes with ACs have a

higher complexity (cyclomatic complexity or other readability-related metric) than codes free of

ACs, in other words, whether the presence of ACs adds complexity to the code.
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In the context of the ACs co-occurrence analysis, we intend to further investigate the

relationships between atoms that occur together, checking aspects such as proximity and scope

of occurrences (e.g., co-occurrence at method level) and investigating the role of programmers

in this phenomenon (e.g., do classes changed by more programmers tend to have more co-

occurrences?).

Also, in the context of our developed tool, some ACs detections can be improved,

such as Logic as Control Flow and Repurposed Variables. In the future we plan to revisit the

studies of these atoms and improve their detections.
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