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Abstract. In digital channel equalization, self-learning techniques 
are used in the cases where a training period is not available. 
Considering the transmitted sequence as composed of independent 
random variables, the equalization task can be done by means of 
prediction. In this work we propose Artificial Neural Networks 
(ANN), instead of a linear prediction device, in order to obtain a 
better performance and analyse its performance and applicability. 
Linear and nonlinear prediction concepts are revisited and a new 
self-organized algorithm is proposed to update the first layer in the 
nonlinear predictor whose aim is to avoid local minimum points in 
the applied cost function. The second layer is updated by using a 
classical supervised algorithm based on prediction error. Simula- 
tion results are presented which illustrate the performance of this 
technique. 

INTRODUCTION 

Equalization of digital communication channels is usually done by using a 
transmitted sequence also known to the receiver during a preamble period. 
Figure 1 depicts a simplified digital communication system, where a(n) is the 
transmitted sequence, b(n) is the noise sequence and i i(n-d) is the estimated 
symbol after a delay d.  

Self-learning (blind) equalizers are used in order to  provide the correct 
identification of transmitted symbols when one does not have a training pe- 
riod or when it is not practical to use such a strategy, as in digital TV 
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broadcasting and multipoint networks where training has to be redone when- 
ever one single receiver is inserted in the system. Another example is mobile 
communication systems, where due to multipath fading, the received signal 
may be so low that the receiver does not synchronize adequately. 

Some classical strategies for blind equalization are the following related 
algorithms: Direct Decision (DD), Sato, Godard [3], Benveniste-Goursat [l] 
and Shalvi-Weinstein [6]. 

Considering the transmitted symbols to be uncorrelated, it is possible to 
deal with the blind equalization problem by means of prediction [5]. In this 
context, it seems that the pioneer work is that of Macchi and Hachicha, in 
1986, who used a linear filter as a prediction error filter. The symbol with the 
desired information is recovered, in this case, by elimination of the existing 
redundancy in the time sequence formed by the channel outputs. 

In classical implementations for minimum phase channels, the prediction 
filter is linear and has a finite impulse response which is adapted to minimize 
the prediction squared error. This, indeed, is equivalent to a whitening pro- 
cess over the received time sequence and the white sequence obtained in the 
prediction error filter output could be the same as that of the transmitted 
symbols when we use an Automatic Gain Control (AGC) [5]. The prediction 
error sequence will be i.i.d. if the transmitted sequence {a(.)} is also i.i.d. 
and the noise is negligeable. 

Nevertheless, in communication systems, a crucial point limits the benefits 
from the linear prediction: if the channel is nonminimum phase, the original 
transmitted sequence cannot be recovered from a whitened error sequence. In 
other words, the original transmitted sequence cannot be recovered as result 
of the intrinsic linear mapping of past samples on the current estimated one. 
In this case, it is necessary include in the linear mapping future samples. 
A delay could also be introduced to compensate for noncausality condition, 
but equalization is still not guaranteed. Nonetheless, it is quite easy to show 
that, in most cases, the ideal mapping is nonlinear (see example in Section 

Therefore, in this work, we propose a nonlinear structure based on Arti- 
ficial Neural Networks, with one input and two layers, as a prediction device 
with a criterion based on 2"* order statistics. Moreover, in order to improve 
the adaptive solution, we divided the learning task in to two stages. First, 
a new self-organized learning algorithm is proposed to adapt the first layer 
then the second layer connections are updated by means of a classical super- 
vised algorithm (supervised with respect to the prediction error, but blind 
with respect to the transmitted symbols). 

2) * 
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In Section 2, we explore the prediction concepts. Section 3 is dedicated 
to the new proposed self-organized algorithm. In Section 4, some simulation 
results are presented to illustrate the performance of this new strategy and, 
in the last section, conclusions are presented. 

PREDICTION CONCEPTS 

In digital communication systems, the implicit goal of applying prediction is 
to remove the temporal redundancies from the received signal, which can be 
used in blind equalization. The representation of a prediction-based equalizer 
is shown in Figure 2, where x(n) is the noisy channel output sequence, 

%(n) noiseless channel output sequence, 2(n) is the predicted signal, e(.) 
is the prediction error, P is a prediction filter and g is an AGC. 

x(n)( b(nt ';" 
Figure 2: Prediction-Based Equalizer. 

b) 

The channel is modeled as a linear filter with finite impulse response (FIR) 
and its transfer function is represented by 

N-1 

F(Z)  = fiZ-i 
i = O  

where fi are the channel coefficients and N is the channel length. We also can 
represent the channel model in a vectorial form: f = [ fo f1 fi fiv-1 1'. 
Then, the system model will be: a(n) = [ a(n) a(n - 1) a(n - N + 1) IT, 
x(n) = [ z(n) z(n - 1) z(n - N - M + 1) 1' and b(n) = [ b ( n )  b ( n  - 
1) . . . b(n - N - M + 1) 1' where M is the order of the equalizer. 

Therefore, the noiseless channel outputs, which we call channel states, 
can be written as: 

And then, the prediction error corresponds to: 

e(n) = z(n) - P(x(n  - 1)) (3) 
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where x(n  - 1) = [ z(n - 1) z(n - 2) IT, z(n) = 3(n)  + b(n) and P is a 
function which provides a prediction of z(n). 

The simplest structure is obtained by choosing P to be linear. Although 
it is the most frequently used function, the corresponding application of the 
linear predictor is limited to minimum or maximum phase channels [3, 51. 
Some works (for instance [5] and references therein) have proposed a com- 
bined structure to treat nonminimum phase channels. 

To remove temporal redundancies, the prediction error equation is rewrit- 
ten in the form: 

(4) 
e(n)  = a(n ) fo  + a(n - 1)fI + . . + b(n) 

-P ( q n  - 1) + b(n - 1) + q n  - 2) + b(n - 2) + * * . )  

Using a linear filter with discrete finite impulse response p = [ pl p z  p3 . . p k ] ,  
as a predictor device, we have: 

e(.) = a(n)fo + a(n - 1)fl + . . + b(n) 

sin) 

where Pi is the i-th prediction filter coefficient. 
Expanding ?(n) leads to: 

z(n> = (a(n - 1)fO + a(n - 2)fl + * * + b(n - l))p1 
(a (n  - 2)f0 + a(n - 3)fl + * * * + b(n - 2))pz + . 

+ (a(n - k)fo + a(n  - k + l)f1 + * * * + b(n - I C ) )  pk 

Combining Equations ( 5 )  and (6)  leads to: 

The goal here is to recover a(n)fo. For this purpose, we must remove the 
undesired symbols by adapting the prediction filter in order to force them to 
zero. Unfortunately, not all coefficients can be canceled at once. 

It becomes evident that, there is a residue in the prediction error ex- 
pression and this residue cannot be cancelled by a finite linear filter. For 
equalization to be achieved, the samples of the prediction error sequence 
must to be uncorrelated and this residue must also be negligible with respect 
to a(n) fo .  A possible solution to this problem is to increase the predictor 
order which decreases the contribution of the residue. The scale factor mul- 
tiplying a(n)  is recovered by the AGC that matches the power of sequence 
e(.) and transmitted sequence a(n). 

However it is known that in the nonminimum phase channel case, it does 
not work and in any case the noise itself cannot be removed. 
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Since the linear mapping of a linear predictor may be not enough for 
equalization, we have tried to find a structure able to perform a nonlinear 
mapping in a satisfactory way. We chose the function implemented by an 
ANN that has the following form: 

$ =  pi sign (z - ei) (8) 
i 

where sign(.) is the signum function. 
In the nonlinear case, Equation (3) is rewritten by replacing function P 

by a nonlinear function $ N N  where the subscript stands for a neural network. 

4.) = 4 n )  - $ N N  (4. - 1)) (9) 
According to Equation (8), $ N N  is a sum of weighted and shifted copies 

of sign(.), whose parameters pi and 0, would be found by means of an a priori 
knowledge of the channel coefficients. However, since we do not have such 
an a priori knowledge, all parameters of $ N N  are stochastically adjusted by 
means of the new algorithm described in Section 3. 

Expanding Equation (9), it follows that: 

(10) 
e(n) = a(n)fo + a(n - 1)fl + - + b(n) 

) - $ N N  (z(n - 1) , z(n - 2) , 
It is possible to find a function $ N N  such that we can exactly cancel the 

term: a(n - 1)fi +. . + + a(n - N + 1)fiv-l. Moreover this function can only 
explicitly depend on z(n - 1) since it has all information about past symbols 
that we need. So, rewriting Equation (10) it follows that: 

e(n) = a(n)fo + a(n - 1)fi + 
$ N N  (a(n  - 1)fo + a(n - 2)fi + 

+ b(n)- 
+ b(n - 1)) (11) 

7 

a(n-1)fi +a(n-2)fa+...+a(n-N+1) f i v - 1  

In this case we can obtain no residue. It is worth noting that the noise b(n) 
is assumed to be an white Gaussian random variable and, consequently, it is 
not predictable, therefore the best the ANN can do is to cancel redundancies 
in the time sequence e(n). 

Figure 3 shows, a two-dimensional illustration of a nonlinear mapping 
done by the ANN. 

Clearly, the parameters e,, in Equation (8), have a crucial role on the 
construction of $”. So, the problem of finding good parameters for the 
ANN is addressed in Section 3. 

NEW SELF-ORGANIZED LEARNING ALGORITHM 

In classical techniques, such as backpropagation [4], the updating of param- 
eters & and of the synaptic weights is usually done through the same pro- 
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Figure 3: Nonlinear Mapping Function. 

cedure. However, in this equalization problem such a procedure may not be 
able to quickly provide the fast transitions shown in Figure 3l. 

In order to solve this problem in a satisfactory way, we propose a new 
self-organized learning algorithm that is based on the minimization of a cost 
function in order to correctly find the t9i of the neurons and to simplify the 
task of finding the interpolation surface. 

It is easy to show that the probability density function (PDF) of the 
received signal is a mixture of Gaussians. Furthermore, the variance of each 
Gaussian is the noise variance and their means are channel-characteristic- 
related. 

It can be seen from Figure 3 that the function referred to in Equation 
(8) can achieve correct interpolation if parameters Bi, associated to the step 
transitions, are well placed between the ‘valleys’. Then, we minimize a cost 
function that permits us to find those parameters by lookin for a function that 
can fit in those ‘valleys’. Since the valleys have the shape of a “V” , perhaps 
the simplest function, similar to a “V” we can use is N (2, t9i) = 12 - Oil  + IC 

where IC > 0 (see Figure 4). We use this function in order to simplify the 
resulting algorithm. 

The constant IC is inserted to avoid instability problems when Iz - Oil is 
very small and to guarantee a strictly positive function N ( z ,  Oi) .  

In order to measure function similarities, we have chosen the Kullback- 
Leibler divergence (KLD), which is indeed a distance measure in the Riemann 
space [4] given by: 

‘In a previous work we have used the backpropagation algorithm for the equalization 
of channels with low intersymbol interference (ISI) [2]. 
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Figure 4: Looking for the ‘valleys’. 

where h(z)  and g(z) are two strictly positive functions. Since the PDF of 
z(n-1) and N (5, ei) are strictly positives, we apply KLD in order to measure 
similarities between them. 

Eliminating the term which does not depend on 0, we obtain one cost 
function for each neuron given by: 

J (ei) = Sm p ( ~ ) .  In (2) dx 

J ( & )  = -IE{ln(N(z, e*) ) }  
In order to find the minima of this cost function we have to set 

-m N ( z ,  ei> (13) 

= 0, 
where 

The minimum value of Bi can thus be obtained by using a simple stochastic 
version of the gradient algorithm: 

which is a local adaptation rule of the Anti-Hebbian kind [4]. 

one is updated by a stochastic LMS algorithm. 
Finally, this adaptation rule is applied on the first layer while the second 

SIMULATION RESULTS 

In order to investigate the applicability of the nonlinear predictor in blind 
equalization we compare it with the linear predictor and with a classical 
algorithm, the Constant Modulus Algorithm (CMA) [3] using two kinds of 
channels, firstly the minimum phase and then the nonminimum phase. 

The order of the nonlinear predictor (number of neurons) and of the linear 
predictor (number of coefficients) were chosen as a result of several trials with 
different possibilities aiming to obtain the best results. 

Using BPSK modulation and a Signal-to-Noise (SNR) defined as SNR= 
10 log,, ( where af and ni are the symbol and noise variance 
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respectively. Both the Decison Squared Error (DSE) (&(TI)  = y - Dec(y))' 
and the Symbol Error Ratio (SER) were averaged by means of 100 Monte- 
Carlo trials. 

Minimum Phase Channel 

The minimum phase channel used in the computational simulations has the 
following impulse response: 

f (z)  = 1 + 0.82-' + 0 . 4 ~ - ~  

In the linear predictor we used a filter with 25 coefficients, a step factor 
and the initialization is done by setting the vector of filter 

For the CMA, the linear filter has 8 coefficients and the step factor equals 
The initialization is done by setting the vector of filter coefficients at 

zero except that at the middle, set at 1. 
The nonlinear predictor has one input, 15 neurons in the hidden layer and 

one output. For this structure we used the following parameters: supervised 
learning rate equals The number of symbols for finding 
the t9i was set to 50 and IE = lo-'. The algorithm for the AGC [5] has a 
step size equal to and the weights in the output layer were initialized at 
zero. The & were randomly initialized from an uniformly distributed interval: 

We can see in Figure 5(a) the performance achieved when SNR = 40 dB. 
Figure 5(b) shows the Symbol Error Rate (SER) for some SNRs computed 
for both predictors and for the CMA. 

equal to 
coefficients at zero. 

, X equals 5. 

[-1.5,1.5]. 

Decision-Squared Error 
1 

( I )  CMA 
(1) L l n w  Prrdirler 
(1)Noolinr.r Prcdiolor 

Simbol Error Rare 

(a) Decision-Squared Error 
(SNR = 40 dB). 

(b) Symbol Error Rate. 

Figure 5: Minimum Phase Channel. 

One can easily see that the performance of the nonlinear predictor is 
better than that of the linear one when SNR > 20 dB. 
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Nonminimum Phase Channel 

The channel considered has the following impulse response: 

f ( z )  = 0.6 + lz-1 - O . ~ Z - ~  

The linear predictor has the same characteristics as in the previous case. 
The CMA uses a linear filter with 6 coefficients and a step factor equals 
and vector of filter coefficients is initialized at zero except that at the middle, 
set at 1. 

The nonlinear predictor has one input, 20 neurons in the hidden layer and 
one output. The parameters are: supervised learning rate equal to and 
X equals The number of symbols for finding the t9i was 500. The step 
size of the AGC equals 5.10-2 and weights in the output layer were initialized 
at zero whereas the t9i from an uniform distribution [-2,2]. 

Figure 6 shows the DSE of both predictors and CMA, for an SNR of 40 
dB. As expected, the performances of the nonlinear predictor and CMA are 
better than the linear predictor. It can also be noted that the convergence 
rate of the CMA is much better than the nonlinear predictor one. 

Decision-Squared Error 
Q l  

( I ) C M A  
( 2 )  Lmcar Prrdiclor 
0) Nonlinear Predictor 

Figure 6: Decison-Squared Error (SNR = 40 dB) - Nonminimum Phase Channel. 

CONCLUSIONS 

The strategy presented in this paper proposes a nonlinear prediction device 
based on Artificial Neural Networks with only one input. Thanks to this 
strategy, the use of prediction is extended to some cases of nonminimum 
phase channels. Furthermore, the nonlinear predictor outperforms the linear 
one even in the cases where it provides channel equalization. 

The use of one single input in the nonlinear predictor to achieve equal- 
ization instead of several ones common in linear strategies, is presented as a 
plausible alternative. 

The division of the learning task in to two steps: a self-organized for the 
hidden layer and a supervised for the output layer was proposed to accelerate 
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the ANN abilities, as wee1 as to avoid the local minimum founs when a single 
MSE cost function is applied. 

However, this strategy is limited to situations where the ‘valleys’ between 
Gaussians of the PDF of z(n - 1) are deep enough, this deepness depends 
on the noise power and channel characteristics. In cases where this condition 
does not hold, we must consider an adaptation of the previous algorithms, 
particularly acting on the parameter IC. This improvement is actually under 
development. 

Besides, its performance when compared with the CMA seems to be in- 
ferior in most cases. See for example Figure 6, where the ANN predictive 
approach has higher complexity and slower convergence. This also seems to 
indicate that the use of neural network-based prediction is limited for some 
particular cases, indeed, nonlinear channels seem to be an interesting target 
for neural network-based approaches. 
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