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Abstract—An important use case in fifth generation systems
are vehicular applications, where, reliability and low latency are
the main requirements. In order to determine if a vehicular
application can be used one can apply machine learning (ML)
tools to determine if these constraints are met, which open
questions such as “which data is available”, “which features to
use”, “the quality of this prediction”, etc. In this paper we address
some aspects of predicting quality-of-service (QoS) in a cellular
vehicular-to-everything scenario, where we employ supervised
learning as well as the autoregressive integrated moving average
filter to predict if a packet can be delivered within a desired
latency window. Particularly, we are interested in the reliability
of this prediction, including predicting if a packet generated
some time ahead will be delivered in time. Such information is
essential when asserting that a vehicular application can indeed
be employed safely. We show via simulation results that ML
can be used as a prediction tool in vehicular applications. For
instance, QoS levels can be predicted two seconds ahead with
85 % reliability.

Index Terms—C-V2X, QoS Prediction, Machine Learning

I. INTRODUCTION

Vehicles have become one of the fastest growing type of
connected devices after smart phones and tablets [1]. As a
consequence, vehicular-to-everything (V2X) communication
has attracted great interest due to its potential of improving
traffic safety, reducing energy consumption, and enabling new
services related to intelligent transportation systems, such as
platooning, extended sensors, advanced driving, and remote
driving [2]. In this regard, cellular-V2X (C-V2X) is about
being a part of the scale and pace of global Long-term
evoluation (LTE) network deployment, with a clear evolution
path into fifth generation (5G). A fundamental part of C-V2X
is to expand the scope of conventional mobile networks to also
include support of automotive industries.

Although different V2X applications have diverse transmis-
sion requirements in terms of latency, reliability, and data rate,
the most challenging scenario lies in safety-related applica-
tions with stringent latency and reliability requirements [2]. In
this case, two aspects are of particular interests for automotive
industries. First, the network can predict in advance what level
of quality-of-service (QoS) it can achieve. Second, the network
can provide notification to a vehicle in advance so that the
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vehicle is able to act on the information that the agreed QoS
cannot be maintained. These two aspects are referred to as
predictability of QoS levels.

Machine learning (ML) has become widespread in recent
years and there are many ML techniques developed in the
literature [3]. In the context of prediction, ML techniques,
such as supervised learning [4], have been considered to bring
relevant added values. In [5] the authors seek to predict the
instantaneous achievable throughput of a connection in order
to adjust the quality of the delivered content.

Focusing on the QoS prediction aspect, this work assesses
different off-the-shelf supervised learning tools [6] with re-
spect to classifying whether the network can successfully
deliver a periodic packet to a vehicle within some latency
constraint. Such tools have provided adequate performance
in terms of prediction error. Some of them, namely random
forest and neural networks, significantly outperform a clas-
sical/baseline auto-regressive model, namely autoregressive
integrated moving average (ARIMA) filter [7]. Differently
from [5], in this work we are interested not only in an instan-
taneous prediction, but also in predicting future QoS levels,
which arguably are more important in vehicular applications.
We show that machine learning can in fact be used to check
the availability of vehicular applications in C-V2X.

The rest of this paper is organized as follows. Section II
describes the system model. Section III formulates the QoS
prediction as a binary classification problem. Section IV de-
scribed the ML aspects regarding features and training models.
Finally, Section V shows numerical results, while Section VI
brings the conclusions and some perspectives.

II. SYSTEM MODEL

This work considers a typical urban scenario for C-V2X
communication, namely Manhattan grid, where vehicles’ tra-
jectories and road configurations are well defined [8], [9].
Specifically, each vehicle has a mobility pattern so that it
moves only in the streets, and it can turn left/right with 0.25
probability; otherwise, it goes straight.

The cellular network has a wrapped-around seven-site
hexagon layout, each site comprising three cells. Each cell is
covered by an antenna with two elements with a single cell-
specific reference signal port. Moreover, each cell serves a
plurality of vehicles equipped with a 2-element antenna using
interference rejection combination receiver. Figure 1 illustrates
the considered scenario and the layout of the Manhattan grid.
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Fig. 1: Network with a wrapped-around seven-site hexagon
layout, each site comprising three cells, on a Manhattan grid.

Vehicles, or simply user equipments (UEs), are assumed to
be receiving data from the network in downlink unicast. The
adopted channel model follows the 3rd Generation Partnership
Project specification in [10] for low frequency ranges, namely
the 2 GHz carrier with a 5 MHz bandwidth.

The employed traffic model corresponds to periodically
sending packets of a fixed size and with a fixed transmit
time interval. The data traffic undergoes predefined latency
requirement with fixed delay threshold. That is, every sent
packet is expected to be delivered with a delay no longer that
the latency requirement. Herein, latency is defined from the
point of view of the transport layer.

III. PROBLEM FORMULATION

Communication reliability and low latency are the main
requirements for safe vehicular applications in 5G systems. In
this context, QoS prediction plays an important role in order to
determine when the current state of the network allows some
V2X use case, such as lane merging, platooning, etc.

We formulate the QoS prediction as a binary classification
problem that aims at classifying whether a packet of size B

can be successfully delivered from the base station (BS) to
a vehicle within a latency requirement D. At a given time
instant t0, the network is assumed to have access to a set of
measurements – from now so referred to as features – collected
until then. Based on those features, the network predicts if a
packet to be transmitted after some time gap can be delivered
within its corresponding latency window. That is, a time gap
G means predicting if a packet that will be generated in time
t0 + G × D will be delivered before t0 + (G + 1) × D, as
illustrated in Figure 2.

In what follows, different solutions for the QoS problem
described above are presented.
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Fig. 2: Illustration of the QoS prediction problem.

IV. MACHINE LEARNING APPROACH

To predict the QoS at a destination vehicle, we employ
supervised learning tools with labels defined as:

• In Time (or 1): if the packet was delivered within the
required latency window;

• Late (or 0): if the packet delay exceeded the latency
requirement or was lost.

The employed ML algorithms include linear regression (LR),
multilayer perceptron (MLP) and random forest (RF), which
are compared to the ARIMA filter.

Several different measurements can be employed for this
QoS prediction problem. The employed ones are listed below:

• The previous 5 delays;
• The UE x-coordinate value;
• The UE y-coordinate value;
• The reference signal received power (RSRP) value;
• The reference signal received quality (RSRQ) value;
• The index of the best cell for the UE;
• The downlink signal-to-noise ratio (SINR);
• The averaged channel quality indicator (CQI);
• The average hybrid automatic repeat request (HARQ)

block error rate (BLER);
• The average throughput of the UE serving cell;
• The load of the UE serving cell;
• The index of the serving cell.

All these features are preprocessed with a “mean inputer”,
which replaces any missing values with the mean of available
values for that feature, followed by a “max abs scaler”, which
normalizes each feature to be in the interval [−1, 1].

A. Dealing with missing entries

One point worth mentioning is that the features “downlink
SINR”, “average CQI” and “average HARQ BLER” can
have missing values. These correspond to cases where the
measurements were not received due to a problem in the
control channel, which usually happens when the UE has a
bad channel condition. However, this information is lost after
the “mean inputer”, since the missing value will be replaced
by the average of all other vales of the particular feature.
Losing the information about which entries were originally
missing can hurt the classifier performance. We can roughly
see the importance of knowing which entries were originally
missing by comparing the percentage of entries with missing
values separately for each label. For instance, in one simulated
scenario the proportion of entries with missing values in the
“downlink SINR” feature was 0.83 % for the label “one”
(packets arrived within the latency window) and 43.84 % for
the label “zero”. This clearly indicates that a missing value
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in the “downlink SINR” feature is more likely to correspond
to label “zero” instead of label “one”. Therefore, before the
inputer pre-processing is performed we create an extra feature
for each of the three features that can have missing entries.
This extra feature can assume values of either zero or one,
indicating if its matching feature had originally a missing value
or not. With this information preserved, it will be taken into
account by the ML algorithm in the classification problem.

B. Classic/baseline prediction tool

Differently from the ML models, the ARIMA filter models
the UE specific packet delays as a time series. Therefore, a
separated model is required for each UE, while with the ML
algorithms all training data is used to train a single model. For
each time gap, varying from 0 to 20, with latency window D

equal to 100 ms, each ML model was trained with 75 % of
the data, while the remaining data was used for testing the
model. On the other hand, the ARIMA model for each UE
was fit using all delays for packets of that UE, except the last
20 delays that were reserved for testing.

C. Classification performance metrics

In order to compare the different ML algorithms as well
as the ARIMA filter, we focus on the accuracy and f1-
score metrics. Accuracy is defined as the rate of correct
predictions of an algorithm. While it is straightforward, it can
be misleading due to the class imbalance of both labels. For
instance, consider a given binary classification problem where
96 % of the samples have label 1. If an algorithm always
predicts label 1, regardless of the features, it will still achieve
an accuracy of 96 %, but it would not be useful in practice. A
more suitable metric is the f1-score, which in turn is defined
as a function of two metrics: precision and recall.

Both precision and recall metrics are defined separately for
each label. They are defined as

Precision =
True positive

True positive + False Positive
, (1)

Recall =
True positive

True positive + False Negative
, (2)

where the meaning of “true/false positive” can be seen in
Table I below.

TABLE I: True/False Positive and Negative.

Negative Positive

Negative True Negative False Positive
Positive False Negative True Positive

A
ct

u
al

Predicted/Classified

Precision can be seen as the ability of the classifier not to
label as positive a sample that is actually negative. Therefore,
it is a good metric to compare algorithms when the cost of a
“false positive” is high. On the other hand, recall can be seen
as the ability of the classifier to find all the positive samples.
That is, recall is a good metric when the cost of a “false

TABLE II: Simulation Parameters.

Parameter Value

Number of sites 7
Number of cells per site 3
bandwidth 5 MHz
Central Frequency 2 GHz
Subcarrier Bandwidth 15 kHz
Number of UEs 400, 500, 600, 700, 800 and 900
UE speed 60 Km/h
Latency Window Size D 100 ms
Packet Size 8000 and 12 000 bits
Scheduler Proportional Fair
Simulated time 80 s (80000 TTIs)
Discarded TTIs First 40 000 (40 s)
Number of estimators for RF 100
Number of neurons in MLP hidden layer 50 and 100

negative” is high. At last, the f1-score metric seeks a balance
between precision and recall, which is given by

f1-score = 2× Precision × Recall
Precision + Recall

. (3)

All three metrics take values in [0, 1], where the higher the
value the better the learning model performed for the problem
at hand. The next section describes the simulated scenario and
the obtained results in terms of the accuracy and f1-score.

V. SIMULATION RESULTS

In order to investigate the QoS predictability we have
performed simulations in a scenario with seven cells, each
with three sectors, and wrap around as illustrated in Figure 1.
The simulation was performed for UE loads of 400, 500, 600,
700, 800 and 900 UEs in the system, as well as packet sizes
of 8000 and 12 000 bits. Several independent simulations were
performed, each running for 80 000 transmit time intervals
(TTIs), but the first 40 000 TTIs were considered as warm-
up period and only data obtained after that was employed in
the learning process. The investigated models include LR, RF
with 100 estimators, MLP (with one hidden layer with 50
neurons and another model with 100 neurons) and ARIMA.
All investigated ML algorithms use the default parameters
from the scikit-learn library [6], with the exception of the
number of estimators of the RF algorithm and the size of the
hidden layer of the MLP algorithm. The simulation parameters
are summarized in Table II.

Figure 3 illustrates the network performance – considered
as the ratio of packets successfully delivered within the latency
window – for the different UE loads and packet sizes of
8000 and 12 000 bits. As the network load increases, either
when packet size is increased from 8000 to 12 000 or when
the UE load is increased, the resources a spread thinner and
latency grows-up and more and more packets are delivered
outside the desired latency window. The values in Figure 3
correspond to the proportion of each label in our QoS pre-
diction problem. For a low load, almost all packets arrive at
the destination within the desired latency window. Therefore,
almost all samples fed to the model have been labeled as one.
As the network load increases, the number of packets delivered
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Fig. 3: Network Performance.

Fig. 4: Accuracy for packet size of 8000 bits.

Fig. 5: f1-score for packet size of 8000 bits.

outside the desired latency window increases and thus we have
more samples labeled zero.

Figure 4 illustrates the accuracy for each investigated model
for a varying number of UEs with a packet size of 8000 bits.
Due to class imbalance, all models have a high accuracy for a
low network load, such as when the number of UEs is lower
then or equal to 600, even if the model predicts that the packets
always arrive in time independently of the feature values. As
the network load increases the class imbalance decreased and
the accuracy metric becomes more meaningful. As we can
see, RF performs better, with MLP being close to it, while the
ARIMA filter has the lowest accuracy.

Figure 5 illustrates the f1-score for the same case. The f1-
score metric is separated for each class, with the “In Time”
class having a better value than the “Late” due to being better
represented up to the 700 UEs case. For 800 or more UEs
there are more packets that arrive outside the latency window
than packets that arrive in time, as can be seen in Figure 4.
This inversion makes the f1-score of the “Late” class become
higher than the f1-score of the “In Time” class. Nevertheless,

Fig. 6: Accuracy for the 700 UEs case.

Fig. 7: f1-score for the 700 UEs case.

the RF algorithm still achieves better performance in terms of
the f1-score metric for both classes.

Since we are interested in the predictability of QoS levels in
order to assert the safety of employing a vehicular application,
a more interesting problem is predicting if a future packet will
be delivered within the desired latency window after it has
been created. Figures 6 and 7 illustrate the accuracy and the
f1-score, respectively, of the different models as the number of
gaps varies for the case with 700 UEs. The initial decrease of
both accuracy and f1-score is larger for the first five gaps, with
a gap of five corresponding to predicting if packets that will
be generated 500 ms in the future will be delivered within the
latency window of 100 ms. Intuitively, the reason for this initial
large drop may be due to the decorrelation of physical layer
measurements within the first gaps. Nevertheless, Figures 6
and 7 show that the model is still able to predict the QoS
even a few seconds in the future.

One interesting observation in Figure 7 is that the ARIMA
filter performs better than the ML algorithms in terms of the
“Late” class f1-score and for a number of gaps greater than
zero, despite of only using past delays to predict the QoS. The
reason for this is that the ML algorithms suffer from the heavy
class imbalance. Such class imbalance is also the reason why
the “Late” class f1-score in Figure 5 has ups and downs as the
number of UEs is increased when it is still below 700 UEs.

To circumvent this issue, data balancing can be used.
One manner is to randomly drop samples from the higher
represented class such that both classes are more evenly repre-
sented. For the 700 UEs case, where the network performance
is around 93 %, randomly dropping samples from the “In
Time” class still leaves us with around 7600 samples from
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Fig. 8: Accuracy for the 700 UEs case with balanced classes.

Fig. 9: f1-score for the 700 UEs case with balanced classes.

each class. Figures 8 and 9 illustrate the accuracy and the f1-
score, respectively, of the different models for the balanced
case as the number of gaps varies. With the classes being
balanced, each ML algorithm achieved the same f1-score in
both classes, with RF still being the ML algorithm with better
performance. Compared with Figure 7, the f1-score of RF
jumped from less than 0.5 to more than 0.85 in Figure 9.
However, dropping more then 90% of the data in order to
balance the classes had an impact on accuracy, as seen in
Figure 8. While the network is able to more reliably detect
when a packet cannot be delivered, it is also labeling as
“Late” more packets that would be successfully delivered.
This might be a reasonable compromise, considering safety in
vehicular applications. That is, the f1-score of the “Late” class
might be the most suitable performance metric from the ones
presented in order to compare the ML algorithms in C-V2X
applications. However it is also clear that more improvements
are possible with more sofisticated approaches to handle the
class imbalance.

Another interesting result in Figures 8 and 9 is the perfor-
mance of the ARIMA filter compared with the ML algorithms.
As there is no notion of class imbalance when dealing with
time series, the ARIMA filter performs exactly the same as in
Figures 6 and 7, since no data is dropped. Thus, it ends up
becoming the best one in terms of accuracy and f1-score of
the “In Time” class, but at the same time it has a much worse
f1-score for the “Late” class than all the ML algorithms. This
indicates that the prediction of the ARIMA filter is less useful
in C-V2X applications than that of the ML algorithms, even
though a separate model is trained for each UE. Nevertheless,
the ARIMA prediction could be used as an extra feature when

using ML, which might improve the overall performance.

VI. CONCLUSIONS

Predicting if a packet can be sent within some latency
window is important in V2X scenarios where latency is criti-
cal. QoS prediction, herein modeled as a binary classification
problem, was assessed by using different supervised learning
tools and a time series prediction tool. Reliable predictions
using ML can be achieved when the class imbalanced is
handled. For example, RF achieved an f1-score around 93 %
for gap 0 and around 85 % for gap 20 for both classes. That is,
the availability of some vehicular application can be checked
some seconds in advance. Besides, ML performed better than
the ARIMA filter regarding the prediction of the “Late” class.

As future work, one could investigate if the knowledge
of how packet delays evolve in time within future latency
windows can improve the feature space of ML models. One
possible approach is to add as an extra feature the delays
predicted by the ARIMA filter. Furthermore, different strate-
gies for handling class imbalance are also possible, instead
of equalizing the class supports by simply discarding the
exceeding data from the class with larger support.
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