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Abstract— A new strategy to channel equalization
in digital communication is presented. In this
approach! the clustering problem is treated
analytically. We propose a systematic bayesian
classification using a gaussian approximation of
the probability density function for each cluster.
The quality of the approximation depends on the
number of clusters considered. We show
analytically that we can obtain the Bayes equalizer
performance, if we use the maximum number of
clusters, and the Wiener one, if we use only two
clusters (binary signal case). Some computational
simulations illustrate power of the presented
strategy.

1. Introduction

Equalization in digital communication systems is
used in order to reconstruct the transmitted
symbols and combat the intersymbol interference
(IST) effect. When channels are characterized by a
finite impulse response (FIR) filter and an additive
white gaussian noise source, it is shown in some
recent works [1][2]{7] that it is possible to use a
Radial Basis Function network (RBF) to perform
the optimum bayesian equalizer.

However, despite its desirable performance, this
approach is strongly limited by the inherent
equalizer complexity and the high convergence
time of the most common learning techniques.

On the other hand, linear equalizers have been
used for long time. Their importance is associated
to their low complexity and theoretical tractability.
However, it has been shown [7] that the optimum
equalizer is nonlinear in all realistic cases where
noise is present and the channel is non-minimum
phase. Furthermore, the considered error function
minimized by the Wiener linear equalizer, the
Mean Square Error (MSE) [4], is not equivalent to
the symbol error rate (SER) [S] which is the
normally used criterion in the digital
communication context.

It is well known [9] that a nonlinear block
detection equalization based on the principle of
Maximum Likelihood Sequence Estimator will
provide the best equalization performance when the
channel is completely known. Its high
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implementation complexity is one of the main -
reasons for using other nonlinear symbol decision

class equalizers with simpler implementations but

poorer performance. In this context, ‘the

communication community has recognized the

bayesian symbol-decision - class equalizers as

optimal solutions which deals with the equalization
problem as a classification one {10].

Several recent works have been done to reduce
complexity using clustering methods [2]{3] over
the channel’s output. The most common way to
reduce complexity is to find an approximate
optimum Bayes decision boundary. When a RBF
neural network is considered, complexity can be
highly reduced by wusing variable selection
algorithms as in [8].

In this work, we propose a new analytical strategy
to reduce the bayesian equalizer complexity using
an estimation of the channel model parameters.
Our approach confirms analytically that we can
obtain the Wiener SER performance, if we use the
less complex bayesian equalizer structure, or the
optimal Bayes equalizer, if we use the more
complex one.

The main interest of this approach is thus to
render possible a full range of gradual choices
between complexity and performance.

In the section 2, we present the theoretical basis
to this approach and in section 3 our simulation
results are presented and exposed compared with
the performance of others classical equalizers. The
conclusions are presented in the last part.

2. Equalization and Classification

In Fig.l, we depict a classical digital
communication system model. The message source
emits one symbol a(n) every T seconds, with the
symbol belonging to a finite alphabet. In this work
we will consider the bipolar case, where a(n) is
taken from the set {+1}, forming an i.i.d. sequence.
The noise b(n) is an additive gaussian noise with
zero mean and variance of, the causal channel
impulse response f{in) has a finite length N, and
d(n — d) is a decided symbol with delay decision
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d>0,
For simplicity of representation, we use column
vectors defined as:
Channet b(n)
i‘-)l 108 i(“) 4 L) - E-

Vx(u) x(n=1) - Ix(n~M +1)

y(n) _r— a(n-d)

Fig. 1: Model of a data transmission system with
equalizer.

a(n—-d) -

Hamiing : y(ud = T Ox0 )

a(n) = [a.(n) a(n-1) ...
=l 7 - fN-1}r ,
b(n) = [b(n) bn-1) --
x(n) = [x(n) x(n-1)

bn-M +nf and
- x(n-M +1)]T . We

also define the matrix
(fo O 0 1
fl fo :
f K - 0
S R
F= ; , where F has
fna : - h
0 fna - fa
0 0 .- fN_]J

N +M -1 rows and M columns. Then, we can
write:

x(n)! =T +bm)! =am)? -F+om? (@)
where X(n) is the channel state vector and b(n) is
the noise vector.

An interesting equalizer that we will consider in
the first part of subsection 2.1 is a linear mapping

¥(n) = T (x(n)) = x(n)T -h, where h is the vector

h=[h0 hy - hM_»IY.’misalsooorrwponds

to find the best projection of the samples x(n) onto
a line in the direction of h. In the classification
sense [6], this corresponds to find the Fisher’s
linear discriminant h. The Fig. 2 illustrates the
effect of choosing two different directions for a two-
dimensional example.
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Fig. 2: Projection of the samples on 2 different lines
(in 2-D case).

atn-N-M+Df

In this illustration, class 1 (‘0") corresponds to the
transmitted symbol a(n ~d)=1 and class -1 (‘x’)
corresponds to  the transmitted  symbol
a(n—d) =~1. Clearly, we look for an orientation
for which the projected samples have maximum
between-class separation and, at the same time, the
minimum  within-class dispersion [6]. This

corresponds to maximize the functional
T
j(h):hl;,RR‘h , where R_is the berween-class

x~C

scatter matrix and R, is the within-class scatter
matrix. In the stochastic context of digital signal
processing, it is interesting to interpret the total
scatter matrix R, =R_+R___ as the correlation
matrix of the random vector x(n).

2.1. Calculations for Two Clusters
To perform a simple equalizer device, the first
possible approach is to project the corrupted
samples x(n) onto a line in the direction of h. In
this sense, the best direction of h to cluster the
projected samples can be investigated. Considering
the bipolar case, we can calculate two centers

related to the symbol a(n-d):

¢, = E{x(n)} when a(n-d)=1 @)
¢ =Efx(n)} when a(n-d)=-1. 3)

Then, applying (1) to (2) and (3),
¢," =Efa(n)” -F+b(n)" { when a(n-d)=1,0r
¢"=0 0 .. 1 ... O]F, where 1 is at rank

and c,7 = Ef(n)” -F+b(n)" } when a(n-d)=-1,
or
;7= 0 ... -1 ... 0]F. So, defining an
helpful auxiliary matrix as :
0 0 - 0 ]
0 0 - 0
fa fd—l * fa-ma
O 0 .. 0
(o0 0o % 0 |
where d can be greater than N-1,we can write:

¢’ =a@)" -F. @
Then, ¢ ={c_;.c, }is a set of centers and C is a
binary random variable with P(C=c{)=0.5 and
P(C=c.1)=0.5.

In a similar way, we define two random variables
around each center:

- delay position

Fa-'—’
row :d
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X4 ()T =a(m)” -F+ b(n)”, whena(n~d)=-1
and
T _ T T =
x,(n)" =a(n)’ -F+b(n)" ,whena(n—d)=1
To calculate the between-class scatter matrix R,
we need the mean vector
m=P(C=cy)e; +P(C=c_; de_q

={0 .- 0 T . Then from equation (4),
[ ]

R, = Efe-m)e-mf = £fRT -am)a? R}
and R, =F,T Efmam] F,
*  R,=02RTF. ®

In a similar way, we can calculate the within-
class scatter matrix R,_.: (i denotes cluster i, i=1
or j=-1)

Ry = - -eT =
=£ {(FT -FDa(n)+ b(n)Xa(n)T (F-F)+bm’ )}

Ry, =02F" —-FT )F -F)+0fl.
One can remark that R, _, doesn’tdepend of i. In

other words, the within-class scatter matrix is equal
to the scatter matrix of each cluster:

R, . =R, . +R;_;)/2=
2T -RET)F-F)+0?1.

Expanding this expression and taking into account
that

F/F =F/F. =F'F., we have:
Ry =02F F-F R)+0dl 6)

Now, we can apply these results to J(h). The
vector by, which maximizes this functional satisfies
the eigenvalue problem R h, = AR ,__h, . Then,
to investigate the direction of this vector, we can
apply (5) and (6) in this last equation:
o2®,TF,)h, = x{ag & F-E,TF,)+ agx):o
, we have thus:

o2+ )ETF b, = A2 FT R+ agx)la :
Considering equality FF=F F=FF,wecan
obtain: (1+ A)kp = AR yh,, where

p=cie,=clfy fia - famnl =

=Efx(ma(n-d)} (D)

and k = c]Tho and Rz = Ex(x(mT } Finally,
we have :

1+4

A
If we consider only the vector b, direction, we will

1+2
show that, if (LA-} #0, hp and the Wiener

-1
h, = ‘Re P ®

equalizer solution (hy, =R x-lp) [4] have the
same direction. ,

In the decision error sense, the decision boundary
has more importance than the equalization
mapping itself. For this linear equalizer, the
decision boundary corresponds to the values of x
satisfying :

x' b, =0 ®
Applying @® in ) gives:
1+4 T. -1
— kxR, p=0,o0r
( 1 } x P
TR, Tp=0 (10)
This direction is thus the same found by the Wiener

equalizer.

In another hand, we can implement a bayesian
equalizer, with a RBF structure, considering only
two gaussians centered at ¢, and ¢,
respectively. The mapping is now a nonlinear one:
¥(n) =Ty (x(n)) =

B ECOAIN e,
- 2 2

where  r(x(n)? = (x(m) - e, J R xim)—c;)

and

r &? = em-c_ R -c_y) are
the Mahalanobis distance [6] between x(n) and
each center and R is the metric used to compensate
for the nonradial dispersion of x(n). Fig.3
illustrates the scheme of this bayesian equalizer.

An—M 4+

REPwithosmtesim e,
Fig. 3: Bayesian equalizer with two centers.
In this case, the decision boundary corresponds to
the values of x(n) satisfying the equation :
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(x(n) - )T Rl (x(n) - )=

=G -c_ R Mo -c_y)
To find this boundary, we know that ¢, =,
)

(x(n) -¢ )T R (x(n) -¢ )=
= (xm +¢, R xtmy+¢,)

After some simplifications, we have
clTR_lx(n) = —x(n)T R—lcl
Assuming that R is symmetric and positive

definite, then R exists and is symmetric too.
The last equation can be rewritten as

axmI ® HT cl)T =—x(mT R~ e, or

1
! R™le))T =—x(mT R7lc ,and the

decision boundary satisfies x(n)’ R ¢, =0.

Then, using (7) we have
xmyy R lp=0
Now, considering that R

amn
and Rx are both

symmetrical and positive definite, we can take
R=Rx—c or R=Rx. In the second case, if we

compare (11) and (10), it is evident that we will
obtain a decision boundary equal to that of Wiener.
Hence, this two clusters bayesian equalizer has the
same SER as the Wiener one. However, in order to
approximating the optimum Bayes decision
boundary, the best choice is R=R ,_, because this

metric takes into account only the dispersion of
each cluster.

For both choices of R, the decision boundaries
are equivalent to that implemented by a transversal
linear filter. Fig.4 illustrates this equivalence.
Moreover, as we can see in the experimental
results, both choices of R result in a similar SER
performance, despite the best MSE performance of
the Wiener equalizer.

Hp-M+D xn-M+1) M +D An~bd+1)

|

y(n)=h'x(n)

HR) x(m=D o0

xm) Hm=D +00

|

¥(m)

Fig. 4: Equivalence between the two equalizers.

2.2, Calculations for Several Clusters

To improve the equalizer performance, we can
find several clusters by similar considerations. The
first step is to take the auxiliary matrix as :

[ o 0o - 0
0 0 0
Jap Jfa-pP " Jap-Mui
; ) : delay position
E=| fa Jaa fama [«
Tasg Tavg ™ Taso-Mu
0 0 e 0
X 0 0 ces 0 ]
where P and Q are constants. We can write
¢’ =a(n)” -F. (12)

Then, C= {7-1,-1.._—1-&1.-1, _l,....cu,__,}is now a
set of 2P*@*  vectors. Each center is associated to
the label 1 or ~1, according to the correspondent
symbol at the delay position, a(n-d).

The mean vector is always the null vector:

m =i JE'm P(C= ci.j.....m)' ci.i....-m

T
=[0 0] , and the matrices R, and R__,
are calculated as in (5) and (6).

The resulting equalizer assumes that each
hyperellipsoidal cluster of equal size and shape,
corresponding to each center, has a gaussian
distribution of probability. Such approximation
makes possible an equalizer implementation as
shown in Fig.5, with 4 clusters in this example.
Each weight in the last layer is equal to the label of
its corresponding cluster, i. e. a(n—d).

Furthermore, if we take P+Q=N+M -2, we
have the maximum number of clusters and F. =F .
Consequently, R, _, =071, and this equalizer wil
perform the optimal Bayes one.

x(n) x(n-M+2) x(n-M+)1)

Fig. S: Bayesian equalizer with four centers,
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2.3 A Good Choice of P and @

This approach clearly supposes that the channel is
known or well identified. In this way, we can
choose the centers considering the rows of F where
the highest (in module) channel coefficient appears.

The resulting bayesian equalizer has 2M clusters
and P+Q +1=M . For example, considering the

simple channelf =[~02 0.5 1 -0.6 0.3,
(-0.2 0 ]
05 02

we hale Fd —(1).6 Ois The greatest
03 -06
L 0 03|

coefficient is equal to 1 and it appears at the third
and fourth rows of F. Then, the chosen centers are

the four vectors [t(1-0.6) +(0.5+Df . The

labels of these centers depend on the delay, which
can be 2 or 3 in this example, Choosing d=3, the
two centers associated to the symbol a(n-3)=1 are

erp =la-06 ©s+nf and

ey =lc1-06 os+pf, and those
associated to the symbol a(n-3)=-1 are
e =la+oe ©5-nf and

;1 =l-1+06) 05-1f . Fig6 shows

these centers (), all the possible states (%’ and 0,
and indicates their dispersion around each
corresponding center. The resulting equalizer is

also shown in Fig. 5.
s
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Fig. 6: Centers and clusters illustration in a
two-dimensional example.

3. Experimental Results

Taking into account the justifications in [7] to use
nonlinear equalizers, we know that the linear
transversal equalizer order can be increased but, in
a highly noisy situation, this increases also the
total power of the noise at the equalizer input. So, it
has been shown that there is little to be gained in
terms of SER by increasing the order M beyond a
certain limit.

Fig.7 illustrates this linear equalizer limitation. In
this example, the channel is f=[.0 08 0.5],
the delay decision is d= 0 and two different noise
levels have been considered: o}=02 and

ol =0.1.

Fig. 7 : Performance versus number of taps.

The same Fig.7,shows the simulation results of
the proposed bayesian equalizer with 2, 8 and 2"
! clusters. The first one and the Wiener equalizer
have a similar performance, as expected. The last
equalizer corresponds to the optimum Bayes
equalizer. Comparing these results we can see that
the 8-clusters bayesian equalizer (P+Q+1=3)
outperforms the Wiener equalizer even beyond its
minimum SER. Moreover, this 8-clusters bayesian
equalizer has not a « prohibitive » complexity,
mainly if compared to the optimum Bayes equalizer
to this channel (2**? clusters).

We present also some other simulation results in
Fig.8. In this case the channel used
isf=[-021 -050 0.72 036 0.1], the
equalizer order is M=5 and the decision delay is
d=4. In this figure we can see the gradual
relationships that exists between equalizer
complexities and their respective performance. The
32-clusters equalizer corresponds to that proposed
in the section 2.3. The complexity reduction results
are compatible to that in [8].
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~ - Wiener equalizer
we = 2 clusters bayesian equalizer
10°f . J
(a4 8 clusters bayesian equalizer
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(77) 32 clusters bayesian equalizer \
10" Optimum bayesian equa.lizu’(SlZdustas)\
[ ]
10° S . e R . N .
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SNR
Figure 8 : Performance versus SNR.

4, Conclusions

We have investigated in this paper the
implementation of a bayesian equalizer, after an
identification of the channel coefficients. The
presented approach makes possible a gradual
compromise between complexity and performance
depending of the number of states chosen for the
gaussian modelisation of each class. The analytical
formulation shows and the experimental resuits
confirm that the less complex equalizer
implementation provides equivalent Wiener SER
performance, Moreover, it is also shown that, from
this lower born, we can increase the equalizer
complexity (number of centers) enhancing its
performance. At the upper born we recover the
optimal bayesian equalizer.

However, in this approach we need to know the
channel impulse response or its estimation. Then,
we see as a natural continuity work a clustering
based channel identification strategy which take in
consideration this presented strategy to accelerate

the clustering algorithm.
Another point to be investigated is the
performance loss of the proposed bayesian

equalizer related to the channel identification error.
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