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Abstract 

In digital channel equalization, self-learning techniques are 
used in the cases where a training period is not available. 
Considering the transmitted sequence as composed of inde- 
pendent random variables, the equalization task can be done 
by means of prediction. In this work we propose to use Arti- 
ficial Neural Networks (ANN), instead of a linear prediction 
device, in order to obtain a better performance. Prediction 
concepts are revisited and a new self-organized algorithm is 
proposed to update the first layer in the nonlinear predictor 
whose aim is to avoid local minimum points in the applied 
cost function. The second layer is updated by using a clas- 
sical supervised algorithm. Simulation results are presented 
which illustrate the performance of this technique. 

1. Introduction 

Equalization of digital communication channels is usually 
done by using a transmitted sequence also known to the re- 
ceiver during a preamble period. Figure 1 depicts a simpli- 
fied digital communication system. 

Figure 1: Digital Communication System 

where a(n) is the transmitted sequence, b(n) is the noise 
sequence and 6(n - d)  is the estimated symbol after a delay 
d. 

Self-leaming (blind) equalizers are used in order to provide 
the correct identification of transmitted symbols when one 
does not have a training period or when it is not practical 
to use such a strategy, as in digital TV broadcasting and 
multipoint networks where training has to be redone when- 
ever one single receiver is inserted in the system. Another 
example is mobile communication systems, where due to 
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multipath fading, the received signal may be so low that the 
receiver does not synchronize adequately. 

Some classical strategies for blind equalization are the fol- 
lowing related algorithms: Direct Decision (DD), Sato, Go- 
dard [ I], Benveniste-Goursat [2]  and Shalvi-Weinstein [3]. 

Considering the transmitted symbols to be uncorrelated, it 
is possible to deal with the blind equalization problem by 
means of prediction [4]. In this context, the pioneer work 
is that of Macchi and Hachicha, in 1986, who used a lin- 
ear filter as a predictor device. The symbol with the de- 
sired information is recovered, in this case, by elimination 
of the existing redundancy in the time sequence formed by 
the channel outputs. 

In classical implementations for minimum phase channels, 
the prediction filter is linear and has a finite impulse re- 
sponse which is adapted to minimize the prediction squared 
error. This, indeed, is equivalent to a whitening process over 
the received time sequence and the white sequence obtained 
in the predictor error is the same as that of the transmitted 
symbols apart for a scale factor. The prediction error se- 
quence will be i.i.d. if the transmitted sequence {a(.)} is 
also i.i.d and the noise negligeable. 

Nevertheless, in spite of the well established theory behind 
linear prediction, a crucial point should be mentioned: if 
the channel is nonminimum phase, even an infinite length 
predictor cannot provide a super-whitened error sequence. 
In other words, the original transmitted sequence cannot be 
recovered as result of the intrinsic linear mapping of past 
samples on the current estimated one. Nonetheless, it is 
quite easy to show that, in most cases, the ideal mapping 
is nonlinear (see example in Section 2) .  

Therefore, in this work, we propose a nonlinear structure 
based on Artificial Neural Networks as a prediction de- 
vice. Moreover, in order to improve the adaptive solution, 
we divided the learning task in to two steps. First a new 
self-organized learning algorithm is proposed to adapt the 
first layer then the second layer connections are updated by 
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means of a classical supervised algorithm (supervised with 
respect to the prediction error, but blind with respect to the 
transmitted symbols). 

In Section 2,  we explore the prediction concepts. Section 3 
is dedicated to the new proposed self-organized algorithm. 
In Section 4, some simulation results are presented to illus- 
trate the performance of this new strategy and, in the last 
section, conclusions are presented. 

2. Prediction Concepts 

In digital communication systems, the implicit goal of ap- 
plying prediction is to remove temporal redundancies in the 
received signal, which can be used in blind equalization. 
The representation of a prediction-based equalizer is shown 
in Figure 2, where x(n) is the noisy channel output se- 
quence, 2(n) is the predicted signal, e(n)  is the prediction 
error, P is a prediction filter and g is an Automatic Gain 
Control (AGC). 

~ ( n )  = Z(n) + b(n) 
I 

Figure 2: Prediction-Based Equalizer 

The channel is modeled as a linear filter with discrete im- 
pulse response represented by 

N-1 

F ( z )  = f2z-i (1) 
i=O 

where fi are the channel coefficients and N is the channel 
length. We can also represent the channel model in a vecto- 
rial form: f = [ fo f1 f2 . . fiv-1 IT. 
Therefore, the noiseless channel outputs, which we call 
channel states, can be written as: 

And then, the prediction error corresponds to: 

e (n )  = z(n) - P(x(n - 1)) (3) 

where x ( n  - 1) = [ z(n - 1) z(n - 2) ... I*, z(n) = 
z(n) + b(n) and P is a function which provides a prediction 
of x(n) .  

The simplest structure is obtained by choosing P to be lin- 
ear. Although it is the most frequently used function, the ap- 
plication of the corresponding linear predictor is limited to 
minimum and maximum phase channels [ 1,4]. Some works 
(for instance [4] and references therein) have proposed a 
combined structure to treat nonminimum phase channels. 

To remove temporal redundancies, the prediction error 
equation is rewritten in the form: 

e(n)  = a(n)fo + a(n - 1)fi + . . . + b(n)  
-P (z(n - 1) + b(n  - 1) + z(n - 2) + b ( n  - 2) + . . - )  

(4) 

Using a linear filter with discrete finite impulse response 
p = [ p1 p2 p3 . . . p k ] ,  as a predictor device, we have: 

2 (n) 

where pi is the i-th prediction filter coefficient. 

Expanding Z(n) leads to: 

Combining Equations (5) and (6) leads to: 

The goal here is to recover a(n) fo .  For this purpose, we 
must remove the undesired symbols by adapting the predic- 
tion filter in order to force them to zero. Unfortunately, not 
all coefficients can be canceled at once. 

It becomes evident that, there is a residue in the prediction 
error expression and this residue cannot be cancelled by a 
finite linear filter. For equalization to be achieved, the sam- 
ples of the prediction error sequence must to be uncorre- 
lated and this residue must also be negligeable with respect 
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to U( n) fo . A possible solution to this problem is to increase 
the predictor order which decreases the contribution of the 
residue. The scale factor multiplying a(n )  is recovered by 
the AGC that matches the power of sequence e (n)  and trans- 
mitted sequence a(n). 

However it is known that in the nonminimum phase channel 
case, it does not work and in any case the noise itself cannot 
be removed. 

Since the linear mapping of a linear predictor may be not 
enough for equalization, we have tryed to find a structure 
able to perform a nonlinear mapping in a satisfactory way. 
We chose the function implemented by an ANN that has the 
following form: 

F = oi . sign (Z - ei) (8) 
i 

where sign(.) is the signum function. 

In the nonlinear case, Equation (3) is rewritten by replacing 
function P by a nonlinear function FNN where the sub- 
script stands for a neural network. 

e(n) = z(n) - FNN (x(n - 1)) (9) 

According to Equation (8), FNN is a sum of weighted and 
shifted copies of sign(-), whose parameters ,6 and 0 would 
be found by means of an a priori knowledge of the chan- 
nel coefficients. However, since we do not have such an a 
priori knowledge, all parameters of FNN are stochastically 
adjusted by means of the new algorithm described in Section 
3.  

Expanding Equation (9), it follows that: 

e(n) = a(n ) fo  + a(n - l)f l  + . . . + b(n) 
(10) -F” (z(n - 1) , z(n - 2) , . . . ) 

It is possible to find a function FNN such that we can ex- 
actly cancel the term: a(n - l ) f l + - .  .+ a(n-N+ l)fiv-1. 
Moreover this function can only explicitly depend on z(n - 
1) since it has all information about past symbols that we 
need. So, rewriting Equation (10) it follows that: 

e(n) = a(n ) fo  + a(n - 1)fl + * .  . + b(n)- 
F N N  (a(n - 1)fo + a(n - 2)fi + * .  . + b(n - 1)) (11) 

In this case we can obtain no residue. It is worth noting that 
the noise b(n) is assumed to be an white Gaussian random 
variable and, consequently, it is not predictable, therefore 

the best the ANN can do is to cancel redundancies in the 
time sequence e(n). 

Figure 3 shows, a two-dimensional illustration of a nonlin- 
ear mapping done by the ANN. 

Figure 3: Nonlinear Mapping Function 

Clearly, the parameters 8i, in Equation (8), have a crucial 
role on the construction of $J”. So, the problem of finding 
good parameters for the ANN is addressed in Section 3. 

3. New Self-organized Learning Algorithm 

In classical techniques, such as backpropagation [SI, the up- 
dating of parameters 8i and of the synaptic weights is usu- 
ally done through the same procedure. However, in this 
equalization problem such a procedure may not be able to 
quickly realize the fast transitions shown in Figure 3’. 

In order to solve this problem in a satisfactory way, we pro- 
pose a new self-organized learning algorithm that is based 
on the minimization of a cost function in order to correctly 
find the 8i of the neurons and to simplify the task of finding 
the interpolation surface. 

It is easy to show that the probability density function (PDF) 
of the received signal is a mixture of Gaussians. Further- 
more, the variance of each Gaussian is the noise variance 
and their means are channel-characteristic-related. 

It can be seen from Figure 3 that the function referred to 
in Equation (8) can achieve correct interpolation if param- 
eters 8i, associated to the step transitions, are well placed 
between the ‘valleys’. Then, we minimize a cost function 
that permits us to find those parameters by lookin for a func- 
tion that can fit in those ‘valleys’. Since the valleys have the 

‘In a previous work we have used the backpropagation algorithm for 
the equalization of channels with low intersymbol interference (ISI) [6] .  

349 

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO CEARA. Downloaded on November 25,2022 at 14:52:06 UTC from IEEE Xplore.  Restrictions apply. 



shape of a “V”, perhaps the simplest function, similar to a 
“V” we can use is N ( x ,  0,) = ( x  - @ (  + n where K > 0 
(see Figure 4). We use this function in order to simplify the 
resulting algorithm. 

Figure 4: Looking for the ‘valleys’ 

The constant 6 is inserted to avoid instability problems 
when 1x - Oil is very small and to guarantee a strictly posi- 
tive function N ( z ,  Oi). 

In order to measure function similarities, we have chosen 
the Kullback-Leibler Divergence (KLD), which is indeed a 
distance measure in the Riemann space [5] given by: 

-W 

where h(x)  and g(x)  are two strictly positive functions. 
Since the PDF of x (n  - 1) and N (2, S i )  are strictly pos- 
itives, we apply IUD in order to measure similarities be- 
tween them. 

Eliminating the term which does not depend on 8, we obtain 
a cost function given by: 

J(0,) = -E{ln(N(z, e,))} 
In order to find the minima of this cost function we have to 
set = 0, where 

The minimum value of Bi can thus be obtained by using a 
simple stochastic version of the gradient algorithm: 

which is a local adaptation rule of the Anti-Hebbian kind 
[51. 

Finally, this adaptation rule is applied on the first layer while 
the second one is updated by a stochastic LMS algorithm. 

4. Simulation Results 

Performance measures of the proposed nonlinear predictor 
are compared with those of the linear predictor using two 
kinds of channels, firstly the minimum phase, where the lin- 
ear predictor works, and then the nonminimum phase, where 
it gives bad results. 

Using BPSK modulation and an S N R  defined as S N R  = 

bo1 and noise variance respectively, we simulated a 100 
Monte-Carlo trials the Decision Squared Error (DSE) 
( ~ ( n )  = y - Dec(y))2 performance and the measure of 
Symbol Error Ratio (SER) for both cases. 

2 ) where and 0; are the sym- ( U ?  “E.: r;“+u; 
10 log10 

Minimum Phase Channel 

The minimum phase channel used in the computational sim- 
ulations has the following impulse response: 

f ( z )  = 1 + 0.8z-’ + O . ~ Z - ~  

In the linear predictor we used a filter with 25 coefficients, 
a step factor equal to and the initialization is done by 
setting the vector of filter coefficients at zero. 

The nonlinear predictor has one input, 15 neurons in the hid- 
den layer and one output. For this structure we used the fol- 
lowing parameters: supervised learning rate equals loe3, A 
equals 5.10-4. The number of symbols for finding the 0, 
was set to 50 and K = The algorithm for the AGC 
[4] has a step size equal to and the weights in the out- 
put layer were initialized at zero and the & were randomly 
initialized from an uniformly distributed interval: [-1.51 SI. 

We can see in Figures 5 and 6 the performance achieved 
when the SNR is equal to 40 dB and 30 dB, respectively. 
Figure 7 shows the Symbol Error Rate (SER) for some 
SNRs computed for both predictors. 

Decision Squared Error (DSE) 
0 -  

-Lulur Rsduwr - Nodmar RE&cwr 

s 
w IS- 
C 

.20 - 
. r .  

0 & I& I& 2obm Zrbm lobm 

Number of Symbols 

Figure 5 :  Decision-Squared Error (SNR = 40 dB) 
Minimum Phase Channel 
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Decision-Squared Error (DSE) 
0 -  

-Lm~Prcdlc lor  
-Nonlmsnr Predictor 

-3.82 dB SER I 

- U !  . , , , 
0 Jwo 1” 1 5 m  2” Uwo 3amr 

Number of Symbols 

-12.1 dB 

Figure 6: Decision-Squared Error (SNR = 30 dB) 
Minimum Phase Channel 

Simbol Error Rate 

1s 20 U 30 35 40 

Signal-ro-Noise Ratio 

Figure 7: Symbol Error Rate 
Minimum Phase Channel 

One can easily see that the performance of the nonlinear 
predictor is better than that of the linear one when S N R  > 
20 dB. 

Nonminimum Phase Channel 

The channel considered has the following impulse response: 

f ( z )  1 0.5 + lz-’ - 0 . 6 ~ - ~  

The linear predictor has the same characteristics as in the 
previous case. 

The nonlinear predictor has one input, 10 neurons in the hid- 
den layer and one output. The parameters are: supervised 
learning rate equal to 5.10-3 and X equals The num- 
ber of symbols for finding the Bi was set to 500 symbols 
and K = and 
weights in the output layer were initialized at zero and the 
8i were randomly initialized from an uniformly distributed 
interval: [- 1.5J.51. 

The step size of the AGC equals 

Table 1 shows the SER of both predictors, for an SNR of 35 
dB. As expected, the linear predictor has a poor performance 

while the nonlinear one performs pretty well. 

Table 1: SER for an S N R  of 35 dB 
Nonminimum Phase Channel 

5. Conclusions 

The strategy presented in this paper proposes a nonlinear 
prediction device based on Artificial Neural Networks. The 
use of prediction is extended to some cases of nonminimum 
phase channels and the nonlinear predictor outperforms the 
linear one even in the cases where it realizes channel equal- 
ization. 

The division on the learning task in to two steps, a self- 
organized and a supervised one, avoids reaching points of 
local minimum in the cost function. 

However, this strategy is limited in the situations where the 
‘valleys’ between the Gaussians of the PDF of z(n - 1) 
are deep enough, this deepness is the function of the noise 
power and channel characteristics. In cases where this con- 
dition does not hold, we must consider an adaptation of the 
previous algorithms, particularly acting on the parameter K .  

This improvement is actually under development. 
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