
Modeling the use of spot instances for cost reduction in cloud computing
adoption using a Petri net framework

Maristella Ribas1, C. G. Furtado2, Giovanni Barroso3
1Techne Engenharia e Sistemas, São Paulo, Brazil

2Federal Institute of Ceará (IFCE), Fortaleza, Brazil
mari@techne.com.br, cjunior@ifce.edu.br,

gcb@fisica.ufc.br

Alberto S. Lima3, Neuman Souza3, Antão Moura4
3Federal University of Ceará, Fortaleza, Brazil

4Federal University of Campina Grande (UFCG), Brazil
{albertosampaio, neuman}@ufc.br, antao@dsc.ufcg.edu.br

Abstract
An effective decision-making about using Infrastructure as a
Service (IaaS) resources in cloud computing projects is still a
challenge to managers. We need to optimize resources use in
cloud services, to obtain financial success in cloud projects. In
this work, we propose a petri net framework to model possible
cost savings using public clouds spot instances pricing scheme.
The results from initial simulations indicate that spot instances
can be a very interesting option for savings in autoscaling
process.
Keywords—Cloud computing, Spot Instances, BDIM, Petri nets..

I. INTRODUCTION
Cloud computing is defined by NIST [1] as a model for

enabling on-demand network access to a shared pool of
configurable computing resources that can be rapidly
provisioned and released with minimal management effort or
service provider interaction. Usually, cloud services are
categorized as Infrastructure as a Service (IaaS), Platform as a
Service (PaaS) and Software as a Service (SaaS).

In a previous work [2], we proposed a novel framework
that combined several of the most relevant factors (according
to the current literature) to assist decision-makers in the
evaluation of both SaaS and on-premises options choice.
There, we identified that cloud services managers need to
optimize the use of cloud resources in order to obtain financial
success in their cloud projects. When the PaaS users contract
the use of shared resources (CPU, memory, databases, or web
server, among others), this problem is more apparent.We can
cite the example of a PaaS provider that shares resources from
a third-party IaaS provider. The PaaS provider need to allocate
as many users as possible in the same resource without losing
quality of service (QoS), ensuring acceptable response time
and usability in accordance with defined service level
agreements (SLAs). The optimal allocation problem is similar
to the traditional "knapsack problem", known to be NP-
complete, and whose resolution requires specific heuristics to
enable the computational implementation in acceptable time.
We need to identify the heuristics that can provide the best
results for this problem.The complexity is even greater when
we need to optimize total cost of infrastructure use. When IaaS
plans hired by the PaaS provider uses automatic elasticity
features (auto scaling), the potential costs are virtually
unlimited, and any savings in each operation may represent a
significant value.

In this paper, we focus on modeling and reducing cost of
elasticity of cloud services. Elasticity, also known as dynamic
provisioning, “has become one of the most important features
of a cloud computing platform” [3]. By using this feature,
application owners can scale up and down the resources used
basedon the computational demands of their applications, and
pay only for the resources they actually use. Elasticity places
new challenges in resource management, as pointed in [4], and
makes it harder to estimate costs, thus adding more
complexity to the decision making process.

Our main work contribution resides in the framework
proposal and findings from simulation scenarios while
investigating savings using spot prices. The PN model to
estimate cost savings uses a particular purchasing option for
virtual machines named spot instances [5]. This purchasing
option is currently supported by Amazon Web Services
(AWS), the leader in public IaaS market, according to
Gartner´s analysts [6]. Spot instances work exactly the same
way as any other running EC2 virtual machine. The difference
lies in the pricing scheme: the hourly price is not fixed; in fact
clients bid on how much they are willing to pay for them.
AWS dynamically defines Spot Price, which varies in real-
time based on supply and demand. If the client bid is above
the current Spot Price, then the instance is started. If Spot
Price changes, and rises above the client bid, then the instance
is terminated by AWS. In this paper, we will refer to instance
as any type of virtual machine that can be rented in a public
cloud.

II. LITERATURE REVIEW
A Colored Petri Net [7] (CP-net or CPN) is a graphical

language for constructing models. A CPN is a discrete-event
modeling language combining the capabilities of Petri nets
with the capabilities of a high-level programming language
[8]. We used CPN Tools [9] to design the hierarchical Petri
nets to compose our framework. CPN Tools also supports the
inclusion of timing information to the framework.

We conducted a literature review, where we looked for
‘Cloud Cost Model’. We selected 43 papers that seemed more
relevant to our study. An interesting study related to
comparison of on-premises and cloud services is found in
[10]. The authors compare costs and overhead for HTC jobs in
two environments: a public cloud and a desktop cluster of
non-dedicated resources. Their cloud cost model considers
hours of use of instances and upload/download data. They
point that start of a billing period varies between providers.

978-3-901882-76-0 @2015 IFIP 1428

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO CEARA. Downloaded on November 11,2022 at 13:45:13 UTC from IEEE Xplore. Restrictions apply.

Some, including AWS, charge from the start
hour in which the instance was started – bill
an instance started at 7:59 pm whilst other
time the instance was actually started. Thei
model considers factors like cost of hardwar
of providing technical support for the deskto
incurred for carbonemission, and energy cos
propose six different policies for cost saving
- limiting the maximum number of Cloud
merging of different users’ jobs, P3 - instanc
delaying the start of instances, P5 - remov
starting an instance, and P6 - waiting for th
hour.

The work in [11] compared costs
performance computing) on-premises and i
simplified total cost of the on-premises clust
on the purchase of the hardware, the
operation of the cluster, and its energy con
can be lowered by turning off idle nodes). F
model, they focus on hours of instances
factors like purchasing options.

Elasticity in multi-tier cloud applicati
[3]. The authors proposed an algorithm tha
monitors to detect the changes in worklo
corresponding scaling in each tier. The
designed to measure the cost spent in addin
by the decreased response time because
Hence this criterion was called the consum
response time (CC/DRT) ratio.

Some studies refer to cost optimiza
programming techniques [12], using cache a
to reduce I/O costs and improve performanc
in [14] explored factors that affected char
services, mainly acceptability and effectiven
interesting insights on qualitative issues in cl

Spot instances were studied in[15] to
behavior through statistical models. The
probability density functions (pdf) for Spot
for price spot change. Another study of
proposed a framework for bidding on spot
achieve monetary advantages and still co
regulations.

Petri nets were used in [17] as a to
generation of dependability and cost model
cloud infrastructures.

To the best of our knowledge, ther
provide a model to estimate cost savings usin

III. OUR FRAMEWORK
Cloud providers usually charge custom

use basis, that is, the customer pays for each
or month) that the machine stays turned
provider has its own billing model for virtua
this paper, we investigated Amazon Web
current purchasing options. AWS is the lead
and currently offers three purchasing options

t of the wall-clock
ling from 7 pm for
s charge from the
ir on-premise cost
re acquisition, cost
op cluster, charges
st (per kWh). They
gs in the cloud: P1
d instances, P2 -
ce keep-alive, P4 -
ving the delay on

he start of the next

s of HPC (high
in the cloud. The
er mainly depends
maintenance and
nsumption (which
For the cloud cost

use and analyze

ion is analyzed in
at relies on online
oads and perform
e algorithm was
g a server divided
of this addition.

med cost/decreased

ation using linear
as a service (CaaS)
ce [13]. The study
rgeback for cloud

ness, and presented
loud services use.
characterize their

e authors present
Price and interval
Spot Prices [16]
prices in order to

omply with SLA

ool for stochastic
ls for representing

re is no study to
ng spot instances.

mers in a pay-per-
h hour (or minute,
d on. Each IaaS

al machines use. In
 Services (AWS)

der in IaaS market,
s:

• On demand: charges a
machine (named instance
upfront investment, and n
simpler way of use and
expensive hourly rate;

• Reserved: customers pay
instead of hours of use.
upfront, partial upfront or
prices for US-east region
AWS presents an hourly e
prices to the On deman
instances are paid by the p
hour of use. This means t
instance for a month, it m
or off, the price will be
prices can be equivalent to
local server [18];

• Spot: charges are for hour
option, however, the hourl
on how much they are wi
dynamically defines Spot
based on supply and dema
current Spot Price, that t
Price changes, and rises
instance is terminated by A

Figure 1. Reserved Instances Pric
inst

Figure 2. CPN Model fo
To investigate how the u

cost reduction, we created
organized in modules that will
all running instances and 2) sa
In our model, there will be on
reserved instance, that will re
availability of the service all th
on, the reserved option is the
other instances will be turned o
monitoring the demand for serv
process. This way, the model w

re for each hour the virtual
e) is turned on. There is no

no commitment of use. It is the
d pay, but usually the most

y for the period of reservation
Payment options may be: no
all upfront. Figure 1 illustrates
and m3.medium instance size.

estimate of the cost to compare
nd option; however, reserved
period (month, year) and not by
that if you purchase a reserved
akes no difference if it stays on
the same. Reserved instances

o on premises cost of operating a

rs of use, similar to on demand
ly price is not fixed. Clients bid
lling to pay for the hour. AWS
Price, which varies in real-time

and. If the client bid is above the
the instance is started. If Spot
above the client bid, then the

AWS.

ces for US-east Region and m3.medium
tance size.

or Instance use Simulation
se of spot instances can help in
a CPN model hierarchically
compute:1) the monthly cost of

avings by using Spot instances.
ne (could be more, if necessary)
emain always on, to guarantee
he time. Since it will always be
most cost effective option. The
on and off whenever needed, by
vers, simulating the auto scaling
will simulate elasticity of server

IFIP/IEEE IM 2015 Workshop: 10th International Workshop on Business-driven IT Management (BDIM) 1429

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO CEARA. Downloaded on November 11,2022 at 13:45:13 UTC from IEEE Xplore. Restrictions apply.

use. Figure 2 illustrates the main CPN mo
decomposed into four subnets: Monitor A
Up, Scale Down and Spot Termination. We
nets in detail.

CPN Model: Instance Use Simulation

This model represents the proposed me
Spot Instances for cost savings in elasticity.
parameters to the model:
• Hourly price for On Demand instance, r

constant demPrice in the model.
• Hourly price for Reserved instance, re

constant resPrice in the model.
• Hourly price for Spot instance. Thes

obtained dynamically by using AWS
simulation period. To accomplish that,
programming interface for Java.

• demand() function: This function repr
for servers in the auto scaling process.
number of servers needed at some poin
be customized when using the model. Fi
example of demand() function use.
function will return 1 server needed for
6h) and will return 1 or more server
22h). To compute how many extra serve
we use a Normal distribution with avera
deviation 0.5. This function should be
each business scenario of needs for ext
scaling.

Figure 3. Customizable demand() function e

There are 2 output values of the model:
• Total monthly cost of EC2 instance

charges for all instances (Reserved
Demand)

• Total savings obtained by using Spot in
to On Demand instances.

The CPN model will use the following eleme
• Color server: represent one instance cu

It is a tuple of 3 information (type, pr
type can be res, dem or spot, to identi
option (reserved, on demand or spot), p
price charged for that instance, and tim
of use of the instance.

• Color srv: list of active instances, repre
that are currently turned on.

• Color costSave: a tuple of 2 real number
represents the total monthly cost and
total savings.

• Place Begin: contains one timed to
simulation process at model time 0.

odel, that will be
AutoScaling, Scale

will discuss these

echanism for using
There are 4 input

represented by the

epresented by the

se values will be
API, during the

 we use a special

esent the demand
 It will return the

nt in time. It must
igure 3 presents an
In this case, the

r nighttime (23h to
s in daytime (6h-
ers will be needed,
age 3 and standard
adapted to reflect

tra servers in auto

example

es use, including
d, Spot and On

nstances compared

ents:
urrently turned on.
rice, time), where
ify the purchasing
price is the hourly

me is the start time

senting all servers

rs (r1, r2) where r1
r2 represents the

oken to start the

• Transition Open: will ope
programming interface an
including a reserved instan

• Function inSrv (type, price
given type and price to the

• Transition Monitor Autosc
to model the auto scaling p
off as needed), it will be
present the corresponding

• Transition Spot Terminati
model the spot terminatio
due to changes in spot p
detail when we present the

• Place cs: used as a temp
using one server when it
one can compute the total
multiply by the hourly pric
when we present the M
Termination subnets.

• Place end: will receive a to
predefined time (720 ho
representing the end of the

• Transition Close: will clos
programming interface
process, modeling the actio

• Function addVal(list): wi
each server in the list, mul
price. Then, it will add cos

• Function econSpotsRemo
savings of using each spot
hours of use by (on dema
price). Then, it will add sav

• Place EC2 Monthly cost a
simulation, its marking (c
of server use (c) and savin
output values of the model

Subnet: Monitor AutoScaling

Figure 4. Monitor A
This subnet models the

illustrates the CPN model, t
Monitor Auto Scaling in main
hour, and monitor if there is ne
It will compare the need of
demand() function) with the n
of list of active servers). When
token in place High Use, whi
that will be discussed in its
smaller, it will put a token in p

en the connection with the Java
nd initialize the list of servers,
nce in the list.
e, list): will insert one server of

e list of active servers.
caling: a substitution transition
process (turning servers on and
e discussed in detail when we
subnet.
ion: a substitution transition to
on process (turning servers off
prices), it will be discussed in
e corresponding subnet.
orary space to add the cost of
is turned off. At this moment,
hours of use of this server and

ce. It will be discussed in detail
Monitor Autoscaling and Spot

oken when simulation reaches a
ours = 24 hours * 30 days),
e month being analyzed.
se the connection with the Java
and finalize the simulation

on of turning off all servers.
ll compute the cost of use of
ltiplying hours of use by hourly
st for all servers.
oved (list): will compute the
t instance in the list, multiplying
and hourly price - spot hourly
vings for all instances.
and Spot savings: at the end of
c,s) will represent the total cost
ngs using spot instances (s), the
l.

Auto Scaling subnet
auto scaling process. Figure 4
that implements the transition
n net. It will be executed every
eed for turning on or off servers.
servers at this time (given by

number of active servers (length
n demand is greater, it will put a
ich will drive Scale Upprocess,
own subnet. When demand is
lace Low Use, which will drive

IFIP/IEEE IM 2015 Workshop: 10th International Workshop on Business-driven IT Management (BDIM)1430

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO CEARA. Downloaded on November 11,2022 at 13:45:13 UTC from IEEE Xplore. Restrictions apply.

Scale Down process, that will be discussed
as well. If demand is neither greater nor sm
wait until next hour, by putting a token in W
only be available in the next hour. It also c
simulation, and in this case, puts a token in p

Subnet: Scale Up

This subnet will model actions needed
our server list with the least cost possible. F
subnet Scale Up.

Figure 5. Scale Up subnet
Table 1. Parameters for obtaining spot pr

Simulation Region AZ OS
1 South America sa-east-1a Windows
2 South America sa-east-1a Windows
3 South America sa-east-1a Linux/UNI
4 South America sa-east-1a Linux/UNI
5 US-East us-east-1c Windows
6 US-East us-east-1c Windows
7 US-East us-east-1c Linux/UNI
8 US-East us-east-1c Linux/UNI

The policy implemented by this subne
current Spot price, place a bid a little above,
has the lowest price, the spot instance o
instance. It is important to notice that on-dem
always available, this way this subnet wil
server to our server list. The CPN mo
following elements:
• Place High use: has a token when scale u
• Transition GetPrice: will compute an

spot instance. To do that, it will use the
obtain the current spot price for the m
parameters (simulation#, modelTime) w
is a simulation number, that represent a
needed to get spot prices, and model Ti
day of month and time to obtain spot pri
illustrate input parameters of Java interfa

• Place Spot Price: holds the bid for t
which will be the spot price (a real num
the Java interface plus $0.0001. This wa
our bid is high enough to obtain a spo
least possible cost.

• Transition Launch Demand: fired when
Price place is higher than on demand pr
is not interesting to use spot instance, si
more expensive. It will insert a server
“on demand” option in the list of active
corresponding demPrice (input paramet
will use inSrv function (type, price, li

in its own subnet
maller, it will only
Wait place that will

checks the end of
place End.

d to add servers to
Figure 5 illustrates

rices in AWS
Instancetype
m3.medium
m3.2xlarge

IX m3.medium
IX m3.2xlarge

m3.medium
m3.2xlarge

IX m3.medium
IX m3.2xlarge

et is to obtain the
, and verify which
r the on demand

mand instances are
l always add one
del will use the

up is needed
optimal bid for a

e Java interface to
model time passing
where simulation#
a set of parameters
ime represents the
ice. Tables 1 and 2
face.
the spot instance,
mber) returned by
ay, we ensure that
ot instance, at the

n marking in Spot
rice. In this case, it
ince it is currently
r purchased using
e servers, with the
ter). To do that, it
ist), that will also

save the model time when
list and update the list of a

• Transition Launch Spot: fi
place is lower than on de
interesting to use spot i
cheaper. It will insert a
option in the list of active
price, that is, the bid. It wil
Table 2. Model time and corresp

Model Time Day of Mo
1 1
2 1
… …
24 1
25 2
... …

720 30

Subnet: Scale Down

This subnet will model ac
from our server list, selecting f
cost possible, to keep using
illustrate subnet Scale Down.

Figure 6. Scal
The policy implemented

server with the maximum price
It also implements the policy o
covered by a reservation (wher
to get better prices for the ho
when there is low utilizatio
available. This was built to m
business applications, where t
hours a day, always. It can also
‘reserved’ server is actually an
hybrid clouds. In fact, it is not
some scenarios the cost of a ‘r
an internally hosted server [18]

The CPN model will use t
• Place Low use: has a token
• Transition Pick server: w

server, to be turned off. It
that will select the server
This function excludes
turning them off will make
since they are always c
regardless of being used or

• Transition Turn Off: will e
selected server. Will also c

n the server was inserted in the
ctive servers.
red when marking in Spot Price
emand price. In this case, it is
instance, since it is currently
server purchased using “spot”
servers, with the corresponding
ll use inSrv function.
ponding time of day in simulation
onth Hour of day

0
1

…
23
0

…

23

ctions needed to remove servers
first the servers with the greatest
g the cheaper ones. Figure 6

le Down subnet
by this subnet is to select the

e charged hourly, and turn it off.
of always leaving ON the server
re the client paid an upfront fee
ourly charges). This way, even
on, there will be one server
model real world scenarios in
the application is available 24
o model the situation where the
n internally hosted server, as in
ticeable that in terms of cost, in
reserved’ server is equivalent to
].
the following elements:
n when scale down is needed
will pick the most expensive
will use function maxPrice(list)

r with the lowest hourly price.
reserved instances, because

e no difference in the final cost,
charged for the whole period,
r not.
exclude from the server list the
compute total cost for using that

IFIP/IEEE IM 2015 Workshop: 10th International Workshop on Business-driven IT Management (BDIM) 1431

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO CEARA. Downloaded on November 11,2022 at 13:45:13 UTC from IEEE Xplore. Restrictions apply.

instance and the savings by using spot in
to on-demand instances, using function
EconSpot

• Function CostServer will compute cost o
using the expression: Cost of use =
(hourly price)

• Function econSpot will compute sa
expression: Savings = (hours of use) *
on-demand) – (hourly price for spot)).
notice that savings will only be compu
off spot instances, since they will be zer
off on-demand instances (hourly price
hourly price)

Subnet: Spot Termination

This subnet will model regular verifica
market. As mentioned before, spot instances
terminated by AWS when Spot price rises a
client is currently paying for them. Figure 7
Spot Termination.

Figure 7. Spot Termination subne
The CPN model will use the following eleme
• Transition Check for Spot Terminat

modelTime): will be executed every two
spot prices and simulate termination of s
do that, it will use the same Java inter
current spot price that was used in tran
subnet Scale Up. It will only be fired
least one spot instance in the list of act
fired, It will wait for 2 hours, by puttin
place that will only be available after
checks the end of simulation, and in
token in place End.

• Place Spot Price: holds the current spot
the Java interface.

• Transition Turn Off if spot price raised:
of active servers looking for spot insta
prices lower than the current spot price
will be terminated (turned off)
valSpotsRemoved() and econSpotsRemo
the cost of use of the terminated instanc
computed in Scale Down subnet. The
that Turn Off if spot price raised ma

nstances compared
ns CostServer and

of using the server
(hours of use) *

avings using the
((hourly price for
It is important to

uted when turning
roed when turning
for on-demand =

ation of Spot price
s are automatically
above the price the
7 illustrates subnet

et
ents:
tion (simulation#,
o hours, to monitor
spot instances. To
rface to obtain the
nsition GetPrice in
d when there is at
tive servers. After

ng a token in Wait
r 2 hours. It also
this case, puts a

t price returned by

will check the list
ances with hourly
s. These instances
. It will use
oved() to compute
ces and savings as
only difference is

ay remove several

servers from the list of
model, the termination o
several Scale Up transiti
levels are still high.

IV. CASE STUDY AN

We did a case study to va
The experimental design of
factorial design. Since we u
examined the factors that affect
• Region-AZ: AWS curren

different geographic locat
Regions: US-East (N. Vir
West (N. California), EU
Pacific (Singapore), Asia
(Sydney), and South Ame
has at least 2 availabil
datacenters in different loc
latency links. Each regio
On-demand and Reserved
may also vary by AZs in e

• Operating System: AWS h
use of EC2 instances depe
SUSE Linux and Windows

• Instance type: EC2 price
instance. For our experime
(1 vCPU, with computatio
of memory and 1HD type
4GB) and m3.2xlarge (8vC
of 26 ECU, 30 GB of mem
storage capacity of 80 GB)

Table 4 illustrate factors and le
of our simulations

Table 4. Fact
Factor Levels Selecte
Region-AZ Over 20 South
OS 3 Windo
Instance type Over 20 m3.me

In each of the selected
simulations to obtain statistic
scenarios are shown in Table 5

Table 5. Simula

Scena
rio

Region A
Z

OS Instance
type

1 South
America

1a Windo
ws

m3.med
um

2 South
America

1a Windo
ws

m3.2xla
ge

3 South
America

1a Linux/
UNIX

m3.med
um

4 South
America

1a Linux/
UNIX

m3.2xla
ge

5 US-East 1c Windo
ws

m3.med
um

6 US-East 1c Windo
ws

m3.2xla
ge

7 US-East 1c Linux/
UNIX

m3.med
um

8 US-East 1c Linux/
UNIX

m3.2xla
ge

Savings using spot instances
Figure 8 presents simulat

South America region, the sim

active servers at once. In our
of these instances may cause
ions to be fired, if utilization

ND RESULT ANALYSIS
alidate our framework proposal.
the simulations followed a 2k
sed AWS Spot Instances, we
ted EC2 prices:

ntly offers their services in 9
tions around the world, named
ginia), US-West (Oregon), US-
(Ireland), EU (Frankfurt), Asia
Pacific (Tokyo), Asia Pacific

erica (São Paulo). Each region
lity zones (AZs), which are
cations connected through low-

on has its own pricing table for
Instances. Spot Instances price

ach region.
has different prices for hours of
ending on the O.S: Linux/Unix,
s.
es vary upon the size of the
ents, we considered m3.medium
onal power of 3 ECU, 3.75 GB
SSD with a storage capacity of

CPU, with computational power
mory and 2HD type SSD with a
)
evels in the experimental design

tors and levels
ed for Experiment
America (1a), US-East (1c)

ows, Linux/Unix
edium, m3.2xlarge

23 = 8 scenarios we ran 10
cal information. The evaluated
.
ations using framework

Hourly price

e On
demand

Reserved
(1 year all
upfront)

Upfront
investment

di 0,1580 0,1410 $1.235,00

ar 1,2650 1,1205 $9.816,00

di 0,0950 0,0509 $446,00

ar 0,7610 0,4063 $3.559,00

di 0,1330 0,0855 $749,00

ar 1,0640 0,6809 $5.965,00

di 0,0700 0,0425 $372,00

ar 0,5600 0,3412 $2.989,00

tion results for savings. For the
mulation returned higher savings

IFIP/IEEE IM 2015 Workshop: 10th International Workshop on Business-driven IT Management (BDIM)1432

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO CEARA. Downloaded on November 11,2022 at 13:45:13 UTC from IEEE Xplore. Restrictions apply.

for m3.medium instances. In fact, for m3.
there was no savings at all when using L
happened because in the whole period o
prices were higher than on demand prices
and $0.7610 for on demand). In this case, o
use spot instances and consequently there we
For US-East region, simulation returned hig
67%) than in South America region, and the
found in m3.2xlarge instances. This happe
prices remained consistently low during the
($0.0641 for spot and $0.5600 for on demand

Figure 8. Simulation results
Face validity

Validating a framework, such as we ha
is a multi-year effort. To start however, w
validity questionnaire to 20 IT managers.
included three questions, each of which lead
to be tested. We presented the framework th
before the evaluation. Statistical inference w
hypotheses (binomial statistical test with a
level). Our initial results are shown in Table
appears to be established in the three dime
considered the framework to be “useful”
“preferable” to their current way of decision
to expand and repeat this test in a future work

Table 8. Hypotheses to test theory face v

Hypothesis
%

who
agree

Preference: Manager prefers the framework to the current
process 100

Utility: Manager considers the framework useful 100
Effectiveness: In modeling a business scenario, manager
can identify value elements in cost reducing to decision-
making support

90

V. CONCLUSION AND FUTURE W

Cloud Managers need solutions to sup
cost reduction and resource optimization
decision-making process.

In this work we proposed a Petri n
evaluate cost reduction using spot instance
set of policies in auto scaling that can help in
cloud services. Our main contributions we
proposal and the simulation scenarios evalua

Our preliminary studies indicated
instances in auto scaling process may h
services costs. We proceeded an initial face
where results were promising. Manager

2xlarge instances,
Linux/UNIX. That
f simulation spot
($1.2240 for spot
our model did not
ere no savings.
gher savings (up to

highest value was
ened because spot

simulation period
d).

ave presented here,
we applied a face
The questionnaire
ds to a hypothesis
heory to managers

was used to test the
a 5% significance
e 8. Face validity
ensions. Managers
”, “effective” and
n making. We plan
k.
validity

Is there statistically
significant evidence to

accept hypothesis?

yes

yes

yes

WORK
pport an effective

n, to support the

net framework to
s. We proposed a
n cost reduction of
ere the framework
ation.

that using spot
help reduce cloud
e validity exercise,
rs evaluated our

framework as useful, preferab
our presented framework can
criterion in decision-making ab
As a threat to validity, we c
considered scenarios and simul
our initial results were promisin

This paper focus was the
plan to expand and use our fr
making in IaaS, PaaS and
future work, we plan to exe
complete our framework valid
of the framework to handle SLA

REFER

[1] NIST - National Institute of Stan
of cloud computing. Gaithersburg

[2] Ribas M., Lima A. S., De Souza
G. Assessing Cloud Comput
Applicationsusing a Petri net MC
IT Management Workshop-BDIM

[3] Han, R. et al. Enabling cost-awa
cloud applications. Future Genera

[4] Manvi, S. S., Shyam, G. K. Res
a Service (IaaS) in cloud comput
Computer Applications, pp. 424-

[5] Amazon. Amazon EC2 Spot Ins
http://aws.amazon.com/ec2/purch
in December, 2014.

[6] Gartner Group. Magic Quadrant
Fonte: http://www.ga
1UKQQA6&ct=140528&st=sb. A

[7] Peterson, J.L. Petri net theory a
Hall, 1981.

[8] Jensen, K., Kristensen, L. Co
Validation of Concurrent System

[9] CPN Group. (2013). CPN Tools.
November 2013.

[10] McGougha, A.S. et al. Compar
cluster with an existing campus
Systems, 2014.

[11] Alfonso, C, et al. An econom
viability of outsourcing cluster c
Computer Systems, 2013.

[12] Malawski, M. et al. Cost minimiz
hybrid cloud infrastructures. F
2013.

[13] Han, H. et al. Cashing in on the
on Parallel and Distributed System

[14] Baars, T. et al. Chargeback f
Computer Systems, p. http://d
2014.

[15] Javadi, B. et al. Characterizing
environments. Future Generation

[16] Tang, S. et al. A Framework for
SLA Constraints. IEEE Trans
Systems, 2014.

[17] Sousa, E. et al. A Modeling App
Considering Dependability and C
on Systems, Man, and Cybernetic

[18] e-fiscal. Computing e-Infrastru
Pricing and Business Models.
Computing e-Infrastructures, 201

le and effective. The results of
n be used by managers as a
bout cloud computing adoption.
can cite the limited number of
lations. Albeit these limitations,
ng.
e cost reduction treatment. We
ramework to support decision-
SaaS scenarios evaluation. As
ecute extensive simulations to
dation, and a possible extension
A violations and fines.

RENCES
ndards and Technology. NIST Definition
g, MD, 2009.
J. N., Moura A., Sousa F. R. C., Fenner
ting SaaS adoption for Enterprise

CDM framework, Ninth Business-driven
M, pp. 1-6, 2014.
are and adaptive elasticity of multi-tier
ation Computer Systems, 2014.
source management for Infrastructure as
ting: A survey. Journal of Network and
440, 2014.
stances. Fonte: Amazon Web Services:
hasing-options/spot-instances. Accessed

t for Cloud Infrastructure as a Service.
artner.com/technology/reprints.do?id=1-
Accessed in December, 2014.
and the modelling of systems. Prentice

oloured Petri Nets - Modelling and
ms. Springer, 2009.

. Fonte: http://cpntools.org/.Accessed in

rison of a cost-effective virtual Cloud
s cluster. Future Generation Computer

mic and energy-aware analysis of the
omputing to a cloud. Future Generation

zation for computational applications on
Future Generation Computer Systems,

Cache in the Cloud. IEEE Transactions
ms, 2012.
for cloud services. Future Generation
dx.doi.org/10.1016/j.future.2014.08.002,

g spot price dynamics in public cloud
n Computer Systems, 2013.
r Amazon EC2 Bidding Strategy under
sactions on Parallel and Distributed

proach for Cloud Infrastructure Planning
Cost Requirements. IEEE Transactions
cs: Systems, 2014.
cture cost estimation and analysis -

In: Financial Study for Sustainable
13.

IFIP/IEEE IM 2015 Workshop: 10th International Workshop on Business-driven IT Management (BDIM) 1433

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO CEARA. Downloaded on November 11,2022 at 13:45:13 UTC from IEEE Xplore. Restrictions apply.

