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ABSTRACT
In this paper, we propose a new Multilinear Generalized Singular
Value Decomposition (ML-GSVD) which allows to jointly factor-
ize a set of matrices with one common dimension. The ML-GSVD
is an extension of the Generalized Singular Value Decomposition
(GSVD) for more than two matrices. In comparison with other ap-
proaches that extend the GSVD, the proposed tensor decomposition
preserves the essential properties of the original GSVD, such as or-
thogonality of the second mode factor matrices. In this work, we
introduce two algorithms to compute the ML-GSVD. In addition,
we present an application of the ML-GSVD to compute the beam-
forming matrices for the multi-user MIMO downlink channel with
more than two users in wireless communications.

Index Terms— Tensor factorization, Generalized SVD, Multi-
linear GSVD, Beamforming

1. INTRODUCTION

The Generalized Singular Value Decomposition (GSVD) is a natu-
ral generalization of the SVD for two matrices, which is useful in
various communication and biomedical applications, such as coor-
dinated beamforming, MIMO relaying, physical layer security, and
genomic signal processing [1–6].

In this paper, we present an extension of the GSVD [7], [8] to
factorize a three-way tensor. The proposed multilinear generalized
singular value decomposition (ML-GSVD) can be used for the joint
analysis of a collection of more than two matrices which may have a
varying number of columns and the same number of rows.

The authors in [9], [10] have already introduced a multidimen-
sional decomposition to extend the GSVD to the tensor case. But the
so-called higher-order GSVD (HO GSVD) in [9] does not preserve
the orthogonality of the factor matrices as in the original GSVD.
In [10] the authors have presented a Tensor GSVD to jointly de-
compose two data sets as a coupled decomposition of two tensors.
Note that both papers [9] and [10] consider real-valued matrices and
a biomedical data analysis. In contrast to the ML-GSVD, the HO
GSVD and the Tensor GSVD do not inherit the properties of the
original GSVD, such as the concept of common and private sub-
spaces.

Due to the fact that the ML-GSVD provides orthogonal factor
matrices for the individual slices, it is a valuable tool for coordi-
nated downlink beamforming in a wireless multi-user MIMO sys-
tem. More specifically, by applying the ML-GSVD to a set of chan-
nel matrices (associated with different users), we are able to iden-
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tify common subspaces (CSs) to a group of users, as well as private
subspaces (PSs) to individual users. Hence, by exploiting the struc-
ture of these subspaces, broadcast and multicast transmission can be
simultaneously combined on the downlink. In [1], [2] and [3] the
SVD-based beamforming is generalized to GSVD-based beamform-
ing for only two users. The authors illustrate how the GSVD can be
exploited for coordinated beamforming in a multi-user MIMO sys-
tem with two users. The use of the ML-GSVD allows us to go further
and increase the number of destinations. Depending on the number
of transmit and receive antennas (tensor dimensions), the subspace
structure of the ML-GSVD distinguishes between common and pri-
vate subspaces. Common subspaces are used to transmit the same
data to several users, while private subspaces allow to send confi-
dential messages to different users simultaneously. Hence, the ML-
GSVD allows to handle an arbitrary number of users that is less or
equal than the number of transmit antennas on the downlink of a
coordinated MIMO beamforming system.

The remainder of the paper is organized as follows. In Section 2,
we review the GSVD for two matrices. Then, we introduce the ML-
GSVD. Section 3 presents two algorithms for computing the ML-
GSVD. In Section 4, we present an application of the ML-GSVD
for coordinated beamforming in multi-user MIMO systems. Sec-
tion 5 presents some numerical results and the paper is concluded in
Section 6.

Notation: Matrices and vectors are denoted by upper-case and
lower-case bold-faced letters, respectively. Bold faced calligraphic
letters denote tensors. The superscripts {·}T and {·}H denote the
transpose and Hermitian transpose, respectively, whereas diag{·} is
the operation of constructing a diagonal matrix with diagonal ele-
ments being the entries of the input vector, while bdiag{·} is the
operation of constructing a block diagonal matrix with the input ma-
trices on the main diagonal. The i-th row and the j-th column of a
matrixA ∈ CI×J is represented byA(i, :) ∈ CJ andA(:, j) ∈ CI ,
respectively, where i = 1, . . . , I and j = 1, . . . , J . The Kronecker
and Khatri-Rao products are denoted as ⊗ and �, respectively. Ad-
ditionally, we denote the higher-order norm of a tensor A by ‖A‖H
and the norm of a vector a by ‖a‖. The r-mode unfolding of the
tensor A is denoted as [A](r). Id denotes the d × d identity ma-
trix. {A}R(Q) and {A}C(Q) denote the sub-matrices consisting of
the columns and rows of A with indices in the set Q ⊆ {1, . . . , I},
respectively.

2. MULTILINEAR GENERALIZED SINGULAR VALUE
DECOMPOSITION (ML-GSVD)

Before introducing the ML-GSVD, let us first review the GSVD of
two matrices proposed in [7] and [8]. Let H1 ∈ CI×J1 and H2 ∈
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CI×J2 be two matrices having the same number of rows, and an
arbitrary number of columns J1 and J2. Then, the GSVD of H1

andH2 is defined as

H1 = A ·C1 ·BT
1 ,

H2 = A ·C2 ·BT
2 ,

(1)

whereB1 ∈ CJ1×J1 andB2 ∈ CJ2×J2 have orthonormal columns,
A ∈ CI×I is nonsingular and common to both matrices. Moreover,
C1 ∈ RI×I and C2 ∈ RI×I are non-negative diagonal matrices.
The ratios of the corresponding entries ofC1 andC2 are called gen-
eralized singular values of H1 and H2. Let q = rank([H1 H2]),
r = q − rank(H2) and s = rank(H1) + rank(H2) − q, then C1

andC2 have the following structure:

C1 =

Ir Σ̂
0(m−r−s)×(t−r−s)

 , (2)

C2 =

0(J2−q+r)×(r)

Λ̂
I(q−r−s)×(q−r−s)

 , (3)

where Ir and I(q−r−s)×(q−r−s) are identity matrices,
0(m−r−s)×(t−r−s) and 0(J2−q+r)×(r) are zero matrices pos-
sibly having no rows or no columns, Σ̂ = diag(σ1, · · · , σs),
Λ̂ = diag(λ1, · · · , λs) are diagonal matrices, such that 0 < σn <
1, 0 < λn < 1, and σ2

n + λ2
n = 1 for n ∈ {1, · · · , s}. For more

details on the GSVD we refer the reader to [7, 8].
Next, let us introduce the ML-GSVD forK ≥ 2 complex-valued

matrices. Let us consider a set ofK complex-valued matricesHk ∈
CI×Jk with the same number I of rows and potentially a different
number Jk of columns:

H1 =A ·C1 ·BT
1 ∈ CI×J1 ,

...

HK =A ·CK ·BT
K ∈ CI×JK .

(4)

TheK matrices can be viewed as slices of the tensor H ∈ CI×J×K ,
J = max(J1, . . . , JK , I) (zeros are added for those elements that
are not defined in (4)), which allows us to use tensor based algo-
rithms to compute the matrices A,C, and Bk. The diagonal ele-
ments of Ck, k ∈ {1, · · · ,K}, are stacked as rows of C. Then, the
ML-GSVD of the tensor H (Fig. 1) can be defined in a slice-wise
fashion as

Hk = A · diag {C(k, :)} ·BT
k ∈ CI×Jk , (5)

whereA ∈ CI×I is square, nonsingular, and common for all factor-
izations. The matrix Bk ∈ CJk×I corresponding to the k-th slice
of H has orthonormal columns. The elements of C ∈ RK×I are
non-negative, and the columns of C have unit norm. The values of
the first row of C are sorted in descending order, such that the first
row ofC has the following structure:

C(1, :) =
[
1T
p1 σT

1 0T
p2+...+pK

]
∈ R1×I , (6)

where 1p1 is a vector of ones, and 0p2+...+pK is a vector of zeros,
which might have no entries. The values of σk ∈ Rck are in the
range (0, 1), pk and ck are the dimensions of the so-called common
and private subspaces, respectively. The remaining rows of C are

=
. .

Fig. 1: 3-D Generalized Singular Value Decomposition.

sorted according to the first row. Whenever there are ambiguities,
we sort the elements of the second row in descending order. Then
we turn to the third row, whose elements are sorted according to the
first and second rows. Whenever there are ambiguities, we sort the
elements of the third row in descending order. After that, we switch
to the fourth row, and so on.

Depending on the number of rows and columns in H , we have
the following cases:

1. I ≤ Jk for ∀k. The matrixC has the following structure:

C(k, :) =
[
σT

k

]
∈ RJk , (7)

where σT
k = [σk,1, · · · , σk,I ] ∈ R1×I , such that 1 > σk,i >

0 for i ∈ {1, · · · , I}. In this case, we have only a common
subspace.

2. (a) I > Jk for ∀k, I <
∑K

k=1 Jk

(b) I ≤ Jk for some k, and I > Jn for n 6= k

The rows ofC have a similar structures as in (6).

3. I ≥
∑K

k=1 Jk. In this case, the rows of C only contain ones
and zeros, and their ordering is defined as follows:

C(k, :) =


1T
J1

0T
J2
· · · 0T

JK

0T
J1

1T
J2
· · · 0T

JK

...
0T
J1

0T
J2
· · · 1T

JK

 ∈ RK×I , (8)

where 0T
Jk
∈ R1×Jk and 1T

Jk
∈ R1×Jk are row vectors of

zeros and ones, respectively.

From equation (5), it can be observed that the ML-GSVD has
some similarities with the PARAFAC2 decomposition [11]. It is
known from [11] that the uniqueness of equation (5) (up to col-
umn permutation and scaling) is ensured by the Harshman constraint
BT

k ·Bk = FT ·F , such thatBT
k = FT ·Vk, Vk ·V T

k = IR, andK
is large enough. In the ML-GSVD, since the matricesBk are orthog-
onal, we set F to the identity matrix, which impliesBH

k ·Bk = II .
The similarity between PARAFAC2 and the ML-GSVD motivates us
to extend efficient algorithms to compute PARAFAC2 for computing
the ML-GSVD, as will be discussed in the next section.

3. COMPUTATION OF THE ML-GSVD

In this section, we propose two ALS-based direct fitting algorithms
to calculate the ML-GSVD. The first one is based on the Direct Fit-
ting algorithm in [12], while the second is based on the computation
of PARAFAC2 via double contractions [13]. The steps of the al-
gorithms are detailed in Algorithm 1 and Algorithm 2, respectively.
Both algorithms are initialized with the values of A based on the
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Algorithm 1 ALS based direct fitting algorithm for the computation of the
ML-GSVD of the set of K matrices Hk ∈ CI×Jk .
Require: Tensor H
1: Initialize A and C.
2: repeat
3: for k = 1, 2 . . . , K do
4: Reconstruct H̃ with A and C:

H̃k = A · diag {C(k, :)}
5: Update Bk (k = 1, . . . , K)

Tk = H
H
k H̃k, Bk = (T

H
k Tk)

− 1
2 T

H
k

6: Update H̃: H̃k = Hk ·BH
k

7: end for
8: Update A and C :

A = [H̃](1)

(
bdiag{

C(:, 1)H

‖C(:, 1)‖2
, . . . ,

C(:, I)H

‖C(:, I)‖2
}
)T

,

C = [H̃](3)

(
diag{

1

‖A(:, 1)‖2
, . . . ,

1

‖A(:, I)‖2
}(A � II)

H

)T

9: for k = 1, 2 . . . , K do
10: Ĥk = A · diag {C(k, :)} ·BT

k ∈ CI×Jk ,
11: end for
12: ER =

(∥∥∥Ĥ−H
∥∥∥2
H

)
/‖H‖2H

13: until ∆ER =
(
Eold

R − ER

)
/Eold

R is smaller than a predefined threshold,

Eold
R is the residual in the previous iteration

14: Normalize and reorder the columns of C, reorder the columns of A and BT
k ac-

cordingly

SVD of
∑K

k=1HkH
H
k and with a random non-negative matrix C.

The unitary matrixBk is updated in step 5 via the extended general-
ized solution of the complex-valued Orthogonal Procrustes Problem
(OPP) [15].

In the last step the normalization of the columns of C is per-
formed to ensure that they have unit norm. To ensure that the el-
ements of C are real, we multiply diag {C(k, :)} by its complex
conjugate, and compensate it in the columns of BT

k (included in
step 14). Next, the elements of C are ordered as in (6) and in
the description below this equation, while the columns of A and
the rows of Bk are reordered accordingly. Note that in the case
I > max(J1, . . . , JK), zero columns are appended to the matrices
Hk ∈ CI×Jk in Alg. 2, so that the original tensor H is of size
I × I ×K.

Given an arbitrary tensor, our simulations show that the proposed
ML-GSVD is almost exact in case 3 (yielding an error ER on the
order of 10−7). In cases 1 and 2 a good approximation is obtained
in the least squares sense (the error ER is on the order of 10−2).

4. APPLICATION TO COORDINATED BEAMFORMING
IN MULTIUSER MIMO SYSTEMS

An interesting application of the ML-GSVD is the design of trans-
mit and receive beamforming matrices in a coordinated multi-user
MIMO system combining broadcast and multicast transmissions.
In [1] and [3], the authors proposed a GSVD-based coordinated
beamforming, which was limited to 2 destinations (users). The
proposed ML-GSVD provides a generalization to any number K of
users that is less or equal than the number of transmit antennas I .

Fig. 2 illustrates a coordinated downlink multi-user MIMO sys-
tem, where the source (base station) serves K = 3 destinations
(users). The matrixHk ∈ CI×Jk is a slice of the multi-user MIMO
channel tensor H, representing the channel between the access point
and the kth user. The received signal at the kth user is given by:

yk =HT
k {AT}−1

C(Q){x}R(Q) + nk, (9)

Algorithm 2 ALS based algorithm for the computation of the ML-GSVD
of the set of K matrices Hk ∈ CI×Jk

Require: Tensor H
1: Initialize A and C.
2: repeat
3: for k = 1, 2 . . . , K do
4: Reconstruct H̃ with A and C: H̃k = A · diag {C(k, :)}
5: Update Bk (k = 1, . . . , K):

Tk = H
H
k H̃k, Bk = (T

H
k Tk)

− 1
2 T

H
k

6: end for
C̄ =

(
(IK ⊗ 1

T
R) � vec

{
C

T
}T
)
∈ RK×IK

7: Estimate A: A = [H](1) ·
(

(1T
K ⊗ II) · [B̃](2) � C̄)T

)+

Ā = A
(
1
T
K ⊗ II

)
∈ CI×IK

8: Estimate C by solving the non-negative least squares problem [14]:

vec {H} ≈ [B̃](2) � (IK ⊗ 1
T
R) � Ā · vec

{
C

T
}

9: for k = 1, 2 . . . , K do
10: Ĥk = A · diag {C(k, :)} ·BT

k ∈ CI×Jk

11: end for
12: ER =

(∥∥∥Ĥ−H
∥∥∥2
H

)
/‖H‖2H

13: until ∆ER =
(
Eold

R − ER

)
/Eold

R is smaller than a predefined threshold,

Eold
R is the residual in the previous iteration

14: Normalize and reorder the columns of C, reorder the columns of A and BT
k ac-

cordingly

and at the detector we get:

ŷk = {BH
k }R(Q)yk, (10)

where x is the transmitted data vector, {AT}−1
C(Q) is the transmit

beamforming matrix, and {BH
k }R(Q) is the receive beamforming

matrix, which jointly diagonalize the channel matrices represented
by Hk to get virtual channels (VCs) that enable a simultaneous
point-to-multipoint connection with private and common messages.
C(Q) and R(Q) denote the columns and rows of the matrix with
indices in the set Q ⊆ {1, . . . , I}. The required subset of VCs
(private or common subspaces) can be chosen by appropriate selec-
tion of the columns of the transmit precoding matrix, and the corre-
sponding rows of the receive beamforming matrices. For instance,
if the ith and (i + 1)th columns of C lie in a common subspace,
for broadcasting we choose Q ∈ {i, i + 1}, and select the ith and
(i + 1)th columns and rows of the transmit and receive beamform-
ing matrices, respectively. The elements of diag {C(k, :)} contain
the normalized gains of the corresponding virtual channels (private
or common subspaces). The condition I > Jk is the requirement to
have private subspaces, while if I < Jk only broadcasting is possi-
ble (see Section 2). The private subspaces (ones and zeros) in (6) are
used by the source S to send confidential messages to the user Uk,

…

…
…

…

Fig. 2: Source-to-3 destinations downlink multi-user MIMO.

4589

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO CEARA. Downloaded on November 17,2022 at 17:09:03 UTC from IEEE Xplore.  Restrictions apply. 



10
-5

10
-4

10
-3

10
-2

10
-1

SRE

10
-3

10
-2

10
-1

10
0

C
C

D
F

Algorithm 1

Algorithm 2

Fig. 3: CCDF of SRE for the three-way complex-valued tensor with
slices of size 10× 3, 10× 4, and 10× 5, respectively. The vertical
lines represent the mean value.

while the common subspace (σk) is used for broadcasting common
messages to all users. The private subspaces always have unit nor-
malized gains, and the normalized gains of the common subspaces
are less than one. Note that the resulting number of private and com-
mon subspaces depends both on the dimensionality and realization
of the channel tensor H ∈ CI×J×K .

5. SIMULATION RESULTS

In this section, we show some simulation results to evaluate the per-
formance of the proposed ML-GSVD. First, we assess the perfor-
mance of the two algorithms proposed in Section 3. In our simula-
tions, the complex-valued tensor H is generated randomly from a
zero mean unit variance complex Gaussian distribution. As an ac-

curacy measure, we use the SRE =
∥∥∥Ĥ−H

∥∥∥2
H
/‖H‖2H (Squared

Reconstruction Error), where Ĥ is the reconstructed channel tensor
using the estimated factor matrices. The maximum number of iter-
ations for both algorithms is set to 200. The algorithms are stopped
if they reach the maximum number of iterations or if they reach the
minimum error of the cost function, which is fixed to 10−7.

In Fig. 3, we depict the CCDF (Complementary Cumulative Dis-
tribution Function) of the SRE for a complex-valued tensor with the
slices of size 10 × 3, 10 × 4, and 10 × 5. The SREs presented in
Fig. 3 corresponds to 1000 realizations of H. The vertical lines rep-
resent the mean values for the each curve. The Algorithm 2 has a
better accuracy, while the Algorithm 1 is significantly faster.

In the next experiment, we evaluate the performance of the pro-
posed ML-GSVD based beamforming for a coordinated downlink
MIMO system with three users. We plot the average BER as a func-
tion of the signal-to-noise ratio (SNR), which is defined as SNR =
1/σ2

n, where σ2
n is the noise variance. We choose an asymmetrical

scenario with I = 12 transmit antennas at the source, and, respec-
tively, J1 = 6, J2 = 7, and J3 = 8 receive antennas at the users.
The channels H1, H2, and H3 are drawn from a zero mean i.i.d.
circularly symmetric complex Gaussian distribution. At each run,
1200 QPSK symbols are transmitted. The simulation results are de-
picted in Fig. 4. As it can be observed, the PSs have an identical
BER performance, while the performance of the CSs is worse. This
is explained by the subspace structure of C: In this case, the PSs
have a higher gain than CSs. These gains are obtained as the prod-
uct of the normalized gain in C and the norm of the corresponding
column in A. To improve the BER for the CSs, we employ the
ML-GSVD-based zero-forcing detection. Furthermore, additional
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Fig. 4: BER vs. SNR. 1200 QPSK symbols, I = 12, J1 = 6, J2 =
7, J3 = 8. The results are averaged over 5000 channel realizations.
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power allocation could be used to improve the overall BER perfor-
mance. That should be done by allocating more power to the CSs
as compare to the PSs. This study will be further investigated in the
extended version of this paper. Figure 5 illustrates the histogram
of the probability of having private subspaces (PSs) and common
subspaces (CSs) with I = 10 transmit antennas at the source, and
J1 = 3, J2 = 4 and J3 = 5 antennas at users, respectively. As
it can be seen, the proposed ML-GSVD beamforming also provides
CSs between 2 of 3 users.

6. CONCLUSIONS

We have presented a new Multilinear Generalized Singular Value
Decomposition (ML-GSVD) as an extension of GSVD to jointly
factorize a set of an arbitrary number (K ≥ 2) of matrices with
a common number of rows or columns. In comparison with existing
GSVD generalization methods, our ML-GSVD preserves the proper-
ties of the original GSVD, such as orthogonality of the second mode
factor matrices. Two ALS-based algorithms to compute the ML-
GSVD have been formulated. Moreover, an application of the ML-
GSVD to coordinated beamforming in the downlink of a multi-user
MIMO system was examined. Our numerical results have shown
that a base station can transmit both common and confidential mes-
sages to K ≥ 2 users simultaneously, by exploiting the subspace
structure of the common and private virtual channels via the ML-
GSVD.

As an interesting perspective, we shall consider a physical layer
security application [3], where the ML-GSVD can be used to extend
the existing results to more than two users.
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