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ABSTRACT

This work considers a collaborative wireless sensor network where

nodes locally exchange coded informative data before transmitting

the combined data towards a remote fusion center equipped with

an antenna array. For this communication scenario, a new blind

estimation algorithm is developed for jointly recovering network

transmitted data and connection topology at the fusion center. The

proposed algorithm is based on a two-stage approach. The first stage

is concerned with the estimation of the channel gains linking the

nodes to the fusion center antennas. The second stage performs a

joint estimation of network data and connection topology matrices

by exploiting a constrained (PARALIND) tensor model for the

collected data at the fusion center. Illustrative simulation results

evaluate the performance of the proposed algorithm for some system

configurations and network topologies.

Index Terms— Blind estimation, wireless sensor networks,

tensor modeling, PARALIND.

1. INTRODUCTION

A considerable attention and research has been devoted in recent

years to the deployment of sensors for monitoring, collaborative

information processing and control. In particular, wireless sensor

networks that can operate autonomously, without a fusion center

collecting and processing all measurements, exhibit desirable

properties such as robustness against node failure [1]. The

coordinated action of the different nodes distributed in the network

requires local exchange of information between them according to a

prescribed nodes connection topology. These local exchanges can

possibly resort to distributed space-time coding protocols, [2, 3],

where a collection of network nodes (users or sensors) work in a

coordinated way to encode and decode the transmitted information

by exploiting the spatial diversity.

A few recent works have developed tensor-based receivers in

cooperative networks, [4, 5]. In [4], a supervised tensor-based

receiver was proposed for two-way relaying cooperative systems

with multiple antennas at the relay nodes. In [5], a tensor-based

receiver was derived for distributed estimation in wireless sensor

networks. In that work, the distributed estimation algorithm

relies on an alternating least squares procedure combined with

consensus averaging iterations. The work [6] proposed tensor-based

collaborative space-time codes with distributed blind decoding based

on a finite-time consensus algorithm. Both [5] and [6] capitalize on

PARAFAC1 analysis [7].
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In this paper, we propose a tensor-based approach for the joint

recovery of network transmitted data and connection topology in a

collaborative network. The network is composed by a set of nodes

that locally exchange coded data according to a fixed connection

topology, which is not known at the fusion center. After in-network

coding and local collaboration, the sensor nodes communicate

with a fusion center by simultaneously transmitting their coded

signals during a time frame. Assuming that the fusion center is

equipped with an antenna array, the proposed algorithm estimates

network data and and nodes’ connection topology in a two-stage

approach. The first stage estimates the channel gains linking the

nodes to the fusion center antennas. We consider two methods

to accomplish this task: a conventional least-squares estimation

using pilot data, and a PARAFAC-based blind estimation resorting

to in-network coding instead. The second stage jointly estimates

network data and connection topology matrices by exploiting a

constrained (PARALIND)2 tensor model [8] for the collected data

at the fusion center. Our results show satisfactory performance of

the proposed estimator and corroborate the benefits of in-network

coding and nodes’ collaboration for data recovery.

In the last decade, several blind receivers based on tensor models

have been developed by exploiting multiple forms of diversity of the

observed data (see e.g. [9]-[13] and references therein). All these

works considered non-collaborative sources, which is generally

the case in traditional communication systems. We propose an

innovative tensor-based estimation approach, for a scenario where

collaboration takes place among transmitting nodes in a network.

Moreover, we consider a challenging problem where the nodes’

connection topology is unknown at the fusion center.

Notation: The following notation is used throughout the

paper: Scalars are denoted by lower-case letters (a, b, . . .), vectors

are written as lower-case boldface letters (a,b, . . .), matrices as

upper-case boldface letters (A,B, . . .), and tensors as calligraphic

letters (A,B, . . .). To retrieve the element (i, j) from a matrix A,

we use the notation [A]i,j . AT and A† stand for transpose and

pseudo-inverse of A, respectively. The operator ◦ denotes the outer

product between two vectors. The operator vec(·) forms a vector

by stacking the columns of its matrix argument. diag(a) forms

a diagonal matrix out of its vector argument a. The Khatri-Rao

(columnwise Kronecker) product between two matrices A ∈ C
I×R

and B ∈ C
J×R is symbolized by A ⋄ B. We make use of the

following property of the Khatri-Rao product:

vec(Adiag(x)B) = (BT ⋄A)x (1)

The Khatri-Rao product between A and B can be written as:
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A ⋄B =




BD1(A)

..

.

BDI(A)



 , (2)

where Di(A) forms a diagonal matrix out of the i-th row of A. The

following property is also useful:

vec(ABC) = (CT ⊗A)vec(B), (3)

where ⊗ is the Kronecker product operator, and A, B and C are

matrices of compatible dimensions.

2. SYSTEM MODEL

Consider a network of M smart devices with sensing, computation,

and communication capabilities. These nodes communicate with

a fusion center by periodically transmitting informative sequences

during a time frame of N samples. Sensors are assumed to be

single-antenna devices while the fusion center is equipped with

an array of K antennas (see Fig. 1). In order to robustify both

transmission and data recovery at the fusion center end, the sensors

perform an in-network coding through a collaborative step where

redundancy is added to transmitted data. In addition to data recovery,

monitoring the topology of the sensor network is also a task to be

achieved by the fusion center. Such a task is to be carried out jointly

with the informative data recovery one.

2.1. In-network coding

First, each node of the sensor network applies a temporal coding

operation by spreading its scalar data sample over P discrete-time

intervals. Then it sends the coded sequence to its single-hop

neighbors. The matrix form of this in-network coding operation is

given by

Xn = diag(sn)C
T ∈ C

M×P , (4)

where Xn ∈ C
M×P gathers the space-time coded data of the

collaborative network, C ∈ C
P×M is the coding matrix, whereas

sn ∈ C
M stands for the vector containing the nth informative

signals. The coding matrix C is chosen to be a Vandermonde matrix,

with typical entry given by ck,m = ej2π(k−1)(m−1)/M . This choice

is ideal from a coding and energy-efficiency viewpoints. Indeed,

since its entries are complex exponentials, the amplitudes of the

informative signals exchanged in the network are not altered by this

coding operation.

The local exchanges between nodes are short distance

communication assumed to be noise-free and unidirectional. They

are modeled with a directed graph whose adjacency matrix is

denoted by Φ ∈ C
M×M . Its (i, j)-th entry, denoted by φi,j , equals

1 if there is an arc from j to i. Otherwise we have φi,j = 0,

i, j = 1, . . . ,M . After the collaboration step, the collected data,

for the n-th informative signals, can be written as

Xn = ΦXn = Φdiag(sn)C
T ∈ C

M×P . (5)

The transmission power is the same for all the nodes, and satisfy
N∑

n=1

Tr(XnX
H
n ) = ρ, where ρ is the total transmitted power.

2.2. Transmission to the fusion center

The data collected in the network are then transmitted to the fusion

center through a frequency-flat wireless channel H ∈ C
K×M

assumed to be constant during the communication time-frame. For

F U S IO N  C E N T E R
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Fig. 1. Illustration of the considered communication scenario.

the n-th informative data, the corresponding received data are given

by:

Yn = HXn +Vn = HΦdiag
(
sn
)
C

T +Vn ∈ C
K×P , (6)

where Vn ∈ C
K×P is the additive white Gaussian noise (AWGN)

matrix. Let S = [s1, . . . , sN ]T ∈ C
N×M be a data matrix collecting

the informative sequences of the M sensors along its columns.

Given the received data Yn, n = 1, · · · , N , the objective of the

fusion center is to jointly recover S and the topology matrixΦ. Since

the received data matrices can be organized in a three-way array, in

the next section, we describe the multi-way analysis framework in

which the problem will be solved.

3. PARALIND FORMULATION

3.1. Preliminaries

PARALIND models, introduced in [8], can be viewed as

“constrained” PARAFAC models, where the columns of one of more

matrix factors exhibit linear dependencies. The linear dependency

profile associated with a given mode of the tensor is defined by a

constraint (or interaction) matrix, generally composed of 1’s and 0’s.

A special class of PARALIND models is represented by constrained

factors (CONFAC) models [14] which restrict the columns of the

constraint matrices to canonical vectors.

For a third-order tensor, the R-factor PARAFAC decomposition

is the factorization in a sum of R triple products, each one being

a rank-1 tensor. The PARAFAC decomposition of a tensor X ∈
C

I1×I2×I3 is given by:

X =
R∑

r=1

a
(1)
r ◦a

(2)
r ◦a

(3)
r ↔ xi1,i2,i3 =

R∑

r=1

a
(1)
i1,r

a
(2)
i2,r

a
(3)
i3,r

, (7)

where xi1,i2,i3 = [X ]i1,i2,i3 , a
(j)
ij ,r

= [A(j)]ij ,r , are entries of

matrix factors A(j) ∈ C
Ij×R, j = 1, 2, 3. R is the number of

factors, also known as the tensor rank. A compact notation for the

PARAFAC decomposition (7) is X = [[A(1),A(2),A(3)]], where

A(j) = [a
(j)
1 , . . . ,a

(j)
R ] ∈ C

Ij×R, j = 1, 2, 3.

PARALIND can be viewed as a constrained PARAFAC

decomposition, where some columns of one (or more) matrix

factor(s) are linearly dependent [8]. In this paper, we consider a

PARALIND model with linear dependencies in the first mode, i.e.

A(1) = Ā(1)Φ, where Ā(1) ∈ C
I1×R1 is a reduced matrix whose

columns correspond to the subset of R1 columns of A(1) that are

linearly independent, and Φ ∈ C
R1×R is a constraint matrix that

generate the linear dependency pattern of the columns of A(1).
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3.2. PARALIND data model

Let us define yk,n,p = [Yn]k,p as the (k, n, p)-th entry of tensor

Y ∈ C
K×N×P collecting all the data received at the fusion center.

Then, by ignoring the additive noise term for convenience, in scalar

form, the end-to-end signal model (6) yields

yk,n,p =
M∑

r=1

(
M∑

m=1

hk,mφm,r

)
sn,rcp,r, (8)

which corresponds to the PARALIND decomposition. By analogy

with (7), we deduce the correspondences

(Ā(1)
Φ,A(2),A(3))←→ (HΦ,S,C)

(I1, I2, I3, R1, R)←→ (K,N,P,M,M).

3.3. Model identifiability issues

In what follows, we provide a succinct analysis of the identifiability

of the model described by (8). It is now well known that PARAFAC

possesses desirable uniqueness properties under mild conditions,

the most well-known of all being stated by the Kruskal’s condition

[15]. Applied to model (8), this condition states that HΦ,S and C

can be estimated up to column permutation and scaling from Y if

k(HΦ) + kS + kC ≥ 2M +2, where k(.) denotes the Kruskal-rank3

of a matrix. In the case of uni-directional transmissions during the

collaboration step, owing to self-loops involved in the underlined

directed graph, Φ ∈ C
M×M has full column rank. Also, assuming

that K ≥ M and the wireless links between sensors and receive

antennas at the fusion center are independent, H has full column

rank, implying rank(H) = k(HΦ) = M. The coding matrix

C ∈ C
P×M has full rank by definition due to its Vandermonde

structure. Given these considerations, along with the reasonable

assumptions that the M nodes transmit independent information and

that the length N of the transmitted data block exceeds the number of

collaborating nodes, Kruskal’s condition becomes min(P,M) ≥ 2.

This implies that, in practice, under the considered assumptions, the

model is always identifiable.

Remark 1: If linear dependencies (and more particularly,

collinearities) are present between columns of the matrices of model

(8), Kruskal’s condition is no longer satisfied. This could be the

case of two nodes sending the same information to the fusion center

or reusing the same code. For these scenarios, partial uniqueness

conditions exist guaranteeing unique recovery of only part of the

parameters [16].Due to space limitation, a more detailed model

identifiability analysis will be developed in a forthcoming paper.

4. PROPOSED ESTIMATOR

Our goal is to derive a blind estimation algorithm to be used at

the fusion center for jointly recovering the informative data matrix

S and the network topology matrix Φ. The in-network coding

matrix C is assumed to be known at the fusion center, while

the channel matrix H is unknown and must be estimated. We

propose a two-stage approach for estimating network data and

nodes’ connection topology.

3The Kruskal-rank of a matrix A is the maximum number κ such that
every κ columns of A are linearly independent.

4.1. First stage: channel estimation

In this stage, only dedicated to channel estimation, the nodes

avoid an effective collaboration (i.e. the exchange of their data

measurements) in order to minimize energy consumption. In our

model, this means that Φ = IM . We consider a least-squares (LS)

estimator using pilot data. Each node uses a short pilot sequence of

N0 samples that will be exploited at the fusion center for estimating

the channel matrixH. We define S0 ∈ C
N0×M as the pilot sequence

matrix. This matrix is chosen to be a DFT matrix satisfying S0S
H
0 =

ρ0IM (i.e. N0 = M ), where ρ0 denotes the total transmitted power

during the training phase. In-network coding is not applied, meaning

that P = 1 and C = 1T
M . Defining Y0 ∈ C

K×N0 as the data matrix

collected during the training phase, we have Y0 = HST
0 + V0,

where V0 ∈ C
K×N0 is the additive noise matrix. The LS estimate

of the channel matrix is then given by Ĥ = Y0S
∗
0.

Remark 2: As an alternative to the pilot-based LS estimator, we

can also use a blind ALS estimator. The idea is to trade off pilots

for coding, contrary to the previous method. The use of coding

allows one to build a PARAFAC model Y0 = [[H,S,C]] for the data

collected at the fusion center during the first stage, where S now

contains useful network data (instead of pilots). We have omitted

further details on this approach due to space limitation.

4.2. Second stage: joint data and topology estimation

Once the channel matrix is estimated, the second stage of the

proposed estimator is concerned with the joint estimation of

informative data and nodes’ connection topology. The data matrix

Yn ∈ C
K×P defined in (6) can be seen as the n-th slice of the tensor

Y ∈ C
K×N×P , obtained by fixing its second mode to index n.

Defining yn = vec(Yn) ∈ C
PK×1, and applying property (1), we

obtain yn =
(
C⋄(HΦ)

)
sn. By stacking columnwise the N vectors

y1, . . . ,yN , we get

Y = [y1, . . . ,yN ] =
(
C ⋄ (HΦ)

)
S
T ∈ C

PK×N . (9)

Now, let Z = [Y1, . . . ,YN ] ∈ C
K×NP be a matrix stacking

columnwise N second-mode slices of the data tensor Y . Using

property (2) yields

Z
T =




YT

1

..

.

YT
N



 =




CD1(S)

..

.

CDN (S)



Φ
T
H

T

= (S ⋄C)ΦT
H

T ∈ C
NP×K . (10)

Defining z = vec(ZT ) ∈ C
KNP×1 and applying property (3)

to (10) yields

z =
(
H⊗ (S ⋄C)

)
φ, (11)

where φ = vec(ΦT ).
The PARALIND core equations (9) and (11) are the bases for

this stage. Let us introduce the noise contribution in these core

equations, by defining Ỹ = Y + VY and z̃ = z + vz, where

VY ∈ C
PK×N and vz ∈ C

KNP×1 are the corresponding additive

noise terms. The estimates of S and Φ can be found by optimizing,

respectively, the following least squares (LS) criteria:

Ŝ = argmin
S

∥∥∥Ỹ −
(
C ⋄ (ĤΦ)

)
S
T
∥∥∥
2

F
, (12)

φ̂ = argmin
φ

∥∥∥z̃−
(
Ĥ ⊗ (S ⋄C)

)
φ

∥∥∥
2

F
, (13)

where Ĥ is the estimate of the channel matrix obtained in the first

stage. Both problems are solved iteratively using the well-known
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alternating least squares (ALS) algorithm [17]. Below is a summary

of the proposed algorithm.

TWO-STAGE ESTIMATION ALGORITHM

First Stage: Assuming Φ = IM and C = 1
T
M (P = 1), obtain an initial channel

estimate Ĥ using pilot sequences: Ĥ = Ỹ0S
∗
0

;

Second Stage: From the previously obtained channel estimate Ĥ, apply the ALS

algorithm to obtain the estimates Ŝ and Φ̂ of the data and connection topology
matrices, respectively.

Initialization: Set t = 0; Initialize Ŝ(t = 0);

(2.1) t = t + 1;

(2.2) Compute φ̂(t) =
(
Ĥ ⊗ (Ŝ(t − 1) ⋄ C)

)†
z̃;

(2.3) Reshape φ̂(t) to obtain Φ̂(t);

(2.4) Compute Ŝ
T (t) =

(
C ⋄ (ĤΦ̂(t))

)†
Ỹ;

(2.5) Repeat steps (2.1)-(2.4) until convergence.

Define e(t) = ‖Ỹ − (C ⋄ (ĤΦ̂(t))ŜT (t)‖2F as the model

reconstruction error calculated at the t-th iteration. We declare the

convergence when |e(t) − e(t − 1)| < 10−6. Convergence to the

global minimum is always achieved within a few iterations (usually

between 10 and 30) due to the knowledge of the code matrix at the

fusion center. Such a knowledge also avoids permutation ambiguity

in the estimated Ĥ, Ŝ, and Φ̂. The column scaling ambiguity

affecting Ŝ and Φ̂ are solved through normalization.

5. NUMERICAL RESULTS

Some computer simulations have been carried out for evaluating

the performance of the proposed tensor-based estimator. Our

experiments consider a network of M = 4 collaborating nodes and

two possible connection topologies, as follows:

Φ1 =





1 0 0 1
1 1 0 0
1 1 1 0
0 1 1 1



 , Φ2 =





1 0 0 0
0 1 0 1
1 0 1 0
0 0 0 1



 .

The first one represents a connected digraph (“grid” topology) while

the second corresponds to a unconnected digraph. The remaining

system parameters are P = P0 = 4, N0 = 4, and N = 10.

We consider K = 4, 8 or 16 antennas at the fusion center. For

evaluating the accuracy of network data recovery and connection

topology estimation, we calculate the following normalized error

metrics:

ES =
1

L

L∑

l=1

‖Ŝ(l) − S(l)‖
2
F

‖S(l)‖
2
F

, EΦ =
1

LM2

L∑

l=1

|Φ̂(l) −Φ|0,

where L denotes the number of Monte Carlo runs, while Ŝ(l) and

Φ̂(l) are the final estimates of the informative data and topology

matrices at the l-th run, and | · |0 denotes the ℓ0-norm. In each

run, the total transmitted powers ρ0 and ρ for the training and

collaboration phases are chosen to satisfy the signal to noise ratio

measures SNR0[dB]= 10log10(‖Y0‖
2
F /‖VY0

‖2F ) and SNR[dB]=

10log10(‖Y‖
2
F /‖VY‖

2
F ), respectively.

Figure 2 depicts the ES vs. SNR curves for K = 4 and 16.

The results are satisfactory and the performance of network data

estimation is nearly the same for both topologies. As expected,

more accurate estimates are obtained as more antennas are used at

the fusion center. In Figure 3, we turn our attention to connection

topology estimation. The left-hand and right-hand sub-figures are

associated with Topologies 1 and 2, respectively. Considerable
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Fig. 2. ES vs. SNR performance.
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Fig. 3. EΦ vs. SNR performance.

performance improvements are obtained by increasing K, especially

in noise-limited scenarios. Note that we consider ρ0/ρ = 1 and

ρ0/ρ = 10. In this first situation, equal transmission powers are

allocated to the first (channel estimation) and second (data recovery)

stages. In the second one, the system dedicates more energy

resources to channel estimation. It can be seen that the network

topology is more accurately estimated in the second situation. For

both topologies, K = 16 and SNR=10dB, the average rate of

identifying erroneously the (“on/off”) status of a node connection

is around 2% when ρ0/ρ = 10 and grows to 15% when ρ0/ρ = 1.

6. CONCLUSION

We have resorted to PARAFAC/PARALIND modeling to solve the

problem of information recovery and network topology estimation

in collaborative networks with the help of a fusion center equipped

with an antenna array. The proposed tensor-based solution assumes

an in-network coding strategy and is based on a two-stage estimation

approach that may use pilot data or operate in a completely blind

setting. In particular, our results indicate that more accurate

estimates of the connection topology matrix are obtained as more

power is dedicated to the training phase, which is the bottleneck of

the overall estimator performance. Although not shown here, we

have also observed that, for lower SNRs, the performance of our

estimator improves for networks with higher degrees of connectivity.

However, even for weakly connected networks, we believe that the

accuracy of the topology estimation can be improved by exploiting

the sparsity of Φ. This issue will be addressed in a future work.
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