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Abstract

We define a metric and a family of a-connections in statistical manifolds, based
on -divergence, which emerges in the framework of p-families of probability dis-
tributions. This metric and a-connections generalize the Fisher information metric
and Amari’s a-connections. We also investigate the parallel transport associated

with the a-connection for oo = 1.

1 Introduction

In the framework of @-families of probability distributions [11], the authors introduced a
divergence Dy (-||-) between probabilities distributions, called -divergence, that general-
izes the Kullback—Leibler divergence. Based on Dy(- || -) we can define a new metric and
connections in statistical manifolds. The definition of metrics or connections in statisti-
cal manifolds is a common subject in the literature 2} 3| [7]. In our approach, the metric
and a-connections are intrinsically related to y-families. Moreover, they can be recog-
nized as a generalization of the Fisher information metric and Amari’s a-connections
)

Statistical manifolds are equipped with the Fisher information metric, which is given
in terms of the derivative of I(t;0) = logp(t;6). Another metric can be defined if
the logarithm log(-) is replaced by the inverse of a @-function ¢(-) [1I]. Instead of
I(t;0) = log p(t; ), we can consider f(t;6) = ¢~ (p(t;0)). The manifold equipped with
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this metric, which coincides with the metric derived from Dy (- ||-), is called a generalized
statistical manifold.

Using the ¢-divergence Dy (- || -), we can define a pair of mutually dual connections
D® and DY, and then a family of a-connections D(®. The connections DX and
DY corresponds to the exponential and mixture connections in classical information
geometry. For example, in parametric o-families, whose definition is found in Section
21 the connection DM is flat (i.e, its torsion tensor T and curvature tensor R vanish
identically). As a consequence, a parametric p-family admits a parametrization in which
the Christoffel symbols I‘Z(j_kl) associated with D(-1) vanish identically. In addition,
parametric ¢-families are examples of Hessian manifolds [§].

The rest of the paper is organized as follows. In Section 2l we define the generalized
statistical manifolds. Section 2.I] deals with parametric ¢-families of probability distri-
bution. In Section [, a-connections are introduced. The parallel transport associated
with D) is investigated in Section Bl

2 Generalized Statistical Manifolds

In this section, we provide a definition of generalized statistical manifolds. We begin
with the definition of p-functions. Let (T, X, 1) be a measure space. In the case T'=R
(or T is a discrete set), the measure p is considered to be the Lebesgue measure (or the
counting measure). A function ¢: R — (0, 00) is said to be a ¢p-function if the following

conditions are satisfied:
(al) ¢(-) is convex,
(a2) limy——oo @(u) = 0 and limy o0 p(u) = 0.

Moreover, we assume that a measurable function ug: T'— (0, 00) can be found such that,
for each measurable function ¢: 7' — R such that ¢(c(t)) > 0 and [ @(c(t))dp = 1, we

have
(a3) / o(e(t) + Muo(£))dp < oo, for all A > 0.
T

The exponential function and the Kaniadakis’ k-exponential function [6] satisfy con-
ditions (al)-(a3) [I1]. For ¢ # 1, the g-exponential function exp,(-) [9] is not a -
function, since its image is [0,00). Notice that if the set T' is finite, condition (a3)
is always satisfied. Condition (a3) is indispensable in the definition of non-parametric

families of probability distributions [11].



A generalized statistical manifold is a family of probability distributions P = {p(t;0) :
0 € ©}, which is defined to be contained in

PMZ{pELO:p>Oand /pd,uzl},
T

where L° denotes the set of all real-valued, measurable functions on T', with equality
p-a.e. Each py(t) := p(t;0) is given in terms of parameters 6§ = (61,...,6") € © C R"
by a one-to-one mapping. The family P is called a generalized statistical manifold if the

following conditions are satisfied:
(P1) © is a domain (an open and connected set) in R™.
(P2) p(t;0) is a differentiable function with respect to 6.

(P3) The operations of integration with respect to p and differentiation with respect to

6* commute.

(P4) The matrix g = (g;;), which is defined by

9 = ~E; [agjggj]’ o

is positive definite at each § € ©, where fq(t) = f(t;0) = p~(p(t;0)) and

E/ H _ fT()C,D/(fg)dM
O Jpuog! (fo)du
Notice that expression () reduces to the Fisher information matrix in the case that

@ coincides with the exponential function and ug = 1. Moreover, the right-hand side of

(@) is invariant under reparametrization. The matrix (g;;) can also be expressed as

u[0f0 0
9= 24 55t g5 ) @
where
E//H _ fT(')(p”(fG)d:u
Jruo@! (fo)dp

Because the operations of integration with respect to p and differentiation with respect

to 8" are commutative, we have

_ 9 _ i . 8f6 /
0= 89i/Tpedu—/Tam90(f9)du— . aeigo(fg)du, (3)




and

_ & f dfgdfy

Thus expression (2)) follows from (). In addition, expression (3) implies

£ ) =0 ®

A consequence of (Z)) is the correspondence between the functions dfp/30° and the

basis vectors &/90°. The inner product of vectors

; 0 B .0
X—Z:aaei and Y—zi:b]%
can be written as
- 0fs fa1 +. - e
_ PRIN " YJ0 iy _
gXY) = Zg bl = ZEG 5557 a’? = EjIXY), (6)
where o o
= ;0fo S 0fo
X = i a@@" and Y—Zi: 207

As a result, the tangent space T}, P can be identified with TVPGP, which is defined as the
vector space spanned by dfp/06%, equipped with the inner product ()A(: , §7>9 = E} [)A(: 57]
By (@), if a vector X belongs to TVPQP, then Ej [)Z'] = 0. Independent of the definition of
(gij), the expression in the right-hand side of (@l always defines a semi-inner product in
Ty, P.

2.1 Parametric p-Families of Probability Distribution

Let c: T'— R be a measurable function such that p := ¢(c) is probability density in P,,.

We take any measurable functions wq,...u,: T — R satisfying the following conditions:

(1) [puie' (c)dp =0, and

(ii) there exists € > 0 such that

/ e+ Au;)dp < oo, for all A € (—¢,¢).
T

Define © C R™ as the set of all vectors 6 = (6?) € R™ such that

/cp<c+)\29iui>d,u<oo, for some A > 1.
T k=1



The elements of the parametric @-family F, = {p(t;0) : 0 € O} centered at p = p(c) are

given by the one-to-one mapping
p(t;0) := gp(c(t) + Z 0lu;(t) — w(e)uo(t)>, for each 6 = (#") € ©. (7)
i=1

where the normalizing function 1: ©® — [0,00) is introduced so that expression ([7))
defines a probability distribution in P,.

Condition (ii) is always satisfied if the set 7" is finite. It can be shown that the
normalizing function ¢ is also convex (and the set © is open and convex). Under
conditions (i)—(ii), the family F,, is a submanifold of a non-parametric ¢-family. For the
non-parametric case, we refer to [11], [10].

By the equalities

Af —ui(t) — 14 e
00 ‘ 00"’ 001007 00003’
we get
0
Yii = Heigei

In other words, the matrix (g;;) is the Hessian of the normalizing function .

For () = exp(:) and ug = 1, expression ([7) defines a parametric exponential fam-
ily of probability distributions &,. In exponential families, the normalizing function is
recognized as the Kullback—Leibler divergence between p(t) and p(t;6). Using this re-
sult, we can define the p-divergence Dy (- || -), which generalizes the Kullback-Leibler
divergence Dkr (- || -).

By (@) we can write

YO)uo(t) = Y 0uit) + o~ (p(t)) — o~ (p(£:6)).
i=1

From condition (i), this equation yields

(0) /T o (¢)du = /T e ) — ¢ 00 ().

In view of ¢'(¢) = 1/(p=1)(p), we get

i

/ o (p) — w‘l(pe)d
1
T P) D, (p | po), (®)

e )

<
—~
s
~
I
—




which defines the -divergence D, (p||pg). Clearly, expression () can be used to extend
the definition of Dy (- || -) to any probability distributions p and ¢ in P,,.
3 a-Connections

We use the ¢-divergence Dy (- || -) to define a pair of mutually dual connection in gener-
alized statistical manifolds. Let D: M x M — [0,00) be a non-negative, differentiable

function defined on a smooth manifold M, such that
D(pl|lq) =0 ifandonlyif p=gq. (9)

The function D(-|| -) is called a divergence if the matrix (g;;), whose entries are given by

150) = ~[(55) (537). P 10)] . (10)

is positive definite for each p € M. Hence a divergence D(- || -) defines a metric in M.
A divergence D(- || -) also induces a pair of mutually dual connections D and D*, whose

Christoffel symbols are given by

0? 0
Lih == Kaeiam)p(ﬁ)qmz’ | Q)L:p (11)
and 5 e
ik = [(W),,(aeiam)qp(p | Q)]q:p’ (12)
respectively. By a simple computation, we get
09, N
agejzk = Tjr + Ty

showing that D and D* are mutually dual.
In Section 2.1] the ¢-divergence between two probability distributions p and ¢ in P,

was defined as

/ e Hp) — ¢ q) "
T (90 ! p) . (13)

Dy(plla) == ”
/T (90‘1())/(19) dﬂ

Because ¢ is convex, it follows that Dy,(p || ¢) > 0 for all p,¢ € P,. In addition, if

we assume that ¢(-) is strictly convex, then Dy(p || ¢) = 0 if and only if p = ¢. In
a generalized statistical manifold P = {p(t;0) : § € ©}, the metric derived from the
divergence D(q||p) := Dy(p| ¢q) coincides with ({l). Expressing the ¢-divergence Dy (- || -)



between py and py as

D(py || po9) = Eyl(fs — fo)l,

after some manipulation, we get

g = _Ka(z ) (%) D(p|| q)]q:p

{aezam }

As a consequence, expression (I3]) defines a divergence on statistical manifolds.
Let DU and DY) denote the pair of dual connections derived from Dy(- || -). By
(II) and (12, the Christoffel symbols ngl,)f and Fg;kl) are given by

(52 = 25 [aes gat) — % g 4[5 19

and
g[agfagz]E[ agﬂ_E”[agfagz]E[ agﬂ (15)

where

" fT /// f9
B = T i
(1)

Notice that in parametric p-families, the Christoffel symbols Uik vanish identically.
Thus, in these families, the connection D) is flat.

Using the pair of mutually dual connections D) and DV, we can specify a family
of a-connections D(® in generalized statistical manifolds. The Christoffel symbol of
D@ ig defined by

(@ _ lHoa o)  1—-oa
Tip = 5 Lok + 5 ik’ (16)

The connections D(® and D(-®) are mutually dual, since

995k _ (@) | pl-a)
802.:FZ],€+F

For o = 0, the connection D©), which is clearly self-dual, corresponds to the Levi—Civita

0)

connection V. One can show that FZ(. ik can be derived from the expression defining the



Christoffel symbols of V in terms of the metric:

1(8% Ogx; agij)
007 00? ook /-

Lijk = nggmk =5
m

The connection D(® can be equivalently defined by

« 0
where
L 1, [0fe0fg Ofo 1 ,10fo0f01 Ofe
Tk = 554 | 59+ 595 0% | ~ 2% | 5gt 39+ ) 7% "0 55
1 1" 8f€af9 1" 8f€ 1 1" af98f€ " afé)
~ 554 | 59t g7 ) B4 [0 5qr ) — 5% gt a5 B8 [vogge ) (1)

In the case that ¢ is the exponential function and ug = 1, equations (I4), (IT), (I6) and

(7)) reduce to the classical expressions for statistical manifolds.

3.1 Parallel Transport

Let v: I — M be a smooth curve in a smooth manifold M, with a connection D. A
vector field V' along v is said to be parallel if Dg;qV (t) = 0 for all t € I. Take any
tangent vector Vj at ~y(to), for some ¢ty € I. Then there exists a unique vector field V'
along 7, called the parallel transport of V; along , such that V(o) = Vp.

A connection D can be recovered from the parallel transport. Fix any smooth vectors
fields X and Y. Given p € M, define v: I — M to be an integral curve of X passing
through p. In other words, v(tp) = p and Cfl—;’ = X(y(t)). Let Pyge: TyoyM — Ty M
denote the parallel transport of a vector along + from ty to ¢t. Then we have

(DXY)(p) = Py (Y (el1)

For details, we refer to [5].
To avoid some technicalities, we assume that the set T is finite. In this case, we can
consider a generalized statistical manifold P = {p(t;0) : € ©} for which P = P,. The

connection DM can be derived from the parallel transport
P, y: Tqu — Tva

given by



where p = py. Recall that the tangent space T),P can be identified with TVPP, the vector
space spanned by the functions dfy/00°, equipped with the inner product ()Z' ,}7> =
/4 [)Z' }7], where p = pp. We remark that F,, does not depend on the curve joining ¢
and p. As a result, the connection D) is flat. Denote by ~(t) the coordinate curve
given locally by 6(t) = (6,...,0° +t,...,0™). Observing that P’Y_(é)v'Y(t) maps the vector

0
%o (1) to

of . 19f
S5 (1) = By | 55| uo,

we define the connection

~ 8f9 N d -1 af@
Dafe/aeiafpj T dt 10 (afoj('Y(t)) 0

d<8fe(t) = [%}%)

BTANE 60) | "9gi o
_ Pfy ,[ 9 fo }u
~ 00005 logignil

Let us denote by D the connection corresponding to l~), which acts on smooth vector
fields in 7},P. By this identification, we have

9<Da/aeia%j’ 3%1) = <55f0/39ig_£j’ g_gD
= é’[aijgéj %} - Eé[agjgz)j]%/ [uo%}

1
- Pz('jl)w

showing that D = D).
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