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ABSTRACT This paper shows an environment for performing data collection in the computational system
that provides the response service to ‘‘HTTP’’ requests and makes interventions in the values of the available
parameters in order to control the system automatically in the closed loop. The parameters to be obtained
as endogenous variables of the computational system are MaxRequestWorks and KeppAliveTimeOut, and
the exogenous ones will be the amount of memory consumed and the percentage of processor occupation
time. The tool developed modifies neither the source code of the response software to the clients’ ‘‘HTTP’’
requests nor the operating system code of the host computer, being non-intrusive regarding original system
configuration. A proportional-integral (PI) controller was designed in order to keep the average perceived
time response of ‘‘HTTP’’ messages regulated. The experimental tests carried out on an Apache Web server
show the improvement obtained on the system’s time response.

INDEX TERMS HTTP protocol, apache web server, digital controller.

I. INTRODUCTION
Automatic adaptation to dynamic changes in the behavior of
a computer system is a subject that is increasingly gaining the
interest of the academia and software and service providers.
It is, therefore, intended to provide a reliable service to clients
at low operating cost [1]. The environmental variables of the
computational systems began to be studied over the past few
years in order to optimize the performance of the services
proposed by each software being developed [2], [18].

Since human behavior is very unpredictable and directly
influences the computational environment, as the requests to
be responded are based on clients’ needs, computational envi-
ronments feature uncertain dynamic behavior, thus requiring
that frequent reconfigurations of the system concerned are
made to try to deal with variations.

Software running concurrently can lead to increased
latency time. For instance, when a virus scanner scans the
operating system, it causes a response delay in other software
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TABLE 1. Most visited sites of the world.

to be run. This is a small scale of a single user making
requests. Now, if a web server is considered that, depending
on the popularity of the website, can address many competing
requests, there is a critical problem to guarantee the quality of
the services to be provided [17]. For example, Table 1 shows
the number of access hits in a single day for some of the most
visited electronic sites in the world [3]. The ‘‘facebook.com’’
website, for example, evenly distributing the amount of hits
throughout the day, has a total of 9,684 concurrent users
per second, which will have an average consumption load of
at least 9,684 requests per second on its servers.
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However, an important piece of news can drastically alter
the behavior of the number of information requests from the
website (e.g., release of the list of students approved to Brazil-
ian federal universities). To deal with these large variations,
resource optimization software can be used to increase system
robustness [14]–[16].

The optimization software depends on the environment to
provide the service. Studies have been carried out to identify
the computational response system to ‘‘HTTP’’ requests [4]
and to develop resource optimizers through the classical con-
trol methodology [5], but in different environments. However,
the signals are equivalent in an older format, thus requiring
improvements to the characteristics imposed by the environ-
ment being analyzed.

In [5], a slope is observed in the data collected from the
open-loop computational system that will affect the system
drastically at a given time, causing a ‘‘Denial of Service –
DoS’’ because the controller is reducing the number of
processes available through the Web Server to respond to
‘‘HTTP’’ requests.

Thus, a study of the existence of ‘‘drift’’ and of changes
in the source code of optimizer software is pertinent, so that
the PI controller can operate in the computational system
without promoting a DoS. To that end, the results of a
study aiming at improving computing system performance
by using feedback control based techniques are presented
herein. The main research focus has been to develop non-
intrusive software tools to provide an environment that is
suitable to perform advanced performance tests in computing
systems. Specifically, the study focus aimed at improving the
user’s perceived response time in Apache server. In order
to allow the results to be of immediate use by technology
information (TI) managers, the investigated control structure
has been restricted to Proportional-Integral (PI) controller,
the most broadly used control structure in real-world industry
applications.

The main scientific contributions of this paper include:

• To propose a non-intrusive software that changes
Apache server settings without service interruption.

• To design a feedback controller that relates the amount
of memory consumption with the maximum number of
processes available to respond to ‘‘HTTP’’ requests.

• To develop software that prevents the ‘‘HTTP’’ response
service from being caused by overload.

The remaining of this paper is organized as follows:
Section II: the dynamic phenomenological model of the
Apache computing system is presented; Section III: the
proposed simulation environment is presented; Section IV
demonstrates how optimization software was developed;
Section V: the system identification is performed; Section VI:
the PI controller is designed to regulate the system;
Section VII: the experimental results are performed and dis-
cussed; Finally, Section VIII presents the conclusion of this
study.

II. PHENOMENOLOGICAL MODELING OF THE ‘‘HTTP’’
REQUEST RESPONSE OF THE COMPUTATIONAL SYSTEM
The dynamic process of ‘‘HTTP’’ request response can be
split into software and hardware dynamics, respectively. As a
first approximation, dynamic aspects due to the hardware
subsystem can be ignored due to its almost instantaneous time
response. In contrast, the dynamics of the software subsystem
has a dominant effect on the time response perceived by the
user. This is due to the intensive use of queuing structures
upon implementation in the web server, leading to a consider-
able impact on the system’s overall time response perceived.

By using a standard queue notation, the computational
system is herein modeled by using M/M/1 queues, where
‘‘M/M’’ means that incoming requests and service time rate
both conform to memoryless markovian exponential prob-
ability distributions. Number ‘‘1’’ indicates the number of
simultaneous service channels, i.e. the number of processors
being used for the system under analysis.

The amount of buffers or system capacity, population
size and service discipline were suppressed from the queue
notation because the default values were adopted, namely:
infinite, infinite and FIFO (the first request incoming will be
the first to be processed).

In [1], a queue scheme of a computational system of
response to ‘‘HTTP’’ requests is proposed, which splits the
queue into two parts: internal and external. The internal queue
represents the software stage that provides the response ser-
vice to requests. It has a size limit that depends on the value
of ‘‘MaxClient’’ and has an occupation rate of value λi. The
external queue has an infinite size because it is made up of
multiple system queues (e.g., network connection queue, file
system queue etc.) and will be occupied at a rate λ.

According to Tipper’s model [1], which equates the
dynamic flow of a queue, and the previously-mentioned char-
acteristics of the queue, we have the following for the steady
state:

d
dt
n(t) = λ(t)− µ

n(t)
1+ n(t)

(1)

where, n is total number of requests in the computational
system, at time instant t and µ is the request processing
rate.

Considering Little’s law and the Tipper model of the aver-
age time response, d , as well as the average number of jobs
inside the web server, ni, are given respectively by:

d
dt
d(t) = −

1
Td
d(t)+

1
Td

n(t)
λ(t)

(2)

ni(t) = n(t)

[
1−

(
n(t)

1+ n(t)

)Mc
]

(3)

where, Td is the sampling time and Mc is the value of the
Apaches’s ‘‘MaxClient’’ parameter, at the given operating
point. To obtain the number of external requests, ne may be
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obtained by using a conservation in the form presented in (4).

ne(t) =

t∫
0

(λ(τ )− λi(τ ))dτ (4)

where, the incoming rate of requests in the web server, λi, is
obtained by using the difference between the total number of
requests inside the system and the number of requests inside
the web server.

λi(t) = λ(t)−
d
dt
{n(t)− ni(t)} (5)

Finally, the perceived time response is estimated by using
low-pass filtering as follows

d
dt
di(t) = −

1
Td
di(t)+

1
Td

ni(t)
λi(t)

(6)

The set of differential-algebraic equations (1)-(6) provides
a phenomenological, nonlinear, dynamic model for the web
server system.

To relate the amount of memory used in the computational
system with the number of processes in the queue of the
response service to ‘‘HTTP’’ requests, it is necessary to know
the amount of memory spent by each process k-th process,
which can be represented by (7)

Mem = K .ni (7)

where the value of proportionality constant K must be esti-
mated by tests. For the tests discussed herein, the value of
Mem has been estimated as 0.3% out of an approximate total
of 2.0 Gbytes, extracted from actual tests.

In order to gain an insight of the system behavior for dif-
ferent operating points, the computational system (the set of
equations (1)-(6), presented above) has been used to develop
simulation in MatLab/Simulink computational environment
(see Fig.1). Figure 1 exhibits a block diagram developed for
reproducing the behavior of the investigated system by using
three levels of loading, namely λ = {50, 100, 150, with
time intervals in the ranges {(0,300), (300,600), (600,1000)},
respectively. Processor use consumption was around 28%, for
the ‘‘HTTP’’ server, and sampling time was set to the value
of 1.0 second.

In the ‘‘MaxClient’’, parameter value was set to 50 con-
current processes and changed in step variation of amplitude
100 over a period of 300 seconds, with duty cycle of 50%
(see Fig.2).

The time response of the Apache server will depend on
the number of requests that are waiting to be processed. The
response time starts the counting when the process is already
in the Apache server list and not in the external list in the
operating system. Fig.3 shows the time response variation
with parameter changes over time.

Up to 300 seconds, the ‘‘MaxClient’’ variation does not
interfere, as there are few processes in the queues, that is, the
request rate is less than the processing rate and the response
time remains constant. In the thirtieth second there is an
increase of load in the computational system, thus getting the

FIGURE 1. Phenomenological model simulator developed.

FIGURE 2. ’’MaxClient’’ variation.

FIGURE 3. Average response time for requests in ‘‘HTTP’’ server.

Apache server response time to increase and having varia-
tions with the same behavior as that of ‘‘MaxClient’’, since
internal server queue is occupied by processes waiting to
be run.

The increase in load causes an increase in the number of
processes in the internal queue (web server), Fig.4, and in the
external queue (operating system). Since it was defined that
the external queue would be infinite, the simulation would
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FIGURE 4. Number of Processes in ‘‘HTTP’’ Server.

FIGURE 5. Number of requests in the external queue.

not make limitations. However, the angle of inclination of the
line follows the request rate, Fig.5.

The amount of memory the Apache server will be using is
that in the internal queue. So, the amount of memory used in
the external queue is not being added to the simulation results.
In the 0-to-300-second interval, there is a constant use of the
memory, even if there is variation of ‘‘MaxClient.

The occurrence is explained by the fact that there are
not enough process numbers to be inserted in the inter-
nal queue due to the condition λ < µ. The interval
between 300 to 1000 seconds, the request rate increases, thus
increasing the process number. For λ = 100 and in the
300-to-450-second interval there is a system accommoda-
tion time due to slope in the growth line of the number of
processes.

For λ = 150, as from 600 seconds, the system will
no longer have this behavior because it already has enough
processes in the external queue to occupy the internal queue,
thus causing the occupied memory percentage variation to
stabilize. Refer to Fig.6.

III. ‘‘HTTP’’ REQUEST RESPONSE
COMPUTATIONAL SYSTEM
The management of a computational system’s hardware is
performed by the operating system through abstractions of
the codes inMachine Language, called logical resources. The
logical resources under study herein are the processor and the
memory.

Techniques such as multiprogramming (by processes) and
virtual addressing are examples of codes that are running in

FIGURE 6. The amount of memory used by the ‘‘HTTP’’ server.

the machine in the operating system’s software to provide the
user with availability of resources.

Multiprogramming occurs when a processor is multi-
plexed, i.e., the processor is made available to the various
processes in the host machine, whether required by the oper-
ating system or by the user. The ‘‘HTTP’’ request response
server under analysis herein uses several multiprogramming
methods. But, the multiprocessing module called ‘‘prefork’’,
which uses processes to respond to clients, will be used
herein. Fig.7 shows an architecture of the processes for the
Apache server.

FIGURE 7. Apache server architecture in the operating system viewpoint.
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There are three process states for the ‘‘HTTP’’ server: busy,
standby, and inactive. The busy state is when the process is
being used by a client. The standby state, a value stored in
the ‘‘KeepAliveTimeOut’’ variable, is when the process is
waiting for a request from the client. The inactive state is
when the process ceases to have an owner and is on stand-by
for a request from a new client. The ‘‘MaxClient’’ variable
is the stored value of how many processes can be in place
concurrently [6].

From the viewpoint of the operating system, the archi-
tecture for the server processes is more complex, since
‘‘prefork’’ uses the so-called ‘‘fork’’, which creates the clone
(child) processes from a parent process. Each new server
process has attributes, such as the Process Identifier - PID,
which serves to identify, contextualize (priority, security, and
environment) and run the planned task [7].

The parental relationship between the processes is trans-
lated by the information that is kept by the core, so that it
can manage the parent process and the child processes jointly.
For some operating systems, death of the parent process does
not mean death of the child process; e.g., the Unix operating
system, running until the end of the code or until sending a
signal to its death.

The order at which the processes are run in the processor
is not deterministic due to the process-switching base mecha-
nism, scheduler, relying on numerous factors, such as ‘‘time-
slice’’ or ‘‘quantum’’ and preemption [8].

There is no way to predict what the order of running the
processes will be, so the same program will be run in many
different ways.

Process security is based on its isolation from the other
processes by confining them to limited memory address,
limited actions by the privileges of its owner, and controlled
interaction through calls to the operating system. Thus, for a
process to interact with another, a call must be made to the
operating system, which will check the permissions and the
execution of the call.

Fig.7 shows the Apache server architecture in the design
of the operating system for the management of existing pro-
cesses. The only connection between the processes is the
values of the process variables that are inherited from the
parent process owned by the ‘‘root’’ user, which can interfere
with the execution of the child process only by the operating
system calls - the signals. The user named ‘‘Daemon’’ is
responsible for providing for the services in the host machine,
that is, it will respond to the client making a request.

FIGURE 8. Processes listening to port 6405.

Fig.8 shows an Apache server started with 6 processes to
respond to requests, variable ‘‘StartServer’’= 6, and a parent

FIGURE 9. Heredity amongst the httpd processes.

process, all of which listening to the communication port
6405 of the host machine. Fig.9 confirms the heredity of the
processes.

The ‘‘httpd’’ process of the ‘‘root’’ is responsible for man-
aging the ‘‘Daemon’’ processes. Thus, the creation and death
of the processes are governed by parameters that are stored
upon server startup, process creation of the ‘‘httpd’’ process
of the ‘‘root’’, and are used for determining whether a process
should be killed or generated.

In case of death of the ‘‘httpd’’ process of the ‘‘root’’,
the ‘‘HTTP’’ request response service will remain active.
However, the management of the processes will be inter-
rupted, not performing the task of generation or death of
the ‘‘httpd’’ processes of the ‘‘Daemon’’. Fig.10 shows the
‘‘http’’ response service by listening to port 6405 without the
‘‘httpd’’ process of ‘‘root’’.

FIGURE 10. ‘‘httpd’’ response service active without the parent process.

The ‘‘Daemon’’ user processes were eternally active, wait-
ing for client requests, without increasing or decreasing the
number of processes, that is, the computational resources
will have a linear consumption with a regression coefficient
equal to 0.

IV. RESOURCE OPTIMIZATION SOFTWARE FOR
THE ‘‘HTTP’’ REQUEST RESPONSE SERVICE
The computational resources of the host machine are limited,
in a way that a resource allocation methodology must be
implemented to support the service in operation, thus mini-
mizing failures at the different load operation points (number
of ‘‘http’’ requests).

A tuned feedback controller is a law, an equation which
herein relates the computational resources to the variables of
the Apache process manager, which uses them to determine
the generation or death of a ‘‘Daemon’’ user process. The
variable values are stored in the file ‘‘. . . \ conf \ extra \
httpd-mpm.conf’’ encoded in accordance with the ASCII
table.

When starting the servicewith the command ‘‘./.../bin/httpd
–k start’’, the variables are loaded into the part of the main
memory to be used by the ‘‘httpd’’ process of the root user.
The values being stored are used as resource utilization
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FIGURE 11. Data flow diagram.

limiters for the process manager of the ‘‘http’’ request
response server.

The proposed software is a process manager that works on
a layer above the process manager of the Apache server, thus
promoting dynamics in the values described in the file ‘‘httpd-
mpm.conf’’ in Apache 2.4.6 without interrupting the service.
Fig.11 shows an overall flow diagram of the software.

FIGURE 12. Expanded data flow diagram.

In Fig.12, the proposed software is expanded, showing
how the data entering the process is processed by sending
signals to the operating system, execution commands and
information storage request.

FIGURE 13. Expanded data flow diagram.

The ‘‘resource monitor’’ process is responsible for collect-
ing the data from the computational resources being used.
It is created from the ‘‘fork’’ function and processing thereof
is performed in parallel. The method used for obtaining the
data is the ‘‘free’’ (Fig.13) with change in the standard output

to a buffer as a communication channel of the PIPE type.
The value used to count the memory being used will be the
value ‘‘used’’ – ‘‘buffers’’ – ‘‘cached’’, thus eliminating the
behavior ‘‘drift’’ from the computational system.

The ‘‘classic controller’’ process does not run in ‘‘back-
ground’’, a mode at which the start and end of the sched-
uled routine is interfered by the user. For the test, a SISO
system was used that had an output variable of the amount
of memory used and with ‘‘MaxClient’’ input variable. The
main flowchart of the ‘‘classical controller’’ process is shown
in Fig.14, ‘‘R0’’ and ‘‘R1’’ being the parameters of the feed-
back controller to be tuned, ‘‘Ref’’ being the reference value
defined by the administrator of the computational system,
PU_Used_PU per memory unit used.

FIGURE 14. Main part of the ‘‘classical controller’’ process.

The ‘‘MaxRequestWorks’’ parameter is the same as the
‘‘MaxClient’’ parameter. The name was changed in the
Apache version used for software testing.

The initial state considered was equal to 100 and the other
variables are intended for storing the system states.

The ‘‘process monitor’’ process relates the existing
‘‘httpd’’ processes with process generation, i.e. the param-
eters used for creating it, ‘‘MaxClient’’ and ‘‘KeepAlive-
TimeOut’’. The relationship is stored in a row with registry
structure having the ‘‘PID’’ as the primary key.

The ‘‘process manager’’ process indicates and executes
which ‘‘httpd’’ process of the ‘‘Daemon’’ user should be
killed and the generation of new processes with the new con-
figurations, based on the information sent by the ‘‘classical
controller’’ process and the process state.

FIGURE 15. Two generations of ‘‘httpd’’ process.

Fig.15 shows the first action of the ‘‘process manager’’
process. The ‘‘PID’’ processes 4118, 4119, 4120, 4121 and
4122 are of the previous generation, that is, parameters no
longer suitable for the condition of the host machine. The
‘‘PID’’ processes 4168, 4169, 4170, 4171, 44172 and 4173
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FIGURE 16. Flowchart showing the interactions between the proposed
control system and its software environment.

are of the new generation with the parameters already set. The
process that has the ‘‘owner’’ equal to ‘‘root’’ will manage
the new generation in the ‘‘Apache’’ methodology until a new
intervention of the proposed software.

In order to emphasize the interactions between the pro-
posed control system and the underlying software environ-
ment, namely the operating system and the ‘‘HTTP’’ service,
Fig.16 shows the corresponding process flowchart. As can be
seen, the PID digital controller is executed as a task belong-
ing to the process called ‘‘Calculation of current quantity
of ‘‘HTTP’’ process’’. If a disturbance event is detected by
a supervisory task, the proposed control system performs
the online adjustment of the settings of the response server
‘‘HTTP’’.

V. IDENTIFICATION OF THE ‘‘HTTP’’ REQUEST
RESPONSE COMPUTATIONAL SYSTEM
Mathematical modeling provides ways to develop and imple-
ment an equation that has the same behavior as that of the
desired characteristics of an actual system. Thus, it is a safe
way to prepare a model that is analogous to the intended
characteristics. Fig.17 shows the scheme for identification
thereof.

FIGURE 17. Schematics for identification.

To obtain the data for a non-parametric open-loop identifi-
cation, it was necessary to develop software that varies the
values of the input signal ‘‘MaxClient’’ and captures their
effects in memory. Fig.18 shows the disturbance inserted in
the system and respective response thereof.

To excite plant dynamics in order to estimate a parametric
model, a pseudo-random binary sequence (PRBS) type signal
was designed. The following criteria were used to choose the
parameters [9]:

1. For the amplitude values of the PRBS signal, it is
limited by the maximum excursion allowed to the

FIGURE 18. Variation and response of the ‘‘httpd’’ system.

process excitation signal, causing no interruption in the
‘‘HTTP’’.

2. The signal period should not be less than the system’s
accommodation time, otherwise it reduces the random-
ness character of the test.

3. The interval between the bits must be close to the
shortest system time divided by 3, since the system is
nonlinear.

FIGURE 19. Expansion of the 4th change.

It can be seen in Fig.18 that the longest times for system
accommodation are seen in the third and fifth ‘‘MaxClient’’
changes (from 200 to 400 processes). Fig.19 and Fig.20 are
the respective extensions of the aforementioned changes
to the removal of the longer system accommodation
time.

The 55-second time is the longest system accommodation
timewhichwill be adopted to project the PRBS signal. For the
shortest time, the 24-second timewill be adopted to guarantee
system response. For the amplitude value, the 200-process
operating point, varying by 200 processes upwards, will
be adopted, since there were no impediments in the open-
loop system variation tests. Fig.21 shows the designed PRBS
signal.

VOLUME 7, 2019 55867



M. V. S. Barreto et al.: Apache Dynamic Update for Feedback Control of Computing Resources

FIGURE 20. Expansion of the 5th change.

FIGURE 21. Projected PRBS signal.

FIGURE 22. PRBS signal used in the plant.

Thus, the PRBS got an 8-second time between bits and a
number of bits equal to 3, totaling the period time of 56 sec-
onds.

Fig.22 shows the pseudo-random binary signal (conserved
characteristics of the projected PRBS signal) obtained from
switching the ‘‘MaxClient’’ between two values. Initially,
the plant was in steady state, ‘‘MaxClient’’ equal to 250, and
from the fifth second the PRBS signal is inserted.

The system’s response is shown in Fig.23. It can be noted
that, even for the broader levels of the PRBS signal, the sys-
tem does not reach the steady state.

FIGURE 23. Response to the projected PRBS.

By using the non-recursive least squares algorithm, the dig-
ital transfer equation (8) was reached, which has a behavior
similar to that of the plant being studied.

H (q−1) =
0, 1521q−1

1− 0, 6732q−1
(8)

where q-1 is the backward-shift operator.
One of the validation techniques of the system domain

data is the autocorrelation function and the cross correlation
function, i.e., for the system model to be valid, the estimated
residuals should be approximately uncorrelated. The standard
deviation of 7 was used in the development of Fig.24, since
the average variation of plus or minus 7 does not have a
disturbing influence on the plant.

FIGURE 24. Autocorrelation and cross-correlation coefficient.

The autocorrelation coefficient informs howmuch the exe-
cution of a given random variable influences its neighbors.
For example, if the occurrence of one variable is considered
high, how much will this influence in having the next value
also high? In Fig.24, it is observed that the residual value
of autocorrelation close to the instant 0 is approximately
a unitary pulse (not being represented in the chart, as its
amplitude modifies the proportionality of the figure) and is
practically null for the other delays. It can be concluded that
the residual signal has a near-white frequency spectrum.

The cross-correlation coefficient is a measure of similarity
between two signals due to a delay applied to one of them.
Fig.24 shows the cross-correlation between the estimated
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residuals and the time series. It can be seen that the residual
line does not exceed the safety margin, which guarantees the
near-white frequency spectrum characteristics.

FIGURE 25. Comparison between obtained model and the real system.

Fig.25 shows the comparison between the actual model
and the obtained model. The best adjustment percentage was
quantified by 52.08. The validation data are from Fig.18, the
averages thereof were removed.

VI. PI CONTROLLER DESIGN
The controller designed for the ‘‘HTTP’’ request response
computational system features a PI control action adjusted
by the pole placement method.

FIGURE 26. Feedback Controller Diagram.

Fig.26 shows the block diagram of the implemented dig-
ital controller. The controller’s discrete transfer function is
defined as [10]:

R(q−1)
S(q−1)

=
r0 + r1q−1

1− q−1
. (9)

The controller design method aims to find the values of
r0 and r1. Since both controller and plant model are 1st order
discrete transfer functions, the resulting closed-loop charac-
teristic polynomial has the form:

AMF = z2 + (a1 − 1+ b0r0)z+ (b0r1 − a1) (10)

Therefore, in order to solve the pole placement problem,
a 2nd order desired polynomial should be specified as:

AdesMF = z2 + ades1 z+ ades2 (11)

By equating (10) and (11), one obtains[
b0 0
0 b0

] [
r0
r1

]
=

[
ades1 + 1− a1
ades2 + a1

]
(12)

To obtain the values of ades1 and ades2 , the knowledge of
the plant is used in order to impose the desired behavior.
The settling time (ts) is equal to 55s and by using an excess
percentage of5% (ξ= 0, 7), having [9]:

ts =
4
ξwn
=

4
0, 7 ∗ 55

= wn = 0, 1039rad/s (13)

However, the system of this work is discreet. To transform
ades1 and ades2 into a discrete time, the following equations are
used [11].

ades1 = −2e
−ξwnTs cos(

√
1− ξ2wnTs) (14)

ades2 = e−2wnTs (15)

By applying the values in (14) and (15) with Ts = 8s,
we obtain ades1 = −0, 9266 and a

des
2 = 0.1897. By performing

mathematical operations in (12):[
0, 1521 0

0 0, 1521

] [
r0
r1

]
=

[
−0, 9266+ 1− (−0, 6732)

0.1897+ (−0, 6732)

]
Thus, the values of r0 = 4,9088 and r1 = −3,1789. The

transfer equation of the tuned PI controller is seen in (16):

R(q−1)
S(q−1)

=
4, 9088− 3, 1789q−1

1− q−1
(16)

FIGURE 27. Closed-loop system simulation scheme.

Fig.27 illustrates the scheme of the closed loop simulation.
Fig.28 shows the memory used by the ‘‘HTTP’’ request

response system. The settling time is observed to be in
accordance with the plant and the overload in the established
criteria.

Fig.29 and Fig.30 are, respectively, the error and control
signal charts. Due to the use of the integrative portion of the
PID controller, the system error was rejected as of the eight-
ieth second; however, in the plant’s settling time, the error
is very close to zero, no longer interfering with the plant
in the real system because a process unit of the variable
‘‘MaxClient’’ has a fixed size depending on the web page
being requested.

The control signal does not have high relative amplitude,
and it can be stated that the control effort is not high, being
stabilized before the plant’s settling time.

VII. OBTAINED RESULTS
By using the designed PI controller in the developed software,
the system response (Fig.31) was obtained for a reference
of 562 megabytes of used memory. Initially, the ‘‘HTTP’’
server had a process to respond to customer requests
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FIGURE 28. Simulation Response.

FIGURE 29. Closed-loop simulation error signal.

FIGURE 30. Closed-loop simulation control signal.

(time interval from 0 to about 50 seconds). As from the
50-second instant, controller action was started. It can be seen
from Fig.30 that the system achieved stability approximately
55 seconds after the beginning of controller actuation and
the error is less than 1% of the reference value and can be
considered null [9].

FIGURE 31. Actual closed-loop system response.

Approximately at instant 270 seconds, a disturbance was
caused, the opening of a software. The controller stabilized
the system approximately 100 seconds after the disturbance
started. Stabilization delay is caused by the length of time the
software takes to fully load the memory. Stabilization has an
error of less than 1% of the reference value and is considered
null.

FIGURE 32. Closed-loop control signal.

Fig.32 shows the control signal that is used in the plant.
At the first moment of controller operation, period of
50-270 seconds, the value of ‘‘MaxClient’’ was stabilized
in approximately 110 process units; in the second moment
of controller performance, period of 270-1000 seconds,
the value of ‘‘MaxClient’’ was stabilized in approximately
50 process units. The reduction of processes to respond to
‘‘HTTP’’ requests is caused by the memory being occupied
by an open software, thus forcing the controller to act nega-
tively on the ‘‘MaxClient’’

The tests were run in an environment using one physical
machine (Windows 7) and two virtual machines (Virtualiza-
tion with VMware version 6.0.7 build-2844087). The first
virtual machine hosting the ‘‘HTTP’’ request response ser-
vice (Apache version 2.4.6) and the second with the ‘‘HTTP’’
request simulation system to generate the load on the system
(command:./httperf –hog - -server = 172.16.15.15 –num-
conns 720,000 –num-calls 100 –rate 600), with 600 requests
per second, each request will make 100 calls to the web server
addressed in the Internet Protocol IP 172.16.15.15, adding up
to a total of approximately 1200 seconds of load.
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Table 2 shows the configuration of the machines used in
the tests performed herein.

TABLE 2. Testing machine configuration.

VIII. CONCLUSION
The purpose of this article, to develop non-intrusive soft-
ware to the ‘‘HTTP’’ request server, has been achieved, thus
enabling the IT manager to scale the maximum amount the
server can use. Thus, a problem of lack of resource, main
memory, for the basic routines of the operating system will
be automatically controlled by the person in charge.

However, for systems that use virtualized memory,
the problem of lack of main memory resources practically
does not exist, since there is an extension of the main memory
to the secondary memory, there being no limit to the use of
memory, with a significant increase in the response time by
usingmechanical storagemedium, a hard disk. By controlling
the use of memory, one can avoid the use of virtual memory
by providing a control of the server response time.

In the identification of the system, it is noticed that,
depending on the state of the operating system, there is a
variation in the plant’s settling time. This variation in time is
the result of the number of processes existing in the queue of
the operating system that hosts the ‘‘HTTP’’ request response
server.

The non-minimal phase of the system is caused by the
running of the management of the ‘‘httpd’’ processes of
generation n-1 in batch form. Generation n processes are
created according to the number of requests (load) in the TCP
port 80 queue of the operating system. Then, there is a steep
release and occupation, which requires time, in memory.

Since this is a non-linear system, the PI controller design
will succeed at the point of operation in which it was
designed, that is, in the range of plus or minus 50 in amplitude
and with the environment being controlled (verification of
running processes).

For the operation point, the results obtained are satis-
factory, since the plant output does not exceed 1% of the
reference value. Although the designed standard digital PI
controller has succeeded in the experimental tests reported
herein, strong nonlinearities as well as time-varying system
behavior may demand the investigation of more advanced
control techniques, such as adaptive and/or robust control
approaches. These particular issues are to be investigated and
reported in future papers. Another point for future research
is the influence of virtualization on the results and how other
services hosted on the samemachine influence each other and
how the controller behaves.
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