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ABSTRACT

This piece of work is twofold. First, the time evolution of wave-packets in 2D systems is analyzed

by the Split-Operator technique in three different scenarios: in multilayer phosphorene, the

transient oscillations in the time-dependent average of position and momentum were observed

due to the zitterbewegung effect, and the wave packet propagates non-uniformly along the space

deforming itself into an elliptical shape. These results were corroborated by the Green’s function

formalism except for large values of the wave-vector and long times; in 2D semiconductor

quantum wires (QWs) with anisotropic effective masses and different angle orientations with

respect to the anisotropic axis. We have shown that the greater this angle, the smaller is the

energy levels spacing implying in an increase of the accessible electronic states. Additionally,

for non-null magnetic field, the quantum Hall edge states are significantly affected by the edge

orientation. In the anisotropic case damped oscillations in the average values of velocity in both

x and y directions where obtained. Theses oscillations are originated by the QW geometry but

also from subwavepackets with different momentum orientations, whereas for isotropic QWs the

wavepacket disperses without splitting; in the third scenario the split-operator technique was used

to study the Landau levels, the wave packet trajectories and velocities of electrons in graphene at

low-energy regime described by a modified Dirac equation where the momentum-operator is

written in a generalized form as result of applying the position-dependent translation operator

formalism (PDTO).

In the second part of this thesis, the electronic and tunneling properties of α −T3 lattices were

studied. Electrons in these lattices behave analogous to integer-spin Dirac Fermions. The

presence of a third atomic site in the unit cell leads to a flat band in the energy spectrum,

providing unique electronic and tunneling properties. The presence of a super-periodic potential

and the inclusion of symmetry-breaking terms results in deviations of the atomic equivalence

between the atomic sites affecting the Dirac points and the band-gap. Small deviations in

the equivalence between the atomic sites and the number of barriers change the transmission

properties in these lattices. Additionally, new tunneling regions are possible by adjusting the

symmetry between the atomic sites and affect the omnidirectional total transmission called

super-Klein tunneling observed in these lattices. We compare those results to the tunneling

probabilities through regions where the energy spectrum changes from linear with a middle flat

band to a hyperbolic dispersion.



Keywords: split-operator technique; phosphorene; α − T3 lattices; band-gap; super Klein-

tunneling.



RESUMO

Este trabalho se divide em duas partes. Na primeira, a evolução temporal dos pacotes de

ondas em sistemas 2D é analisada pela técnica Split-Operator em três cenários diferentes: em

multicamadas de fósforo negro, as oscilações transientes dependente do tempo nos valores

médios de posição e momento foram observadas devido a o efeito zitterbewegung e o pacote

de ondas se propagam de maneira não uniforme ao longo do espaço, deformando-se em uma

forma elíptica. Esses resultados foram corroborados pelo formalismo da função de Green,

exceto para maiores valores de momento e após intervalos maiores de tempo. Em fios quânticos

semicondutores 2D com massas efetivas anisotrópicas e diferentes orientações de ângulo em

relação ao eixo anisotrópico, mostramos que quanto maior este ângulo, menor é o espaçamento

dos níveis de energia, implicando em um aumento dos estados eletrônicos acessíveis. Além disso,

para o campo magnético não-nulo, os estados quânticos de Hall edge states são significativamente

afetados pela orientação das bordas. No caso anisotrópico, oscilações amortecidas nos valores

médios de velocidade nas direções x e y foram obtidas. Essas oscilações são originadas pela

geometria do fio quântico, mas também de subpacotes de onda com diferentes orientações de

momento, enquanto que para fios quanticos isotrópicos o pacote de onda se dispersa sem se

dividir; no terceiro cenário, a técnica split-operator foi usada para estudar os níveis de Landau,

as trajetórias do pacote de ondas e as velocidades dos elétrons no grafeno em regime de baixa

energia descrito por uma equação de Dirac modificada onde o operador momentum é escrito em

uma forma generalizada como resultado da aplicação do formalismo do operador de translação

dependente da posição.

Na segunda parte desta tese, as propriedades eletrônicas e de tunelamento das redes α −T3 foram

estudadas. Os elétrons nessas redes se comportam de forma análoga aos férmions de Dirac de

spin inteiro. A presença de um terceiro sítio atômico na célula unitária leva a uma banda plana no

espectro de energia, fornecendo propriedades eletrônicas e de tunelamento únicas. A presença de

um potencial superperiódico e a inclusão de termos de quebra de simetria resultam em desvios

da equivalência atômica entre os sítios atômicos que afetam os pontos de Dirac e o band-gap

no espectro de energia. Pequenos desvios na equivalência entre os sítios atômicos e o número

de barreiras alteram as propriedades de transmissão nessas redes. Além disso, novas regiões de

tunelamento são possíveis ajustando a simetria entre os sítios atômicos e afetando a transmissão

total omnidirecional chamada super-tunelamento de Klein observada nessas redes. Comparamos



esses resultados com as probabilidades de tunelamento por meio de regiões onde o espectro de

energia muda de linear com uma banda plana do meio para uma dispersão hiperbólica.

Palavras-chave: técnica split-operator; fosforeno; redes α −T3; formação de band-gap; super

tunelamento Klein.
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and (d) θ = π/4 (dice) when Û = Û2, V0 = 0.2 eV, ∆ = 0.04 eV, and d = 30

nm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Figure 87 – Transmission probability through a single-barrier as function of incident

angle φw at incident energy values (a) E/V0 = 0.25, and (b) E/V0 = 0.5

for θ = 0 (solid black curve), θ = π/12 (dotted magenta curve), θ = π/6

(dashed red curve), and θ = π/4 (dash-dotted blue curve) when Û = Û2,
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with ∆ = 0.1 eV and d = 30 nm. . . . . . . . . . . . . . . . . . . . . . . . 197



LIST OF TABLES

Table 1 – Hoppings, continuum parameters, and lattice parameters of phosphorene . . . 53

Table 2 – Hamiltonian parameters of the effective continuum model (Eq. (7.1)) derived

by the expansion of the structure factor coefficients of the tight-binding model

for multilayer BP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Table 3 – Electron effective masses in the x and y directions for phosphorene and ar-

senene in units of free electron mass (m0). . . . . . . . . . . . . . . . . . . . 106



LIST OF SYMBOLS

vF Fermi velocity

t, α Hopping parameters

ΨA The probability of finding the electron on sublattice A

ΨB The probability of finding the electron on sublattice B

ΨC The probability of finding the electron on sublattice C

e Elementary electron charge

A⃗ Vector potential

B⃗ Magnetic field

lB Magnetic length

φ0 Magnetic quantum flux

k⃗ Wave-vector

1 Identity matrix

M Mass-term matrix

∆ Mass potential
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1 INTRODUCTION

1.1 Graphene: ‘CERN on one’s desk’

In 2004, researchers at the Manchester University were able to isolate films con-

sisting of just a few layers of graphite and even a single carbon layer, named graphene, which

boosted the search for new materials. This material, unlike theoretically expected (MERMIN,

1968; LANDAU; LIFSHITZ, 1980), exhibits high quality and stability even under ambient con-

ditions (NOVOSELOV et al., 2004; BERGER et al., 2004). Since graphene has been proving to

have very peculiar and interesting properties that could possibly generate new carbon-based elec-

tronic devices, this material has received a lot of attention from researchers. As a consequence of

this "boom" in two-dimensional (2D) (two-dimensional) materials related research, Andre Geim

and Konstantin Novoselov were awarded with the nobel prize in physics for groundbreaking

experiments regarding this special two-dimensional material.

Graphene is a 2D crystal of carbon atoms arranged in a honeycomb lattice (HCL)

formed by the combination of two trigonal lattices shifted from each other. The atoms have

sp2 hybridization and each one of them is bounded to the other three, by means of strong σ

bonds. Perpendicular to the plane of atoms there is the pure half-filled pz orbitals left out of the

hybridization making weak delocalized π bonds with the neighbors atoms. Since the pz orbital

of a given carbon atom is not bound to a specific neighbor, pz orbital constantly changes the

direction of the superposition around the three neighbors, which gives rise to the delocalized π

bonds. Therefore, unpaired electrons in the pz orbitals could hop from atom to atom as the π

bonds are formed, making these π electrons the main responsible for the transport properties of

graphene (DRESSELHAUS et al., 1998; GOERBIG, 2011).

A striking feature of graphene is that its charge carriers are governed by an equation

analogous to the Dirac equation that is used to describe spin 1/2 particles in quantum elec-

trodynamics (SAKURAI; J, 1967). Due to that, electrons in graphene behave like zero-mass

relativistic particles that travel with a Fermi velocity that is equivalent to the speed of light

vF = 106m/s (for more details see Chapter 2), exhibiting a gapless conical spectrum at low

energies (E < 1eV ). As a result, some relativistic effects such as Klein-tunneling (KT) and the

phenomenon known as zitterbewegung (ZBW) can be observed in graphene.

The KT effect emerges when one tries to confine the graphene electrons by means

of electrostatic potentials. However, these electrons can not be trapped by such electrostatic
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potentials and they can be totally transmitted through any electrostatic barrier (KATSNELSON

et al., 2006). This effect is usually called Klein-paradox or KT in graphene, in analogy to the so

called Klein-paradox in quantum electrodynamics. We are going to discuss this effect in detail

in Chapter 2.

Another effect that can be observed in graphene is the trembling motion of its

propagating wave-function, this effect is called zitterbewegung (THALLER, 2004; ZAWADZKI;

RUSIN, 2010; DAVID; CSERTI, 2010) (ZBW). ZBW was theoretically predicted for the first

time in 1930 by Schrödinger (SCHRÖDINGER, 1930) and, in recent years, interest in this

topic has been renewed. Previous theoretical work has suggested some ways to observe ZBW

experimentally, for example in quantum wells formed by III-V zinc-blende semiconductors with

spin-orbit coupling (SCHLIEMANN et al., 2005) and, more recently, in monolayers (RUSIN;

ZAWADZKI, 2009) and bilayers (WANG et al., 2010) of graphene. One experimental simulation

of ZBW for relativistic free electrons in vacuum was made by Gerritsma et al. (GERRITSMA et

al., 2010) using trapped ions. This phenomenon, which has been attributed to an interference

between the positive and negative energy states in the wave-packet, was also analyzed numerically

and analytically in Refs. (GERRITSMA et al., 2010; BRAUN et al., 1999).

Because graphene provides the possibility of mimicking relativistic effects in labora-

tory, and from a technological point of view it is a very stable material, perfectly 2D, which also

brings two new degrees of freedom that can be manipulated for electronics: the valleys (RYCERZ

et al., 2007) and the pseudo-spin. There are many other properties not included here that can

generate new technologies by exploring the physics of graphene.

1.2 Phosphorene: an anisotropic semiconductor

More recently, in 2014, a group of researchers from the University of North Carolina

managed to obtain monolayers of black phosphorus (BP), also known as phosphorene using

the micromechanical cleavage technique (LIU et al., 2014), the same technique used to obtain

graphene. Unlike graphene, BP has a direct gap and its energy value is adjustable with the

number of layers (LIU et al., 2014), in addition it has anisotropy (XIA et al., 2014) and high

electronic mobility (XIA et al., 2014; QIAO et al., 2014), as we discuss further.

Phosphorus is a non-metallic element that is highly reactive and oxidizes quickly

when in contact with oxygen in the atmosphere. This chemical element is not found freely in

nature. Phosphorus has many allotropes being BP the most stable one first obtained in 1914
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from white phosphorus under high pressure and high temperature (BRIDGMAN, 1914; KEYES,

1953). Similar to graphite, its a structure is arranged in rough layers bound by van der Waals

interactions (MORITA, 1986). Previous studies showed that this material exhibits a structural

phase transition (WARSCHAUER, 1963; MARUYAMA et al., 1981), and is superconducting at

high pressures and temperatures above 10K (JAMIESON, 1963; KAWAMURA et al., 1984).

At low temperatures the conductivity is dominated by holes (KEYES, 1953; WARSCHAUER,

1963; VANDERBORGH; SCHIFERL, 1989).

Just like graphene, that is an isolated single layer obtained from graphite, phospho-

rene is a monolayer of BP (CHEN et al., 2015; CASTELLANOS-GOMEZ et al., 2014). In

this structure, the phosphorus atoms are covalently bonded to the three neighboring atoms and

have sp3 hybridization, unlike graphene where the C atoms are bound by sp2 hybridization,

which explains the rough surface of the material, as shown in Fig. 1. Moreover its bulk form

is a semiconductor, whose energy gap value is about 0.31-0.35 eV, and monolayer BP has a

direct energy gap of 1.60 eV (KEYES, 1953; WARSCHAUER, 1963; KOENIG et al., 2014).

Experimentally it was observed that the energy gap value increases with the number of layers of

the material (CASTELLANOS-GOMEZ et al., 2014), which was later confirmed by theoretical

works (LIU et al., 2014; RODIN et al., 2014; ASAHINA; MORITA, 1984; DU et al., 2010;

QIAO et al., 2014).

Figure 1 – Representation of (a) monolayer phosphorene (top view), (b) side view of phosphorene
layers exhibiting its buckled structure (SOUSA, 2016).

BP also has particularities in its electronic properties. An interesting characteristic

of this material is the difference between the energy gap value between the valence and con-

duction bands of its bulk form, which is around 0.33 eV which increased to around 1.01 eV for
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bilayer (WOOMER et al., 2015). This difference in the energy gap values of bulk and bilayer is

larger than values observed in any other thin film. For graphene, bulk properties are observed in

samples with at least 20 layers (PARTOENS; PEETERS, 2006), while for BP we observe bulk

characteristics in samples with at least 10 layers (SOUSA et al., 2017a).

Figure 2 shows the band structures of BP in its bulk form using first-principles

calculations for two types of functionals: GGA (generalized gradient approximation) and GW

(gradient wave). We can see from Fig. 2 that there is a small energy gap between the valence and

the conduction bands in the region close to the Fermi level (Γ point) when calculation is done

within the GW approximation. Although none of these techniques provide a result of energy gap

values consistent with the experimental values, which are approximately 0.31-0.35eV, the GW

technique is the most suitable as it presents qualitative results similar to the experimental results

of the material.

Figure 2 – Band structure for bulk BP calculated using (a) DFT-GGA (generalized gradient
approximation) (RUDENKO; KATSNELSON, 2014; PERDEW et al., 1996), and (b) DFT-
GW. (HEDIN, 1965; SHISHKIN; KRESSE, 2006).

Furthermore, as the number of layers increases, the valence band undergoes a split

close to the Fermi level, which causes a reduction in the energy value of its gap (RUDENKO;
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KATSNELSON, 2014) as noticed in Fig. 3. This occurs due to the presence of negative hopping

values, called repulsion hoppings, between layers and between close neighbors both within a

layer and between the sites of one layer and another (RUDENKO; KATSNELSON, 2014), this

interaction being due to the buckled structure of the material. The dependence of energy gap on

the number of layers is more evident by analyzing the charge mobility in this material (QIAO et

al., 2014; XIA et al., 2014), which is greater in the x direction indicating therefore an anisotropy

(direction-dependent physical properties) in BP (XIA et al., 2014).

Figure 3 – Band structures calculated using DFT-GW for different numbers of layers: (a)
monolayer, (b) bilayer, (c) trilayer, (d) tetralayer of BP (RUDENKO; KATSNELSON, 2014).

Due to some peculiar properties of BP described in this section, this material is very

remarkable for technological applications, such as optical and electronic devices, presenting

excellent performance in batteries (KOU et al., 2015; SUN et al., 2014) and arousing a lot of

interest in the development of transistors (KOU et al., 2015; LI et al., 2014; DAS et al., 2014;

DU et al., 2014; DU et al., 2015). A major drawback is that this material is not stable in air.

1.3 Introducing α −T3 lattices: transition from honeycomb lattice to dice

An analogous lattice to graphene, the T3 or dice lattice, is shown on the right hand

side of Fig. 4. The dice lattice is described by the same Dirac Hamiltonian as graphene, but
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with an enlarged pseudospin S = 1. In the dice lattice case, the geometry of the HCL is altered

by an additional atom located at the center of each hexagon coupled only to one of the two

topologically nonequivalent atomic sites of the HCL. The dice lattice can be naturally obtained

by growing a trilayer structure of cubic lattices in the (111) direction (WANG; RAN, 2011) (for

example SrTiO3 /SrIrO3 /SrTiO3) or by confining cold atoms to an optical lattice (BERCIOUX

et al., 2009). The properties of general pseudospin S lattices arising from the generalized Dirac

Hamiltonian have been explored recently (DÓRA et al., 2011; MALCOLM; NICOL, 2014; LAN

et al., 2011), providing insight into the understanding of lattices with pseudospin equal or greater

than S = 1/2.

Figure 4 – Some lattices obtained from the α −T3 model assuming α = 0 representing HCL, on
the left. For α = 1 (dice) there is an additional site at the center of each hexagon, as shown on
the right. The general α −T3 lattice is in the bottom (ILLES, 2017).

From the α −T3 model (RAOUX et al., 2014) the HCL and dice (or T3) lattice can

be obtained by a continuous evolution of the parameter α , which is proportional to the strength

of the coupling with the additional atom at the center of the HCL, as observed in Fig. 4 where

the limiting cases, the HCL (α = 0) and dice lattice (α = 1) are represented.

The α −T3 model was initially proposed in 2014 paper (RAOUX et al., 2014) to

investigate cold atom systems highlighting the diamagnetic (MCCLURE, 1956) (α = 0) to

paramagnetic (SUTHERLAND, 1986; VIDAL et al., 1998) (α = 1) transition in the orbital
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magnetic response of the lattice. This behaviour has recently been linked to the evolution of the

Berry phase in this system, which ranges continuously from π to zero as it evolves from HCL to

dice, respectively. Additionally, in the 2D limit, at critical doping and considering α =
p

1/3

three-dimensional Hg1xCdxTe maps onto the α −T3 model in the intermediate regime between

the dice and HCL (MALCOLM; NICOL, 2015). The α −T3 model has also been extended to

include additional terms and variations (PIÉCHON et al., 2015) in its Hamiltonian.

1.4 Outline and goals of this thesis

This thesis has two main objectives: the first one is to develop efficient methods to

solve the time-dependent Schrödinger and Dirac equations, and then apply them to the study

of the transport properties of nanoscale structures in graphene into the PDTO approach and

to anisotropic semiconductors. The second one is to investigate the electronic and tunneling

properties in α −T3 superlattices focusing on the explanation of the appearance of new Dirac

points, band-gap formation and how the omniderectional tunneling is altered by the inclusion of

small deviations in the symmetry of the atomic sites.

First, in order to obtain the Dirac equation which describes charge carriers in

graphene and to understand the main electronic and transport properties of this material, in

Chapter 2 we present the tight-binding model applied to graphene and perform the continuum

limit approximation in order to obtain an effective Hamiltonian valid for a low density of carriers,

which allows the analogy with quantum electrodynamics. We also discuss the electronic and

tunneling properties of graphene in the presence of square potential barriers and superlattices

highlighting the appearance of KT and the emergence of new Dirac points in the energy spectrum.

In Chapter 3 we summarize the electronic properties of phosphorene, from tight-

binding model to effective mass model, discussing the anisotropy of this material.

The Dirac equation for enlarged pseudospin S which describes the α −T3 lattices

and the discussion of the consequences of it in the tunneling transport are performed in Chapter

4 where the SKT is presented.

In Chapter 5 we show how to solve the time-dependent Schrödinger and Dirac equa-

tions numerically using the split-operator method, giving details about this method, highlighting

its efficiency in the analysis of wave packet propagation. In Chapter 6 we calculate the time

evolution in BP multilayers and develop the numerical method described in Chapter 5 for BP

multilayers, something not yet reported in the literature, enabling the investigation of wave
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packet evolution in this material as well as the understanding of the relationship between the

material’s anisotropy and the aforementioned ZBW effect.

In Chapter 7 we investigate theoretically the electronic properties of 2D semicon-

ductor quantum wires (QWs) with anisotropic effective masses and different orientations with

respect to the anisotropic axis in the absence of magnetic field and non-null magnetic field.

Moreover we apply the split-operator method to analyze the wave-packet dynamic in these

systems.

In Chapter 8 we apply the method described in Chapter 5 to the modified Dirac

equation of graphene, when the momentum operator is rewritten in a generalized form. Moreover

we obtain analytical expressions for the eigenstates and Landau levels spectrum in graphene

under the presence of a perpendicularly applied magnetic field.

The second objective of this thesis is to analyze the electronic and tunneling proper-

ties of α −T3 superlattices to understand how the inclusion of symmetry-breaking terms could

affect the band-gap morphing and supress the SKT. In Chapter 9 we investigate the dependency

of superlattice mini-bands on the parameter α accounting for different symmetry-breaking terms

and show how it affects band gap formation. In Chapter 10 we show that small deviations in the

equivalence between the atomic sites, as well as the number of barriers can strongly change the

transmission properties in these lattices. Conclusions and perspectives can be found in Chapter

11.
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2 PHYSICAL PROPERTIES OF GRAPHENE

In this chapter we discussed the electronic properties of graphene. We derived

the tight-binding approximation followed by the low-energy Hamiltonian obtained from the

continuum model. We also discuss the electronic properties of charge carriers in the presence of

single- or multiple barriers, where we present the striking effect called KT and the emergence of

new Dirac points when a superlattice is considered in graphene.

2.1 Tight-binding approximation

Figure 5 – The structure of graphene crystal showing two sublattices A (blue dots) and B (yellow
dots). The primitive vectors that span the lattice are a⃗1 and a⃗2, while Ri (with i = 1,2,3) localizes
the nearest neighbors (NETO et al., 2009).

Initially, we need to define the crystallographic structure of graphene: a crystal

structure composed by carbon atoms arranged in a 2D-honeycomb lattice. This graphene structure

contains two-sites per unit cell, as shown in Fig. 5 This unit cell consists of a superposition

of two triangular sublattices denoted by A and B (WALLACE, 1947). The crystal structure is

formed from the primitive vectors a⃗1 and a⃗2 given by

a⃗1 =

 
3a
2
,
a
√

3
2

!
, a⃗2 =

 
3a
2
,
−a

√
3

2

!
, (2.1)

where a ≈ 1.42Å corresponds to the distance between the carbon sites. From Eqs. (2.1) it is

possible to get the vectors of reciprocal space b⃗1 and b⃗2:

b⃗1 =

 
2π
3a

,
2π

√
3

3a

!
, b⃗2 =

 
2π
3a

,
−2π

√
3

3a

!
. (2.2)

Now we have described the crystallographic structure of graphene and we are able to derive

the tight-binding model. In this model it is assumed that wave-functions describing electrons is
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peaked at the site, indicating electrons are tightly bound to the atom. We are going to consider

that electrons just hop between the nearest neighbors. Moreover, we consider π orbitals since

the electronic properties of graphene for low-energy excitation are determined by these π bands.

The tight-binding Hamiltonian that describes electrons in graphene considering only

the hopping between the nearest-neighbors in second quantization formalism is:

H =−∑
i, j

γ0

�
a†

i bj +b†
j ai

�
, (2.3)

where γ0 = 2.8 eV is the hopping parameter (NETO et al., 2009). The operator a†
i (ai) creates

(annihilates) electrons on the site i of sublattice A. Similarly, b†
j (bj) acts on the j-sites of

sublattice B.

Considering an infinity lattice, we define the Fourier transformation of the creation

and annihilation operators. In order to do that, we assume:

ai =
1√
N ∑

k
ei⃗k·⃗riak , a†

i =
1√
N ∑

k
e−i⃗k·⃗ria†

k, (2.4a)

bj =
1√
N ∑

k′
ei⃗k′ ·⃗r jbk′ , b†

j =
1√
N

′
∑
k

e−i⃗k′ ·⃗r jb†
k′ . (2.4b)

Substituting Eqs. (2.4) into Eq. (2.3) the Hamiltonian is rewritten as:

H =−∑
i, j

γ0

N

"
∑
k,k′

e−i⃗k·⃗rie−i⃗k′ ·⃗r ja†
kbk′ +∑

k,k′
e−i⃗k′ ·⃗r jei⃗k·⃗riakb†

k′

#
, (2.5)

which takes the form of:

H =−γ0

N ∑
i, j

∑
k,k′

h
e−i(⃗k−k⃗′)·⃗rie−i⃗k′·(⃗r j−⃗ri)a†

kbk′ + e−i(⃗k′−⃗k)·⃗rie−i⃗k′·(⃗r j−⃗ri)b†
k′ak

i
. (2.6)

Considering r⃗ j − r⃗i the vectors that localize the three nearest neighbors in relation to site A with

index i (see Fig. 5) as R⃗1 = (−a,0), R⃗2 = (a/2,a
√

3/2) and R⃗3 = (a/2,−a
√

3/2) we have

H =−γ0

N ∑
i

∑
k,k′

h
e−i(⃗k−k⃗′)·⃗ria†

kbk′
�

e−ik′xa + e−ik′xa/2e−ik′y
√

3a/2 + eik′xa/2e−ik′y
√

3a/2
�

+e−i(⃗k′−⃗k)·⃗rib†
k′ak

�
e−ik′xa + e−ik′xa/2e−ik′y

√
3a/2 + e−ik′xa/2eik′y

√
3a/2

�i
, (2.7)

which is reduced to

H =−γ0 ∑
k

�
f (⃗k)a†

kbk + f ∗(⃗k)b†
kak
�
, (2.8)
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where f⃗ (k) consists of the structure factor of the crystal. Since |Ψk⟩= (ak bk)
T is the electronic

state for a given k⃗, Eq. (2.8) can be written as H = ⟨Ψk|Hk |Ψk⟩, where Hk is a 2× 2 matrix

representing the Hamiltonian for that k⃗:

Hk =


 0 −γ0 f (⃗k)

−γ0 f ∗(⃗k) 0


 . (2.9)

We obtain the eigenvalues of Hk as

E±k =±γ0| f (⃗k)|=±γ0

q
3+g(⃗k), (2.10)

with g(⃗k) = 4cos(3kxa/2)cos(kya
√

3/2)+2cos(kya
√

3), and + (−) representing the conduc-

tion (valence) band. The electronic band structure found from Eq. (2.10) is depicted in Fig. 6(a).

We can see that the conduction and valence bands touch at six points where E(kx,ky) = 0 and the

bands are symmetric in relation to this value of energy, which means that there is electron-hole

symmetry. These six points are called Dirac points, and their coordinates can be found setting

E(kx,ky) = 0 → f (⃗k) = 0. So,

Re[ f (kx,ky)] = cos(kxa)+2cos(kya
√

3/2)cos(kxa/2) = 0, (2.11a)

Im[ f (kx,ky)] = sin(kxa)−2cos(kya
√

3/2)sin(kxa/2) = 0, (2.11b)

which leading to

k⃗1 =

�
0,

4π
3
√

3a

�
, k⃗2 =

�
2π
3a

,
2π

3
√

3a

�
, k⃗3 =

�
2π
3a

,
−2π
3
√

3a

�
, (2.12a)

k⃗4 =

�
0,

−4π
3
√

3a

�
, k⃗5 =

�−2π
3a

,
−2π
3
√

3a

�
, k⃗6 =

�−2π
3a

,
2π

3
√

3a

�
. (2.12b)

These points are located at the crystallographic points K and K′ in the corner of the first Brillouin

zone, as shown in Fig. 6(b). Therefore, since the points k⃗1, k⃗2 and k⃗6 (⃗k3, k⃗4 and k⃗5) are associated

to the K (K′) points connected by the reciprocal lattice, these points are equivalents1.

2.2 Continuum model

Expanding the Hamiltonian in Eq. (2.9), i.e. f (kx,ky) around one of the Dirac points,

for example k⃗3, and retaining just the first order terms in kx and ky we have

f (δ k⃗)≈ f (⃗k3)+
∂ f
∂kx

���⃗
k=⃗k3

(kx − k3x)+
∂ f
∂ky

���⃗
k=⃗k3

(ky − k3y)+O(δk2). (2.13)

1 Due to that, from now on we restrict in this thesis to HK .
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(a) (b)

Figure 6 – (a) The electronic bands of graphene obtained by the tight-binding approximation, (b)
the contour plot of the conduction band indicating the Dirac points K and K′.

After evaluating Eq. (2.13) we obtain:

f (δ k⃗)≈ 3a
2
(kx − iky)e−i5π/6, (2.14)

where the complex exponential can be incorporated as a phase into the wave functions, since its

norm is one. Thus, the effective Hamiltonian near the point k⃗3(K) is

HK =


 0 h̄vF(kx − iky)

h̄vF(kx + iky) 0


 , (2.15)

with h̄vF = 3aγ0/2. Note that the Hamiltonian in Eq. (2.15) has the same form as the Dirac

Hamiltonian that describes relativistic particles with a zero mass, but in this case the light velocity

c is replaced by the Fermi velocity vF ≈ 106 m/s (BROMLEY; GREINER, 2013). The similarity

between ultra-relativistic particles and electrons in graphene makes it a promising material to

investigate relativistic effects such as KT which will be considered in the next session. The

Hamiltonian in Eq. (2.15) can be rewritten in a succinct way as:

HK = vFσ ·p, (2.16)

where σ are the Pauli matrices given by:

σx =


0 1

1 0


 , σy =


0 −i

i 0


 , σz =


1 0

0 1


 . (2.17)

In the Dirac approach, which describes relativistic particles without mass, the Pauli matrices are

related to the spin degree of freedom (BROMLEY; GREINER, 2013). However, in this case the

Pauli matrices arise as a consequence of the crystallographic structure of graphene. This is the
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reason why σ is called pseudospin, and the eigenstate of Eq. (2.15) given by |ΨK⟩= (ψA,ψB) is

called pseudospinor and consists of the components describing the distribution of electrons in

sublattices A and B, so that pseudospin "up"("down") means sublattice A(B). By diagonalizing

the Hamiltonian in Eq. (2.15) we find a linear energy spectrum E =±h̄vFk and the eigenstates

are

��Ψ±
K
�
=

1√
2

�
1

±eiθ

�
, (2.18)

with θ = tan−1(ky/kx).

Performing the same approximation of Eq. (2.13) but around the K′(⃗k6) point we

find

Hk′ = vFσ∗ ·p, (2.19)

with the eigenstates

��Ψ±
K′
�
=

1√
2

�
1

±e−iθ

�
. (2.20)

Thus, the Hamiltonian that describes the low-energy electronic excitation in graphene, i.e around

the points K and K′ is given by a 2×2 block matrix:

HK,K′ =


vFσ ·p 0

0 vFσ∗ ·p


 , (2.21)

with eigenvalues E = ±h̄vFk and eigenstates |Ψ⟩ = (ΨK,ΨK′) = (ψA,ψB,ψC,ψD)
T . For the

case of ideal graphene the off-diagonal terms scatter electrons from K to K′ and vice-versa,

which are called valleys, are decoupled and they are said to be valley degenerate.

In summary, we have just demonstrated that, when considering low-energy electrons,

the problem of an electron under the influence of the carbon atoms in an infinite lattice that make

up graphene becomes equivalent to the problem of a massless free quasi-particle obeying the

Dirac equation, and as mentioned previously this results in peculiar effects such as KT.

2.3 Dirac fermions in graphene and Klein-tunneling

The existence of transmission of a quantum particle even with a tiny probabil-

ity through a classically forbidden region is usually obtained from the Schrödinger equa-

tion (GAMOW, 1928; GURNEY; CONDON, 1928; BROMLEY; GREINER, 2013) and known

as quantum tunneling. Unlike expected from the point of view of classical particles dynamics,
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particles could create a "tunnel" such they could traverse a potential barrier that is higher than

their kinetic energy. In this case, the tunneling of a particle can be said to arise due to the coupling

of the propagating solutions of Schrödinger equation at either side of the potential barrier with

decaying solutions in the barrier region, leading to non-zero transmission probability.

Nonetheless, the advent of a covariant relativist version of quantum mechanics

developed by Dirac in 1928 (DIRAC, 1928) led to several important discoveries such as the

prediction of particles with negative energies. One consequence of this theory was recognized by

Klein (KLEIN, 1929), which predicted that regardless of the height and the width of the barrier,

for a certain range of energies, the transmission probability for a single square barrier could

reach 1. This effect has been know as Klein-paradox or KT and it is due to the overlap between

positive and negative energy states outside and inside the barriers (DOMBEY; CALOGERACOS,

1999).

Multiple experiments were made in order to detect KT but since very large fields are

required to detect the tunneling of relativistic particles, many difficulties were faced. However

the development and fabrication of monolayer graphene (NOVOSELOV et al., 2005a; ZHANG

et al., 2005), where a similar effect, though for 2D massless Dirac electrons, has been pre-

dicted (KATSNELSON et al., 2006; CHEIANOV; FAL’KO, 2006; JR et al., 2006) and evidences

of its observation were reported (HUARD et al., 2007; GORBACHEV et al., 2008; STANDER

et al., 2009; YOUNG; KIM, 2009).

It is important to highlight that the KT observed in graphene, which we will discuss

now, is not a tunnel effect in the usual quantum mechanical sense and there is no paradox in

this case. Indeed we will demonstrate that the unusual tunneling behaviour of massless Dirac

particles in graphene is a consequence of pseudospin conservation (KATSNELSON et al., 2006;

ALLAIN; FUCHS, 2011; PEREIRA et al., 2010).

2.3.1 Conservation of pseudospin and the absence of backscattering

We now demonstrate that the absence of backscattering of massless Dirac fermions

normally incident on a potential V (x)Î, where Î is the unit matrix, is a consequence of the

conservation of their pseudospin σx along the x direction.

Including an external translational invariant potential V (x) =V0 in the y direction in

the Hamiltonian, Eq.(2.15), it reads

Ĥ = kxσx + kyσy +V (x)Î. (2.22)
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The velocity operator along the x direction according to Heisenberg equation is

v̂x =−ih̄[x, Ĥ] =


0 1

1 0


= σx, (2.23)

where we assume h̄ = 1. So, the time evolution of v̂x is

˙̂vx =−i[v̂x, Ĥ] =−i[σx, Ĥ]. (2.24)

Eq. (2.24) can be written as

˙̂vx =−i


2iky 0

0 −2iky


= 2σzky. (2.25)

Since we consider the translational invariance along the y direction, k̇y = −i[ky, Ĥ] = 0, so

ky(t) = ky(0). If the initial state of the electron |ψ(0)⟩ is an eigenstate of zero momentum in the

y direction ky(0) |ψ(0)⟩= 0, i.e. the electron is initially perpendicular to the potential interface,

then at time t > 0 we have

⟨ψ(t)| ˙̂vx |ψ(t)⟩= 2⟨ψ(t)|σzky |ψ(t)⟩= 2⟨ψ(0)|σzky |ψ(0)⟩= 0, (2.26)

which means that v̂x is a constant of the motion. Therefore, the electron normally incident on

a translational invariant potential is perfectly transmitted and its motion is exactly the same

as in the absence of the potential. This has important physical consequences on the transport

properties of massless Dirac electrons, such as the perfect transmission of charge carriers through

barriers at normal incidence (ALLAIN; FUCHS, 2011), as we are going to demonstrate now.

Let us consider a square potential barrier V (x,y) =V (x) as depicted in Fig. 7. This

system consists of three regions: region I: x < 0 (V (x) = 0), region II: 0 < x < d (V (x) =V0)

and region III: x > 0 (V (x) = 0). The waves-function for each region are determined using Eq.

(2.18), and they are

ψI = eikyy
�

eikxx
�

1
eiθw

�
+ re−ikxx

�
1

−e−iθw

��
, (2.27a)

ψII = eikyy
�

Aeiqxx
�

1
−eiθb

�
+Be−iqxx

�
1

−e−iθb

��
, (2.27b)

ψIII = teikyyeikxx
�

1
eiθw

�
, (2.27c)

where A and B are determinedby continuity of the wave-function at the potential

edges, the transmission T and reflection R probabilities are obtained from T = |t|2 and R = |r|2
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Figure 7 – Band structure across a square potential barrier with width d and height of potential
V (x) = V0. The wave-vectors inside and outside of the barrier are denoted by k⃗ and q⃗. Dirac
cones are superposed on the potential barrier.

respectively. The angles θw = tan−1(ky/kw) (θb = tan−1(ky/kw)) correspond to the angle between

the wave vector k⃗ = (kx,ky) outside (⃗q = (qx,ky) inside) of barrier and the x axis (see Fig. 7).

Moreover, the wave vectors in the x direction outside and inside of potential are kx = E/h̄vF −k2
y

and qx =
q
(E −V0)2/h̄2v2

F − k2
y .

The continuity of wave function is used in x = 0 and x = d leading to the following

system of equations:

1+ r = A+B, (2.28a)

eiθw − re−iθw =−Aeiθb +Be−iθb , (2.28b)

Aeiqxd +Be−iqxd = teikxd, (2.28c)

−Aeiqxdeiθb +Be−iqxde−iθb = teikxdeiθw . (2.28d)

Solving this system by substitution, we get the transmission probability T as (KATSNELSON et

al., 2006):

T =
cos2 θw cos2 θb

cos2 θw cos2 θb cos2(qxd)+ sin2(qxd)[1+ sinθb sinθw]2
, (2.29)

where qxd = 2πL
p

1−2ε + ε2 cos2 θw with the dimensionless barrier width L = V0d/2π h̄vF

and dimensionless energy ε = E/V0. In the limit of high barriers |V0|>> E, the expression for
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T can be simplified to

T =
cos2 θw

1− cos2(qxd)sin2 θw
. (2.30)

Examples of the angular dependence of transmission probability using Eq. (2.29)

is shown in Fig. 8. We note that if the incident angle is zero, the barrier is fully transparent

and the transmission is total. This perfect transmission at normal incidence known as KT, as

discussed previously, is due to the conservation of the pseudospin leading to the absence of

backscattering. Furthermore, for oblique incidences (θw ̸= 0) and low energies, the incoming

waves might interfere itself between the two interfaces x = 0 and x = d originating multiples

resonances in the transmission, as observed in Fig. 8 (KATSNELSON et al., 2006; ALLAIN;

FUCHS, 2011)2.

Figure 8 – Polar plot of the transmission coefficient T for the square barrier potential at fixed
energy ε = 0.41519 and width L = 4.85 (blue line), and ε = 0.291038, L = 6.91 (purple line).
The petal structure is clearly seen and correspond to Fabry-Pérot resonances (ALLAIN; FUCHS,
2011).

2 These multiples resonances in the transmission of Dirac fermions in graphene through square barriers are called
Fabry-Pérot resonances, an effect analogous to the optical system Fabry-Pérot interferometer, where inside of it
oscillating waves are able to interfere between them resulting in resonances.
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2.4 Superlattices in graphene and the emergence of new Dirac points

Another interesting system to consider is the application of a periodic potential to

graphene, i.e. a superlattice, which under certain conditions leads to the appearance of extra

points where the conduction and valence bands touch each other (zero modes or Dirac points)

in the energy spectrum (BARBIER et al., 2010a; HO et al., 2009; PARK et al., 2009; BREY;

FERTIG, 2009; WANG; ZHU, 2010). Additionally, Ref. (BARBIER et al., 2010a) discusses

which conditions lead to the emergence of extra Dirac points and the renormalization of group

velocity around them.

In this section we are going to discuss the electronic properties of charge carriers in

superlattices of graphene from the dispersion relation for an infinite series of square barriers.

Let us start by considering an infinite number of periodically spaced barriers, as

shown in Fig. 9, with the width of unit cell L =Wb+Ww, where Ww and Wb are the width of well

(V (x) =−V0/2) and barrier (V (x) =V0/2) region, respectively. Since the potential is applied

along the x direction, the Hamiltonian that describes the Dirac fermions in this system is given

by Eq. (2.22). The wave-functions Ψ(x,y) = ψ j(x)eikyy where j = w(b) used to denote the

wave-function outside (inside) of the barrier are

ψ j(x) = A j

�
1

eiθ j

�
eik jx +B j

�
1

−e−iθ j

�
e−ik jx, (2.31)

with the wave-vectors k j = kw and k j = kb representing the wave-vectors in the well and barrier,

respectively. The angle between them and the x direction are θw = tan−1(ky/kw), and θb =

tan−1(ky/kb).

... ...

Figure 9 – Schematics of the superlattice potential V (x) =V0 consisting of square barriers with
width Wb and wells with width Ww.

The wave-function of this periodic system is a Bloch function and the transfer

matrix T leads an expression for the dispersion relation. The transfer matrix can be written
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as (MCKELLAR; JR, 1987)

T = Ωkw(L)Ω
−1
kw
(Wb)Ωkb(Wb)Ω−1

kb
(0), (2.32)

where the terms Ωk j(x) are obtained from the continuity of wave-function in the interface between

well and barrier:

Ω j(x) =


 eik jx e−ik jx

λ jeik jx −λ ∗
j eik jx


 , (2.33)

with λ j = (k j + iky)h̄vF/E j, where E j = Ew or E j = Eb:

Ew = E +V0/2 , Eb = E −V0/2. (2.34)

For simplicity, we introduce the dimensionless variables: ε = EL/h̄vF , u(x) = u =

V0/Lh̄vF , Wb →WbL, Ww → 1−Wb/L, kw → kwL, kb → kbL, ky → kyL, Kx → KxL, where Kx is

related to the periodicity of the system. So, the energies in Eq. (2.34) become:

εw = ε +uWb , E = ε −uWw. (2.35)

Developing the transfer matrix in Eq. (2.32) and using Bloch’s theorem cos(Kx) =

T11 +T22/2, we obtain the equation that determines the dispersion relation for the superlattice in

graphene as:

cos(Kx) = cos(kwWw)cos(kbWb)+Gsin(kwWw)sin(kbWb), (2.36)

where

G = (εwεb − k2
y)/kwkb, (2.37)

with kw =
q

ε2
w − k2

y and kb =
q

ε2
b − k2

y .

The location of Dirac points when Ww =Wb = 1/2 (symmetric case) in the energy

spectrum could be determined assuming ε = 0 (kw = kb) at Kx = 0 in Eq. (2.36), leading to:

cos2 kw/2+

"
u2/4+ k2

y

u2/4− k2
y

#
sin2 kw/2 = 1. (2.38)

Note that Eq. (2.38) has real solution when (u2/4+ k2
y)/(u

2/4− k2
y) = 1, and therefore when

ky = 0, corresponding to the usual Dirac point. The other possibility for a real solution is when

sin2 kw/2 = 0, corresponding to the condition of the emergence of extra Dirac points, which are

located along the ky axis following the relation:

ky,m =

r
u2

4
−4π2m2. (2.39)
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Figure 10 – (a) Valence and conduction bands of the spectrum of a superlattice assuming square
barriers of width Wb = 1/2 and height u = 10π . (b) Slices of the superlattice spectrum along
ky for fixed Wb = 0.5 and Kx = 0. The solid red, dot-dot-dashed black, dashed green, and
dash-dotted blue curves are for different values of the barrier height such that u/2 = 2π,3π,4π ,
and 6π , respectively (BARBIER et al., 2010a).

The energy spectra of a superlattice in graphene at Kx = 0 along ky axis assuming

Wb =Ww = 0.5 and different values of potential u(x) = u = 4π,6π,8π,12π are shown in Fig.

10(a). We can observe that for values of the potential u proportional to 4π new Dirac points

are generated and the dispersion relation around them becomes almost flat along ky direction,

indicating the collimation of electrons (BARBIER et al., 2010a; PARK et al., 2008a; PARK et

al., 2008; BLIOKH et al., 2009). Moreover, unlike the usual Dirac point at ky = 0, the extra

Dirac cones are no longer symmetric and the slope is renormalized (BARBIER et al., 2010a),

as depicted in Fig. 10(b), where we show the conduction and valence bands of the superlattice

when Wb =Ww = 0.5 and u = 6π .

Therefore, the emergence of new Dirac points can be controlled by adjusting the

hight and width of the potential (BARBIER et al., 2010a; BREY; FERTIG, 2009; PARK

et al., 2008b; WANG; ZHU, 2010). The presence of extra Dirac points in graphene leads

to strong consequences in the transport properties in this material like enhancement of the

conductivity (BREY; FERTIG, 2009). Nonetheless, the appearance of these new zero modes are

robust against the structural disorder in the crystal structure (WANG; ZHU, 2010). They were

recent experimentally detected by using the technique of dielectric patterning (FORSYTHE et

al., 2018), where the transport response was measured when a current was applied both parallel

and perpendicular to the superlattice (LI et al., 2021). The appearance of extra Dirac points

using this techinique is represented in Fig. 11.
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Figure 11 – Contour plots of the first conduction band showing the main DP (kx = 0) and the
first extra Dirac points (kx ̸= 0) for u = 2π,4π , and 6π (LI et al., 2021).
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3 PHYSICAL PROPERTIES OF PHOSPHORENE

In this chapter we obtained the energy spectrum of phosphorene using the tight-

binding approximation, and we found an energy spectrum with four energy bands. We develop the

continuum approximation for the two energy bands closest to the Fermi level (Γ region), which

we verify to be anisotropic around the Γ region by means of the effective mass approximation.

3.1 Tight-binding approximation

The Hamiltonian which describes particles in a monolayer phosphorene was proposed

in Ref. (RUDENKO; KATSNELSON, 2014), and given by

H = ∑
i

εini +∑
i̸= j

ti jc
†
i c j, (3.1)

where εi is the energy of the site i, ni is the number operator, ti j is the integral of hopping between

the sites i and j and the electron state creation and annihilation operators are respectively

represented by c† and c. Phosphorene, unlike graphene, has four sublattices denoted by A,B,C

and D. Taking the sublattice A as the origin of the system and developing the hopping terms in

Eq. (3.1), we have

H = ∑
i

εini +∑
i̸= j

�
tb
i jb

†
i a j + tc

i jc
†
i a j + td

i jd
†
i a j

�
+h · c. (3.2)

The terms b†,c† and d† are, respectively, the creation operators in the sublattices B,C and D, a j

the destruction operator in the sublattice A and the conjugate terms represented by the product

h · c. The terms b†
i a j,c

†
i a j,d

†
i a j indicate which electron states are being respectively annihilated

in A and created in B,C and D. In Fig. 12 are indicated the five hopping parameters that are used

in the tight-binding approximation.

Assuming that the crystal lattice is periodic and infinite, we can rewrite the creation

and annihilation terms of each site as Fourier transforms

ai =
1√
N ∑

k
eiK·riak, b†

i =
1√
N ∑

k′
eiK′·rib†

k′ , (3.3a)

c†
i =

1√
N ∑

k
e−iK′′·ric†

k′′ , d†
i =

1√
N ∑

k′′′
e−iK′′′·rid†

k′′′ . (3.3b)
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Figure 12 – Schematic figure of the crystal structure of phosphorene with the five hopping
parameters (SISAKHT et al., 2015).

Denoting the second sum in the Hamiltonian of Eq. (3.2) as H ′ and using the Fourier transforms

indicated in Eq. (3.3), the term H ′ is rewritten as

H ′ =
1
N ∑

kk′
∑
i, j

tb
i je

−i(k−k′)·rjeik′·δjib†
k′ak +

1
N ∑

kk′′
∑
i, j

tc
i je

−i(k−k′′)·rjeik′′·δjic†
k′ak

+
1
N ∑

kk′′′
∑
i, j

td
i je

−i(k−k′′′)·rjeik′′′·δjid†
k′′′ak. (3.4)

Using the following definitions to eliminate the sum in j of Eq. (3.4):

δ (k− k′) =
1
N ∑

j
e−i(k−k′)·rj , (3.5a)

δ (k− k′′) =
1
N ∑

j
e−i(k−k′′)·rj , (3.5b)

δ (k− k′′′) =
1
N ∑

j
e−i(k−k′′′)·rj , (3.5c)

we obtain the final expression for H ′ in terms of the five hopping parameters after replacing Eq.

(3.5) into Eq. (3.4)

H ′ = ∑
k

∑
i

�
tb
i eik·δ b

i b†
kak + tc

i eik·δ c
i c†

kak + td
i eik·δ d

i d†
k ak

�
. (3.6)

Figure 13 shows the distance and angles between the first neighbors of the A site.

From these parameters we can find expressions for t1 and t3 represented, respectively by δ b
1 ,δ

b
2

and δ b
3 ,δ

b
4 , which consist of the positions from sublattice B, where electrons are created, in

relation to the sublattice A, where electrons are annihilated. Similarly, the parameters t2 and t5
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are represented by δ c
1 and δ c

2 which are the positions of sublattice C, where electrons are created,

in relation to the sublattice A. Moreover, t5 is represented by δ d
1 ,δ

d
2 ,δ

d
3 ,δ

d
4 corresponding to the

position of sublattice D in relation to sublattice A. Taking into account the considerations made

Figure 13 – Representation of the first neighbors in the crystal lattice of phosphorene with their
respective position vectors with respect to atomic site A (JR; KATSNELSON, 2015).

above and based on Fig. 13, then we have

δ b
1 = d1 sin(α1/2)x̂−d1 cos(α1/2)ŷ, (3.7a)

δ b
2 = −d1 sin(α1/2)x̂−d1 cos(α1/2)ŷ, (3.7b)

δ b
3 = d1 sin(α1/2)x̂+(2d2 cosβ +d1 cos(α1/2)) ŷ, (3.7c)

δ b
4 = −d1 sin(α1/2)x̂+(2d2 cosβ +d1 cos(α1/2)) ŷ, (3.7d)

δ c
1 = d2 cosβ ŷ+d2 sinβ ẑ, (3.7e)

δ c
2 = − [d1 cos(α1/2)+d2 cosβ ] ŷ+d2 sinβ ẑ, (3.7f)

δ d
1 = d1 sin(α1/2)x̂+(d1 cos(α1/2)+d2 cosβ ) ŷ+d2 sinβ ẑ, (3.7g)

δ d
2 = −d1 sin(α1/2)x̂+(d1 cos(α1/2)+d2 cosβ ) ŷ+d2 sinβ ẑ, (3.7h)

δ d
3 = d1 sin(α1/2)x̂− (d1 cos(α1/2)+d2 cosβ ) ŷ+d2 sinβ ẑ, (3.7i)

δ d
4 = −d1 sin(α1/2)x̂− (d1 cos(α1/2)+d2 cosβ ) ŷ+d2 sinβ ẑ. (3.7j)



48

Since each term of the integral of hopping are associated to the distances as follow:




t1 → δ b
1 ;δ b

2 ;

t2 → δ c
1 ;

t3 → δ b
3 ;δ b

4 ;

t4 → δ d
1 ;δ d

2 ;δ d
3 ,δ

d
4 ;

t5 → δ c
2 ,

(3.8)

we can replace the relations given by Eq. (3.8) into Eq. (3.6), which leads to

∑
i

tb
i eik·δ b

i = t1
�

eik·δ b
1 + eik·δ b

2

�
+ t3

�
eik·δ b

3 + eik·δ b
4

�
= UAB, (3.9a)

∑
i

tc
i eik·δ c

i = t2eik·δ c
1 + t5eik·δ c

2 = UAC, (3.9b)

∑
i

td
i eik·δ d

i = t4
�

eik·δ d
1 + eik·δ d

2 + eik·δ d
3 + eik·δ d

4

�
= UAD. (3.9c)

Using Eqs. (3.7) in Eqs. (3.9), the terms δ j
i in the z direction cancel each other, due to the product

with k⃗ = (kx,ky). Making these same procedures but considering the sublattices C and D as

origin of the system1, the Hamiltonian in Eq. (3.2) takes the matrix form

H =




εA UAB UAC UAD

U ∗
AB εB U ∗

AC U ∗
AD

UAD UAC εD UAB

U ∗
AC UAD U ∗

AB εC



, (3.10)

where the terms UAB,UAC and UAD are

UAB = cos(kxd1 sin(α1/2))
h
2t1e−ikyd1 cos(α1/2) +2t3eiky(2d2 cosβ+d1 cos(α1/2))

i
, (3.11a)

UAC = t2eikyd2 cosβ + t5e−iky(2d1 cos(α1/2)+d2 cosβ ), (3.11b)

UAD = 4t4 cos(kxd1 sin(α1/2)) [cosky (d1 cos(α1/2)+d2 cosβ )] . (3.11c)

Since all atoms of the crystal are atoms of phosphorus we consider ∑i εi = ε , and we obtain the

following matrix of tight-binding approximation for phosphorene

H =




ε UAB UAC UAD

U ∗
AB ε U ∗

AC U ∗
AD

UAD UAC ε UAB

U ∗
AC UAD U ∗

AB ε



. (3.12)
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a) b)

Figure 14 – Representation of crystal structure of phosphorene with the four atomic sites A,B,C
and D. (a) Top view, and (b) lateral view indicating the lattice parameters a⃗1 and a⃗2 and showing
the roughness of the crystal structure (SOUSA, 2016; LIU et al., 2014).

In order to obtain the eigenenergies of Eq. (3.12), we reduce the matrix (3.12)

into two 2× 2 matrices since the sublattices A and D are symmetric, as depicted in Figure

14, where each term of these two sub-matrices provide a pair of energy bands. To do that,

we start by considering that the eigenstate for the matrix in Eq. (3.12) has the general form

ψ = (φA,φB,φD,φC), and the eigenvalue equation is given by



ε UAB UAC UAD

U ∗
AB ε U ∗

AC U ∗
AD

UAD UAC ε UAB

U ∗
AC UAD U ∗

AB ε







φA

φB

φD

φC




= E




φA

φB

φD

φC



, (3.13)

leading to the following system of equations:

εφA +UABφB +UADφD +UACφC = EφA, (3.14a)

U ∗
ABφA + εφB +U ∗

ACφD +UADφC = EφB, (3.14b)

UADφA +UACφB + εφD +UABφC = EφD, (3.14c)

U ∗
ACφA +UADφB +U ∗

ABφD + εφC = EφC. (3.14d)

Adding Eqs. (3.14a) to (3.14c), and Eqs. (3.14b) to (3.14d) we obtain respectively

(ε +UAD)(φA +φD)+(UAB +UAC)(φB +φC) = E (φA +φD) , (3.15a)
1 These calculations can be checked in Ref. (JR; KATSNELSON, 2015).
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(U ∗
AB +U ∗

AC)(φA +φD)+(ε +UAD)(φB +φC) = E (φB +φC) , (3.15b)

and subtracting Eqs. (3.14a) and (3.14c), and Eqs. (3.14b) and (3.14d) we have

(ε −UAD)(φA −φD)+(UAB −UAC)(φB −φC) = E (φA −φD) , (3.16a)

(U ∗
AB −U ∗

AC)(φA −φD)+(ε −UAD)(φB −φC) = E (φB −φC) . (3.16b)

Using Eqs. (3.15) and (3.16) we obtain the eigenvalues equation as a matrix system



ε +UAD UAB +UAC 0 0

U ∗
AB +U ∗

AC ε +UAD 0 0

0 0 ε −UAD UAB −UAC

0 0 U ∗
AB −U ∗

AC ε −UAD







φA +φD

φB +φC

φA −φC

φB +φC




= E




φA +φD

φB +φC

φA −φC

φB +φC



. (3.17)

From Eq. (3.12) we obtain four energy bands. Two of them are closer to the Fermi level and

given by the upper matrix of Eq. (3.12), in that case the eigenvalue equation is given by

 ε +UAD UAB +UAC

U ∗
AB +U ∗

AC ε +UAD




φA +φD

φB +φC


= E


φA +φD

φB +φC


 . (3.18)

On the other hand, the eigenvalue equation concerning energy bands further from the Fermi level

is given by the lower matrix of Eq. (3.12)

 ε −UAD UAB −UAC

U ∗
AB −U ∗

AC ε −UAD




φA +φD

φB +φC


= E


φA −φC

φB +φC


 . (3.19)

From Eqs. (3.18) and (3.19) we determine the expressions of the four energy bands

E(kx,ky) = 2ε +8t4 cos(kxa1)cos(kya2)± [4(z1 + z2)cos(kxa1)+4z3 cos(kya2)]
1/2 , (3.20a)

E(kx,ky) = 2ε +8t4 cos(kxa1)cos(kya2)±
�

4(z1 − z2)cos(kxa1)−4z3 cos(kya2)
	1/2

, (3.20b)

where

z1 =
�
t2
1 + t2

3 +2t1t3 cos(2kya2)
�
, (3.21a)

z2 = t3 [t2 cos(kya2)+ t5 cos(3kya2)] , (3.21b)

z3 = t1 [t2 + t5]cos(kxa1) , (3.21c)
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a1 = d1 sin(α1/2), (3.21d)

a2 = d1 cos(α1/2)+d2 cosβ , (3.21e)

and +(-) before the square root in Eq. (3.20a) corresponds to the conduction (valence) band. The

four energy bands obtained from Eqs (3.20a) and (3.20b) are depicted in Fig. 15.

Figure 15 – Energy spectrum of phosphorene obtained using the tight-binding model.

3.2 Continuum model

Similar as in the graphene case, where we developed a model which describes the

electrons around K and K′ points, it is interesting to develop an approximation to the energy

spectrum from the tight-binding model of phosphorene around the point where there is a band-

gap and the electronic and transport properties take place. In that case, we approximate the

terms of the upper matrix in Eq. (3.17), which leads to the energy spectrum closer to the Fermi

level, around the point Γ (kx = ky = 0), thus obtaining the continuum model for the electrons in

phosphorene. Developing this approximation in terms of the matrix in Eq. (3.18) we find

UAD ≈ 4t4 −2t4 [d1 sin(α1/2)]2 k2
x −4t4d1 [sin(α1/2)+d2 sinβ ]2 k2

y , (3.22a)
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UAB ≈ 2(t1 + t3)− (t1 + t3) [d1 sin(α1/2)]2 k2
x

−
n

t1 [d1 cos(α1/2)]2 + t3 [d1 cos(α1/2)+2d2 cosβ ]2
o

k2
y

+ i [−2t1 cos(α1/2)+2t3 (d1 cos(α1/2)+2d2 cosβ )]ky, (3.22b)

UAC ≈ (t2 + t5)−
n

t2 [d2 cosβ ]2 /2+ t5 [2d1 cos(α1/2)+2d2 cosβ ]2 /2
o

k2
y

+ i{t2d2 cosβ − t5 [2d1 cos(α1/2)+2d2 cosβ ]}ky. (3.22c)

Replacing the expressions given by Eqs. (3.22) in the matrix of (3.18) and setting ε = 0, we

obtain the matrix of the Hamiltonian in the continuum model

H =


 uo +ηxk2

x +ηyk2
y δ + γxk2

x + γyk2
y + iχky

δ + γxk2
x + γyk2

y − iχky uo +ηxk2
x +ηyk2

y


 , (3.23)

where

uo = 4t4;

δ = 2(t1 + t3)+ t2 + t5;

γx = −(t1 + t3)(d1 sin(α1/2))2 ;

γy = −t1 (d1 cos(α1/2))2 − t2 (d2 cosβ )2 /2− t3 (d1 cos(α1/2)+2d2 cosβ )2

− t5 (2d1 cos(α1/2)+d2 cosβ )2 /2;

χ = −2t1d1 cos(α1/2)+ t2d2 cosβ +2t3 (d1 cos(α1/2)+2d2 cosβ )

− t5 (2d1 cos(α1/2)+d2 cosβ ) ;

ηx = −2t4 (d1 sin(α1/2))2 ;

ηy = −2t4 (d1 cos(α1/2)+d2 cosβ ) .

By diagonalizing Eq. (3.23) we obtain the eigenvalues of the continuum model

E = u0 +ηxk2
x +ηyk2

y ±
q

δ + γxk2
x + γyk2

y
�2

+χ2k2
y ; (3.24)

where +(−) corresponds to the conduction (valence) bands. The hopping parameters, lattice and

continuum parameters and their values are listed in Table ??. Using those values in Eq. (3.24)

we plot the energy spectrum shown in Fig. (16).

From Fig. 16 we note that the continuum model agrees very well with the tight-binding

in the range of energy values between -2.0eV to 1.5 eV, this being exactly the region close to

the band-gap of energy, indicating that the electronic and transport properties of phosphorene

can be investigated efficiently within this continuum approach. It is important to highlight that
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Hoppings Continuum parameters Lattice parameters
t1 =−1.220 u0 =−0.42 eV α1 = 96.5◦

t2 = 3.665 ηx = 0.58 eV.2 α2 = 101.9◦

t3 =−0.205 ηy = 1.01eV.2 d1 = 2.22
t4 =−0.105 δ = 0.76 eV. d2 = 2.24
t5 =−0.055 χ = 5.25 eV.2 cosβ =−cos(α2)/cos(α1)

γx = 3.93 eV.2

γy = 3.788 eV.2

Table 1 – Hoppings, continuum parameters, and lattice parameters of phosphorene (JR; KAT-
SNELSON, 2015).

the anisotropy in the energy spectrum around the Γ point. This anisotropy results in interesting

electronic and transport properties in phosphorene. One of the effects of this anisotropy in the

energy spectrum on the transport properties of this material can be observed when analyzing

the wave packet dynamics in black phosphorus multilayers, as we are going to discuss in the

Chapter 5.

Figure 16 – Comparison between the phosphorene energy spectra obtained from the tight-binding
model close to Γ point (black line) and the continuum model (red line)(JR; KATSNELSON,
2015).

To determine the eigenstates of the Hamiltonian in Eq. (3.23), the wave-function can

be written as

Ψ =


φ1

φ2


 , (3.25)

where φ1 and φ2 are superpositions of the wave functions in the four sublattices and given by
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(φA +φD)/2 and (φB +φC)/2, respectively. Therefore, the eigenstate equation is

 uo +ηxk2

x +ηyk2
y δ + γxk2

x + γyk2
y + iχky

δ + γxk2
x + γyk2

y − iχky uo +ηxk2
x +ηyk2

y




φ1

φ2


= E


φ1

φ2


 . (3.26)

Rewriting the terms of the off main-diagonal, we get

δ + γxk2
x + γyk2

y ± iχky =

q
δ + γxk2

x + γyk2
y
�2

+(χky)
2e±iθk ,

θk = arctan
�

2χky

f+− f−

�
, (3.27)

where f+ e f− are given by

f± = (uo ±δ )+(ηx ± γx)k2
x +(ηy ± γy)k2

y . (3.28)

We can rewrite the Hamiltonian in Eq. (3.23) in terms of f+ and f−

H =


 ε1 ε2eiθk

ε2e−iθk ε1


 , (3.29)

where

ε1 =
f++ f−

2
,ε2 =

s�
f−− f+

2

�2

+(χky)
2. (3.30)

Applying (3.29) to (3.25) we determine the eigenstates of the continuum model Hamiltonian

Ψλ =
1√
2


 1

λeiθk


 , (3.31)

with λ = 1(−1) for electrons (holes) and θ represents the phase angle of the wave functions,

unlike graphene case where the parameter θ represents the angle that the wave-vector makes

with the x axis in the momentum space and gives the propagation direction of the electron.

3.3 Effective-mass model

Due to the presence of band-gap and non-zero group velocity around the Γ point in

the phosphorene energy spectrum, we can obtain an even simpler model for the electrons around

the point where the anisotropy of the energy bands of phosphorene appears more directly in the

so-called effective mass model.

The effective mass model assumes that the electrons in a crystal lattice under the

action of an external force (an electric field, for example) behaves like a free electron with a
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mass given by m∗ which is inversely proportional to the second derivative of energy with respect

to the wave-vector k⃗ (REZENDE, 2004)

m⃗∗ =
h̄2

∂ 2E/∂ k⃗2
, (3.32)

from (3.24) we obtain the derivative of second order of the energy in the x direction of the

wave-vector

∂ 2Ee(h)

∂k2
x

= 2ηx ±


 2γx


δ +3γxk2

x + γyk2
y
�

kxq
δ + γxk2

x + γyk2
y
�2

+χ2k2
y

+ · · ·


 , (3.33)

Since we are analyzing the region around the Γ point we have that for small values of kx and ky

the effective mass in the x direction is given by

me(h)
x =

h̄2

2(ηx ± γx)
, (3.34)

where the positive and negative signs represent the effective mass for electrons and holes,

respectively.

On the other hand, making the same procedure but now for the y direction we obtain

me(h)
y =

h̄2

2(ηx ± γx ±χ2/2δ )
, (3.35)

where, again, the positive and negative signs correspond to the values for electrons and holes

respectively. Rewriting the energy expression given in (3.24) in terms of the effective masses

in the direction x and y given by Eqs. (3.34) and (3.35) we get the following expression for the

energy spectrum

E = (uo ±δ )+
h̄2

2me(h)
x

k2
x +

h̄2

2me(h)
y

k2
y . (3.36)

From (3.36) we can see that the energy levels in moments space are ellipses with their semi-axes

given by the effective masses in the directions x and y. Thus, charge carriers in phosphorene

have direction-dependent electronic properties, as discussed in Chapter 7.
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4 THE α −T3 LATTICE

In this chapter we discuss the electronic properties of α −T3 lattices introduced in

Chapter 1 by starting from the Tight-binding approximation and further considering the low-

energy regime where we are going to demonstrate that the charge carriers in these lattices are

described by an equation analogous to the Dirac equation, similar to graphene but with a enlarged

pseudospin though, which provides interesting effects such as super-Klein tunneling that we are

also going to discuss in the last section of this chapter.

4.1 Tight-binding approximation

The α −T3 lattice is depicted in Fig. 17(a). The unit cell is formed by three triangular

lattices with three atoms at sites A,B and C where the additional atom at site C placed at the

center of the unit cell and coupled only to the atomic sites B through the parameter α . The value

of the coupling parameter α can be adjusted to obtain a honeycomb lattice (HCL) analogous to

the crystal structure of graphene but with an additional site. The Bravais lattice vectors for the

lattice are shown in Fig. 17(b). They can be written as

(a) (b)

Figure 17 – (a) Representation of the α −T3 model lattice with hopping t between the atoms in
the HCL and hopping αt between the atomic sites B (red dots) and C (green squares). (b) The
lattice showing the primitive vectors a1 and a2 and the inter-atomic distance a = 1.42Å (ILLES,
2017)

a⃗1 =

 
−a

√
3

2
,
3a
2

!
, a⃗2 =

 
a
√

3
2

,
3a
2

!
, (4.1)
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where a is the atom-atom distance, as indicated in Fig. 17(b). In graphene, the carbon-carbon

distance is approximately a = 1.42Å. To determine the reciprocal vectors that describe the first

Brillouin zone we use the following relations

b⃗1 = 2π
a⃗2 × a⃗3

a⃗1 · (a⃗2 × a⃗3)
, b⃗2 = 2π

a⃗3 × a⃗1

a⃗1 · (a⃗2 × a⃗3)
. (4.2)

Since we are considering a 2D structure, we take a⃗3 = (0,0,1), so the reciprocal vectors are

b⃗1 =

�
− 2π

a
√

3
,
2π
3a

�
, b⃗2 =

�
2π

a
√

3
,
2π
3a

�
, (4.3)

if we consider the site B at the origin of the coordinate system that describes the infinite lattice

in real space, we can get the binding vectors between sites A-B and B-C. Similar to graphene

lattice, the site B has three nearest neighbors sites A with its vectors of position in relation to site

B denoted by δ⃗ A
1 , δ⃗

A
2 , δ⃗

A
3 , and given by

δ⃗ A
1 = (0,−a), (4.4a)

δ⃗ A
2 =

 
a
√

3
2

,
a
2

!
, (4.4b)

δ⃗ A
3 =

 
−a

√
3

2
,
a
2

!
. (4.4c)

Since in the case of the α −T3 lattice there is an additional site C placed at the center of each

hexagon which is only coupled to site B, this site has three nearest neighbors sites C with the

position vectors δ⃗C
1 , δ⃗

C
2 , δ⃗

C
3 and given by

δ⃗C
1 = (0,a) =−δ⃗ A

1 , (4.5a)

δ⃗C
2 =

 
−a

√
3

2
,
−a
2

!
=−δ⃗ A

2 , (4.5b)

δ⃗C
3 =

 
a
√

3
2

,−a
2

!
=−δ⃗ A

3 . (4.5c)

After discussing the crystallographic properties of the α −T3 lattices we are going

to derive the tight-binding model for these lattices. For the α −T3 lattice, the hopping parameter

between the atomic sites A and B is denoted by t, while between B and C sites the hopping

parameter is denoted by αt. The coupling variable α is unitless, and can be varied between 0

and 1. For the case α = 0, the atomic site C is uncoupled from the atomic site B, and we obtain



58

a lattice analogous to the HCL of graphene with an inert C-sublattice. Assuming α = 1 the

hopping parameter between the atomic sites A and B is identical to the one between the B and C

sites, and the dice lattice is recovered.

The Hamiltonian of the α − T3 lattice in the tight-binding model using the first

quantization formalism is defined as

Hi j =


Φi|H|Φ j

�
, (4.6)

where Φi(Φ j) corresponds to the orbital Bloch wave-functions to site i( j) in the crystal lattice,

so for the α −T3 lattice we have three orbital Bloch wave-functions

ΦA(⃗k,⃗r) =
1√
N ∑

RA

ei⃗k·R⃗AϕA(⃗r− R⃗A), (4.7a)

ΦB(⃗k,⃗r) =
1√
N ∑

RB

ei⃗k·R⃗BϕB(⃗r− R⃗B), (4.7b)

ΦC(⃗k,⃗r) =
1√
N ∑

RC

ei⃗k·R⃗CϕC(⃗r− R⃗C), (4.7c)

where R⃗A, R⃗B and R⃗C corresponds to the position of sites A, B and C in the infinite crystal lattice

respectively.

The next step is to define the terms of the matrix Hi j in Eq. (4.6). First, consider the

terms related to site A:

HAB =
1
N ∑

RA,RB

e−i⃗k·R⃗A .ei⃗k·R⃗B
D

ϕA(⃗r− R⃗A)|H|ϕB(⃗r− R⃗B)
E
, (4.8a)

HAC =
1
N ∑

RA,RC

e−i⃗k·R⃗A .ei⃗k·R⃗C
D

ϕA(⃗r− R⃗C)|H|ϕB(⃗r− R⃗C)
E
, (4.8b)

HAA =
1
N ∑

RA,RA

e−i⃗k·R⃗A .ei⃗k·R⃗A
D

ϕA(⃗r− R⃗A)|H|ϕB(⃗r− R⃗A)
E
. (4.8c)

Since the site C is only coupled to site B and we are taking into account only the nearest-neighbour,

we have HAC = 0 and HAA = 0. Therefore, for the term HAB we have

HAB =
1
N ∑

RAB

e−i⃗k·(R⃗A−R⃗B)
D

ϕA(⃗r− R⃗A)|H|ϕB(⃗r− R⃗B)
E
. (4.9)

The expression
D

ϕi(⃗r− R⃗i)|H|ϕ j (⃗r− R⃗ j)
E

is associated to the hopping parameter of the crystal

lattice, which is related to the interaction energy between the sites of the unit cell. Since in the
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α −T3 lattices the hopping parameter between the sites A and B is given by t. So, the term HAB

becomes

HAB = −t
�

e−i⃗k·δ⃗ A
1 + e−i⃗k·δ⃗ A

2 + e−i⃗k·δ⃗ A
3

�
,

HAB = −t
�

eikya +2e−ikya/2 cos(kxa
√

3/2)
�
, (4.10)

HAB = f (⃗k). (4.11)

For the atomic site B we have

HBB = 0, (4.12a)

HBA =−t ∑
RBA

e−i⃗k·(R⃗B−R⃗A) = H∗
AB = f ∗(⃗k), (4.12b)

HBC =
1
N ∑

RBC

e−i⃗k·(R⃗B−R⃗C)
D

ϕB(⃗r− R⃗B)|H|ϕC(⃗r− R⃗C)
E
. (4.12c)

Since the hopping parameter between the atomic sites B and C is given by αt, for the the term

HBC we have

HBC = −αt
�

ei⃗k·δ⃗C
1 + ei⃗k·δ⃗C

2 + ei⃗k·δ⃗C
3

�
, (4.13)

HBC = −αt
�

e−i⃗k·δ⃗ A
1 + e−i⃗k·δ⃗ A

2 + e−i⃗k·δ⃗ A
3

�
,

HBC = α f (⃗k). (4.14)

Similarly, the terms concerning the atomic site C are given by

HCA = 0, (4.15a)

HCC = 0, (4.15b)

HCB =−αt ∑
RCB

e−i⃗k·(R⃗C−R⃗B) = H∗
BC = α f ∗(⃗k). (4.15c)

Thus, we finally obtain the matrix that corresponds to the tight-binding Hamiltonian for the

α −T3 lattices

HT B =




0 f (⃗k) 0

f ∗(⃗k) 0 f (⃗k) tanθ

0 f ∗(⃗k) tanθ 0


 , (4.16)
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where we have parametrized α = tan−1 θ . Rescaling the hamiltonian by cosθ gives us the matrix

hamiltonian that was originally utilized to introduce the α −T3 model

HT B =




0 f (⃗k)cosθ 0

f ∗(⃗k)cosθ 0 f (⃗k)sinθ

0 f ∗(⃗k)sinθ 0


 . (4.17)

We calculate the eigenvalues of the hamiltonian in order to obtain the energy dispersion for the

α −T3 lattice:
������������

−E f (⃗k)cosθ 0

f ∗(⃗k)cosθ −E f (⃗k)sinθ

0 f ∗(⃗k)sinθ −E

������������

= 0, (4.18)

E
�

E2 − f (⃗k) f ∗(⃗k)
�
= 0,

E = 0 , E =±
��� f (⃗k)

��� . (4.19)

(a) (b)
Figure 18 – (a) Electronic band structures of α −T3 model obtained by tight-binding approxima-
tion, and (b) the contour plot of the conduction and valence bands indicating the Dirac points K
and K′ and vectors of reciprocal space b⃗1 and b⃗2.

In the terms of the primitive vectors of the unit cell,
��� f (⃗k)

��� is given by

��� f (⃗k)
���= t

q
3+2cos(kxa

√
3)+4cos(kxa

√
3)cos(3kya/2). (4.20)

The above energy dispersion is identical to the energy dispersion of the conduction and valence

bands of graphene with the addition of a dispersionless flat band that cuts through the Dirac
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points. A schematic of the three bands of the α −T3 lattices can be found in Fig. 18(a). All three

bands are present for the full range of α .

4.2 Continuum model

As is typically done in graphene, we can do a low-energy expansion around the Dirac

point located at K and K’ valleys shown in Fig. 18(b). Using Taylor’s series we can expand the

term f (⃗k) around the K and K′ points restricting to only the terms of first order. For K and K′

points we have

f (δ k⃗) = f (K⃗)+
∂ f
∂kx

�����⃗
k=K⃗

(kx −Kx)+
∂ f
∂ky

�����⃗
k=K⃗

(ky −Ky) , (4.21a)

f (δ k⃗) = f (K⃗′)+
∂ f
∂kx

�����⃗
k=K⃗′

�
kx −K

′
x

�
+

∂ f
∂ky

�����⃗
k=K⃗′


ky −K′

y
�
, (4.21b)

which can be written in a shorter way as

f (⃗k)≈ 3at
2

(ξ kx − iky) , (4.22)

where ξ = +1(−1) corresponds to valley K (K′). The constant 3at
2 has the unit of Planck’s

constant multiplied by the velocity, so we can write Eq. (4.22) as

f (⃗k)≈ h̄vc (ξ kx − iky) . (4.23)

Replacing Eq. (4.23) into the hamiltonian given by Eq. (4.17) we obtain

HD = h̄vc




0 (ξ kx − iky)cosθ 0

(ξ kx + iky)cosθ 0 (ξ kx − iky)sinθ

0 (ξ kx + iky)sinθ 0


 . (4.24)

By diagonalizing the matrix in Eq. (4.24) we get the energy dispersion for α −T3 lattices in the

low-energy regime

E = 0 , E =±h̄vc |⃗k|. (4.25)

Notice that there are three bands: a flat band with energy zero for all momenta, and two linear

bands with energy E = sh̄vck, with s =±1 for the conduction and valence band, respectively.

The linear spectrum implies that electrons move at speed vc = v f in analogy to relativistic

massless particles, where v f is substituted for the speed of light. In graphene, the Fermi velocity
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is approximately 106 m/s, so from now we are going to consider vc = v f , similar as done in

Chapter 2.

The low-energy hamiltonian given by Eq. (4.24) can be written as

HD = h̄kx


ξ




0 cosθ 0

cosθ 0 sinθ

0 sinθ 0


− iky




0 cosθ 0

−cosθ 0 sinθ

0 −sinθ 0





 . (4.26)

When α = 0 → θ = 0, we recover the same Eq. (2.15) for graphene in the low-energy regime

HK,K′
graphene = h̄v f


 0 (ξ kx − iky)

(ξ kx + iky) 0


 . (4.27)

More generally the Dirac-Weyl hamiltonian for general pseudospin S can be written as:

HDW = h̄v f S⃗ ·⃗ k. (4.28)

So, for graphene case, Eq. (4.27) can be written using the general form of Eq. (4.28) as

HK
graphene = h̄v f σ⃗ ·⃗ k, (4.29a)

HK′
graphene = h̄v f σ⃗∗ ·⃗ k, (4.29b)

where σ⃗ corresponds to the Pauli’s matrices. So, the hamiltonian of graphene is a special

case represented of Eq. (4.28) with pseudospin S = 1/2. Now, when we consider the case of

α = 1 → θ = π/4 we recover the hamiltonian for the dice lattice, and Eq (4.26) becomes

Hdice = h̄kx


ξ

1√
2




0 1 0

1 0 1

0 1 0


+ ky

1√
2




0 −i 0

i 0 −i

0 i 0





 . (4.30)

Note that Eq. (4.30) can be written in terms of the pseudospin matrices given by

Sx =
1√
2




0 1 0

1 0 1

0 1 0


 , Sy =

1√
2




0 −i 0

i 0 −i

0 i 0


 . (4.31)

So, the hamiltonian for the dice lattice in the low-energy regime around the Dirac points located

at the K and K′ valleys are

HK
dice = h̄v f S⃗ ·⃗ k, (4.32a)
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HK′
dice = h̄v f S⃗∗ ·⃗ k. (4.32b)

where in this case S = 1. Since the conduction and valence bands are linear in the energy

spectrum, the particles behave like massless Dirac Fermions, however the hamiltonian which

describes the charge carriers due to the presence of an additional atomic site as in the dice lattice

has wave-functions represented by an enlarged and integer pseudospin.

4.2.1 Wavefunctions of the α −T3 lattices

We obtain the eigenvectors of the low-energy Hamiltonian given by Eq. (4.26)

associated with each of the three eigenvalues. For the linear bands we obtain

|Ψs⟩=




eiθk cosθ

s

e−iθk sinθ


 . (4.33)

For the flat band we find

|Ψ0⟩=




eiθk sinθ

0

e−iθk cosθ


 , (4.34)

where s =±1 for the conduction and valence band, respectively. Here, θk is the angle associated

with momentum k⃗ and given by θk = tan−1(ky/kx). In the next session we are going to use these

wave-functions to investigate the unique tunneling properties of α −T3 lattices as a consequence

of the enlarged pseudospin of these lattices.

4.3 Klein tunneling in α −T3 lattice

As discussed in Chapter 2, electrons in graphene at low-energy regime are well-

described by the two-dimensional massless Dirac equation with pseudospin S = 1/2, which

makes it a promising material for directly testing ideas of relativistic physics. The novel materials

such as the dice lattice, and the α −T3 lattice provide similar opportunities.

The Klein tunnelling (KT) for both of the two limiting cases of the α −T3 model,

graphene (α = 0) (KATSNELSON et al., 2006; TUDOROVSKIY et al., 2012; ALLAIN;

FUCHS, 2011)and the dice (α = 1) lattice (URBAN et al., 2011; SHEN et al., 2010), as well for

intermediate regimes of α (ILLES; NICOL, 2017) has been investigated in the literature. For the
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dice lattice, the effect is known as SKT which consists in an all-angle transmission across elec-

trostatic barriers and was reported for particular values of the incident electron energy (URBAN

et al., 2011; SHEN et al., 2010). Additionally, KT into the flat band across a potential step for

generalized pseudospin has been discussed in (DÓRA et al., 2011). In this section we summarize

the results discussed in Ref. (ILLES, 2017) concerning the transmission properties across a

potential barrier in the α −T3 lattice considering some values of α , highlighting omnidirectional

transmission (SKT) for incident electrons with energy equal to half the height of the potential

barrier for the dice lattice (URBAN et al., 2011; SHEN et al., 2010). In Chapter 10 the problem

of electrons tunneling through potential barriers and their tunneling properties in the presence of

small deviations in the atomic equivalence in the α −T3 lattices are discussed, which has not

been reported in the literature.

The low-energy Hamiltonian for the α −T3 around the K point in the presence of an

electrostatic potential is

Ĥ = Ĥkin +V (x)Î, (4.35)

where Ĥkin is given by Eq. (4.24) with ξ =+1, V (x) corresponds to the potential barrier and Î is

the identity matrix.

We are going to consider potential barriers that are smooth on the atomic scale, but

sharp on the length scale of the Fermi wavelength (TUDOROVSKIY et al., 2012; ALLAIN;

FUCHS, 2011; URBAN et al., 2011). Consequently, we need to define the matching conditions

required for the wave-functions across such interfaces. To do that we use the Peierls substitution

(⃗k → p⃗) and integrate the eigenvalue equation H⃗Ψ = EΨ over a small interval x = [ε,ε] (DÓRA

et al., 2011; URBAN et al., 2011) and allow the interval to approach zero. So, by assuming

the wave-function written in a general form Ψ(x) = [ψA(x),ψB(x),ψC(x)] we obtain h̄vF(
d
dx −

i d
dy)cosθψB = EψA. Integrating both sides and letting ε → 0 leads to ψB(−ε)−ψB(ε) = 0,

giving one of the three matching conditions. The complete set of matching conditions is

ψB(−ε) = ψB(ε), (4.36a)

cosθψA(−ε)+ sinθψC(−ε) = cosθψA(ε)+ sinθψC(ε). (4.36b)

Note that these matching conditions differ from those when pseudospin S = 1/2 graphene (α = 0)

and pseudospin S = 1 dice lattice (α = 1). For graphene, the matching conditions require the

continuity of each component of the two-component wave-function. On the other hand, the
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matching conditions of the dice lattice (URBAN et al., 2011) include a sum of the first and last

component of the wave-function indicated in Eq. (4.36b) setting sinθ = cosθ = 1/2. For the

other cases of α −T3 lattices, the matching conditions are of the same form as those of the dice

lattice, but generalized to account for a variable α .

Consider a square potential barrier V (x) in Eq. (4.35) with width d in a system

formed by three zones: x < 0 (V (x) = 0), 0 < x < d (V (x) = V0) and x > 0 (V (x) = 0), as

depicted in Fig. 7. The wave-functions in each zone are

|ΨI⟩=
1√
2




eiθk cosθ

s

e−iθk sinθ


eikyyeikxx +

r√
2




−e−iθk cosθ

s

−eiθk sinθ


eikyye−ikxx, (4.37a)

|ΨII⟩=
a√
2




eiθq cosθ

s′

e−iθq sinθ


eikyyeiqxx +

b√
2




−e−iθq cosθ

s′

−eiθq sinθ


eikyye−iqxx, (4.37b)

|ΨIII⟩=
t√
2




eiθk cosθ

s

e−iθk sinθ


eikyyeikxx, (4.37c)

where tanθk =
ky
kx

, tanθq =
ky
qx

, R = |r|2 and T = |t|2 are the reflection and transmission probabil-

ities of waves, respectively. Using the matching conditions in Eq. (4.36) at x = 0 and x = d, we

obtain the following system of equations for the unknown amplitudes a,b,r, t

1+ r = ss′(a+b), (4.38a)

A(θk)− rB(θk) = A(θq)− rB(θq), (4.38b)

as′eiqxd +bs′e−iqxd = tseikxd, (4.38c)

aA(θq)eiqxd −bB(θq)e−iqxd = tA(θk)eikxd, (4.38d)

with A(x) = cos2 θeix + sin2 θe−ix and B(x) = cos2 θe−ix + sin2 θeix for convenience. Assuming

that the junction in Fig. 7 is a pnp junction we consider ss′ =−1 and after some algebra we find

T =
16cos2 θq cos2 θk

g2
++g2

−−2g+g− cos(2qxd)
, (4.39)
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Figure 19 – Polar plot of the transmission probability for some values of α with (a) E/V0 = 0.1,
(b) E/V0 = 0.25, (c) E/V0 = 0.5 and (d) E/V0 = 0.75. The barrier width is d = 40V0, taking
d0 = h̄vF/V0 to normalize the barrier width d. (ILLES, 2017).

where g± = 2±2cos(θq +θk)− sin2 2θ(sinθq + sinθk)
2.

In Fig. 19 the transmission probability for some values of E/V0 ratios considering

a range of α values are shown. Note that there is a general enhancement of the transmission
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as α increases. Moreover the ressonances known as Fabry-Pérot resonances take place when

qxd is multiple of π . As α is increased from 0 to 1, the sharp resonances of graphene become

softer and less pronounced, and the broadening of the resonance peaks results in an increased

transmission for angles close to the resonance condition, contributing to the enhancement of the

transmission as α increases. It is important to highlight the "super" angle transmission, i.e. SKT

at E/V0 = 0.5 represented in Fig. 19(c), where the sharp resonances of graphene transform to

full transmission in the α = 1 limit.

The unconventional transparency experienced by electrons across interfaces such

as npn junctions, which act like negative index interfaces, presents possibilities for electron

focusing similar to the focusing of light in optics. Therefore to understand other Dirac-like

materials, such α −T3 model could present more possibilities for electron focusing and electron

optics.
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5 TEMPORAL EVOLUTION: THE SPLIT-OPERATOR TECHNIQUE

The analysis of wave-packet dynamics in a given system is useful to obtain informa-

tion about its energy spectrum (DEGANI; MAIALLE, 2010) and electrical conductivity (YUAN

et al., 2010), for example.

Many computational techniques for analyzing wave-packet dynamics have been

developed. However, to obtain the full description of wave-packet propagation in a system, for

most of the numerical techniques it is necessary to write the initial wave function of the system

in the basis of all eigenstates and their eigenenergies, which for some systems is infeasible. To

work around this problem, some alternative techniques were developed, and one of them being

known as split-operator (DEGANI; MAIALLE, 2010; DATTOLI et al., 1996).

The technique Split-operator (SOT) was initially developed by M.D. Feit, J.A.

Fleck and A. Steiger (FEIT et al., 1982) and applied to the study of energy levels of triatomic

molecules (FEIT; JR, 1983). Wave packet dynamics methods can also be used in the study of

the Aharonov-Bohm effect (SZAFRAN; PEETERS, 2005), in the conductance analysis of an

asymmetric quantum ring (KREISBECK et al., 2010), in the explanation of the observed effect

on Onsanger symmetry breaking in a semiconductor quantum wire coupled to a metal (KALINA

et al., 2009) among others.

In the further chapters of this thesis we discuss the wave-packet dynamics in some

materials with or without external potential using the SOT. This chapter is devoted to discuss the

basic concepts behind this technique that is based on the expansion of the temporal evolution

operator and separates this operator in kinetic and potential terms, doing that we avoid to write

the momentum operator, as we are going to demonstrate in the next section.

Let us start by considering an initial wave-function Ψ(⃗r, t0) expanded around the

time t = t0 and assuming a small time-interval ∆t = t − t0.

Ψ(⃗r, t0 +∆t) = Ψ(⃗r, t0)+
∞

∑
n=1

1
n!

�
∂ nΨ
∂ tn

�

t=t0
∆tn. (5.1)

Using the time-dependent Schrödinger’s equation given by

∂Ψ(⃗r, t)
∂ t

=− i
h̄

HΨ(⃗r, t), (5.2)

in Eq. (5.1), we obtain the equation to determine the wave-function at an arbitrary posterior time

t0 +∆t

Ψ(⃗r, t0 +∆t) =
∞

∑
n=0

�
1
n!

�
− i

h̄
H∆t

�n�
Ψ(⃗r, t0), (5.3)
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which after developing the sum is exactly the expression of exponential series. Therefore,

Ψ(⃗r, t0 +∆t) = exp
�
− i

h̄
H∆t

�
Ψ(⃗r, t0). (5.4)

Note that the operator defined in Eq. (5.4) can be identified as the time-evolution operator, which

"translate" the initial wave-function from initial time t0 to arbitrary time t = t +∆t0. Therefore,

since we know the hamiltonian which describes the system from Eq. (5.4) we obtain the time-

evolution of an initial wave-packet. Furthermore, rewriting the wave-function as a spinor and

considering the Dirac Hamiltonian, the time-evolution of the wave-packet can also be determined

using Eq. (5.4).

Some works in the literature usually use the so-called "Cayley form" to solve Eq.

(5.4), which consists of an approximation to the exponential in the evolution operator and is

written as

exp
�
− i

h̄
H∆t

�
Ψ(⃗r, t)≃ 1− i

2h̄H∆t

1+ i
2h̄H∆t

Ψ(⃗r, t) = Ψ(⃗r, t +∆t),

�
1+

i
2h̄

H∆t
�

Ψ(⃗r, t +∆t) =
�

1− i
2h̄

H∆t
�

Ψ(⃗r, t). (5.5)

To solve Eq. (5.5), the space and functions that describe the potentials are discretized,

and the wave-function at an instant-time t is also discretized into points i = 1,2, ...N, resulting

in a column matrix; the right-hand operation in Eq. (5.5) is done, resulting in a new column

matrix. The operation on the left side is rewritten as a matrix equation, where the variables to be

determined are Ψi at time t +∆t. Solving this matrix equation at successive times, we obtain

the wave-function at each instant. The solution of the above equation for the one-dimensional

case can be done easily, but for problems with more dimensions this technique presents several

difficulties. Therefore, it is necessary to use a technique that overcomes this problem. In this

context, the SOT presents itself as an alternative and facilitating method, since through it we

can transform an operator with any number of variables into a sequence of one-dimensional

operators and solving Eq. (5.5) is reduced to solve a matrix system of equations.

In order to avoid writing derivatives, we rewrite the time-evolution operator such

that the kinetic and potential terms in the Hamiltonian are separated, however we cannot just

assume exp(T +V ) = exp(T ).exp(V ), because T (kinetic energy) and V (potential energy) are

non-commutating operators. To solve this problem Masuo Suzuki proposed an approximate

solution to this problem (SUZUKI, 1990):

exp

"
ε

q

∑
j=1

Â

#
= fm


Â1, Â2, · · · , Âq

�
+O(εm+1), (5.6)
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where fm

Â1, Â2, · · · , Âq

�
is an approximation term and O(εm+1)) is an error of the order of

(εm+1). We will use the expressions for fm

Â1, Â2

�
and m = 2 in order to ensure a maximum

error of the order of ∆t3. Approximations are given by

f2(Â1, Â2) = exp
hε

2
Â1

i
exp[εÂ2]exp

hε
2

Â1

i
. (5.7)

The demonstration of terms with other values of m can be seen in Ref. (BRAGA, 2010). After

this approximation we can separate the time-evolution operator as follows

exp
�
− i

h̄
H∆t

�
= exp

�
− i

2h̄
V ∆t

�
exp

�
− i

h̄
T ∆t

�
exp

�
− i

2h̄
V ∆t

�
+O(∆t3), (5.8)

where the terms higher than ∆t3 can be neglected if we consider a small time interval ∆t.

Now we are going to consider an arbitrary wave function Ψ(⃗r, t) and apply to it the

time-evolution operator given by the approximation of (5.8), so we have

Ψ(⃗r, t +∆t) = exp
�
− i

2h̄
V ∆t

�
exp

�
− i

h̄
T ∆t

�
exp

�
− i

2h̄
V ∆t

�
Ψ(⃗r, t). (5.9)

5.1 Hamiltonian without spin involved

In order to calculate the wave function at a posterior time t +∆t it is necessary to

discretize the time, the potential V and the wave-function, so we define ξ as

ξi = exp
�
− i

2h̄
Vi∆t

�
|Ψi⟩t , (5.10)

where Vi,∆t, and |Ψi⟩t consist of the potential, time and wave-function discretized respectively.

The next step is to multiply ξi in equation (5.10) by the kinetic term, such product being

represented by ηi,1 and to use Cayley’s formula. We obtain

ηi =

�
− i

h̄
T ∆t

�
ξi =

 
1− i

2h̄T ∆t

1+ i
2h̄T ∆t

!
ξi, (5.11)

�
1+

i
2h̄

T ∆t
�

ηi =

�
1− i

2h̄
T ∆t

�
ξi, (5.12)

and the kinetic term in the absence of a magnetic field is

Tn =
h̄2

2m
d2

dx2
n
, (5.13)

1 This multiplication can be done by taking the Fourier transform of ξi and rewriting it in reciprocal space
and taking the exponential of the kinetic term also in reciprocal space. For convenience we avoided Fourier
transforms and worked only with real space.
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where m represents the mass of the particle and xn is an arbitrary spatial variable. Replacing

the kinetic term T in Eq. (5.11) and making κ = ih̄
4m∆t we obtain a differential equation for the

time-evolution operator as follow

ηi −κ
d2

dx2
n

ηi = ξi +κ
d2

dx2
n

ξi. (5.14)

To solve Eq. (5.14) we need to use the finite difference method. We can define the

derivative of a continuous function as

d f
dxn

= lim
∆xn→0

f (xn +∆xn)− f (xn)

∆xn
, (5.15)

and by discretizing the space we can write the derivative of a function

∂ f
∂xn

≈ fi+1 − fi−1

∆xn
,

∂ 2 f
∂x2

n
≈ fi+1 −2 fi + fi−1

2∆x2
n

. (5.16)

Applying in Eq. (5.14) we get

ηi −κ
�

κi+1 −2κi +κi−1

∆x2
n

�
= ξi +κ

�
ξi+1 −2ξi +ξi−1

∆x2
n

�
, (5.17)

developing the terms above and making λxn =
κ

∆x2
n
= ih̄∆t

4m∆x2
n

we obtain

−λxnκi−1 +κi(1+2λxn)−λxnκi+1 = λxnξi−1 +ξi(1−2λxn)+λxnξi+1, (5.18)

where λxn =
�

κ
∆x2

n

�
= ih̄∆t

4m∆x2
n
. From above equation we obtain a matrix equation system (BRAGA,

2010):



D1 D2 0 0 · · ·
D2 D1 D2 0 · · ·
0 D2 D1 D2 · · ·
0 0 D2 D1

. . .

0 0 0 . . . . . .







...

ηi−1

ηi

ηi+1
...




=




D′
1 D′

2 0 0 · · ·
D′

2 D′
1 D′

2 0 · · ·
0 D′

2 D′
1 D′

2 · · ·
0 0 D′

2 D′
1

. . .

0 0 0 . . . . . .







...

ξi−1

ξi

ξi+1
...




, (5.19)

where the matrix terms are

D2 =−λxn , D1 = 1+2λxn , (5.20a)

D′
2 = λxn , D′

1 = 1−2λxn . (5.20b)

Using the matrix equation in Eq. (5.19) we can determine the values of ηi through computational

subroutines, such as TRIDAG (PRESS et al., 1992) since we know the values of ξi for all i points

of the grid. Finally, we have the wave-packet at arbitrary time t +∆t given by

|Ψi⟩t+∆t = exp
�
− i

2h̄
Vi∆t

�
ηi. (5.21)



72

As mentioned previously, if the system has more than one spatial variable, we can

repeat the procedure of Eqs. (5.11) to (5.19) for the kinetic energy in each direction, performing

only operations with tridiagonal matrices, one for each dimension, instead of having to do a

matrix operation with a gigantic matrix that involves discretization in all the spatial variables,

which is usually done when the Cayley’s form is used without the SOT.

5.2 Hamiltonian depending on the Pauli matrices

There is a special group of Hamiltonians that can be rewritten in terms of the Pauli’s

matrices and the SOT can easily applied to them. In general, Hamiltonians can be rewritten in

terms of Pauli matrices as

σ⃗ = σxî+σy ĵ+σzk̂, (5.22)

where

σx =


 0 1

1 0


 , σy =


 0 −i

i 0


 , σz =


 1 0

0 −1


 . (5.23)

Some examples of Hamiltonians that can be written in this way are that describes the Zeeman

effect and the continuum model of graphene (CHAVES et al., 2010).

Let us consider a general Hamiltonian written as

H = Σ⃗ · σ⃗ . (5.24)

The time-evolution operator is given by

exp
�
− i

h̄
H∆t

�
= exp

�
− i

h̄
∆t⃗Σ · σ⃗

�
= exp

h
−i⃗S · σ⃗

i
, (5.25)

where S⃗ = ∆t⃗Σ
h̄ . We can write exp

h
−i⃗S · σ⃗

i
as

exp[−i⃗S · σ⃗ ] =
∞

∑
n=0

(−i⃗S · σ⃗)n

n!
. (5.26)

For n = 0 Eq. (5.26) reduces to 1, for n = 1 Eq. (5.26) becomes

exp[−i⃗S · σ⃗ ] =−i⃗S · σ⃗ =−i(Sxσx +Syσy +Szσz) =−i


 Sz Sx − iSy

Sx + iSy −Sz


 , (5.27)

For n = 2

exp[−i⃗S · σ⃗ ] =− 1
2!




 Sz Sx − iSy

Sx + iSy −Sz




 Sz Sx − iSy

Sx + iSy −Sz




=− 1

2!
S2I, (5.28)
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with I being I =


 1 0

0 1


. Making the same procedure until n = 4, we can rewrite Eq. (5.26)

as

∞

∑
n=0,2,4,...

�
1− 1

2!
S2I +

1
4!

S4I + · · ·
�
− i

∞

∑
n=1,3,5,...

"
S0

 
S⃗ · σ⃗

1

!
−S2 S⃗ · σ⃗

3!
+ · · ·

#
. (5.29)

By assuming 2k = n, we can arrive at a recurrence formula for the even and odd terms, and the

series above can be rewritten

∞

∑
k=0

(⃗S · σ⃗)2k

2k!
− i

∞

∑
k=0

(−1)k(⃗S · σ⃗)2k+1

(2k+1)!

=
∞

∑
k=0

(−1)kS2kI
2k!

− i
∞

∑
k=0

(−1)kS2k(⃗S · σ⃗)

(2k+1)!
. (5.30)

From the recurrence formula, Eq. (5.29) can be rewritten in terms of cosine and sine functions
�

1− (S2I)
2!

+
(S2I)2

4!
+ · · ·

�
− i

"
S0(⃗S · σ⃗)− S2(⃗S · σ⃗)

3!
+ · · ·

#
. (5.31)

So the time-evolution operator for Hamiltonians written in terms of Pauli’s matrices can be

written as

exp
h
−i⃗S · σ⃗

i
=


cos(S) 0

0 cos(S)


− i

sin(S)
S


 Sz Sx − iSy

Sx + iSy −Sz


 , (5.32)

where Si and S are the terms and the module of the vector S⃗ as defined previously. Thus, the

temporal evolution operation becomes a matrix multiplication. Furthermore, this matrix form

is exact for the temporal evolution operator, without any truncation in the expansion, that is,

considering all terms.

The time-evolution in Eq. (5.32) will be used in further chapters to investigate

the wave-packet dynamics in phosphorene multilayers (Chapter 6), anisotropic semiconductor

quantum-wires (Chapter 7) and in graphene using the position-dependent translation operator

formalism (Chapter 8).
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6 WAVE-PACKET DYNAMICS IN MULTILAYER PHOSPHORENE

In this chapter we investigate the dynamics of Gaussian wave packets in multilayer

black phosphorus (BP). Time-dependent average position and velocity are calculated analytically

and numerically by using a continuum model and a method based on the split-operator technique,

respectively. By analyzing the wave packet trajectories with non-vanishing initial momentum

along armchair direction, we observed transient spatial oscillations due to the effect known as

zitterbewegung (ZBW). We demonstrated that the trembling motion along the armchair direction

at small times is unavoidable even for null initial momentum. We verified that the ZBW is

directly related to the splitting of the wave packet into two parts moving with opposite velocities,

similar to graphene, and the linear dependence on momentum in the off-diagonal terms in the

Hamiltonian. Unique to BP, the two portions of the propagated wave packets have an asymmetric

shape for unbalanced

[1,0]T

�
and phased different


[1, i]T

�
initial pseudospin components,

which also play a determining role in the amplitude, frequency and duration time of the transient

oscillations. As a consequence of the anisotropy on the N-layer BP energy bands, the wave packet

propagates non-uniformly along the different directions and deforms into an elliptical shape. By

comparing our analytical results with those ones obtained by the split-operator technique, we

confirmed quantitative agreement between them, except for large values of wave vector and after

long time steps.

6.1 Motivation

The well-known zitterbewegung (ZBW) phenomenon, a trembling motion caused

by interference between positive and negative energy states, (ZAWADZKI; RUSIN, 2011;

ZAWADZKI, 2017) was predicted by Schrödinger in 1930 for the motion of relativistic electrons

in vacuum governed by the Dirac equation and has been subject of renewed interest over the past

decade in various condensed matter systems. (SCHRÖDINGER, 1930; BARUT; BRACKEN,

1981) This oscillatory dynamic of the center of a free wave packet is manifested in the time

evolution of the expectation values of some physical observable, such as position, velocity,

current and spin angular momentum. The characteristic frequency of ZBW motion is determined

by the gap between the two states with positive and negative energies and is of the order of

2m0c2/h̄, where m0 is the bare electron mass, c is the speed of light, and h̄ is the Planck constant,

whereas the amplitude of oscillations is of the order of the Compton wavelength, i.e. h̄/m0c. This
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corresponds to large oscillation frequencies of ≈ 1021 Hz and small oscillation amplitudes of

≈ 10−3 Å, making its direct experimental observation a really hard task. (BARUT; BRACKEN,

1981; FESHBACH; VILLARS, 1958; BARUT; THACKER, 1985; HUANG, 1952; LOCK, 1979;

THALLER, 2004; BRAUN et al., 1999) Although, the ZBW is in principle a relativistic effect, it

may arise even for a nonrelativistic particle moving in crystalline solids if their band structures

could be represented by a two-band model reminiscent of the Dirac equation,(CANNATA et al.,

1990; FERRARI; RUSSO, 1990; CANNATA; FERRARI, 1991) or for quasiparticles governed

by the Bogoliubov-de Gennes equations in superconductors,(LURIÉ; CREMER, 1970; CSERTI;

DÁVID, 2006) in which the energy-wavevector dependence is similar to the relativistic relation,

or in some semiconductor nanostructures with spin-orbit coupling (LURIÉ; CREMER, 1970;

SCHLIEMANN et al., 2005; SCHLIEMANN et al., 2006; SHEN, 2005; JIANG et al., 2005;

BRUSHEIM; XU, 2006; DEMIKHOVSKII et al., 2008; BISWAS; GHOSH, 2014).

Two of the pioneering works investigating the ZBW effect in narrow-gap semiconduc-

tors are the theoretical studies of Schliemann (SCHLIEMANN et al., 2005) and Zawadzki (ZA-

WADZKI, 2005) in 2005, which considered the coupling between the positive-negative energy

eigenstates of the quantum systems using a two energy bands model. Zawadzki (ZAWADZKI,

2005) demonstrated that semiconductor electrons experience a ZBW, by arguing the analogy

between the band structure of narrow-gap semiconductors and the Dirac equation for relativistic

electrons in vacuum. The former exhibits more experimentally favorable frequency and ampli-

tude characteristics than electrons in a vacuum. Schliemann et al.~(SCHLIEMANN et al., 2005;

SCHLIEMANN et al., 2006) studied the ZBW of electronic wave packets in III-V zinc-blende

semiconductor quantum wells in the presence of spin-orbit coupling of the Rashba and Dressel-

haus type, by using the Hamiltonian of spin splitting (the Bychkov-Rashba mechanism), which

requires structure inversion asymmetry of the system. These works triggered a strong interest in

the theoretical investigations of wave packet dynamics and ZBW oscillations in other physical

systems, as for instance: 2D photonic crystal, (ZHANG, 2008; DREISOW et al., 2010) 2D sonic

crystal, (ZHANG; LIU, 2008) trapped ion, (GERRITSMA et al., 2010; RUSIN; ZAWADZKI,

2010) hole Luttinger systems, (DEMIKHOVSKII et al., 2010; WINKLER et al., 2007) ultra-

cold atoms, (VAISHNAV; CLARK, 2008; ZHANG et al., 2013) topological insulators, (SHI et

al., 2013) and electromagnetic pulses propagating through metamaterials presenting an optical

analog ZBW effect (WANG et al., 2009). Experimental observations of ZB phenomenon have

been reported in 2008 for macroscopic sonic crystals, (ZHANG; LIU, 2008) in 2010 for trapped
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ion systems (GERRITSMA et al., 2010) and for photonic superlattices (DREISOW et al., 2010),

and in 2013 for spin-orbit-coupled Bose-Einstein condensates (LEBLANC et al., 2013; QU et

al., 2013).

In the last two decades, the production of graphene has led to a significant level of

interest on the physics of layered materials. (NOVOSELOV et al., 2004; NOVOSELOV et al.,

2005a; NETO et al., 2009; KATSNELSON; KATSNELSON, 2012) This interest is not only

due to its possible future technological applications, but also because it provides the possibility

to probe interesting phenomena predicted by quantum field theories not found in conventional

semiconductors and metals. One of these exotic properties of low-energy electrons in single and

few-layers graphene, described by the zero mass Dirac equation, is the existence of ZBW as

reported in Refs. (KATSNELSON, 2006; MAKSIMOVA et al., 2008; MARTINEZ et al., 2010;

ENGLMAN; VERTESI, 2008; RUSIN; ZAWADZKI, 2007; RUSIN; ZAWADZKI, 2009; RUSIN;

ZAWADZKI, 2008; ZAWADZKI; RUSIN, 2008; KRUECKL; KRAMER, 2009; ROMERA;

SANTOS, 2009; SCHLIEMANN, 2008) for monolayer and (KATSNELSON, 2006; RUSIN;

ZAWADZKI, 2007; WANG et al., 2010) bilayer graphene. Maksimova et al. (MAKSIMOVA

et al., 2008) in 2008 analyzed the detailed description of wave packet evolution in monolayer

graphene, using the Green’s function representation and the low-energy Dirac equation, and

investigated the influence on the wave packet dynamics of different pseudospin polarizations for

the initial wave function and the phenomenon of ZBW of the packet center. Similar investigation

was performed numerically by Chaves et al. (CHAVES et al., 2010) in 2010 by means the split-

operator technique. Rusin and Zawadzki (RUSIN; ZAWADZKI, 2007) studied the evolution of

the wave packet in bilayer graphene and found the analytical expressions for the pseudospin

components of wave function and average position operator as well as analytical results for the

ZBW oscillations. They demonstrated that the transient character ZBW in bilayer graphene

is related to the increasing spatial separation of the sub-packets corresponding to the positive

and negative energy states moving in opposite directions, in a similar way to some pseudospin

configurations in monolayer graphene, and not only due to the packet’s slow spreading which in

turn is responsible for the attenuation and decay of ZBW.

Most recently, there is growing interests in Black Phosphorus (BP), also known

as phosphorene. (LI et al., 2014; LIU et al., 2014; XIA et al., 2014; KOENIG et al., 2014;

CASTELLANOS-GOMEZ et al., 2014; AVOURIS et al., 2017) It is a semiconductor with

puckered structure due to its sp3 hybridization and displays a tunable band gap (LI et al., 2014;
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LIU et al., 2014; CASTELLANOS-GOMEZ et al., 2014; RODIN et al., 2014; TRAN et al.,

2014; CASTELLANOS-GOMEZ, 2015; DOLUI; QUEK, 2015; DAS et al., 2014; KIM et al.,

2015; YUAN et al., 2016; ZHANG et al., 2017; SOUSA et al., 2017a; LOW et al., 2014b;

LOW et al., 2014c) ranging of 1.8 eV for single-layer BP to ≈ 0.4 eV for bulk samples, which is

very relevant for possible technological applications. (LI et al., 2014; LIU et al., 2014; YUAN

et al., 2015; LIU et al., 2015; LOW et al., 2014a; PENG et al., 2017; KHALIJI et al., 2017)

BP presents a highly anisotropic band structure and consequently a large anisotropic effective

mass. (SOUSA et al., 2017a) Although previous works have studied wave-packet propagation for

standard semiconductors, (ZAWADZKI; RUSIN, 2011; ZAWADZKI, 2017; SCHLIEMANN et

al., 2005; SCHLIEMANN et al., 2006; DEMIKHOVSKII et al., 2008; BISWAS; GHOSH, 2014;

ZAWADZKI, 2005) monolayer (KATSNELSON, 2006; MAKSIMOVA et al., 2008; MARTINEZ

et al., 2010; ENGLMAN; VERTESI, 2008; RUSIN; ZAWADZKI, 2007; RUSIN; ZAWADZKI,

2009; RUSIN; ZAWADZKI, 2008; ZAWADZKI; RUSIN, 2008; KRUECKL; KRAMER, 2009;

ROMERA; SANTOS, 2009; SCHLIEMANN, 2008) and bilayer (KATSNELSON, 2006; RUSIN;

ZAWADZKI, 2007; WANG et al., 2010) graphene, silicene, (ROMERA et al., 2014) and

transition metal dichalcogenide, (SINGH et al., 2014) no similar theoretical investigation on

wave-packet propagation in N-layer BP system was reported in the literature, to the best of

our knowledge. Owing the linear terms in momentum in the BP Hamiltonian, strong coupling

between conduction and valence states, and small band gap, it is expected very pronounced ZBW

effects in BP. Therefore, it is also interesting to see whether the results observed in these cited

2D materials differ or are similar for multilayer phosphorene, and if the anisotropic character of

electronic properties of multilayer phosphorene implies in any atypical feature in the dynamics

of the wave packets.

In this chapter we present the theoretical models used to describe the time evolu-

tion of wave packets in multilayer phosphorene systems, based on the continuum approxima-

tion (SOUSA et al., 2017a; JR; KATSNELSON, 2015; SOUSA et al., 2016) for low-energy

electrons. We use Green’s function formalism and the split-operator technique (CHAVES et

al., 2010; CHAVES et al., 2015a; RAKHIMOV et al., 2011; PEREIRA et al., 2010; DEGANI;

MAIALLE, 2010; SOUSA et al., 2015; CHAVES et al., 2009; PETROVIĆ et al., 2013; SOUSA

et al., 2013; COSTA et al., 2015; COSTA et al., 2012; CAVALCANTE et al., 2016; CHAVES et

al., 2015; COSTA et al., 2017) for the expansion of the time-evolution operator. The analytical

expressions for some physical quantities, such as the average values of position operator and
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Figure 20 – (Color online) (a) Top view of lattice structure of AB-stacked N-layer BP system,
emphasizing the orientations of the lattice adopted in this work and the four sublattices: A and B
at bottom sublayer (purple symbols), and C and D at top sublayer (brown symbols). The x and y
coordinates correspond to the zigzag and armchair directions, respectively, and z-direction is
the out-of-plane direction. (b) Left: Lowest electronic energy band obtained by diagonalizing
the Hamiltonian (7.1) with n = N for monolayer (black solid curve), bilayer (red dashed curve),
trilayer (blue dot curve), and tetralayer (green short-dash curve) phosphorene. Right: Initial
wave packet energy for the corresponding initial wave vector assumed here in the wave packet
simulation. θk as a function of (c) the polar angle β for fixed momentum vector and (d) the
momentum vector for fixed polar angle β . (e) Momentum value for θmax as a function of the
polar angle β , i.e. |k| in which θk has a maximum value as emphasized in the orange dashed line
in panel (d).

the components of wave function, are found for different configuration of initial pseudospin

polarization and these results are compared with the numerical split-operator ones in order to

check the limit of accuracy of the both models. We also show the probability amplitudes of the

wave packet at different time steps (t > 0) to understand the origin of transient character of the

oscillations on the average positions. An important remark concerning the wave packet dynamics

is about the oscillatory behavior of the velocity as a manifestation of zitterbewegung on the wave

packet motion. Additionally, we calculate the velocity operators and their commutators with

the continuum Hamiltonian for multilayer phosphorene in order to verify whether vx and vy are

constants of motion or not, and thus check the consistency of our formalism.
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6.2 Continuum approximation for N-layer phosphorene and the polarization angle

Based on the tight-binding model for multilayer phosphorene reported by Rudenko

et al. (RUDENKO et al., 2015) involving ten intralayer and four interlayer hopping parameters

and with the layers alignments obeying the AB-stacking (see Fig. 20(a)), a simple analytical

model was recently derived within the long-wavelength approximation to describe low-energy

charge carriers in N-layer BP sheet around Γ point. (SOUSA et al., 2017a) In this continuum

approximation, the Hamiltonian for the N-layer BP is composed by N blocks of 2×2 monolayer-

type BP Hamiltonians where each one of these effective monolayer Hamiltonians is formed by

layer-dependent Hamiltonian coefficients and reads in momentum space as

H =


 un

0+ηn
x k2

x+ηn
y k2

y δ n+γn
x k2

x+γn
y k2

y+iχnky

δ n+γn
x k2

x+γn
y k2

y−iχnky un
0+ηn

x k2
x+ηn

y k2
y


, (6.1)

where un
0 = u0+λnδAD′ , ηn

x = ηx+λnηAD′ , ηn
y = ηy+λnγAD′ , δ n = δ +λnδAC′ , γn

x = γx+λnηAC′ ,

γn
y = γy +λnγAC′ , χn = χ +λnχAC′ , λn = cos [nπ/(N +1)], N is the number of BP layers and

n ∈ [1,N]. The lowest electron-hole energy bands are obtained by assuming n = N, being the

value we consider here throughout all our analysis (i.e. n = N = 1, 2, 3, 4 for monolayer,

bilayer, trilayer and tetralayer phosphorene, respectively). The Hamiltonian parameter values are

summarized in Table I, being the same ones used in Ref. (SOUSA et al., 2017a), where they were

obtained by expanding the tight-binding structure factors for BP system up to second oder in k.

These coefficient values of the Hamiltonian (7.1) include the contribution from the tight-binding

hopping energies and the lattice geometry of the BP sheet, incorporating a direct link between

the microscopic tight-binding description and the continuum approximation. Refs. (SOUSA et

al., 2017a; JR; KATSNELSON, 2015; SOUSA et al., 2016) have showed that the continuum

model for BP system is very suited for describing the physics of large BP systems, yielding

very accurate results within its limit of validation, and it is less computationally demanding than

microscopic models, as for instance tight-binding model and first-principles calculations.

The eigenstates of H are two-component spinors given by

Ψ =


φ1

φ2


=


φA +φD

φB +φC


 , (6.2)

where φA,B,C,D are the probability amplitudes for finding electrons on the atomic sites A, B, C, and

D, respectively, which are related to the four phosphorus atoms that are contained in the unit cell

of a single layer of BP, as shown in Fig. 20(a). The Hamiltonian (7.1) was obtained by taking into
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Table 2 – Hamiltonian parameters of the effective continuum model (Eq. (7.1)) derived by the
expansion of the structure factor coefficients of the tight-binding model for multilayer BP (see
Ref. (SOUSA et al., 2017a)).

Parameter Value Parameter Value
u0 −0.414 eV δAC′ 0.712 eV
ηx 1.265 eV·Å2 δAD′ -0.132 eV
ηy −1.384 eV·Å2 ηAC′ -0.9765 eV·Å2

δ 0.919 eV ηAD′ 2.699 eV·Å2

γx 2.510 eV·Å2 γAC′ 2.443 eV·Å2

γy 2.035 eV·Å2 γAD′ 0.364 eV·Å2

χ 5.896 eV·Å χAC′ 2.071 eV·Å

account the sublattice symmetry between atomic sites A/D and B/C in each monolayer BP, due

to the D2h group invariance of the BP lattice(SOUSA et al., 2017a; JR; KATSNELSON, 2015)

and, as a consequence, the two-component wave function (6.2) is composed by the combination

of these sublattices in pairs. Rewriting H in a more compact form in polar notation, in order to

highlight the angular dependence, we find

H =


 ε1 ε2eiθk

ε2e−iθk ε1


 , (6.3)

with

ε1(p⃗) =
fc + fv

2
, (6.4a)

ε2(p⃗) =

s�
fc − fv

2

�2

+

�
χn py

h̄

�2

, (6.4b)

θk(p⃗) = arctan
�

2χn py

h̄( fc − fv)

�
, (6.4c)

where fc and fv are associated with the conduction (c) and valence (v) energy dispersion terms,

respectively, being defined as

fc
v
= (un

0 ±δ n)+(ηn
x ± γn

x )
p2

x

h̄2 +

ηn

y ± γn
y
� p2

y

h̄2 . (6.5)

By diagonalizing Eq. (7.1) or equivalently Eq. (6.3), we obtain the dispersion relations for

electrons and holes, given by

Ep⃗,s = ε1( p⃗)+ sε2( p⃗), (6.6)

with s =+1(−1) for electrons (holes), i.e. the plus (minus) sign yields the conduction (valence)

band. Fig. 20(b) shows the lowest electronic energy levels for (black solid curve, N = 1)



81

monolayer, (red dashed curve, N = 2) bilayer, (blue dot curve, N = 3) trilayer, and (green

short-dash curve, N = 4) tetralayer phosphorene. In the wave packet dynamics, we choose the

initial wave packet energies for electrons standing on these lower bands, as shown in the right

panel of Fig. 20(b) for the three assumed initial wave vectors for a fixed number of layers. Note

that, as seen in Fig. 20(b): (i) the band gap is tunable by the number of BP layers, decreasing

as N increases, and (ii) phosphorene band structure is highly anisotropic, exhibiting for small

momentum values an approximately parabolic dispersion along Γ−X (zigzag) direction and

approximately linear dispersion along Γ−Y (armchair) direction, therefore, behaving similarly as

Schrödinger and Dirac particles, respectively. As we will discuss further, the linear dependence

on ky in the out-of-diagonal terms of Eq. (7.1) and this anisotropic feature of the energy levels

and, consequently, of effective masses and group velocities,(SOUSA et al., 2017a) bring up very

interesting consequences in the wave packet dynamics in phosphorene.

The corresponding eigenstates of Hamiltonian Eq. (6.3) are

Ψ p⃗,s =
1√
2


 1

seiθk(p⃗)


 . (6.7)

Note that this expression is similar to the graphene’s eigenstates, (MAKSIMOVA et al., 2008)

but with the fundamental difference that for N-layer phosphorene the phase angle θk does not

necessarily correspond to the polar angle β associated with the momentum vector:

θk(|k|,β ) = arctan

"
χn|k|sinβ

δ n +

γn

x cos2 β + γn
y sin2 β

�
|k|

#
. (6.8)

This can be seen in Fig. 20(c), which shows the phase angle θk as a function of the polar angle

β for three different momentum vectors (whose values are the ones used in the results for the

wave packet simulation in Sec. 6.5). It is a very crucial point concerning the initial set up to

define the direction of the wave packet propagation. For instance, in the cases of isotropic

semiconductors and graphene systems, (MAKSIMOVA et al., 2008; CHAVES et al., 2010;

CHAVES et al., 2015a; RAKHIMOV et al., 2011) the phase angle is exactly the same as the

polar angle in the momentum space, i.e. θk = β = arctan(py/px), making the definition of

the initial propagation angle value more direct and intuitive. Furthermore, it can be noticed

by Fig. 20(c) that θk exhibits a maximum value at β = π/2 for all momentum values and

this critical value θk(β = π/2) = θ max
k is energy-momentum-dependent. Figures 20(d) and

20(e) confirm these statements. From Fig. 20(d) it is seen that, as the momentum |k| increases,

θk approaches a maximum value (emphasized by the orange dashed line) and then decays to
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zero. The momentum value for θ max
k (i.e. |k|max in which θk has a maximum value) is slightly

different for different values of the polar angle β , as shown in Fig. 20(e). According to Fig. 20(e)

and also by performing the differentiation of Eq. (6.4c) with respect to |k| at β = π/2, i.e.

(∂θk/∂ |k|)|β=π/2 = 0, one can find that |k|max = 0.67201 Å−1 and the critical phase angle is

θ max
k = 65.114◦. In summary, the phase angle can assume values in the threshold range between:

−θ max
k ≤ θk ≤ θ max

k , unlike the polar angle β that can assume any value.

6.3 Green’s function formalism for N-layer phosphorene

We now shall follow a similar procedure as reported by Maksimova et al. in

Ref. (MAKSIMOVA et al., 2008), based on the Green’s function formalism. According to

Eq. (7.9a), the time-dependent eigenfunctions of Hamiltonian Eq. (6.3) are given by

ϕ p⃗,s(⃗r, t) =
1

2
√

2π
exp

�
i
p⃗ · r⃗
h̄

− i
Ep⃗,st

h̄

�
 1

seiθk(p⃗)


 , (6.9)

with Ep⃗,s being the energy eigenvalues given in Eq. (6.6). The initial wave packet Ψ(⃗r,0), at

t > 0 acquires a form that can be calculated as

Ψµ (⃗r, t) =
Z

Gµ,ν (⃗r, r⃗′, t)Ψν (⃗r′,0)dr⃗′, (6.10)

where G(⃗r, r⃗′, t) is the 2×2 Green’s function matrix and the matrix indices (µ,ν = 1,2) corre-

spond to the two components of the pseudospin eigenfunctions. The matrix elements of Green’s

functions are defined as

Gµ,ν (⃗r, r⃗′, t) = ∑
s=±1

Z
d p⃗ϕ p⃗,s,µ (⃗r, t)ϕ∗

p⃗,s,ν (⃗r′,0). (6.11)

Replacing Eq. (7.9b) into Eq. (6.11) and after some straightforward algebra, one finds the

components of Green’s function matrix, such as

G11(⃗r, r⃗′, t) = G22(⃗r, r⃗′, t) =
1

(2π h̄)2

Z
exp

"
ip⃗ · (⃗r− r⃗′)

h̄

#
exp

�−iε1(p⃗)t
h̄

�
cos
�

ε2(p⃗)t
h̄

�
d p⃗,

(6.12a)

G12(⃗r, r⃗′, t) =
−i

(2π h̄)2

Z
e−iθk(p⃗) exp

"
ip⃗ · (⃗r− r⃗′)

h̄

#
exp

�−iε1(p⃗)t
h̄

�
sin
�

ε2(p⃗)t
h̄

�
d p⃗, (6.12b)

G21(⃗r, r⃗′, t) =
−i

(2π h̄)2

Z
eiθk(p⃗) exp

"
ip⃗ · (⃗r− r⃗′)

h̄

#
exp

�−iε1(p⃗)t
h̄

�
sin
�

ε2(p⃗)t
h̄

�
d p⃗. (6.12c)



83

To describe the time evolution of an arbitrary state, we choose the initial wave

function to be a Gaussian wave packet, for three main reasons: (i) Gaussian wave packets

describe roughly localized quantum states for which the product of the uncertainties in position

and momentum is minimal; (ii) by setting the initial state as Gaussian wave packet, this situation

covers most cases of practical interest, because any wave packet can be approximated by a

superposition of a finite number of Gaussian states; (iii) since the ZBW is, by nature, not a

stationary state but a dynamical phenomenon, it is natural to study it with the use of wave

packets. (ZAWADZKI; RUSIN, 2011; ZAWADZKI, 2005; RUSIN; ZAWADZKI, 2007) The

assumed initial Gaussian wave packet, with width d and non-vanishing average momentum along

y-direction (p0y = h̄k0), is given by:

Ψ(⃗r, t) =
f (⃗r)p

|c1|2 + |c2|2


c1

c2


 , (6.13a)

f (⃗r) =
1

d
√

π
exp

�−r2

2d2 + ik0y
�
. (6.13b)

where c1 and c2 determine the initial pseudospin polarization of the injected wave packet and are

related to the two pseudospin components in Eqs. (6.2) and (7.9a). Now inserting Eqs. (6.13a)

and (6.13b) into Eq. (6.10) and using the expressions of the components of Green’s function

matrix (Eqs. (6.12a)-(6.12c)), one obtains the components of the time evolved wave packet

Ψ(⃗r, t) at a later time t in the following two-component form:

Ψ1(⃗r, t)

Ψ2(⃗r, t)


=

1p
|c1|2 + |c2|2


c1Φ1(⃗r, t)+ c2Φ3(⃗r, t)

c1Φ2(⃗r, t)+ c2Φ4(⃗r, t)


 (6.14)
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where

Φ1(⃗r, t) =
Z

G11(⃗r, r⃗′, t) f (⃗r)dr⃗′

=
de−k2

0d2/2

2h̄2
√

π3

Z
exp

�
ip⃗ · r⃗

h̄
− p2d2

2h̄2 +
pyk0d2

h̄
− iε1(p⃗)t

h̄

�
cos
�

ε2(p⃗)t
h̄

�
d p⃗, (6.15a)

Φ2(⃗r, t) =
Z

G21(⃗r, r⃗′, t) f (⃗r)dr⃗′

=
−ide−k2

0d2/2

2h̄2
√

π3

Z
eiθk(p⃗) exp

�
ip⃗ · r⃗

h̄
− p2d2

2h̄2 +
pyk0d2

h̄
− iε1(p⃗)t

h̄

�
cos
�

ε2(p⃗)t
h̄

�
d p⃗,

(6.15b)

Φ3(⃗r, t) =
Z

G12(⃗r, r⃗′, t) f (⃗r)dr⃗′

=
−ide−k2

0d2/2

2h̄2
√

π3

Z
e−iθk(p⃗) exp

�
ip⃗ · r⃗

h̄
− p2d2

2h̄2 +
pyk0d2

h̄
− iε1(p⃗)t

h̄

�
cos
�

ε2(p⃗)t
h̄

�
d p⃗,

(6.15c)

and Φ1(⃗r, t) = Φ4(⃗r, t), according to Eq. (6.12a).

The time-dependent expectation value of the position operator can be calculated as

⟨⃗r(t)⟩=
2

∑
j=1

Z
d p⃗Ψ∗

j( p⃗, t)ih̄
dΨ j( p⃗, t)

d p⃗
, (6.16)

with Ψ in momentum representation. Note that analytical expressions for two components of

wave function were found for N-layer BP (Eqs. (6.14) and (6.15a)-(6.15c)), which allows us to

investigate the ZBW phenomenon of a Gaussian wave packet for different relations between the

initial electron amplitudes on the sublattices, as will be discussed in Sec. 6.5, by means of the

analytical calculation of the time dependent expectation values of the position (x, y) of the center

of the injected wave packet according to Eq. (6.16).

6.4 Split-operator technique for N-layer phosphorene

In this section, we introduce the split-operator technique for wave packet propaga-

tion in N-layer phosphorene, based on the Hamiltonian within the continuum approximation

(Eq. (7.1)). This approach is similar to the one developed by A. Chaves et al. (CHAVES et

al., 2010; CHAVES et al., 2015a; PEREIRA et al., 2010) for calculating the dynamics of a

wave packet in graphene by taking a Dirac-Weyl Hamiltonian. It consists in the solution of

time-dependent Schrödinger equation by taking a separation of the time evolution operator in a

series of matrices, such that the propagated wave function after a time step ∆t can be calculated

by applying the expanded exponential time evolution operator on the wave packet at any instant
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t. (CHAVES et al., 2010; CHAVES et al., 2015a; RAKHIMOV et al., 2011; PEREIRA et al.,

2010; DEGANI; MAIALLE, 2010; SOUSA et al., 2015; CHAVES et al., 2009; PETROVIĆ et

al., 2013; SOUSA et al., 2013; COSTA et al., 2015; COSTA et al., 2012; CAVALCANTE et

al., 2016; CHAVES et al., 2015; COSTA et al., 2017) The advantage of this technique is due to

its flexibility inasmuch as it can be applied for BP systems under arbitrary external potentials

and magnetic fields. Besides, it allows to track the center of mass trajectories, which is very

important for the understanding of ZBW phenomenon in the current work.

Let us first find the time evolution operator as a series of matrix multiplications for

the Hamiltonian Eq. (7.1) and then apply it for the time evolution of the wave packet, following

the split-operator method for spin-dependent Hamiltonian as described in Refs. (CHAVES et

al., 2010; CHAVES et al., 2015a; PEREIRA et al., 2010). The long-wavelength Hamiltonian

Eq. (7.1) in the presence of a external potential V (x,y) can be written in terms of Pauli matrices

σ⃗ = (σx,σy) as

H = Hk +Hr, (6.17a)

Hk = H01+ α⃗ · σ⃗ (6.17b)

Hr =V (⃗x, y⃗)1, (6.17c)

where we separated it keeping only the terms which depend on the wave vector in Hk, and on

the real-space coordinates in Hr. 1 denotes the 2×2 unit matrix, and

H0 = un
0 +ηn

x k2
x +ηn

y k2
y , (6.18a)

α⃗ = (αx,αy) =

δ n + γn

x k2
x + γn

y k2
y ,−χnky

�
. (6.18b)

Following the split-operator method, the time-evolution operator for the Hamiltonian H

[Eq. (6.17a)] can be approximated as

exp
�
− i∆t

h̄
H

�
≈exp

�
− i∆t

2h̄
Hr

�
exp
�
− i∆t

h̄
Hk

�
exp
�
− i∆t

2h̄
Hr

�
, (6.19)

with an error on the order of O(∆t3), due to the non-commutativity between Hk e Hr. Since

Hk does not explicitly depend on time and [H01, α⃗ · σ⃗ ] = 0, the momentum-space term of the

Hamiltonian, Eq. (6.17b), is given by

exp
�
− i∆t

h̄
Hk

�
=exp

�
− i∆t

h̄
H01

�
exp
h
−i⃗A · σ⃗

i
, (6.20)



86

where A⃗ = α⃗∆t/h̄. Using the properties of the Pauli matrices for the second term in Eq. (6.20),

one finds

MA = exp
h
−i⃗A · σ⃗

i

=cos(A)1− isin(A)
A


 0 Ax − iAy

Ax + iAy 0


 , (6.21)

where A = |⃗A|, whereas the first term of Eq. (6.20) is equivalent to

MH0 = exp [−iH01∆t/h̄] = 1exp [−iH0∆th̄] . (6.22)

Thus, the time evolution operation is represented by a series of 2×2 matrices multiplications.

The time evolution of Ψ(⃗r, t) can be computed by applying the time evolution

operator, Eq. (6.19), to obtain the propagated wave function after a time step t +∆t, such as

Ψ(⃗r, t +∆t)=e−iH ∆t/h̄Ψ(⃗r, t)=MrMkMrΨ(⃗r, t), (6.23)

with Mk = MAMH0 . Since MH0 and MA depend on the wave vectors kx and ky, the matrix

multiplications before (afterwards) of the matrix Mk are computed in reciprocal space by

performing a direct (inverse) Fourier transform on the function, in order to rewrite it in a

reciprocal (real) space where the k’s are numbers, instead of derivatives. Notice that, in the

absence of external fields V (x,y) = 0, the separation between the real and reciprocal space-

dependent terms in Eqs. (6.17a) and (6.19) is no longer necessary, and the resulting matrix

will have an exact representation of the time evolution operator, including all the terms of

the expansion of the exponential. In this case, there will be no error induced by the non-

commutativity of the involved operators. Although we developed this technique in a more

general way for an arbitrary potential, we investigated here the simple case with no external

fields.

The initial wave packet is assumed as a circularly symmetric Gaussian distribution,

multiplied by the pseudospinor (Eq. (6.2)) that accounts for the probability distributions over the

two pairs of coupled sublattices of phosphorene (labeled c1 for φA +φD and c2 for φB +φC), and

by a plane wave with wave vector k⃗ = (k0 cosβ ,k0 sinβ ), such as

Ψ(⃗r,0)=N


c1

c2


exp

�
−(x−x0)

2+(y−y0)
2

d2 +i(⃗k · r⃗)
�
,

(6.24)
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where N is a normalization factor, (x0,y0) are the coordinates of the center of the Gaussian wave

packet in the real space, and d is its width. The pseudospin polarization [c1,c2]
T of the wave

packet plays an important role in defining the direction of propagation (see Eq. (7.9a)). It is

worth to point out that, for phosphorene, the phase angle θk does not correspond to the polar

angle β associated with the momentum vector (see Eq. (6.8)), such that the characterization of

the pseudospin polarization angle and consequently the direction of propagation are not directly

related, as it is, for example, in graphene, where we have a wave packet propagating along the

y− and x−direction in cases of the pseudospin [1, i]T and [1,1]T , respectively. (CHAVES et al.,

2015a; RAKHIMOV et al., 2011; COSTA et al., 2015; COSTA et al., 2012; CAVALCANTE et

al., 2016) Unless otherwise explicitly stated in the text, we consider that the wave packet starts

at (x0,y0) = (0,0) Å and its width is d = 100 Å. In order to compare the results obtained by the

method based on split-operator technique developed in the current section with the ones within

the green’s function formalism (Sec. 6.3), we assume kx
0 = 0 in Eq. (8.19) as in Eq. (6.13b).

6.5 Zitterbewegung of gaussian wave-packet for different pseudospin polarization

Let us now show results for three different Gaussian distributions along the subalt-

tices: (Sec. 6.5.1) [c1,c2]
T = [1,0]T , (Sec. 6.5.2) [c1,c2]

T = [1,1]T , and (Sec. 6.5.3) [c1,c2]
T =

[1, i]T , where we discuss the presence or absence of ZBW along the x and y directions, manifested

by oscillations on the average position and average group velocity of the Gaussian center of mass

of the wave packet, as well as other features of the trembling motion, such as the oscillation

amplitude and frequency.

6.5.1 c1 = 1 and c2 = 0

We first consider the simple case where the lower component of the initial electronic

wave function (6.13a) is zero, i.e. taking c1 = 1 and c2 = 0. This corresponds to the situation in

which the electron probability is initially located only at φ1 = φA +φC, i.e. at the A and C the

sublattices of phosphorene layer. According to Eq. (6.14), the wave function for t > 0 in this

case is:

Ψ(⃗r, t) =


Φ1(⃗r, t)

Φ2(⃗r, t)


 , (6.25)
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where Φ1,2 are defined by Eqs. (6.15a) and (6.15b). By using Eq. (6.16) and after some lengthy

but straightforward algebra, we calculate the time dependent expectation value of position (x, y)

of the wave packet center of mass, given by

⟨x(t)⟩=− ide−a2

π

Z ∞

0

Z π

−π
e−q2+2aqsinβ

"
2iχnγn

x h̄4dq3 sin(2β )sin2 (ε2(q,β )t/h̄)
�
δ nh̄2d2 +(γn

x cos2 β + γn
y sin2 β )q2h̄2�2 d2(χn)2h̄4q2 sin2 β

+
2itηn

x q2 cosβ
h̄d2 +q2 cosβ

#
dβdq, (6.26a)

⟨y(t)⟩=− ide−a2

π

Z ∞

0

Z π

−π
e−q2+2aqsinβ

"
q2 sinβ −aq+

2itηn
y q2 sinβ
h̄d2

−
iqχnh̄2d


d2δ nh̄2 + γn

x q2h̄2 cos2 β − γn
y q2h̄2 sin2 β

�
sin2 (ε2(q,β )t/h̄)

�
δ nh̄2d2 +(γn

x cos2 β + γn
y sin2 β )q2h̄2�2 +d2(χn)2h̄4q2 sin2 β

#
dβdq, (6.26b)

in which the average values are written explicitly as a function of the polar angle β ∈ [−π,π]

and the dimensionless parameters q = pd/h̄ and a = k0d, with k0 corresponding to the initial

wave vector. For this, we rewrote ε1 and ε2, given by Eqs. (6.4a) and (6.4b), respectively, as

functions of q and β .

By performing a numerical integration of Eqs. (6.26a) and (6.26b), we obtain the

expectation values as a function of time for different initial central wave vectors and number of

BP layers, as shown in Figs. 21(a) and 21(b), respectively. The average value ⟨x(t)⟩ remains

constant and does not exhibit any oscillation with time for different k’s values and number of BP

layers. On the other hand, the expectation value of the y position of the wave packet oscillates,

thus indicating the presence of ZBW along the y-direction. The different curves in Fig. 21(a)

are the results for k0 = 0.01 Å−1 (black), k0 = 0.05 Å−1 (red) and k0 = 0.1 Å−1 (blue). As

mentioned in Sec. 6.1, this oscillatory behavior is due to the interference between positive and

negative energy-momentum states that makes up the initial Gaussian wave packet and in fact

corresponds to the ZBW phenomenon. Note in Fig. 21(a) that the ZBW of the wave packet

propagating in a monolayer BP have a transient character, i.e. they disappear on a femtosecond

time scale. This transient feature of the ZBW presents different amplitude, frequency and

duration time for different initial wave vector. One verifies in Fig. 21(a) that: (i) the duration

time and amplitude of the transient ZBW decays faster as the wave vector increases, and (ii) the

larger the initial wave vector, the smaller the oscillation amplitude, as seen in the inset of panel

(a). Both features are consequences of the effect of wave packet dispersion.

We also analyze the influence of the number of layers on the wave packet propagation.

Results are shown in Fig. 21(b) for N = 1, 2, 3, 4, considering a fixed value k0 = 0.1 Å−1. One
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Figure 21 – (Color online) (a, b) Average position and (c, d) expectation value of the velocity for
trajectories of panels (a, b), respectively, of a Gaussian wave packet of width d = 100 Å as a
function of time for the case c1 = 1 and c2 = 0. (a, c) Wave packet propagating in a monolayer
phosphorene sheet (N = 1) with different initial central wave vectors: k0 = 0.01 Å−1 (black),
0.05 Å−1 (red) and 0.1 Å−1 (blue). (b, d) Wave packet propagating in multilayer phosphorene
(N = 1, 2, 3, 4) for fixed wave vector k0 = 0.1 Å−1. The wave packet starts at (x0,y0) = (0,0) Å.
The inset shows an enlargement of the physical averages (a, b) for first time steps in order to
emphasize the different oscillation amplitudes and oscillation frequencies, and (d) nearby the
time steps in which the velocities achieve constant values.

observes that increasing the number of layers causes a reduction (increase) of the frequency

(period) of the transient oscillation. This is related to the fact that multilayer BP with different

numbers of BP layers presents slightly different energy band structures and consequently different

effective masses along x and y directions, as discussed in Sec. 6.2. It is known that the greater

the number of layers, the greater (smaller) will be the effective mass for electrons along the x (y)

direction, i.e. along the zigzag (armchair) directions. (SOUSA et al., 2017a) That in turn affects

the mobility of electrons located on the lowest conduction band, leading to a phase difference

in the oscillation of the average position ⟨y(t)⟩ for different number of layers N. By comparing

Figs. 21(a) and 21(b), one verifies that the oscillatory behavior for multilayer BP is qualitatively
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Figure 22 – (Color online) Time evolution of the electronic wave packet for the case [c1,c2]
T =

[1,0]T with |k| = 0.05 Å−1, corresponding the average position shown by the red curve in
Fig. 21(a). Snapshots at (a) t = 20 fs, (b) t = 30 fs, (c) t = 40 fs, and (d) t = 50 fs.

similar to monolayer case, except by this phase difference in the ZBW, as emphasized in the

inset of Fig. 21(b), due to the different energy band curvatures as the number of layers BP.

Since the oscillatory behavior of the propagation velocity as a function of time is

also a manifestation of the ZBW effect, we show in Figs. 21(c) and 21(d) the expectation values

of the velocity vy for average position y of panels (a) and (b), respectively, calculated by taking

the time derivative of the ⟨y(t)⟩ results with respect to time. Note that the average velocities

exhibit clear oscillations that are damped as time evolves, converging to a final constant value

that depends on the initial wave vector k0 and number of considered BP layers. The velocity

wiggles with shorter period and smaller amplitudes for large values of k0 and fixed number N

(see Fig. 21(c)), as well as for large number of layer and fixed k0 (see inset in Fig. 21(d)). The

convergence of the velocities demonstrates that the ZBW is not a permanent but a transient

effect. Notice from the inset in Fig. 21(d) that the converging value of ⟨vy⟩ has slightly larger
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Figure 23 – (Color online) The same as in Fig. 21, but now for the case c1 = 1 and c2 = 1.

module for larger N. This is related to the fact that the lowest energy band along Γ−Y direction

for multilayer BP has approximately the same curvatures for different number of layers, and

consequently the effective masses for electrons along y-direction are just slightly different for

different layers, as can be seen by the following values: my
1 = 0.19474m0, my

2 = 0.18835m0,

my
3 = 0.17088m0, and my

4 = 0.15648m0, being m0 the mass of a free electron, and thus leading

also to a slight difference in the electronic mobility and group velocity in y-direction. (SOUSA

et al., 2017a)

Figure 22 shows the contour plots of the squared modulus of the propagated wave

functions at (a) t = 20 fs, (b) t = 30 fs, (c) t = 40 fs, and (d) t = 50 fs, considering an initial wave

vector k0 = 0.05 Å−1 that corresponds the average position of the electron wave packet motion

displayed by the red curve in Fig. 21(a). It is seen that the time evolution of the electronic wave

packet for this case is along the armchair (y-) direction. Starting with a circularly symmetric

shape, the wave packet evolves and becomes distorted into an elliptic shape. This is due to

the strong anisotropy in multilayer phosphorene, such that the momentum contributions along



92

the (y) armchair and (x) zigzag directions to the total momentum are different, thus giving rise

to elliptic probability distribution, as shown in Fig. 22(a). For a large enough time, the wave

packet splits in two parts at t ≈ 50 f s (Fig. 22(d)) moving along y axis with opposite velocities

so that the electron probability density is almost symmetrical with respect to y at a fixed time

step: |Ψ(x,y, t)|2 ≈ |Ψ(x,−y, t)|2. It should be noticed that the two subpackets are definitely

not completely symmetric, otherwise we would not have a non-null average position in the

y-direction and a total propagation evolving to negative values of y, as shown in Fig. 21(a) and

21(b). The two propagating subpackets with approximately the same probability densities and

widths lead to vanishing oscillations in the average position and expectation values of velocity,

as verified by the red curves in Figs. 21(a) and 21(c) after t ≈ 85 fs, which explains the transient

behavior of the ZBW and the fact that the average velocity converges to values close to zero.

Although not shown here, it is easy and intuitive to see that the splitting into two subpackets for

the case with greater wave vector should occur earlier and, therefore, in this situation the average

velocity has a faster decay rate and a shorter transient oscillation time.

In contrast to the results shown in Fig. 21 for the given initial polarization [1,0]T of

wave packet propagating in multilayer BP, the ZBW for monolayer graphene (MAKSIMOVA

et al., 2008; CHAVES et al., 2009) and bilayer graphene (RUSIN; ZAWADZKI, 2007) occurs

in the direction perpendicular to the initial momentum ky
0, i.e. for initial polarization [1,0]T the

wave packet propagates along x-direction in which exhibits ZBW effect, whereas ⟨y(t)⟩ remains

constant. This is counterintuitive, since the initial momentum along x-direction is null as in

Eq. (6.13b). However, similar to Fig. 22, in graphene the wave function also is found to split in

two subpackets along the y-direction.(MAKSIMOVA et al., 2008) This different direction of

propagation between the multilayer BP and those reported for monolayer and bilayer graphene

in Refs. (MAKSIMOVA et al., 2008; CHAVES et al., 2009; RUSIN; ZAWADZKI, 2007) can be

understood considering the fact that, since the direction of propagation y is the crystallographic

direction in the phosphorene in which electrons have greater (lower) kinetic energy (effective

mass), then electrons have greater mobility along the y-direction, being its preferred direction of

propagation.

6.5.2 c1 = 1 and c2 = 1

We now investigate the case in which the wave function is equally distributed in

the combined sublattices A/C (corresponding to φ1) and B/D (corresponding to φ2), which is



93

     

−400

−200

0

200

400

y
(
Å
)

(a)

     

 

 

 

 

 
(b)

|Ψ|
2

−400−200 0 200 400

x(Å)

−400

−200

0

200

400

y
(
Å
)

(c)

−400−200 0 200 400

x(Å)

 

 

 

 

 

0 Max

(d)

Figure 24 – (Color online) The same as in Fig. 22, but now for the case c1 = 1 and c2 = 1.

equivalent as choosing c1 = 1 and c2 = 1 in Eq. (6.14), resulting in

Ψ(⃗r, t) =
1√
2


Φ1(⃗r, t)+Φ3(⃗r, t)

Φ1(⃗r, t)+Φ2(⃗r, t)


 , (6.27)

where Φ1,2,3 are defined by Eqs. (6.15a)-(6.15c). Note that an initial wave packet in which the

electron probability density occupies equally all subllatices is more realistic experimentally, as

an expected configuration when one creates wave packets by illuminating samples with short

laser pulses (RUSIN; ZAWADZKI, 2014) and also because for an infinite system the initial wave

function should describe electronic bulk states spread over all sites around the center point of the

Gaussian distribution. On the other hand, the simplistic choice [1,0]T of the initial wave packet

discussed in previous Sec. 6.5.1 is widely used in the literature, (MAKSIMOVA et al., 2008;

CHAVES et al., 2009; RUSIN; ZAWADZKI, 2007) since it is amenable to analytical treatment

and gives valuable insight into the relevant timescales of the problem. In addition, for the

phosphorene case, the initial configuration [1,0]T can be seen as the representation of quasi-flat
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edge states in phosphorene nanoribbons with zigzag edges that have non-zero wave function

components just in one of the coupled pairs A/D or B/C. (SOUSA et al., 2016) Replacing the

wave function Eq. (6.27) into Eq. (6.16), we find the following expressions for the average

positions in x and y directions:

⟨x(t)⟩=− ie−a2

π

Z ∞

0

Z π

−π
e−q2+2aqsinβ

(
iχnγn

x h̄4d2q3 sin(2β )sin(2ε2(q,β )t/h̄)sinθk(q,β )�
δ nh̄2d2 +(γn

x cos2 β + γn
y sin2 β )q2h̄2�2 +d2(χn)2h̄4q2 sin2 β

+dq2 cosβ +
2itηn

x q2 cosβ
h̄d

+

�
sin
�

2ε2(q,β )t
h̄

�
− icosθk(q,β )cos

�
2ε2(q,β )t

h̄

��

×
"

2t[δ nh̄2d2 +(γn
x cos2 β + γn

y sin2 β )q2h̄2]γn
x q2 cosβ

h̄3d3ε2(q,β )

#)
dβdq, (6.28a)

⟨y(t)⟩=− ie−a2

π

Z ∞

0

Z π

−π
e−q2+2aqsinβ

(
−adq+dq2 sinβ +

2itηn
y q2 sinβ
h̄d

+ itq2 cosθk(q,β )

−
iqχnh̄2d2 �δ nh̄2d2 +


γn

x cos2 β − γn
y sin2 β

�
q2h̄2�sin(2ε2(q,β )t/h̄)sinθk(q,β )

�
δ nh̄2d2 +(γn

x cos2 β + γn
y sin2 β )q2h̄2�2 +d2(χn)2h̄4q2 sin2 β

×
"

2γn
x cosβ [δ nh̄2d2 +(γn

x cos2 β + γn
y sin2 β )q2h̄2]+ (χn)2h̄2d2 sinβ

h̄3d3ε2(q,β )

#)
dβdq, (6.28b)

with θk, ε1,2 written explicitly as a function of the polar angle β and the dimensionless parameters

q (see Eq. (6.8)).

Similarly to the previous Sec. 6.5.1 for the pseudospin [1,0]T , in the current case

the average value ⟨x(t)⟩ is also unchanged with time, whereas the expectation value of the

y position oscillates. These results are displayed in Figs. 23(a) and 23(b) for monolayer BP

with different initial wave vectors and for multilayer BP with the fixed value k0 = 0.1 Å−1,

respectively. By comparing Figs. 23(a, b) with Figs. 21(a, b), one can notice that the ZBW for

the pseudospin [1,1]T exhibit a smaller (larger) oscillation frequency (period) than for the case

[1,0]T (see insets in Figs. 23(a, b)), with the total average position ⟨y(t)⟩ moving faster along

the positive y direction than for the case [1,0]T that moves along the negative y direction. This

statement is confirmed by the time derivative ⟨vy(t)⟩= d⟨y(t)⟩
dt of the results shown in the panels

23(a) and 23(b), as demonstrated in Figs. 23(c) and 23(d), that converges to clearly non-null

and larger final values as compared to the ones obtained in Figs. 21(c) and 21(d). In general,

the main features of the ZBW remain the same as the previous case: the dependence of the

transient character, as well as the different amplitude, frequency and duration time of the ZBW

for different initial wave vector and number of layers. For the expectation values of the velocities

(Figs. 23(c, d)), note that in contrast to Figs. 21(c, d), in the current case, the larger k0, it leads
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to large oscillation amplitudes of ⟨vy(t)⟩. Moreover, the oscillatory behavior for multilayer BP

(Figs. 23(b, d)) remains qualitatively the same as the one observed in Figs. 21(b, d) as compared

to their monolayer BP results, except for the fact that in the [1,1]T case, the difference of the

converging final values of ⟨vy(t)⟩ are more pronounced for different numbers of layers.

In order to understand the origin of this weak oscillations and also the fast drift along

the y direction for the pseudospin case [1,1]T , we depict in Fig. 24 the spatial time evolution

of the initial wave packet by showing snapshots for t > 0 of the total probability density. Note

that the initial wave packet also splits into two parts propagating along y in opposite directions

as in the [1,0]T case discussed in Sec. 6.5.1 and shown in Fig. 22, but unlike the previous

case, the portions of probability amplitudes and widths of the two subpackets are noticeably

different, such that the electron probability density is not symmetric with respect to y at a

fixed time step: |Ψ(x,y, t)|2 ̸= |Ψ(x,−y, t)|2. This large asymmetry in the probability density

explains the less evident ZBW effect in the average y position in Fig. 23, so that it becomes

clear the reason why ⟨vy(t)⟩ converges to non-zero values, which even increase with k0, since

a greater portion of the wave packet propagates to the positive y direction. Another feature of

Fig. 24 is that the propagating wave packet does not deform as much as in the previous case,

remaining approximately with the same packet width even after the splitting that originates a

small subpacket moving in the opposite y direction.

6.5.3 c1 = 1 and c2 = i

The last investigated pseudospin polarization case is composed by the pseudospin

components c1 = 1 and c2 = i. That means that all four BP sublattices are filled, but unlike the

case [1,1]T discussed in the previous Sec. 6.5.2, it has a phase difference between φ1 and φ2 that

couples the pairs of subllatices A/D and B/C, respectively (see Eqs. (6.2) and (7.9a)). The reason

for the study of this choice of pseudospin polarization is based on the corresponding interest in

graphene case, (MAKSIMOVA et al., 2008; CHAVES et al., 2009) since these two polarizations

represent full-filled sublattice states points into perpendicular directions in monolayer graphene:

[1,1]T is directed along x axis at t = 0, whereas [1, i]T is directed along y axis at t = 0. From

Eq. (6.14) for c1 = 1 and c2 = i, the wave function is given by

Ψ(⃗r, t) =
1√
2


Φ1(⃗r, t)+ iΦ3(⃗r, t)

iΦ1(⃗r, t)+Φ2(⃗r, t)


 . (6.29)

Computing the average values for the position x and y using Eqs. (6.16) and (6.29),
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Figure 25 – (Color online) The same as in Fig. 21, but now for the case c1 = 1 and c2 = i.

one obtains

⟨x(t)⟩=− ie−a2

π

Z ∞

0

Z π

−π
e−q2+2aqsinβ

(
dq2 cosβ +

2itηn
x q2 cosβ
h̄d

− iχnγn
x h̄4d2q3 sin(2β )sin(2ε2(q,β )t/h̄)cosθk(q,β )�

δ nh̄2d2 +(γn
x cos2 β + γn

y sin2 β )q2h̄2�2 +d2(χn)2h̄4q2 sin2 β

+ isinθk(q,β )

 
2tγxq2 cosβ [δ h̄2d2 +(γx cos2 β + γy sin2 β )q2h̄2]

h̄3d3ε2(q,β )

!)
dβdq, (6.30a)

⟨y(t)⟩=− ie−a2

π

Z ∞

0

Z π

−π
e−q2+2aqsinβ

(
−adq+dq2 sinβ +

2itηn
y q2 sinβ
h̄d

+
iqχnh̄2d2 �δ nh̄2d2 +


γn

x cos2 β − γn
y sin2 β

�
q2h̄2�sin(2ε2(q,β )t/h̄)cosθk(q,β )

2
�
δ nh̄2d2 +(γn

x cos2 β + γn
y sin2 β )q2h̄2�2 +2d2(χn)2h̄4q2 sin2 β

− itq2 sinθk(q,β )

 
2γn

x cosβ [δ nh̄2d2 +(γn
x cos2 β + γn

y sin2 β )q2h̄2]+ (χn)2h̄2d2 sinβ
h̄3d3ε2(q,β )

!)
dβdq.

(6.30b)

As in the previous cases, ⟨x(t)⟩ is unchanged with time due to initial configuration
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Figure 26 – (Color online) The same as in Fig. 22, but now for the case c1 = 1 and c2 = i.

kx
0 = 0 in Eq. (6.13b). The results for ⟨y(t)⟩ and ⟨vy(t)⟩ for different initial wave vectors and

number of BP layers are shown in Figs. 25(a, b) and 25(c, d), respectively. As seen, these results

also exhibit very pronounced ZBW and are more similar to the results shown in Fiqs. 21(a) and

21(b) for the case [1,0]T concerning the large oscillation amplitudes, high oscillation frequency

and small oscillation period, as compared to the ones shown in Fiqs. 23(a) and 23(b) for the

[1,1]T case. The reason for the pronounced ZBW effect in the cases [1,0]T and [1, i]T can be

linked to the unbalance and/or phase difference of the different pseudospin components. On the

other hand, ⟨y(t)⟩ is shifted with time to positive y values, as in case [1,1]T shown in Fiqs. 23(a)

and 23(b), that suggests that the overall wave packet is propagating along the positive y direction.

It is confirmed by the contour plots shown in Fig. 26 for the time evolution of the squared

modulus of the wave function for different time steps. Similar to the previous cases, as the

ZBW disappears, two separate parts of the initial wave packet are seen to move along the y

axis with opposite velocities. Figure 26(d) shows that the two subpackets have different widths
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and thus the total wave packet symmetry in y direction for a fixed time is not preserved, i.e.

|Ψ(x,y, t)|2 ̸= |Ψ(x,−y, t)|2, similar to the case [1,1]T . The dominant contribution to the total

wave function is responsible for the positive shift in the average position ⟨y(t)⟩ and also for the

the non-zero values for the converging average velocities at large time steps.

In order to check the agreement between the results obtained by using the two

frameworks adopted here, namely, Green’s function formalism (Sec. 6.3) and the split-operator

technique (Sec. 6.4), we plot in Fig. 27 the comparison between them for two pseudospin

configurations: (a, b) for the case c1 = 1 and c2 = 1, and (c, d) the case c1 = 1 and c2 = i. We

have omitted such comparison for the case c1 = 1 and c2 = 0, since for the time scale, initial

momentum values, and wave packet width investigated in the current work, no difference at all

was observed. It is really clear that both analytical (dashed curves) and numerical (solid curves)

methods give similar qualitative results and illustrate similar ZBW. They have a good quantitative

agreement, exhibiting a small discrepancy, for the worst case of ≈ 11% at maximum, as shown
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Figure 27 – (Color online) Comparison between the results of the average position of a Gaussian
wave packet of width d = 100 Å as a function of time obtained by (solid curves) the split-operator
technique derived in Sec. 6.4 and (dashed curves) analytical calculations derived in Sec. 6.3,
for (a, b) the case c1 = 1 and c2 = 1, and (c, d) the case c1 = 1 and c2 = i. (a, c) Wave packet
propagating in a monolayer phosphorene sheet (N = 1) with different wave vectors: k0 = 0.01
Å−1 (black), k0 = 0.05 Å−1 (red) and k0 = 0.1 Å−1 (blue). (b, d) Wave packet propagating in
multilayer phosphorene (N = 1, 2, 3, 4) for fixed wave vector k0 = 0.1 Å−1.
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in the insets, and that occurs, in general, for much larger values of wave vector, and only after

long time steps (see panels (a) and (b)), as well as fewer numbers of layers (see panels (c) and

(d)). The reason for such discrepancy for these two pseudopsin configuration must be related to

inaccuracy in numerical integration to obtain the expectation values of the analytically derived

position operators, since expressions (6.28a), (6.28b), (6.30a) and (6.30b) are more complicated

as compared to the ones (6.26a) and (6.26b) for the case [1,0]T , in which both methods agree

100%, giving rise to these small deviations.

6.6 Velocity operator

Let us now obtain the velocities along the x and y directions and verify whether vx and

vy are constants of motion or not, which also indicates the directions where the ZBW manifests.

To understand how this affects the velocity along certain directions, we use the Hamiltonian

Eq. (7.1), or equivalently Eq. (6.3), for electrons in multilayer phosphorene, and calculate the

commutators [H ,vx] and [H ,vy]. According to the Heisenberg picture, the velocity operator is

given by

v⃗ =
∂H

∂ p⃗
=

1
h̄

∂H

∂ k⃗
=

1
ih̄
[⃗r,H ] , (6.31)

with v⃗ = (vx,vy) and r⃗ = (x,y), yielding

vx =
2kx

h̄
(ηn

x 1+ γn
x σx) , (6.32a)

vy =
2ky

h̄

�
ηn

y 1+ γn
y σx −

χn

ky
σz

�
. (6.32b)

Let us now verify whether vx and vy are constants of motion, and if there is any situation where

vx and vy are not affected by the zitterbewegung. Evaluating [H ,vi] by making use of Eqs. (6.3)

and (6.32), one obtains

[H ,vx] =
4iε2

h̄
kxγn

x sinθk


−1 0

0 1


, (6.33a)

[H ,vy] =
4iε2

h̄

�
kyγn

y sinθk +χn cosθk
�

−1 0

0 1


. (6.33b)

Equation (6.33a) suggests that [H ,vx] = 0 when:

(i) kx = |k|cosβ = 0 [that implies either |k|= 0 → kx = ky = 0, i.e zero initial momentum, or

cosβ = 0 (sinβ =±1)→ β =±(2l +1)π/2, with l ∈ N],
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Figure 28 – (Color online) (a) Average position and (b, c) expectation value of the velocity
along y direction as a function of time for the case [c1,c2]

T = [1,0]T (black), [c1,c2]
T = [1,1]T

(red), and [c1,c2]
T = [1, i]T (blue). (c) A magnification of the results in (b) for large time steps

showing the oscillatory behavior of vy. (right panels) Contour plots of the squared modulus of
the wave function at (I) t = 390 fs and (II) t = 391 fs, and a zoom emphasized by the dahsed
curves showing the isosurfaces at the two time steps.

(ii) sinθk = 0 → θk =±lπ , with l ∈ N and consequently, by the definition of θk in Eq. (6.4c),

one has ky = |k|sinβ = 0 [that implies either |k| = 0 → kx = ky = 0, i.e zero initial

momentum, or sinβ = 0 (cosβ =±1)→ β =±lπ , with l ∈ N].

Thus, vx will be a constant of motion if (kx,ky) = (0,±|k|) or (kx,ky) = (±|k|,0), corresponding

to a constant motion along the y and x directions, respectively. On the other hand, [H ,vy] should

be null if and only if ky and cosθk are both null, i.e. θk =±(2l +1)π/2, with l ∈ N. However,

as mentioned in Sec. 6.2 and shown in Figs. 20(c)-20(e), the phase angle of the pseudospin

varies in the range −θ max
k ≤ θk ≤ θ max

k , where θ max
k corresponds to the value of θk for kx = 0

and ky = ±1, being equivalent to β = π/2 (see Figs. 20(c)-20(e)). Therefore, one concludes

that [H ,vy] ̸= 0, suggesting that: vy is never a constant of motion, and the trembling motion

along the y direction at small times for the wave packet propagation in phosphorene systems is

unavoidable, even for the case where one assumes kx = ky = 0, which yields

[H ,vy] |kx=ky=0 =
4iδ nχn

h̄


−1 0

0 1


, (6.34)

and, therefore, the wave packet will also move in the y direction. Similar behavior has been ob-

served in previous works for graphene, where it was demonstrated both numerically(THALLER,

2004; CHAVES et al., 2009) and analytically (MAKSIMOVA et al., 2008) within the Dirac

and tight-binding models that even when kx = ky = 0 the wave packet motion is still observed
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due to zitterbewegung effects. Considering the three different pseudospin configurations used

here, one observes in Fig. 28 that this also holds for the electron motion in phosphorene for

(black curve) [c1,c2]
T = [1,0]T and (blue curve) [c1,c2]

T = [1, i]T , exhibiting oscillations in the

[Fig. 28(a)] average position and [Fig. 28(b, c)] velocity along y direction, similarly to the ones

observed in Figs. 21 and 25 for small momentum values, but now with a much higher oscillation

frequency and shorter period, that is clearly a consequence of the reduction of the momentum

value. To understand the nature of such oscillations that counter intuitively appear even for

the case with null initial momentum, we illustrate on the right panels of Fig. 28 the electron

probability density (I) at t = 390 fs and (II) at t = 391 fs nearby a valley and a peak of the average

velocity curve, corresponding to points with negative and positive velocities, respectively, as

labeled in Fig. 28(c). It can be observed that the dispersion of the wave packet is just along the y

direction, keeping its radius along x direction practically unchanged from the initial circularly

symmetric shape, and thus, for longer times, it becomes distorted into an elliptical shape. One

can see by comparing panels (I) and (II) that for positive and negative points of the average

velocity curve, the wave packet oscillates along y, such that the symmetry of the probability

density concerning this axis changes over time, i.e. |Ψ(x,y, t)|2 ̸= |Ψ(x,−y, t)|2. In the right

panel, we show the isosurfaces at these two time steps [orange and green curves represent the

states (I) and (II)], in order to emphasize that in fact the wave packet shakes around y = 0 while

distorting along y direction. On the other hand, for the case [c1,c2]
T = [1,1]T (red curves in

Fig. 28) with null initial momentum |k|= 0, both the position and velocity averages along both

x and y directions remain unchanged over time, although the wave packet also distorts for this

case along the y direction, exhibiting an elliptical shape for large time, but it deforms keeping

the symmetry |Ψ(x,y, t)|2 = |Ψ(x,−y, t)|2.

6.7 Conclusions of this chapter

In summary, we have studied the dynamics of free electrons described by an initial

Gaussian wave packet in multilayer phosphorene samples by using the Green’s function rep-

resentation (HUANG, 1952; MAKSIMOVA et al., 2008) and the continuum model (SOUSA

et al., 2016) for low-energy electrons in N-layer BP. We performed analytical calculations to

investigate the time evolution of some physical observables and, by considering an arbitrary

pseudospin amplitude for the BP sublattices, we obtained explicit analytical expressions for the

two components of wave function and the expectation values of the x and y position operators. A
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numerical method based on the split-operator technique for N-layer BP system was also used,

and its results were compared to the analytical ones. Both analytical and numerical methods il-

lustrated similar effects, such as the packet splitting and ZBW oscillation, with good quantitative

agreement. The methods exhibited a quantitative discrepancy for the worst case of ≈ 11% at

maximum and it occurs, in general, for large values of wave vector and after long time steps, as

well as fewer numbers of layers. The errors are primarily due to: (i) inaccuracy in numerical

integration to obtain the expectation values of the analytically derived position operators, and (ii)

small numerical errors accumulated over the temporal evolution in split-operator technique.

The results obtained for monolayer, bilayer, trilayer and tetralayer phosphorene

clearly demonstrate that the time evolution of wave function is accompanied by ZBW oscillations,

which strongly depend on the initial pseudospin polarization, and decay of the wave packet

amplitude. The trembling motion and transient character of the ZBW were verified in the

average position and average group velocity of the center mass of the propagated wave packet.

The amplitude, frequency and duration time of the transient ZBW are shown to decay faster

with increasing wave vector, due to wave packet dispersion. It was also found that for the

three investigated configurations of initial pseudospin, the oscillation amplitude of average

position is more pronounced for the case [c1,c2]
T = [1,0]T , being related to the unbalance of

the probability amplitude on the BP sublattices. Moreover, we showed that electrons moving in

N-layer phosphorene exhibit qualitatively similar results as the ones observed in the monolayer

BP case, except for the oscillation phase difference and final group velocity achieved after the

transient behavior. This is caused by the different curvature of the energy bands for the different

N-layer phosphorene, and consequently different effective masses and Hamiltonian parameters

in the continuum model. In addition, the anisotropic character of the N-layer BP energy bands

and their effective masses along the x (zigzag) and y (armchair) directions imply an elliptical

shape for the propagated wave packet, since the group velocity is also consequently anisotropic,

i.e. it is greater in one direction than the other leading to a non-uniform propagation along the

different directions.

In order to understand in more details the nature of the transient character of the

ZBW effect in multilayer BP systems, we investigated numerically also the spatial evolution of

the initial wave packet by showing snapshots for t > 0 of the probability density of the wave

function. We demonstrated the effect of the packet splitting is associated to the ZBW. This

splitting of the wave packets in two parts appears due to the presence of the electron states
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with a Gaussian distribution of negative and positive momenta, which propagate with different

group velocity in opposite directions. Furthermore, based on the Heisenberg picture and by the

calculation of the velocity operators, we demonstrated that the trembling motion along the y

direction at small times for the wave packet propagation in phosphorene systems is unavoidable

even for null initial momentum.
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7 ELECTRONIC AND TRANSPORT PROPERTIES OF ANISOTROPIC SEMI-

CONDUCTOR QUANTUM WIRES

Within the effective-mass approximation, we theoretically investigated the electronic

and transport properties of 2D semiconductor quantum wires (QWs) with anisotropic effective

masses and different orientations with respect to the anisotropic axis. The energy levels in

the absence and presence of an external magnetic field are analytically calculated, showing:

(i) a strong dependence on the spacing of energy levels related to the alignment QW angle

and the anisotropy axis; and (ii) for non-null magnetic field, the quantum Hall edge states are

significantly affected by the edge orientation. Moreover, by means of the split-operator technique,

we analyzed the time evolution of wavepackets in straight and V-shaped anisotropic QWs and

compared the transmission probabilities with those of isotropic systems. In the anisotropic case

we found damped oscillations in the average values of velocity in both x and y directions for

a symmetric Gaussian wavepacket propagating along a straight wide QW, with the oscillation

being more evident as the non-collinearity between the group velocity and momentum vectors

increases.

7.1 Motivation

In the last two decades, the production of graphene has led to a significant level of

interest on the physics of layered materials (NOVOSELOV et al., 2004; NOVOSELOV et al.,

2005a; NETO et al., 2009; KATSNELSON; KATSNELSON, 2012; AVOURIS et al., 2017;

NOVOSELOV et al., 2005b; WANG et al., 2012; XU et al., 2013; BIANCO et al., 2013;

VOGT et al., 2012; CHHOWALLA et al., 2013). This interest is not only due to its possible

future technological applications, but also because it provides the possibility to probe interesting

phenomena predicted by quantum field theories not found in conventional semiconductors and

metals. Along with the investigation of basic properties of these materials, there has also been a

significant effort to develop devices that can benefit from their two-dimensional (2D) character.

In that respect, the introduction of additional confinement by creating 1D (quantum wires (QWs))

and 0D (quantum dots) structures becomes relevant (SOUSA et al., 2016; DEGANI; MAIALLE,

2010; PETROVIĆ et al., 2013; ZARENIA et al., 2011a; WU et al., 2010; GRUJIĆ et al.,

2011; HEWAGEEGANA; APALKOV, 2008; DOWNING et al., 2011; SCHELTER et al., 2012;

ZHANG et al., 2013), since these are known to modify the electronic spectra and the transport

properties of the structure in comparison with the pristine sample.



105

Most recently, there is a growing interest in single layers of black phosphorus (BP),

also known as phosphorene (JR; KATSNELSON, 2015; SOUSA et al., 2017a; LI et al., 2014;

LIU et al., 2014; XIA et al., 2014; KOENIG et al., 2014; CASTELLANOS-GOMEZ et al.,

2014) which is a semiconductor with a puckered structure, due to sp3 hybridization and displays

a tunable bandgap (LI et al., 2014; LIU et al., 2014). In addition, phosphorene presents a

highly anisotropic band structure and thus an anisotropic effective mass (AVOURIS et al., 2017;

SOUSA et al., 2016; JR; KATSNELSON, 2015; SOUSA et al., 2017a; LI et al., 2014; LIU

et al., 2014; XIA et al., 2014; KOENIG et al., 2014; CASTELLANOS-GOMEZ et al., 2014).

Another material that has attracted attention due to its anisotropic properties is single layer

Arsenic (arsenene) (KAMAL; EZAWA, 2015; PUMERA; SOFER, 2017; TSAI et al., 2016;

ZHANG et al., 2015; WANG; DING, 2015; ZERAATI et al., 2016), a semiconductor also with a

puckered structure. Due to the highly anisotropic band structures of such crystals, their electrical

conductivity, thermal conductivity and optical responses are found to be strikingly dependent

on the crystallographic directions (XIA et al., 2014; KOENIG et al., 2014; DOLUI; QUEK,

2015; DAS et al., 2014; KIM et al., 2015; YUAN et al., 2016; LOW et al., 2014b; LOW et al.,

2014c; LOW et al., 2014a; PENG et al., 2017; KHALIJI et al., 2017). In particular, one possible

consequence of the anisotropy may be seen in the electronic confinement caused by the presence

of constraints such as external gates or crystal terminations. In that case, a dependence of the

confined states on the direction of the alignment of the constraint may arise.

In this chapter we investigate the electronic and transport properties of anisotropic

materials in which a 1D confining potential has been imposed. The work proceeds as follows:

Initially we investigate the case of 1D confinement in an anisotropic system (i.e. a QW) in

which the QW orientation may not match the anisotropy axis of the sample. In order to do

that, we employ an effective mass model in which the anisotropy is encoded in the direction-

dependent effective mass. Next, we show results for the spectra of confined states for different

orientation angles of QW edges in the presence of an external magnetic field. By using the

split-operator technique (DEGANI; MAIALLE, 2010; PETROVIĆ et al., 2013; CHAVES et al.,

2015a; RAKHIMOV et al., 2011; PEREIRA et al., 2010; SOUSA et al., 2015; CHAVES et al.,

2009; SOUSA et al., 2013; CHAVES et al., 2010; COSTA et al., 2015; COSTA et al., 2012;

CAVALCANTE et al., 2016; CHAVES et al., 2015; COSTA et al., 2017; ABDULLAH et al.,

2019; CUNHA et al., 2019; JR et al., 2018), we then present results for the time-evolution of a

Gaussian wavepacket propagating in an anisotropic QW that presents a “bend”, i.e. the orientation
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of the QW with regards to the anisotropy axes changes along the longitudinal direction. We

numerically investigate the electronic scattering of the propagated wavepacket at the bend caused

by the mismatch between the electronic subbands at each QW region, which is an evidence of

their dependence on the orientation angle. In addition, we calculate the average velocity values

for the x and y directions of an initially symmetrical Gaussian wavepacket propagating along a

large QW in order to analyze the non-specular reflections at the QW edges and the combination

of effects due to the anisotropy and system geometry.

Initially we present the analytical model for anisotropic classic systems taking as

starting point an effective mass model. We show the spectrum of confined states for QWs

anisotropic systems with different orientation angles with and without an external magnetic

field. The influence of an anisotropic QW formed by leads with different alignment angles in the

scattering initial Gaussian wavepacket is also studied.

7.2 Anisotropic classic systems

Let us consider an anisotropic 2D system in which the anisotropy is introduced as

direction-dependent effective masses. Among an extensive list of anisotropic materials, such as

BP (JR; KATSNELSON, 2015; SOUSA et al., 2017a; LI et al., 2014; LIU et al., 2014; XIA et

al., 2014; KOENIG et al., 2014; CASTELLANOS-GOMEZ et al., 2014), arsenene (KAMAL;

EZAWA, 2015; PUMERA; SOFER, 2017; TSAI et al., 2016; ZHANG et al., 2015; WANG;

DING, 2015; ZERAATI et al., 2016), ReS2 (ZHONG et al., 2015), TiS3 (ZHONG et al., 2015),

and others, the first two are the most prominent ones, and for that reason why, we henceforth

assume parameters suitable for these materials. Similar qualitative results discussed along this

work are expected for any of the above mentioned anisotropic materials. Effective mass models

have been shown to give a reasonable description of the low-energy spectrum of phosphorene

and arsenene. (CHAVES et al., 2015b; SOUSA et al., 2017b) In general, in the theoretical

analysis of such system, it is convenient to chose coordinate axes in such a way that they match

the anisotropy directions (henceforth known as the x and y directions, with mx and my being

Table 3 – Electron effective masses in the x and y directions for phosphorene and arsenene in
units of free electron mass (m0).(SOUSA et al., 2017a)

phosphorene arsenene
mx/m0 1.01 0.23
my/m0 0.19 1.22
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the effective masses along each direction, respectively). Table I presents the values of electron

effective masses for both phosphorene and arsenene. However, as shown below, it is necessary

in the present case to consider a more general configuration. Thus, in general the Hamiltonian is

given by

H =
p2

x
2mx

+
p2

y

2my
. (7.1)

A curve of constant energy in momentum space is then an ellipse. A more complicated but also

more interesting case is when the coordinate axes are not parallel to the anisotropy axes. We can

obtain that by rotating the coordinate system in momentum space, such that the semi-major axis

of the elliptical constant energy curve is rotated by an angle α around the z axis. That give us:

px = p′x cosα − p′y sinα and py = p′x sinα + p′y cosα , where the primed terms correspond to the

new, rotated coordinate system. Thus, we can now obtain the Hamiltonian as

H =
p′2x
2µ1

+
p′2y
2µ2

+
p′x p′y
µ3

, (7.2)

with

1
µ1

=
cos2 α

mx
+

sin2 α
my

, (7.3a)

1
µ2

=
sin2 α

mx
+

cos2 α
my

, (7.3b)

1
µ3

=

�
1

my
− 1

mx

�
sinα cosα. (7.3c)

From Eq. (7.2) we find

p′y =±
s

2µ2E −
�

µ2

µ1
− µ2

2
µ2

3

�
p′2x − µ2

µ3
p′x. (7.4)

It can be immediately seen that for mx = my (i.e. 1/µ3 = 0) we obtain p′y =
p

2µE − p′2
x , with

µ1 = µ2 = µ , as expected for the isotropic case. Let us now obtain the components of the velocity

vector. An important feature of anisotropic systems is the fact that the velocity is usually not

collinear with the momentum vector, as shown below by computing v′i = ∂E/∂ p′i for i = x and y.

Thus, the velocity components are given by

v′x =
p′x
µ1

+
p′y
µ3

, v′y =
p′y
µ2

+
p′x
µ3

, (7.5)

where it is seen that v′x (v′y) can be non-zero even if p′x (p′y) vanishes.
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Figure 29 –Schematic representation of the rotated QW defined electrostatically by the 1D square-
well potential V (y′) =V0 [Θ(−y′)+Θ(y′ −L)] with width L and V0 > 0. α is the rotation angle
with respect to the crystallographic directions (x and y), defining the new primed coordinates (x′

and y′).

7.3 Anisotropic quantum wires

7.3.1 In the absence of magnetic field

Let us consider the case of a QW with infinite potential walls (V0 → ∞ in V (y′)), for

interfaces aligned along an arbitrary direction, i.e. non-zero 1/µ3 (see Fig. 29). Without loss of

generality, we will assume that the walls are parallel to the x′ direction, the assumed translational

symmetry direction of the system, allowing us to write the wavefunction as Ψ = φ(y′)eik′xx′ .

Using the Hamiltonian given by Eq. (7.2) and the substitutions p⃗′ = h̄k⃗′ and k⃗′ → −i∇′, the

resulting time-independent Schrödinger equation for the rotated QW becomes

− h̄2

2µ2

d2φ
dy′2

− i
h̄2k′x
µ3

dφ
dy′

+
h̄2k′2x
2µ1

φ = Eφ . (7.6)

We obtain a solution by assuming linear combinations of incident and reflected states

as

Ψ(x′,y′) =
�
Aexp(ik′+y y′)+Bexp(ik′−y y′)

�
eik′xx′ , (7.7)
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with

k′±y =±θ1 −θ2, (7.8a)

θ1 =

s
2µ2E

h̄2 −
�

µ2

µ1
− µ2

2
µ2

3

�
k′2x , (7.8b)

θ2 =
µ2

µ3
k′x, (7.8c)

where the plus (minus) sign refers to incident (reflected) waves. Now, one has to introduce the

boundary conditions, i.e. the vanishing of φ at the interfaces, for y′ = 0 and y′ = L in Eq. (7.7).

That leads to the conditions B =−A and sin(θ1L) = 0, resulting in the following quantization

condition θ1 = nπ/L with n ∈ Z . Therefore, the wavefunction and the energy levels are found

as

Ψ(x′,y′) = Asin
�nπ

L
y′
�

exp
�

i
�

x′ − µ2

µ3
y′
�

k′x

�
, (7.9a)

E =
h̄2n2π2

2µ2L2 +
ρ h̄2k′2x

2µ1
, (7.9b)

respectively, where ρ = 1− µ1µ2
µ2

3
. It is seen that both the wavefunction, Eq. (7.9a), and the energy

spectrum, Eq. (7.9b), show a striking dependence on the QW orientation α in relation to the

anisotropy axes.

Figure 30 depicts the dependence of electronic energy levels of phosphorene and

arsenene QWs with respect to the QW width L, by using Eq. (7.9b) with k′x = 0 and the effective

masses of Table I. In panel (a) the energy levels for three different QW angles are shown for

monolayer BP material, and in panel (b) we compare the electronic confined states of (solid

curves) phosphorene and (dashed curves) arsenene with the fixed angle α = π/4. It is seen

that the energy levels decrease quadratically with increasing QW width, something already

expected when we make k′x = 0 in Eq. (7.9b), scaling as ≈ 1/L2 in a similar way as observed

for confined states in 1D squared quantum well and widely presented in quantum mechanic text

books. A consequence of the change of QW alignment, as shown in Fig. 30(a), is a shift of

the energy levels, together with a change of level spacing. By comparing the cases of a QW

made of arsenene and phosphorene for a given value of rotation angle, shown in Fig. 30(b) it is

seen that the behavior of the electronic levels of the two samples is similar. A difference that

is evident in the dispersion relation in Figs. 31(a) and 31(b), for QW with width L = 1 nm for

BP and As, respectively, is the fact that the confined states in BP QWs present higher energy

values than those of arsenene. This is caused by the different effective masses of the materials
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(a) (b)

Figure 30 – Energy levels as function of QW width with k′x = 0 in Eq. (7.9b) (a) for different
rotation angle α with respect to the anisotropy axes and taking the effective masses of monolayer
BP, and (b) for a fixed angle α = π/4 and assuming (solid curves) phosphorene and (dashed
curves) arsenene parameters.

(see Table I). Moreover, Fig. 31 shows that, as α increases the energy levels are shifted to lower

(upper) values for phosphorene (arsenene) and the spacing between them decreases (increases)

too, which in turn increases (decreases) in the number of accessible electronic states. This result

is emphasized in Fig. 32, which shows the energy levels as function of the alignment angle

α for (blue solid curves) phosphorene and (dashed red curves) arsenene QW, maintaining the

QW width L = 1 nm and k′x = 0 in Eq. (7.9b). Note that these behaviors of the confined QW

energy levels with respect to the rotation angle strongly resemble to those for 1D quantum well

in Schrödinger equation with isotropic masses by varying the QW width instead of the alignment

angle, i.e. the change of alignment QW angle with a fixed width L for the anisotropic case works

similarly as the isotropic case by varying the QW width. Phosphorene and arsenene energy levels

exhibit opposite behaviors due to highest effective mass being along opposite directions in these

materials (see Table 3). These results suggest that a connection of QWs with different rotation

angles acts similarly to constrictions in quantum point contact systems, due to the mismatch of

the energy levels in the different sections of the QW junction. Such kind of QW junction system

shall be explored latter in Sec. 7.4.
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Figure 31 – Dispersion relation of QW with width L = 1 nm for (a) phosphorene and (b) arsenene
(As), and taking different rotation angle α with respect to the anisotropy axes.

As

BP

Figure 32 – Energy levels as a function of the rotation angle α with respect to the anisotropy
axes (see Fig. 29) for (blue lines curves) phosphorene and (red dashed curves) arsenene QWs. It
was taken L = 1 nm and k′x = 0.
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Figure 33 – Dispersion relation of phosphorene QW for different alignment angles α with respect
to the anisotropy axes and fixed QW width L = 100 nm and magnetic field amplitude B = 5 T.
Black solid, red dashed, and blue short-dashed curves correspond to the spectrum for rotation
angles α = 0, α = π/4, and α = π/2, respectively.

7.3.2 In the presence of magnetic field

Let us now study the effect of an external magnetic field perpendicular to the plane

containing the QW, by considering the substitution p⃗′ → p⃗′+ eA⃗ in Eq. (7.6). A convenient

choice of gauge is A⃗ =
�
−By′,B µ2

µ3
y′,0

�
. In this case, one finds ∇⃗ · A⃗ = (µ2/µ3)B. Since we

assume an uniform magnetic field, in this gauge the vector potential corresponds to an uniform

rotation of the vector potential obtained from the Landau gauge by an angle of arctan(µ2/µ3). It

is seen that for the isotropic case (i.e. 1/µ3 = 0), as well as for α = 0 and α = π/2 one recovers

the usual vector potential of the Landau gauge. Then, the Schrödinger equation for rotated QW

in the presence of a perpendicular magnetic field can be written as

−h̄2

2µ2

d2Ψ
dy′2

−i
h̄2k′x
µ3

dΨ
dy′

+
ρ

2µ1


eBy′+h̄k′x

�2+(1−ρ)
h̄2k′2x
2µ1

=EΨ. (7.10)

Performing the coordinate transformation y∗ = y′+ h̄k′x
eB , defining the cyclotron frequency for the

rotated anisotropic system as w2
c = ρ

�
eB
µ1

�2
and the new energies as E ′ = E − (1−ρ) h̄2k′2x

2µ1
, one

can rewrite Eq. (7.10) as

−h̄2

2µ2

d2Ψ
dy∗2 − i

h̄2k′x
µ3

dΨ
dy∗

+
µ1w2

cy∗2

2
Ψ = E ′Ψ. (7.11)
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By assuming the following ansatz Ψ(x′,y∗) = exp(−iµ2k′xy∗/µ3)φ(x′,y∗) in order

to eliminate the first derivative in Eq. (7.11), it becomes

−h̄2

2m∗
d2φ
dy∗2 +

m∗

2
w2

cy∗2φ =

r
µ2

µ1
Eφ , (7.12)

where m∗ =
√µ1µ2. Solving Eq. (7.12) numerically we obtain the energy levels for a QW in

the presence of external magnetic field and different system parameters. Figure 33 shows the

dispersion relation for different alignment angles (black solid curves) α = 0, (red dashed curves)

α = π/4, and (blue short-dashed curves) α = π/2, and fixed QW width L = 100 nm and external

magnetic field B = 5 T. It is seen that similarly to an isotropic semiconductor structure with

two boundaries, there is a momentum region around k′x = 0 where the energy levels are flat

(i.e. dE/dkx′ = 0). These states correspond to quantum Hall states, being more dispersive the

higher the energy value, owing to the fact that the lower energy states are more strongly confined

by the magnetic field. The presence of the edges gives rise to propagating states, resulting in

the quantum Hall edge states. These states are related to the dispersive region of the energy

spectrum in Fig. 33, i.e. for momentum values away from the plateaus. (HOUTEN et al., 1989;

MONTAMBAUX, 2011; MACDONALD, 1990; AOKI et al., 2005; BÜTTIKER, 1988) In

addition to the mentioned features, for the anisotropic QW case: (i) the quantum Hall edge

states are significantly affected by the alignment of the QW, and (ii) as α increases, the energy

states are found to be less dispersive, that is caused by the fact that the wavefunctions become

more localized, as it will be discussed next in Fig. 34. Consequently, the group velocities of the

quantum Hall edge states show a striking dependence on the edge alignment.

In order to understand the effects of the rotation angle changes and the magnetic

field on the electronic confined states, we show in Fig. 34 the probability density of the ground

state for different rotation angles with and without a magnetic field, taking the same system

parameters as in Fig. 33. Since Eq. (7.11) is a quantum harmonic oscillator type equation, the

ground state wavefunction of a rotated anisotropic QW in the presence of a magnetic field is

given by

Ψ(x′,y∗)=
�

m∗ωc

π h̄

�1/4

exp
�
−m∗ωcy∗2

2h̄
−i

µ2

µ3
k′xy∗

�
. (7.13)

Similar to the case for zero magnetic field (see Eq. (7.9a)), the wavefunction not only contains

plane wave term but depends on the QW alignment in relation to anisotropy axes, which is

contained into y∗ term. One can note that: (i) for a fixed rotation angle, the total wavefunction

is more localized for B ̸= 0 than B = 0, as already expected, (ii) for B ̸= 0, as α increases |Ψ|2
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Figure 34 – Squared total wavefunction for anisotropic rotated QWs in the presence of an external
magnetic field, B = 5 T, with a fixed QW width L = 100 nm and wave vector k′x = 0. Black
dashed-dot, red dashed, and blue short-dashed curves correspond to the case for rotation angles
α = 0, α = π/4, and α = π/2, respectively. For comparison, |Ψ|2 for B = 0 is shown by green
solid curve.

becomes more localized, and (iii) for B = 0, the QW rotations do not affect the wavefunction

profile, as shown by the green solid curve in Fig. 34 for α = 0 and α = π/3.

A complementary way to see the magnetic field dependence of the confined states in

anisotropic QWs is shown in Fig. 35. The spectra for null and non-null wave vectors are present

in panels (a) and (b), respectively, for three different rotation angles. Note that, as the magnetic

field increases, the magnetic length becomes smaller than the system size, so that confinement

effects are strongly reduced, and the magnetic levels in the phosphorene QW converge to the

Landau levels of an infinite phosphorene sheet, given by: E = h̄ω (n+1/2), with n = 0, 1, 2,

. . ., and ω = eB/mg = ωc
p

µ1/µ2 being the cyclotron frequency calculated with the geometric

mean of the masses mg =
√mxmy. (SOUSA et al., 2016; JR; KATSNELSON, 2015) Moreover,

one can realize that the energy levels spacing is strongly affected by the magnitude of the applied

magnetic field, and with increasing magnetic field the confinement effects due to QW rotation

discussed in Sec. 7.3.1 are less evident, such that regardless the wave vector amplitude (see, e.g.

panels 35(a) and 35(b)) and QW rotation angle the energy levels converge to the Landau levels
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Figure 35 – Energy levels of a phosphorene QW with width L = 100 nm as function of the
magnetic field for wave vector values (a) k′x = 0, and (b) k′x = 0.2 nm−1 for different rotation
angles α with respect to the anisotropy axes.

of an infinite system.

7.4 Wave-packet propagation and scattering in anisotropic quantum wires

As the previous results have shown, the electronic spectrum of anisotropic QWs

is strongly dependent on the relative orientation of the QW in relation to the anisotropic axes.

Therefore, it can be expected that a change of orientation angle (α) along the length of the

QW may give rise to an energy mismatch, as illustrated in Fig. 36(a), which can in turn lead

to electron scattering. In order to investigate that, let us now calculate the transport properties

of a QW in which an abrupt change of α is introduced, forming a elbow-like feature in an

otherwise straight QW. For this purpose, let us now consider electrons in the (x,y) plane moving

from left to right in a region with a V-shaped QW formed by a straight section with α = 0

and a section with α ̸= 0 as illustrated in Fig. 36(b). The electrons are confined by a step like

potential, i.e. V (x,y) = 0 inside the QW and V (x,y) =V0 otherwise. Moreover, we assume that

the electrons are always in the conduction band and that conduction-to-valence band transitions

are negligible, which is a reasonable approximation when dealing with low-temperature systems

and also once that the conduction-to-valence energy distance, i.e. the energy gap, is large for
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Figure 36 – Illustration of (a) the energy bands for each QW section of (b) the V-shaped
anisotropic QW due to an abrupt change of orientation angle α along the QW length. For x < xi
(≥ xi), one has α = 0 (α ̸= 0). The two QW sections are made up of a phosphorene QW with
width L. The energy bands for each QW section exhibit different energy levels spacing and
minimum, and consequently leading to an energy mismatch in the junction. Ei and xi indicate
the initial wavepacket energy and the position of the QW corner. Lx (Ly) is system length along
the x (y) direction.

phosphorene systems (SOUSA et al., 2016; JR; KATSNELSON, 2015; SOUSA et al., 2017a).

It was considered QWs with width L = 3 nm and L = 10 nm, abrupt borders, and made out of

phosphorene. For simplicity sake, throughout this section the effective masses along the x and y

directions were exchanged as the ones referred in Table 3.

The injected electrons are described by a combination of a Gaussian function with a

plane wave along the x direction and the ground state wavefunction of the QW in the y direction

φ0(y). Then, at t = 0 the initial wavepacket is defined by

Ψ0(x,y) = exp

"
iki

xx− (x− x0)
2

2d2

#
φ0(y), (7.14)

where ki
x =

q
2mxEi/h̄2 is the wave vector corresponding to the packet kinetic energy Ei (see

dotted line in Fig. 36(a)), d is the initial wavepacket width in the x direction that is chosen as the

same QW width L, and x0 is the initial postion in the x direction of the wave packet maximum,

set up far from the corner of the bent QW, such as x0 = −32.5 nm and x0 = −8.6 nm for the

QW width cases L = 10 nm and L = 3 nm, respectively. It is important to stress out that the
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ground state wavefunction φ0(y) is given by Eq. (7.9a) which is closely related to the initial QW

alignment angle, since it contains angle-dependent anisotropic effective masses terms.

With the aim of solving the time-dependent Schrödinger equation to obtain the

propagating wavepacket through the evolved time steps and thus to get the transport properties of

the analyzed system, one applies the split-operator technique. For this, we follow the approach

described in Refs. (DEGANI; MAIALLE, 2010; PETROVIĆ et al., 2013; CHAVES et al.,

2015a; RAKHIMOV et al., 2011; PEREIRA et al., 2010; SOUSA et al., 2015; CHAVES et al.,

2009; SOUSA et al., 2013; CHAVES et al., 2010; COSTA et al., 2015; COSTA et al., 2012;

CAVALCANTE et al., 2016; CHAVES et al., 2015; COSTA et al., 2017; ABDULLAH et al.,

2019; CUNHA et al., 2019; JR et al., 2018). This allows us to separate the exponential of the

time evolution operator (that for the case in which the Hamiltonian does not explicitly depend on

time, this operator can be written as Û(t ′, t) = exp
�
− i

h̄H(t ′ − t)
�
) into two parts: one of them

involves only the potential operator V̂ , whereas the other contains only the kinetic operator T̂ , as

well as, enabling to split also the kinetic terms for each direction. Therefore, the time evolved

wavefunction is obtained by successively applying the operation Û such as

Ψ(⃗r, t +∆t)=e−iV̂∆t/2h̄e−iT̂x∆t/h̄e−iT̂y∆t/h̄e−iV̂ ∆t/2h̄Ψ(⃗r, t), (7.15)

where T̂x(y) is the kinetic-energy operator for x(y) direction and we neglect terms of order O

∆t3�

and higher, being such error a consequence of the noncommutativity of kinetic and potential

terms. This error can be minimized as smaller the time step. We assume a small time step of

∆ = 0.7 fs. Here, we opted for the split-operator technique, because it allows us to track the

position and velocity of the center of mass trajectories, see reflection patterns and scattering on

the edges, and obtain the transmission and reflection coefficients (which will be important to the

analysis in this section).

To numerically solve this problem, we discretized the (x,y) plane with a square grid,

assuming ∆x = ∆y = 0.4 nm and ∆x = ∆y = 0.12 nm for the cases where L = 3 nm and L = 10

nm, respectively, and used the finite difference scheme to solve the derivatives in the kinetic

energy terms of the Hamiltonian. In addition, as suggested in Ref. (MANOLOPOULOS, 2002)

and successfully used in Refs. (SOUSA et al., 2015; CHAVES et al., 2009; SOUSA et al., 2013;

ABDULLAH et al., 2019) we added an absorbing (imaginary) potential on the boundaries of our

computational box in order to avoid spurious reflections and backscattering when the wavepacket

reaches the limits of our system.
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Figure 37 – Transmission probabilities as a function of the initial wavepacket energy by assuming
the elbow-like QW with: (a) a fixed rotation angle α = 15◦ and QW widths L = 3 nm (triangles)
and L = 10 nm (circles); and (b) a fixed QW width L = 3 nm and rotation angles α = 15◦

(triangles) and α = 60◦ (circles). Red (filled) and black (open) curves (symbols) correspond to
the anisotropic and isotropic QW cases.

For each investigated system configuration, we run the simulation and calculate: (i)

the transmission probability T (t) for each time step by integrating the square modulus of the

normalized wavepacket in the region after the elbow-like QW corner, i.e. for x > xi, given by

T (t) =
Z Ly/2

−Ly/2
dy
Z Lx/2−|xi|

xi

dx |Ψ(x,y, t)|2 , (7.16)

(ii) the total average position, i.e., the trajectory of the wavepacket center of mass, that is

calculated for each time step by computing

⟨x(t)⟩=
Z Ly/2

−Ly/2
dy
Z Lx/2

−Lx/2
dx |Ψ(x,y, t)|2 x, (7.17a)

⟨y(t)⟩=
Z Lx/2

−Lx/2
dx
Z Ly/2

−Ly/2
dy |Ψ(x,y, t)|2 y, (7.17b)
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Figure 38 – (a) Isoenergy curve in momentum space of the electronic band for a non-rotated
anisotropic system, that corresponds to α = 0. θ and φ are the minimum angles with respect
to kx axis that are associated with the orientation of the wave vector k⃗ and group velocity
vector v⃗, respectively. (b) Values of angle φ as a function of angle θ given by the following
equation: tanφ = (tanθ/µ2 −1/µ3)/(tanθ/µ3 +1/µ1). (c)-(e) Average velocities for the (top
panels) x′ and (bottom panels) y′ directions by considering (black solid curve that corresponds to
θ = φ = α) the isotropic case, the anisotropic case with the QW parallel to (blue dashed curve
that corresponds to θ = α ̸= φ ) the wave vector, and (red dashed-dot curve that corresponds
to φ = α ̸= θ ) to the group velocity vector. The rotation angle was assumed as (c) α = 0◦, (d)
α = 15◦, and (e) α = 45◦.

and (iii) the average velocity, by

⟨vx(t)⟩=
d⟨x(t)⟩

dt
, (7.18a)

⟨vy(t)⟩=
d⟨y(t)⟩

dt
, (7.18b)

where the limits of the computational box are defined by x∈ [−Lx/2,Lx/2] and y∈ [−Ly/2,Ly/2].

The reflection probability R is obtained by similar integration as Eq. (7.16) but for the region

before the QW corner (x < xi). For larger t, the value of the transmission (reflection) probability

integral increases (decreases) with time until it converges to a number. This number is then

considered to be the transmission (reflection) probability of such a system configuration.

Transmission probabilities for the bent QW computed by using the split-operator

technique are presented in Fig. 37 as function of the initial wavepacket energy. In Fig. 37(a) the

transmission was obtained for a QW rotated by a fixed angle α = 15◦ and QW width L = 3 nm

(triangles) and L = 10 nm (circles) both in isotropic (open symbols) and anisotropic cases (filled

symbols). In Fig. 37(b), it was fixed the QW width L = 3 nm and analyzed two different rotation

angles: α = 15◦ (triangles) and α = 60◦ (circles). From Fig. 37(a), one can notice that: (i)

since the energy levels become closer for wider QWs, the wavepacket has a larger transmission

probability for wider channels in both isotropic and anisotropic systems, as well as, it also
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Figure 39 – Snapshots of the total evolved wavefunction through the QW rotated by α = 15◦

at the time steps (i) t = 40 fs, (ii) t = 100 fs, (iii) t = 200 fs, (iv) t = 250 fs, and (v) t = 300 fs
as labeled by roman letters in Fig. 38(d) and considering (upper panels) θ = φ = α , (middle
panels) θ = α , and (bottom panels) φ = α .

explains the rapid convergence of the transmission to 1 for wider QWs as a consequence of the

larger number of accessible electronic states; (ii) the quantitative difference between anisotropic

and isotropic curves for each fixed QW width case is due to the difference on their subbands

energy values. Note that the energy bands in both straight and rotated sections of the V-shaped

QW are (non-)identical for (an)isotropic case, and thus as a consequence of this energy mismatch

caused by the QW bending one has a greater reflection probability for anisotropic case. In both

isotropic and anisotropic cases, due to the channel geometry the wavepacket is more reflected

when reaches the bend that connects the two leads represented in Fig. 36(b), and as the right-arm

of QW is rotated the transmission decreases, as can be seen in Fig. 37(b). The introduction of

a bend in the QW can reduce the transmission even in the isotropic case, due to the fact that it

breaks the translational symmetry of the system. For instance, compare black triangular and

circular symbols in Fig. 37(b), in which the transmission for α = 15◦ is larger than the case

for α = 60◦ for any initial wavepacket energy. Although the energy bands for the isotropic

case are identical for any rotation angles, the QW geometry has an important role on the total

transmission probability. Thus, in order to separate this purely geometric effect from the effect

of the anisotropy, all the results in Fig. 37 show a comparison between the transmission for

isotropic and anisotropic cases for different values of L (Fig. 37a) and α (Fig. 37b).
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Another aspect of the transport in anisotropic QWs that was investigated was the

effect of the interaction between the electrons and the QW edges as function of α . A semiclassical

analysis suggests that the non-collinearity of the group velocities and the momentum vectors

(see Eq. (7.5)) may give rise to a group velocity oscillation. In order to investigate that, we have

analyzed the wavepacket dynamics simulating electrons that propagate through a straight QW as

the one represented in Fig. 29. For this, we considered an initial circularly symmetric Gaussian

wavepacket centered in r⃗ = (x0,y0) and multiplied by a pulse with initial wave vector k⃗0, given

by

Ψ(x,y) = exp
�
−(x− x0)

2

2d2 − (y− y0)
2

2d2 + ik⃗0 · r⃗
�
. (7.19)

In this analysis, it was assumed that the QW width is much larger than the wavepacket width,

being taken d = 5 nm and L = 30 nm, and that the wavepacket is injected from left to right into

the channel with initial position (x0,y0) = (−32.5,−8.6) nm and initial energy E = 200 meV.

Figure 38 shows the wavepacket average velocities as function of time for both x and

y directions that were obtained by computing the first order derivative of the average positions

Eqs. (7.17a) and (7.17b) at each time step, being given by Eqs. (7.18a) and (7.18b), respectively.

The wavepacket evolution through the straight QW with different values of rotations angle α

was analyzed for both isotropic and anisotropic cases, taking into account the non-collinearity

of the wave vector k⃗ and group velocity vector v⃗. The wave vector and group velocity are here

associated with the angles θ and φ , respectively, as illustrated in Fig. 38(a), being v⃗ always

perpendicular to the isoenergy in momentum space. It is easy to see from Eq. (7.5) that for

isotropic case (1/µ3 = 0), one has v⃗′ ∥ k⃗′ and the isoenergies are circular. However, as mentioned

in Sec. 7.2, for anisotropic semiconductors whose isoenergies are ellipses, this is not the case.

Figure 38(b) shows the relation between the angles θ and φ that differs for almost every angle,

except for θ = 0◦ and θ = 90◦ in which the wave vector and group velocity are aligned, similarly

to the isotropic case. Figures 38(c) to 38(e) depict the average velocities (top panels) v′x and

(bottom panels) v′y for the following rotation angles: [Fig. 38(c)] α = 0◦, [Fig. 38(d)] α = 15◦,

and [Fig. 38(e)] α = 45◦. The black solid, blue dashed, and red dashed-dot curves correspond to

θ = φ = α , i.e. the isotropic case, to θ = α ̸= φ , i.e. the anisotropic case with the QW parallel

to the wave vector, and to φ = α ̸= θ , i.e. the anisotropic case with the QW parallel to the group

velocity vector, respectively. According to Figs. 38(c)-38(e), one can realize that: (i) the average

velocities for both x and y directions remain unchanged for isotropic case (θ = φ = α , black solid

curves), irrespective to the QW rotation angle, as well as for the anisotropic case in which the
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wave vector and the group velocity are collinear as shown by the blue dashed and red dashed-dot

curves in Fig. 38(c). Qualitative similar results can be obtained for α = 90◦, instead of α = 0◦;

(ii) for θ ̸= φ and α ̸= 0◦,90◦ that corresponds to non-collinear cases between the wave vector

and the group velocity, the average velocities oscillate, as expected by the semiclassical picture

due to the non-specular reflections on the edges in an anisotropic media. This can be seen by

the blue dashed and red dashed-dot curves in Figs. 38(d) and 38(e); (iii) the oscillations are

more evident as |θ −φ | increases, exhibiting an increasing oscillation amplitude the greater the

non-collinearity between the vectors k⃗ and v⃗. This can be seen by comparing the oscillation

amplitudes of the blue dashed curves in Figs. 38(d) and 38(e), and also for a fixed rotation angle

by comparing the θ = α and φ = α cases. Note from Fig. 38(b) that for θ = α = 15◦ one

has φ ≈ 55◦, whereas for φ = α = 15◦ one implies θ ≈ 4◦, and consequently the difference

|θ −φ | is larger for former case with θ = α (blue dashed curves) that indeed exhibits the large

oscillation amplitude for the presented cases.

In order to clarify how the non-collinearity between the group velocity and wave

vector in anisotropic case affects the wavepacket evolution, it is displayed in Fig. 39 snapshots

of the time evolution of the probability density propagating through the QW rotated by the angle

α = 15◦ at times (i) t = 40 fs, (ii) t = 100 fs, (iii) t = 200 fs, (iv) t = 250 fs, and (v) t = 300 fs

as labeled in Fig. 38(d), and considering the isotropic case (upper panels, θ = φ = α) and the

anisotropic case with the QW orientation parallel to the wave vector (middle panels, θ = α ̸= φ )

and to the group velocity (bottom panels, φ = α ̸= θ ). By analyzing the snapshots, it is clear

that for the isotropic case (upper panels) when the wavepacket evolves it disperses but keeping

the average position (white dashed lines) and consequently the average velocity unchanged, as

observed in Fig. 38(d). Since the propagation direction and the wave vector are collinear for this

case, after the reflections at the potential edges the direction of the group velocity vector remains

the same over time. However, for the anisotropic case in which the wave vector and the group

velocity are non-collinear, when the wavepacket reaches the QW edges it undergoes non-specular

reflections (BETANCUR-OCAMPO et al., 2019). As a consequence, for the case where θ = α ,

this interaction with the edges results a subpackage splitting with different propagation directions

that leads to an average velocity oscillation with large amplitudes that are damped over time, as

shown by the blue dashed curves in Fig. 38(d). On the other hand, for the anisotropic case where

φ = α , no subpackage splitting is observed and the average velocity oscillation amplitude is less

pronounced, as shown by red dashed-dot curves in Fig. 38(d). This is linked to the fact that in this
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case the group velocity is aligned with the QW orientation and then the total wavepacket evolves

in parallel to QW boundaries exhibiting a straight trajectory and dispersing over time similarly

to the isotropic snapshots case, but here owing to the non-specular reflections its interaction

with the QW edges implies a slightly different average position and barely affecting the total

propagation velocity.

7.5 Conclusions of this chapter

In summary, we developed an analytical model for classical anisotropic systems

using the effective mass model and applied this formalism to obtain the electronic properties of

QWs made up of arsenene and phosphorene and with the length direction rotated in relation to

its anisotropy axes. The energy levels in the presence and absence of an external magnetic field

perpendicular to the QW plane were analyzed for different system parameters. In the absence of

a magnetic field, we found an analytical expression for the QW energy levels that contains a term

analog to the ones for isotropic quantum wells with a 1/L2 dependence, and another term that

carries the system anisotropy. Our results showed that the spacing of the energy levels for both

samples is strongly affected by the alignment angle between the QW and the crystallographic

directions, such that as the angle increases, the spacing between the energy levels is lowered

(raised) for phosphorene (arsenene), as well as, observing a shifted to lower (upper) energy

values. For the non-null magnetic field case, the electronic wavefunctions obey a harmonic

oscillator type equation but for a modified mass and modified cyclotron frequency that depends

on the alignment angle between the QW and its anisotropy axes. Numerical calculations showed

that the energy spectrum is significantly affected by the confining potential edges and that the

quantum Hall edge states are less pronounced the greater the rotation angle. With respect to

the wavefunction localization, for large QW rotation angles, the wavefunction becomes more

confined, whereas in the absence of a magnetic field it remains unchanged under rotations.

Since the electronic energy levels of anisotropic QWs are strongly affected by

rotation, we studied their transport properties by using the split-operator technique and compared

the isotropic and anisotropic results for the transmission probability, average position, average

group velocity, and snapshots of the time evolved wavepacket. By considering a circularly

symmetric Gaussian wavepacket propagating inside of a wide anisotropic QW rotated by α with

respect to the anisotropic axes, one observed oscillations in the average velocity for the case

when the initial wave vector and the group velocity vector are not collinear, and the oscillation
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amplitude is more pronounced the greater the non-collinearity between them, i.e. the greater the

θ −φ value. The snapshots at different time steps demonstrated that for the anisotropic QWs

the interaction between the wavepacket and the QW edges gives rise to subwavepackets with

different momentum orientations, whereas for isotropic QWs the wavepacket disperses over

time without splitting and its interaction with the QWs edges does not change the orientation

of the average group velocity. In the case of a bent QW, as a consequence of the energy

mismatching in different sections of the QW and the anisotropy of the system, one expects that

electrons traveling through the bend can be scattered. The results showed that the transmission

probabilities are greater the lower the rotation angle of the right-arm and the wider the QW,

regardless of the anisotropic character of the system, and the nature of the quantitative difference

of the transmission probabilities between the isotropic and anisotropic QWs is linked to the

difference on their subband values. The differences in propagation for different orientations

of the QW may be experimentally measured by attaching perpendicular leads to the system,

one expecting different Hall conductances between isotropic and anisotropic cases, as well for

collinear and non-collinear situations between the group velocity and momentum vectors. This

direction-dependent Hall conductance will be investigated in a future project. Finally, we hope

that our electronic and transport results will prove useful for designing anisotropic semiconductor

based quantum confinement devices.
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8 DIRAC FERMIONS IN GRAPHENE USING THE POSITION-DEPENDENT

TRANSLATION OPERATOR FORMALISM

Within the position-dependent translation operator formalism for quantum system,

we obtain analytical expressions for the eigenstates and the Landau levels spectrum of Dirac

fermions in graphene under the presence of a perpendicularly applied magnetic field and, as a

consequence of the formalism, with a generalized form of the momentum operator. Moreover,

we explore the behavior of wave packet dynamics in such system, by considering different initial

pseudospin polarization and metric parameter. Our findings show that the Landau levels, the

wave packet trajectories and velocities are significantly affected by the choice of the metric

in the non-Euclidean space of the deformed momentum operator, exhibiting a tunable energy

level spacing. In the dynamics analysis, one observes an enhance of the oscillation amplitude

of the average positions for all investigated pseudospin polarizations due to the non-symmetric

evolution of the wave packet induced by the different metric in the system. The present formalism

shows to be a theoretical platform to describe the effects of two scenarios due to: (i) a lattice

deformation in graphene, giving rise to a natural Fermi velocity renormalization; or even (ii) a

non-uniform mass-term, induced by specific substrate, that varies on a length scale much greater

than the magnetic field length.

8.1 Motivation

During the last two decades, many studies have been carried out to understand the

unique properties of graphene, a single atomic-thin layer of graphite. (NOVOSELOV et al., 2004;

NETO et al., 2009) A plethora of its exotic features, such as: Klein tunneling effect and unusual

quantum Hall effect, originate from the fact that low energy charge carriers in graphene obey the

zero mass Dirac equation, providing a favorable environment to probe interesting phenomena

predicted by quantum field theories not found in conventional semiconductors and metals. One

consequence of its gapless linear dispersion, under the presence of a perpendicular magnetic field,

is the
√

B dependence to the Landau levels in contrast to the linear dependence on B observed in

conventional two-dimensional (2D) electron gas spectrum for Schrödinger fermions. (DEACON

et al., 2007; MCCLURE, 1956; MASIR et al., 2008; YIN et al., 2017)

Other very interesting property of massless Dirac fermions in graphene is that it

experiences zitterbewegung, a trembling motion caused by interference between positive and

negative energy states (ZAWADZKI; RUSIN, 2011; ZAWADZKI, 2017) that was predicted by
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Schrödinger for the motion of relativistic electrons in vacuum governed by the Dirac equation.

Therefore, stimulated by Schrödinger’s idea, numerous theoretical works have investigated

the dynamics of wave packets in 2D electron gas (ZAWADZKI; RUSIN, 2011; ZAWADZKI,

2017; SCHLIEMANN et al., 2005; SCHLIEMANN et al., 2006; DEMIKHOVSKII et al., 2008;

ZAWADZKI, 2005) and more recently in 2D materials, as examples: single-layer (KATSNEL-

SON, 2006; MAKSIMOVA et al., 2008; MARTINEZ et al., 2010; ENGLMAN; VERTESI,

2008; RUSIN; ZAWADZKI, 2007; RUSIN; ZAWADZKI, 2009; RUSIN; ZAWADZKI, 2008;

SCHLIEMANN, 2008; KRUECKL; KRAMER, 2009; ROMERA; SANTOS, 2009) and bi-

layer (KATSNELSON, 2006; RUSIN; ZAWADZKI, 2007; WANG et al., 2010) graphene,

silicene, (ROMERA et al., 2014) transition metal dichalcogenide, (SINGH et al., 2014) and

multilayer phosphorene (CUNHA et al., 2019).

From the theoretical point of view in the analysis of quantum systems, in the last years

one observed a growing literature dealing with systems consisting of particles with position-

dependent mass. (BENCZIK et al., 2005; PEDRAM, 2012; BOSSO, 2018; LUBO, 2000;

SCARDIGLI; CASADIO, 2015; ROSSI et al., 2016; ZHAO et al., 2017; CASTRO; OBISPO,

2017; MONIRUZZAMAN; FARUQUE, 2018; BOLEN; CAVAGLIA, 2005; MIGNEMI, 2010;

KEMPF, 1994; ASGHARI et al., 2013; FILHO et al., 2011; FILHO et al., 2016; BRAGA;

FILHO, 2016; FILHO et al., 2013) Most of the previous approaches (BENCZIK et al., 2005;

PEDRAM, 2012; BOSSO, 2018; LUBO, 2000; SCARDIGLI; CASADIO, 2015; ROSSI et

al., 2016; ZHAO et al., 2017; CASTRO; OBISPO, 2017; MONIRUZZAMAN; FARUQUE,

2018; BOLEN; CAVAGLIA, 2005; MIGNEMI, 2010; KEMPF, 1994; ASGHARI et al., 2013)

considered a modification of canonical commutation relations or even modifications in the

underlying space, which leads to the problem of the ordering in the kinetic energy operator, since

in this formalism mass is mapped into an operator that does not commute with the momentum

operator. (CAVALCANTE et al., 1997) To overcome this issue, Costa Filho et al. (FILHO et al.,

2011) in 2011 proposed a new method that consists of a generalized translation operator which

produces infinitesimal spatial displacements, such that T (dx)|x⟩= |x+g−1/2
xx dx⟩, where g−1/2

xx is

a function of the position and related to the metric. It changes the momentum and, consequently,

the commutation relation between momentum and position into a more generalized form and

leads to a modified Schrödinger equation that resembles the standard Schrödinger equation to

describe charge carriers with a position-dependent effective masses. Thereafter, a series of recent

studies have done by using this position-dependent translation operator formalism. (FILHO et al.,
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2011; FILHO et al., 2016; BRAGA; FILHO, 2016; FILHO et al., 2013; REGO-MONTEIRO;

NOBRE, 2013; VUBANGSI et al., 2014; BARBAGIOVANNI et al., 2014; BARBAGIOVANNI;

FILHO, 2014; COSTA; BORGES, 2014)

Based on the Costa Filho formalism (FILHO et al., 2011; FILHO et al., 2016;

BRAGA; FILHO, 2016; FILHO et al., 2013) and motivated by the great interest on 2D materials

due to their colossal possible future technological applications, in this work we extend the

previous reported analysis for the case of graphene under the presence of a perpendicular

magnetic field and we show that the metric in this formalism can be viewed as an additional

mechanism for controlling the electronic and transport properties of low energy electrons in

graphene, as well as we discussed it in view of two scenarios due to the lattice deformation and to

a position-dependent mass term induced by specific substrate. To perform this investigation, we

analytically solve the Dirac equation with a generalized momentum operator and discuss the role

the metric in the eigenstates and energy spectrum. Moreover, we time evolve a Gaussian wave

packet, describing charge carriers traveling through the system, and calculate the expectation

values of the position operator and velocity operator as a function of time, discussing the main

features of the zitterbewegung effect for different initial pseudospin polarization and metric.

In this chapter we discuss the position-dependent translation operator formalism,

showing the analytical solution of the Dirac equation for monolayer graphene in the presence of

a perpendicularly applied magnetic field and with a deformed momentum along the x-direction

due to a general metric originated from the position-dependent translation operator formalism.

Results of the analytically calculated Landau levels for a generic metric is also shown and

compared with the non-deformed case. Moreover, we investigate the wave packet dynamics and

how some physical quantities, such as average positions and average velocities, evolve in time

for the studied graphene system with a generic metric. Results for different metrics, for different

initial pseudospin polarizations, as well as the manifestation of the zitterbwegung on the wave

packet motion in graphene with this deformed metric are discussed.

8.2 Position-dependent translation operator formalism

Matter curves the space-time in all directions leading two particles, traveling parallel

to each other, to get closer or far apart as if there is a force acting between them. This is the

definition of gravity in the realm of general relativity, where the space is curved in the vicinities

of large densities of mass or energy. In general relativity, the metric tensor determines the
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geometric local structure of the curved space-time. For example, the Minkowski metric is the

one used in special relativity, while the Schwarzschild metric is the most general solution to the

Einstein’s equation. Non-Euclidean metrics appear naturally also in very small scales where

Quantum Mechanics is valid. For example, it has been used as an attempt to merge general

relativity and quantum mechanics (??????????), as well as in the study of quantum systems

problems with constraints (??????). More recently, a Schwarzschild-like metric has been used

to find the quantum wave equations (??).

In a curved surface the shortest path between two points is a geodesic and the squared

distance between two infinitesimally close points is given by

ds2 = ∑
µν

gµνdxµdxν , (8.1)

where gµν is the metric of the curved space under consideration. Here, we use a diagonal metric,

ds2 = gxxdx2 +gyydy2 +gzzdz2, (8.2)

to show that an inertial force appears naturally in the quantum mechanics framework leading

to a modified Ehrenfest theorem. More importantly, it is shown that the metric is responsible

for a minimum momentum leading naturally to what is called extended uncertainty principle

(EUP) (??).

As a first consequence of adopting Eq. (8.2), the space curvature leads to an internal

product of the wave function given by

⟨φ |ψ⟩ ≡
Z

φ∗(x,y,z)ψ(x,y,z)
p
|g|dxdydz, (8.3)

where g = det(gµν) is the determinant of the matrix of components of the metric tensor. In this

context, a particle in the vicinities of a point with coordinate x can be described by the ket |x⟩
where x̂|x⟩= x|x⟩. As the set {|x⟩} is complete, the identity operator can be written as

1 =
Z p

|g|dxdydz|x,y,z⟩⟨x,y,z|, (8.4)

and the scalar product in this metric for one dimension is given by ⟨x|x′⟩= g(x)−1/2δ (x− x′).

With this metric, for a particle to go from a point x to x+ g−1/2
xx dx it has to get a translation
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like Tg(dx)|x⟩= |x+g−1/2
xx dx⟩. This translation is clearly non-additive and the operator can be

written as

Tg(d⃗r)≡ 1− i
P⃗

h̄
· d⃗r, (8.5)

where P⃗ is a generalized momentum that generates the translation, with [x,Px] = ih̄g−1/2
xx . As

a consequence, it is straightforward to show that the momentum component can be written as

Pν =−ih̄g−1/2
νν ∂ν leading to an stationary equation of motion for a particle H ψ = Eψ or,

− h̄2

2m
D2ψ(r)+V (r)ψ(r) = Eψ(r), (8.6)

where D = ∑ν g−1/2
νν ∂ν , and

D2 ≡ 1√
g ∑

ν
∂ν
√

ggνν∂ν , (8.7)

with gννgνν = 1, and ν = x,y,z. At this point, it is important to mention that the Hamiltonian

defined by

H ≡− h̄2

2m
P2 +V (r) (8.8)

is Hermitian due to Eq. (8.4). As consequence, the probability density ρ = Ψ(x, t)Ψ(x, t)∗ obeys

the continuity equation,

∂ρ
∂ t

+DJ = 0, (8.9)

where the probability current is now written as J = g−1/2
xx J. We emphasize that the translation

is non-additive in this diagonal metric, the associated Schrödinger-like equation remains linear,

second-order in space and first-order in time, and that the probability density is conserved in

terms of a continuity equation of the same form as the standard one in Euclidean space.

8.3 Electronic properties of graphene with a generic metric

The energy spectrum of an infinite undoped graphene sheet in the presence of a

magnetic field and in the vicinity of the Dirac cones can be obtained by solving the eigenvalue

equation HDΨ(x,y) = EΨ(x,y) with following Dirac-Weyl Hamiltonian(COSTA et al., 2014;

XAVIER et al., 2016)

HD = vF σ⃗ ·
�
P⃗ + eA⃗

�
+ τ∆σz, (8.10)
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where vF is the Fermi velocity, e is the electron charge, A⃗ is the electromagnetic vector potential,

σ⃗ = (σx,σy,σz) denotes the Pauli matrix, ∆ (−∆) is the on-site potential induced by the substrate

on the A (B) sublattice, which can be seen as a mass term within the continuum model, and

τ is the valley index, being 1 (−1) for K (K′) Dirac point. Based on the position-dependent

translation operator formalism, (FILHO et al., 2011; FILHO et al., 2016; BRAGA; FILHO,

2016; FILHO et al., 2013) the generalized position-dependent momentum operator associated

with a spatial displacement that generates the translation from a point ν to ν +g−1/2
νν dν can be

written as Pν =−ih̄g−1/2
νν

∂
∂ν , with ν = x, y, and z, being g−1/2

νν a function of the position and

related to the metric. In fact, g−1/2
νν is an element of a diagonal metric of the non-Euclidean

space under consideration. The eigenstates of the Hamiltonian (8.10) are the two-component

spinors Ψ= [ΨA,ΨB]
T , where ΨA (ΨB) are the envelope functions associated with the probability

amplitudes at the sublattice A (B).

Figure 40 – Deformed η-coordinate as a function of the non-deformed x-coordinate in real space
[see Eq. (8.15)] for three different metric parameters: (black solid line) g = 0, (red dashed line)
g = 0.01, and (blue dotted line) g = 0.1. It was assumed a magnetic field amplitude of B = 1 T.

For convenience, we choose the Landau gauge A⃗ = (0,B0x,0), such that the system

has translational invariance only along y-direction (i.e. Py = h̄ky). Thus, one can assume

solutions as the following ansatz

Ψ(x,y) = eiky
R

g1/2
yy dy


ψ+(x)

ψ−(x)


 . (8.11)
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By acting the Hamiltonian (8.10) on the two-component wave function (8.11), one obtains the

following set of coupled differential equations
�

1√
gxx

d
dx

+
(x− x0)

l2
B

�
ψ− = i

(E − τ∆)
h̄vF

ψ+, (8.12a)
�

1√
gxx

d
dx

− (x− x0)

l2
B

�
ψ+ = i

(E + τ∆)
h̄vF

ψ−, (8.12b)

where x0 =− h̄ky
eB0

=−l2
Bky and lB =

q
h̄

eB0
is the magnetic length.

Decoupling the above set of equations (8.12) with respect to ψ+, we arrive at

d2ψ+(η)

dη2 +

"
E2−∆2�

h̄2v2
F

−e
√

g η
lB

l2
B

− (e
√

g η
lB−1)2

gl2
B

#
ψ+(η)=0, (8.13)

where one considers the spatial metric as the linear function

g−1/2
xx = 1+

√
g

lB
(x− x0) , (8.14)

and the application of the transformation

η(x) =
Z

g1/2
xx dx =

lB√
g

ln
�

1+
√

g
lB

(x− x0)

�
, (8.15)

in order to eliminate the first derivative in Eq. (8.13). Notice that g is a dimensionless parameter

that is associated with the effect of space modification. It is easy to note that for g= 0 one recovers

the non-modified Dirac equation with the metric equal to 1 (i.e. Pν →−ih̄ ∂
∂ν ). Therefore, the

appropriated length scale for the problem is the magnetic length lB. To illustrate this spatial

deformation in η axis, Fig. 40 depicts the η’s dependence as a function of the real and non-

deformed x-coordinate [Eq. (8.15)] in the case of a linear metric as given by Eq. (8.14). Three

different metric parameters g were assumed and it was taken a fixed magnetic field amplitude

B = 1 T. One can realize from Fig. 40 that the introduction of a non-null metric parameter g

induces a deformation in the η’s space, such that η is moving away from a linear relation with

respect to the x-coordinate to higher values of g, as can be seen by comparing the cases g = 0

and g = 0.1, as well as η < 0 is the most affected direction.

From Eq. (8.13), one can obtain the wave functions ψ+ and ψ− given, respectively,

by

ψ+(η) = Anβ se−β L2s
n (2β ) , (8.16a)

ψ−(η) =
Anβ se−β ih̄vF

lB
√

g(E + τ∆)
×

�
2e

√
gη

lB L2s+1
n−1 (2β )+

�
2e

√
gη

lB −(1+gs)
�

L2s
n (2β )

�
, (8.16b)
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where β = 1
ge

√
gη/lB , s = 1

g − (n+1), L2s
n is the generalized Laguerre polynomial, and An is the

normalization constant. The corresponding energy levels read as

En =±h̄vF

s
∆2

h̄2v2
F
+

2
l2
B
(n+1)− g

l2
B
(n+1)2, (8.17)

with n ∈ N . The positive values correspond to electrons (conduction band), while the negative

values correspond to holes (valence band). Repeating the same decoupling procedure of the set

of equations (8.12) but now for the ψ− component, one finds

En =±h̄vF

s
∆2

h̄2v2
F
+

n(2−gn)
l2
B

. (8.18)

By taking g = 0 in Eqs. (8.17) and (8.18), one can easily obtain the Landau level energies for

the non-deformed graphene which depend on the square root of both the level index n and

the magnetic field B, and exhibit a different dependence on the energy levels for sublattices A

(En ∝
p

2(n+1)) and B (En ∝
√

2n). It is in contrast to the standard 2D electron gas, whose

the Landau levels are equally spaced. Notice that for the graphene case with g ̸= 0, one has

an additional contribution term for the Landau levels that is proportional to the metric g and

has a n2-dependence. It is easy to realize from Eqs. (8.17) and (8.18) that there is a range of

valid g values in order to obtain real energy levels, given by g ≤
�

∆lB
h̄vF n′

�2
+ 2

n′ , with n′ = 0, 1,

2, . . ., i.e. for a fixed g parameter only some n′ values are allowed. As we shall discuss further,

this term is responsible for changing the charge carrier electronic properties in graphene with

a generic metric, when compared to the non-deformed case, and also it causes a shift into the

energy spectrum. For ∆ = 0, note that Eq. (8.17) lacks the level with E = 0 that is present in

Eq. (8.18), and the introduction of a different metric does not lift the degeneracy of the two-fold

zeroth Landau levels since E0 = 0 by Eq. (8.18), unlike the mass-term ∆ that opens a gap of 2∆

in the spectrum and in addition the presence of ∆ shifts the Landau levels spectrum for n ̸= 0.

The existence of a zeroth Landau level E0 = 0 is a direct consequence of the zero gap in the

energy spectrum for Dirac fermions in graphene and due to its chiral symmetry. (AHARONOV;

CASHER, 1979) An important remark about Eqs. (8.17) and (8.18) is that the Landau levels

are independent of the valley index, and therefore the Landau level for n ̸= 0 (n = 0) has four-

fold (two-fold) degeneracy, being two-fold associated with the electron-hole symmetry and the

another two-fold because of valley symmetry. (MCCLURE, 1956; MASIR et al., 2008; YIN et

al., 2017)

The dependence of the lowest energy levels on the magnetic field for the unbiased

graphene system for g = 0 (solid black lines) and for g ̸= 0 (being dashed red lines for g = 0.01
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(b)

(a)

Figure 41 –(a) The lowest five Landau levels for electrons as a function of perpendicular magnetic
field for metric (solid black lines) g = 0, (dashed red lines) g = 0.01, and (dotted blue lines)
g = 0.1. (b) Energy levels spacing between two adjacent states En+1 −En as a function of the
metric for a fixed magnetic field amplitude B = 1 T and a null mass term ∆ = 0.

and dotted blue lines for g = 0.1) is shown in Fig. 41(a). A consequence of the metric change is

a shift of the energy levels, together with a change of level spacing, as emphasized in Fig. 41(b)

which depicts the behavior of the level spacing as a function of the metric g, maintaining the

magnetic field amplitude B = 1 T. It is seen that as the metric increases, the energy levels are

shifted to lower values and the spacing between them decreases too, which in turn increases in the

number of accessible electronic states for a fixed energy range. Note that these behaviors of the

deformed Landau levels with respect to the metric resemble those observed in the following two

scenarios: (i) a strained graphene, such that both the lattice and Dirac cones are distorted which

leads to a spatial-dependence and anisotropy of the Fermi velocity induced by the lattice change

through a renormalized linear momentum; (BETANCUR-OCAMPO et al., 2015; PELLEGRINO
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et al., 2011; JUAN et al., 2012; GOERBIG et al., 2008; NAUMIS et al., 2017) and (ii) a single-

layer graphene sheet deposited on a specific deformed substrate, such that the substrate-induced

mass-term is non-uniform and that varies on a length scale much greater than the magnetic field

length. (NIGGE et al., 2019) In the both scenarios, the Landau levels change qualitatively in

a similar way as shown in Fig. 41(a), i.e. exhibiting a contraction effect of the Landau levels

spectra. With respect to the first scenario, it is worth mentioning that a more direct analogy

with the considered position-dependent spatial metric given by the linear function Eq. (8.14) is

an uniaxially strained graphene. In this context, a recent work(BETANCUR-OCAMPO et al.,

2015) described such unidirectional deformation by using a renormalized linear momentum in an

effective Dirac-like Hamiltonian that similarly to the current work can capture the feature of the

contraction of the Landau levels but as a function of the deformation amplitude, instead of the

metric as treated here. In both cases owing to the strain or metric change, the contraction of the

Landau level energies can be understood by the renormalization of the Fermi velocity. From this

point-of-view, one can get an explicit relation showing quantitatively a direct correspondence

between the spatial metric g and the different types of the strain in graphene, such that it is

possible to find g ≡ g(ε), being ε the amplitude of the lattice deformation.
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Figure 42 – The wave function amplitude for the first four excited levels (a) n = 1, (b) n = 2, (c)
n = 3, and (d) n = 4. The black solid, dashed blue and red lines correspond to the total wave
function and the two pseudospin components ψ+ and ψ−, respectively. The metric is g = 0.25
and the assumed magnetic field was B = 1 T. It is shown I{ψ−}, since it is pure imaginary. The
η unit is angstrom.
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From the analytical expressions (8.16a) and (8.16b), we plot in Fig. 42 the four first

excited wave functions for graphene case with a non-null metric assumed as g = 0.25 and a

fixed magnetic field amplitude B = 1 T. The solid black, dashed blue and red lines correspond

to the total wave function |Ψ|2 and the two pseudopsin components ψ+ and ψ−, respectively.

For the non-deformed graphene case, it is well-known (MCCLURE, 1956; MASIR et al., 2008;

YIN et al., 2017; GOERBIG, 2011) that solutions in the presence of an external magnetic

field are given by the Hermite polynomials and |Ψ|2 is symmetric with respect to η = 0. Note

that the total wave function, as well as the two components of the pseudospinor are no longer

spatially symmetric when one assumed a non-null parameter g. By an analogy with the strained

graphene, such lack of spatial symmetry of the wave functions can be understood by the lattice

deformation in graphene that causes in the microscopic point-of-view changes in the interatomic

distances and in the hopping energies of the carbon atoms and, consequently, a modification

in the electronic band structure. Such distortions on the Dirac cones can lead to an anisotropic

position-dependent Fermi velocity which, in turn, can be seen as an anisotropy and a position-

dependence on the effective masses of the system. Therefore, within this analogy, the wave

function is more (less) localized at the regions where the kinetic energy is lowest (highest) due

to the highest (lowest) effective mass along certain direction. Note from Fig. 42 that due to the

non-null metric, the wave functions with higher energetic states exhibit a strong localization

for η < 0 that can be associated with the region with higher effective mass, lower renormalized

Fermi velocity, and most affected η-direction as demonstrated in Fig. 40. Similar results for

deformed graphene systems have been already reported in the literature such strong localization

along the deformed direction. (BETANCUR-OCAMPO et al., 2015; PELLEGRINO et al.,

2011; JUAN et al., 2012; GOERBIG et al., 2008; NAUMIS et al., 2017) A very interesting

aspect about the spatial distribution of the two-components wave functions is that, even for

the non-deformed case (g = 0), the occupation of the sublattices displays a natural asymmetric

occupation which is originated from asymmetry in positions of the nearest neighbors for atoms

at A and B sublattices due to the different dependence of the energy levels for sublattices A

[Eq. (8.17)] and B [Eq. (8.18)], which differs in the index n for 1. Moreover, Eq. (8.13) resembles

a differential equation of a particle subjected to an effective Morse-type potential (??) in

η−space i.e.
�
d2/dη2 +Ve f f (η)

�
ψ+ = E ′ψ+, being the effective potential the term inside the

brackets in Eq. (8.13) without the energy term E ′ = (E/h̄vF)
2. Note also that Fig. 42 shows a

strong asymmetry in the probability density, which implies that it is more probable to find the
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particle in the regions of maximum potential. In Refs. (KURU et al., 2009; GHOSH, 2008),

the authors showed that such asymmetry can be obtained when a particle is subjected to an

exponential-type magnetic field. However, in the current work one obtains similar results by

applying a constant magnetic field in {x,y}-space.
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Figure 43 – The dependence of the wave function on the magnetic field for metric g = 0.25 and
for the first four excited levels: (a) n = 1, (b) n = 2, (c) n = 3, and (d) n = 4. The amplitude
increases from black to white. The units of the magnetic field amplitude and η are Tesla and
angstrom, respectively.

In addition to the wave function analysis for graphene system with a generic metric,

in Fig. 43 contour plots of the (a) first (n = 1), (b) second (n = 2), (c) third (n = 3) and (d) fourth

(n = 4) excited total wave functions are shown by varying the magnetic field amplitude but

keeping a fixed value of metric as g = 0.25. As already expected, as the magnetic field increases

the magnetic length decreases and, consequently, the wave functions become more confined.

Hence, although the introduction of a different metric (i.e. g ̸= 0) delocalizes the wave function,

giving rise a spatial asymmetry, the effect of strong magnetic fields is able to overcome such

delocalization.
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8.4 Wave-packet dynamics in graphene with a generic metric

Let us now investigate the effect on the wave packet dynamics under the presence of

external magnetic field due to a non-unitary metric (i.e. for gνν ̸= 1 or equivalently for g ̸= 0 in

Eq. (8.14)), owing to a generalized position-dependent momentum operator in the considered

formalism, and we shall also discuss the results of the role of a different metric in association

with different physical scenarios already reported in the literature (BETANCUR-OCAMPO et

al., 2015; PELLEGRINO et al., 2011; JUAN et al., 2012; GOERBIG et al., 2008; NIGGE et al.,

2019) and also discussed in the previous Sec. 8.3. In this analysis, we explore the time-dependent

average positions and velocities, and the snapshots in real space of the wave packet evolution

by taking different metric parameter g and different initial pseudospin polarization. To do this,

we use the well-known split-operator technique (CHAVES et al., 2010; CHAVES et al., 2015a;

RAKHIMOV et al., 2011; PEREIRA et al., 2010; DEGANI; MAIALLE, 2010; CHAVES et al.,

2009; COSTA et al., 2015; COSTA et al., 2012; CAVALCANTE et al., 2016; CHAVES et al.,

2015; COSTA et al., 2017; ABDULLAH et al., 2019; CUNHA et al., 2019; LAVOR et al., 2020;

CUNHA et al., 2020) for wave packet propagation in the real time that consists in the solution

of time-dependent Schrödinger equation ih̄∂Ψ(⃗r, t) = HΨ(⃗r, t), by taking a separation of the

time-evolution operator Û = exp [−iH∆t/h̄] in a series of matrices, such that the propagated

wave function after a time step △t can be calculated by applying the expanded exponential

time-evolution operator on the wave packet at any instant t, i.e. Ψ(⃗r, t +∆t) = ÛΨ(⃗r, t).

Similarly to the previous Sec. 8.3, now to calculate the quantum electronic trajectories

using a wave packet within the split-operator technique, we consider: (i) the continuum model

Hamiltonian HD given by Eq. (8.10) for the description of low-energy massless Fermions, (ii)

a deformed momentum along the x-direction given by Px = −ih̄g−1/2
xx

∂
∂x

, and (iii) the linear

function for the metric given by Eq. (8.14). The initial wave packet is assumed as a circularly

symmetric Gaussian distribution, multiplied by a pseudospinor [c1,c2]
T that accounts for the

probability distributions over the two sublattices of graphene (labeled A and B), and by a plane

wave with wave vector k⃗ = (kx,ky), which gives the wave packet a non-zero average momentum,

defined as

Ψ(⃗r,0)=N


c1

c2


exp

�
−(x−x0)

2+(y−y0)
2

d2 +i(⃗k · r⃗)
�
, (8.19)

where N is a normalization factor, (x0,y0) are the coordinates of the center of the Gaussian
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wave packet, and d is its width. For our study, the initial position of the wave packet is at

(x0,y0) = (0,0), its width is assumed as d = lB, with lB =
p

h̄/eB0 corresponding to the magnetic

length for a fixed magnetic field amplitude considered as B0 = 10 T and thus lB = 81.13 Å, and

its initial momentum as (k0
x ,k

0
y) = (0.035,0)Å

−1
.

In order to exemplify the effect of the metric in the wave packet dynamics, we shall

discuss next the results for the two most considered, in the study of wave packet propagation,

Gaussian distributions along the subalttices: (Sec. 8.4.1) [c1,c2]
T = [1,0]T and (Sec. 8.4.1)

[c1,c2]
T = [1,1]T . Since such analysis for undeformed monolayer graphene has been reported in

details in Refs. (MAKSIMOVA et al., 2008; CHAVES et al., 2010; LAVOR et al., 2020), here

we focus mainly on the differences that arises due to the different metric.

8.4.1 Case c1 = 1, c2 = 0

We first consider the simple case where the lower component of the initial electronic

wave function is zero, i.e., taking c1 = 1 and c2 = 0. This corresponds to the situation in which

the electron probability is initially located only at the A sublattice of graphene monolayer.

The trajectory drawn by r⃗(t) = (⟨x(t)⟩,⟨y(t)⟩) for such a packet in the xy plane

after a t = 1600 fs propagation time is shown in Fig. 44(a). As expected due to the effect of

an external perpendicular magnetic field, the charge carrier travels in a cyclotron orbit, and

moreover, by assuming a non-null g parameter, the radii of these orbits are strongly affected,

as we shall discuss below. The expectation values of position and velocity as a function of

time for different metric are depicted in Figs. 44(b,d) and 44(c, e), respectively. Results for

metric g = 0, g = 10−4, g = 10−2 and g = 0.1 are shown in solid black lines, dashed blue lines,

dotted red lines, and green dashed-dotted lines, respectively. One can realize that the average

values of position and velocity in the x-direction remain constant for the undeformed graphene

case (g = 0). However, when a non-null g is considered, the averages position and velocity in

the x direction are no longer zero and exhibit variations with the time evolution that are more

evident the greater the metric amplitude. This can be easily understood keeping in mind that the

introduction of a different metric induces a renormalization of the Fermi velocity, as discussed

in the previous Sec. 8.3, leading to non-null value for ⟨vx⟩. Moreover, it will be clarified next

when we discuss about the symmetries of the total probability density for different time steps.

On the other hand, by analyzing the average values of position and velocity in the y-direction,

one observes a clear oscillation even for g = 0, as emphasized in the inset of Fig. 44(d), in the
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Figure 44 – (a) Trajectories drawn by ⟨x⟩ and ⟨y⟩ within t = 1600 fs propagation time. [(b)
and (d)] Average positions and [(c) and (e)] expectation values of the velocities in x and y
directions, respectively, as a function of time for a Gaussian wave packet with initial pseudospin
polarization [c1,c2]

T = [1,0]T , width d = lB = 81.13 Å and initial momentum kx = 0.035 Å
−1

.
The results are obtained for different metric: g = 0 (solid black lines), g = 10−4 (dashed blue
lines), g = 10−2 (red dotted lines), and g = 0.1 (green dashed-dotted lines). The inset in panel
(d) is an enlargement for the first time steps.

first time steps of the wave packet evolution that are damped as time evolves. This oscillatory

behavior indicates the manifestation of the zitterbewegung effect along the y direction, as already

reported (MAKSIMOVA et al., 2008; CHAVES et al., 2010; LAVOR et al., 2020; RUSIN;

ZAWADZKI, 2008) in the literature for this pseudospin configuration for undeformed graphene

case and confirmed here for g = 0 (see black line in 44(d)). Moreover, one notices that such
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oscillations exhibit a transient character, disappearing after a few hundred femtoseconds, and

that the duration time and amplitude of the transient zitterbewegung for ⟨y⟩ decays faster as the

metric value increases.

g
 =

 0

x

y

g
 =

 0
.0

1
g
 =

 0
.1

t = 100 fs t = 300 fs t = 500 fs t = 750 fs t = 900 fs t = 1350 fs

80 nm

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Figure 45 – Time evolution of electronic wave packet for the case [c1,c2]
T = [1,0]T for the

same parameters of Fig. 44 at the time steps (first column) t = 100 fs, (second column) t = 300
fs, (third column) t = 500 fs, (fourth column) t = 750 fs, (fifth column) t = 900 fs, and (sixth
column) t = 1350 fs and assuming the metric as (upper panels) g = 0, (middle panels) g = 0.01,
and (bottom panels) g = 0.1. The wave packet starts at (x0,y0) = (0,0) Å.

For a better understanding of the average position and velocity behaviors in the

x and y directions of Fig. 44, we analyze the contour plots of the squared modulus (|Ψ|2) of

the propagated wave functions at different time steps. The results are depicted in Fig. 45 for

cases g = 0 (upper painels), g = 0.01 (middle painels), and g = 0.1 (bottom painels) and for

the following time steps: (first column) t = 100 fs, (second column) t = 300 fs, (third column)

t = 500 fs, (fourth column) t = 750 fs, (fifth column) t = 900 fs, and (sixth column) t = 1350

fs. Note that as the time evolves the Gaussian wave packet, that start with circularly symmetric

shape, splits in two parts moving with opposite velocities along x axis. This splitting leads

to vanishing oscillations in the average position and expectation values of velocity along y-

direction (see Figs. 44(d) and 44(e)) after t ≈ 180 fs, which explains the transient behavior

of the zitterbewegung. The trajectory of the wave packet is described by a circular cyclotron

orbit as clearly visible in Fig. 44(a) and also evident in Fig. 45 from the fact that the wave

packet bends for large time steps (see latest columns in Fig. 45) and by the average position for

y-coordinate that has an extra oscillation with a large amplitude associated with the radius of the

cyclotron orbit. Therefore, from Figs. 44 and 45 one can see that the higher the amplitude of the
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g parameter the smaller the radius of the cyclotron orbit. For the undeformed graphene case (top

panels for g = 0), the two propagating subpackets move symmetrically with respect to x = 0, i.e.

|Ψ(x,y, t)|2 = |Ψ(−x,y, t)|2 for a fixed time step. In contrast, for non-null g case (see middle and

bottom panels for g = 0.01 and g = 0.1) the portions of probability amplitudes and widths of the

two subpackets are noticeably different and they are increasingly distorted into an elliptic shape

to higher g values. This strong asymmetry in the total probability density is due to the assumed

position-dependent spatial metric that in turn can be linked with a strong anisotropy in the Fermi

velocity and linear momentum to the electron motion, such that the momentum contributions

along the negative and positive x-directions are different and thus giving rise to two propagating

subpackets asymmetric with respect to each other, being one of them more elliptical. Moreover,

it is interesting to note that this large asymmetry in the probability density explains the less

evident zitterbewegung effect and the reduction of the transient time, as well as is related to the

reason why one gets a non-null average position for x coordinate. Note that, since the probability

densities of the two subpackages for g ̸= 0 are not the same, the contribution to the total average

position value of the center-of-mass will be different, causing changes in the trajectories and

average values of position and velocity as shown in Fig. 44.

8.4.2 Case c1 = 1, c2 = 1

We now investigate the case in which the wave function is equally distributed in the

sublattices A and B, which is equivalent as choosing c1 = c2 = 1. Similar to the previous case

(Sec. 8.4.1), we analyze the time evolution of average values of position and velocity along the x

and y direction, the trajectories evolved in time, as well as the snapshots of the total probability

density in different time steps, with the results displayed in Figs. 46 and 47, respectively, for the

same parameters assumed in Sec. 8.4.1.

The trajectories drawn by r⃗(t) = (⟨x(t)⟩,⟨y(t)⟩) and the expectation values of the

position and velocities along the two x and y coordinates shown in Fig. 46 are non-null for t > 0

and do not remain constant as a function of time even for the undeformed graphene case (compare

Fig. 46 with 44), unlike the previous case for [1,0]T . Note from Figs. 46(d) and 46(e) that the

average values of position and velocity along the y-direction exhibit less pronounced oscillations,

as emphasized in the inset of Fig. 46(e). In order to understand the origin of this weak (or

absent) oscillation in the average physical variables for this chosen of pseudopsin polarization,

we verified how is the spatial time evolution of the initial wave packet by showing snapshots for
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Figure 46 – The same as in Fig. 44, but now for Gaussian wave packet with pseudospin polar-
ization [c1,c2]

T = [1,1]T . The inset in panel (e) is an enlargement to emphasize the oscillatory
behavior of ⟨vy⟩ for the first time steps.

t > 0 of the total probability density, as shown in Fig. 47. Notice that regardless of the g value,

the wave packet for this pseudospin configuration does not split in two subpackets as it does for

the previous configuration (see Fig. 45), being the reason why the electronic motion for this case

does not exhibit zitterbewegung. In the current case, the electronic trajectory is similar to the

one for left subpacket in Fig. 45, deforming and varying the packet width as the time evolves

due to the position-dependent spatial metric that works in a similar way as position-dependent

effective masses and anisotropic Fermi velocity. Also similarly to the previous pseudospin case,

here the trajectory of the Gaussian wave packet center-of-mass is given by a cyclotronic orbit
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that drastically changes by increasing the metric amplitude, leading to a deformed elliptic orbit,

being more squeezed the greater the g parameter (see Fig. 46(a)). The oscillation in Fig. 46(d)

for the ⟨vy⟩ is related to the asymmetric spreading over time of the wave packet.
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Figure 47 – The same as in Fig. 45, but now for Gaussian wave packet with pseudospin polariza-
tion [c1,c2]

T = [1,1]T .

8.5 Conclusions of this chapter

In summary, we have investigated the effects of metric changes in the electronic

properties and in the time evolution of a low-energy two-dimensional Gaussian wave packet for

graphene by means the position-dependent translation operator formalism. We showed that such

formalism is able to introduce additional control of such properties and that the studied system

mimics two different physical scenarios: a deformed graphene due to strain and a non-uniform

mass-term, induced by specific substrate, that varies on a length scale much greater than the

magnetic field length. A more direct analogy with the position-dependent spatial metric in this

formalism is done with the first scenario when takes in account an unidirectional deformation

that induces renormalized and position-dependent linear momentum and Fermi velocity.

With respect to the electronic properties, we analytically derived the Landau levels

and its respective wave functions. An additional contribution term for the Landau levels was

found with a
√

g-dependence and we showed that this term is responsible for performing a

contraction of the levels, i.e. the metric changes shift the Landau level to lower values and

decreases the level spacing. The total wave function, as well as the two pseudospin components,
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are strongly affected by a non-null metric g, leading a delocalization of the wave function.

By using the well-known split-operator technique and the deformed Dirac Hamilto-

nian in the presence of an external magnetic field developed in the position-dependent translation

operator formalism, we investigated the wave packet dynamics for different metric and for differ-

ent choices of the initial pseudospin polarization. We analyzed the results for the expectation

values of center-of-mass coordinates, the trajectories, the spreading of the wave packet in real

space, as well as their oscillations due to zitterbewegung. In general, we demonstrated that the

non-null metric leads to an asymmetry for the wave packet evolution and therefore in some

cases it brings up oscillations in the average of the physical observables and in other cases it

suppresses the zittebewegung. The strong asymmetry in the total probability density is due to the

position-dependent spatial metric that in turn can be linked with a strong anisotropy in the Fermi

velocity and linear momentum to the electron motion. We observed that the higher the amplitude

of the g parameter the smaller the radius of the circular cyclotron orbit described by the electron

due to magnetic field presence and more deformed it becomes.

The theoretical formalism used here can be useful for comparison and analogy to

other two-dimensional based system, and we believe that the discussions about the results found

in this work will be contribute to a better understanding of the position-dependent translation

operator formalism applied for two-dimensional materials.
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9 BAND-GAP FORMATION AND MORPHING IN α −T3 SUPERLATTICES

Electrons in α −T3 lattices behave as condensed-matter analogies of integer-spin

Dirac Fermions. The three atoms making up the unit cell bestow the energy spectrum with

an additional energy band that is completely flat, providing unique electronic properties. The

interatomic hopping term, α , is known to strongly affect the electronic spectrum of the 2D

lattice, allowing it to continuously morph from graphene-like responses to the behaviour of

Fermions in a Dice lattice. For pristine lattice structures, the energy bands are gapless, however

small deviations in the atomic equivalence of the three sublattices will introduce gaps in the

spectrum. It is unknown how these affect transport and electronic properties such as the energy

spectrum of superlattice mini-bands. Here we investigate the dependency of these properties on

the parameter α accounting for different symmetry-breaking terms and show how it affects band

gap formation. Furthermore, we find that superlattices can force band gaps to close and shift

in energy. Our results demonstrate that α −T3 superlattices provide a versatile material for 2D

band gap engineering purposes.

9.1 Motivation

The isolation of a stable single layer of carbon atoms arranged in a hexagonal lattice,

known as graphene, in 2004 (NOVOSELOV et al., 2004) combined with the extraordinary

electronic and transport properties observed in the atomically thin material (NOVOSELOV et al.,

2004; MOROZOV et al., 2008; KATSNELSON et al., 2006; SONIN, 2009) has motivated many

researchers to investigate and produce other two-dimensional (2D) materials (NOVOSELOV

et al., 2004; LIU et al., 2014; LIU et al., 2011; DÁVILA et al., 2014). The peculiar electronic

properties of graphene are the result of charge carriers described by an equation analogous to

the Dirac one for relativistic particles but here the presence of a variable similar to a spinor

representation, differently from the "real" one, results only from the crystal structure instead from

an intrinsic property of the particles. Therefore the charge carriers in graphene are commonly

referenced as pseudospin-1/2 particles (DIVINCENZO; MELE, 1984; PERES, 2009). These

particles have a linear energy dispersion where valence and conduction bands touch each other in

special points in reciprocal space called Dirac points (MOROZOV et al., 2008; KATSNELSON

et al., 2006; DIVINCENZO; MELE, 1984; PERES, 2009).

2D materials can be subjected to electrostatic potentials with a periodicity signif-
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icantly larger than the inter-atomic distance (STANDER et al., 2009; YOUNG; KIM, 2009;

HUARD et al., 2007; ALLAIN; FUCHS, 2011). Because one can easily change the strength

of the electrostatic potential, this method has been thoroughly investigated as a way to tune

electronic properties of the charge carriers in these 2D systems (TSU, 2010; BAI; ZHANG,

2007; PARK et al., 2008a; BARBIER et al., 2008; WANG; ZHU, 2010; SUN et al., 2010;

TAN et al., 2010). Superlattice potentials are known to increase the number of Dirac points of

graphene (BAI; ZHANG, 2007; PARK et al., 2008a; BARBIER et al., 2008; BARBIER et al.,

2010a; BREY; FERTIG, 2009; PARK et al., 2009; BARBIER et al., 2010b; PARK et al., 2008)

and as such introduce new physical modes at zero energy, as recently observed in Ref. (LI et

al., 2021). Some relevant applications originated from the periodic structures are electron beam

supercollimation and electron wave filter (BARBIER et al., 2010b; PARK et al., 2008).

Recently, novel and distinctive physics has emerged from 2D systems when adding

an additional atom in their crystal structure (BORISENKO et al., 2014; SLOT et al., 2017; LI et

al., 2018; LIU et al., 2014; DÓRA et al., 2011; RAOUX et al., 2014; SUTHERLAND, 1986;

LIEB, 1989), which leads to their charge carriers in a low-energy approach to be described as

enlarged pseudospin Dirac Fermions (DÓRA et al., 2011; RAOUX et al., 2014; MALCOLM;

NICOL, 2014; LAN et al., 2011; WANG; YAO, 2018). Among these systems we have Lieb

lattice with the additional atom at edges of a square-lattice, which was recently obtained by

adding carbon monoxide molecules to a substrate (SLOT et al., 2017) and the T3 or dice lattice

which has an additional atom at the center of the hexagonal structure. In both, different from

graphene, the massless Dirac Fermions are described as spin-1 particles and an additional flat-

band touching the top of the valence and the bottom of the conduction linear bands (ILLES,

2017; IUROV et al., 2019). This flat band has important and unusual effects on the electronic

properties due to its dispersionless nature and thus an infinity effective mass (WANG; YAO,

2018; ILLES, 2017; IUROV et al., 2019; XIE et al., 2017; XU; JIN, 2014; URBAN et al.,

2011; TAN et al., 2021; WEEKES et al., 2021; ILLES; NICOL, 2017). Moreover, flat bands

are predicted to be important in the search for room-temperature superconductivity (PEOTTA;

TÖRMÄ, 2015; JULKU et al., 2016).

The graphene hexagonal lattice and T3 or dice lattice are incorporated in the α −
T3 model (ILLES, 2017; URBAN et al., 2011; TAN et al., 2021; WEEKES et al., 2021;

MANDHOUR; BOUHADIDA, 2020; ILLES; NICOL, 2017). It allows a tuning between the

central atom arrangement and the hexagonal structure by varying the parameter α . Graphene
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and T3 are the limiting cases α = 0 and α = 1, respectively.

The α −T3 model has been useful to investigate physical systems presenting Dirac

Fermions with a larger pseudo-spin value. The α − T3 model was originally proposed to

describe the dia- to paramagnetic transition in the orbital susceptibility in an optical lat-

tice of cold atoms (VAISHNAV; CLARK, 2008; DEY; GHOSH, 2019). The limiting case

α = 1 corresponds to the dice lattice which can be obtained by stacking three layers of

SrTiO3/SrIrO3/SrTiO3 (WANG; RAN, 2011), or be generated by controlling three laser beams

propagating in towards a two-dimensional layer of cold atoms (BERCIOUX et al., 2009). Like-

wise this model with appropriate doping and for the case α = 1/
√

3 can be used to describe

the three-dimensional Hg1−xCdxTe system (EDWALL et al., 1990; BETANCUR-OCAMPO;

GUPTA, 2017).

Curiously, systems with charge carriers described as spin-1 massless Dirac Fermions,

for certain energy conditions have an angular independent Klein tunneling through rectangular

electrostatic barriers which is called super-Klein tunneling (SKT). This isotropic transmission is

unlike single and bilayer graphene that show highly anisotropic transmission across such barriers.

In addition, the tunneling into the flat band across a potential step for generalized pseudospin has

been discussed as well (DÓRA et al., 2011; LAN et al., 2011). Previous studies considering

Dirac Fermions across electrostatic potentials in systems with intermediate values of α reveal

perfect transmission for normal incidence, and a general trend of enhanced transmission with

increasing α (LAN et al., 2011; MANDHOUR; BOUHADIDA, 2020; ILLES; NICOL, 2017).

Moreover, when more barriers are considered, in the case of the dice lattice the tunneling shows

little dependence on the number of barriers, whereas for graphene the number of barriers strongly

affects the tunneling (YANG et al., 2020).

Several studies have been published aiming at a way to create a band gap in these

structures (TAN et al., 2021; SHEN et al., 2010; XU et al., 2015; ROMHÁNYI et al., 2015;

GORBAR et al., 2019; GREEN et al., 2010).This is necessary for practical electronic applications

such as the fabrication of quantum information devices. It was demonstrated that an additional

mass term in α −T3 systems distorts the linear bands around the Dirac cone and produces an

energy gap with a third band in it which could be flat or dispersive (TAN et al., 2021; WEEKES

et al., 2021). The position of this band inside the band gap has important consequences for Klein

tunneling of massive Dirac Fermions across potential barriers.

Motivated by the richness of the tunneling properties and the peculiar electronic
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properties of Dirac Fermions with integer pseudospin, and aiming at understanding how the

band gap in α −T3 systems varies as function of the tuning parameter α in the presence of super

periodicity, we investigate the energy spectra and density of states (DOS) first in ungapped α −T3

superlattices, and subsequently we take into account the effect of different symmetry-breaking

terms. In both cases we pay special attention to the appearance of mini-bands, its band flatness,

and its dependence on the coupling parameter α .

In this chapter we discuss the electronic properties of charge carriers in α − T3

lattices and how this is affected by small deviations in the atomic equivalence between the

sites and the presence of mass terms. We develop the transfer matrix approach to analyze the

energy spectra of Dirac Fermions in α −T3 in the presence of a one-dimensional(1D) periodic

potential. The band gap morphing and its dependence on (i) the coupling parameter, and (ii) the

symmetry-breaking between the atomic sites by the inclusion of different mass terms are also

discussed.

9.2 Fermions in α −T3 lattices

9.2.1 Energy spectrum and eigenstates

Figure 48 – Schematic of the α −T3 lattice where the sites of the three sublattices are coloured
differently. The limit α = 0 corresponds to the honeycomb lattice (graphene-like), and α = 1
corresponds to the dice lattice. The hopping amplitude between the different atoms is indicated.
The region bounded by the grey lines corresponds to the unit cell.

An α−T3 lattice is formed by the superposition of three triangular sublattices (RAOUX

et al., 2014). Two of them are formed by atom sites A and B arranged in a hexagonal lattice with

hopping term t. The additional site C is connected only to sites B by a hopping term tuned by a

parameter α , which is the parameter that provides a continuous transition from the honeycomb

(α = 0) to the dice (α = 1) lattice and determines the strength of coupling between the C atoms
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at the center of the honeycomb lattice, as shown in Fig. 70. The distance between the A, B and

C atoms are the same and denoted by a0. The hopping parameters t, α and a0 depend on the

specific atomic composition of the lattice under consideration and completely determine the

properties of the α −T3 lattice.

The presence of the additional site C centered in the honeycomb lattice results in

some interesting electronic properties, like e.g. the presence of a flat band in addition to the

linear bands and the larger value of pseudospin of charge carriers in these lattices (DÓRA et al.,

2011; RAOUX et al., 2014; ILLES, 2017; URBAN et al., 2011; ILLES; NICOL, 2017; WANG;

RAN, 2011; BERCIOUX et al., 2009; EDWALL et al., 1990; BETANCUR-OCAMPO; GUPTA,

2017).

The lattice structure determines the kinetic energy of the Fermions in the material.

The low-energy Hamiltonian of Fermions in a α −T3 lattice around the K point is given by the

3×3 matrix expressed in the sublattice basis |Ψ⟩= (|ψA⟩, |ψB⟩, |ψC⟩) as (RAOUX et al., 2014;

URBAN et al., 2011)

Ĥkin =




0 fξ (⃗k)cosθ 0

f ∗ξ (⃗k)cosθ 0 fξ (⃗k)sinθ

0 f ∗ξ (⃗k)sinθ 0


 . (9.1)

In Eq. (10.1) we introduced the parameter θ = tan−1 α , where θ = 0 and θ = π/4 corresponds to

honeycomb and dice lattices, respectively. The function fξ (⃗k) = vF(ξ kx− iky) with vF = 3a0t/2h̄

the Fermi velocity and k⃗ = (kx,ky) the wave vector. Here, ξ = ±1 is the valley index for the

K and K
′
valleys, respectively (RAOUX et al., 2014; URBAN et al., 2011). In the absence of

external potentials, the eigenstates of the Hamiltonian are given by

|Ψ±⟩=




cosθeiφk

±1

sinθe−iφk


 , (9.2)

with eigenvalues E± =±h̄vFk, where ± indicates the conduction and valence bands, respectively.

The angle φk = tan−1(ky/kx) corresponds to the angle associated with the momentum vector. In

addition, a flat band state is found

|Ψ0⟩=




cosθeiφk

0

sinθe−iφk


 , (9.3)
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Figure 49 – Energy spectrum of massless Dirac fermions in the α −T3 lattice (a) in the full first
Brillouin zone, and (b) around the K point.

with eigenvalue E = 0 corresponding to strongly degenerate states (DÓRA et al., 2011; WANG;

RAN, 2011; BERCIOUX et al., 2009), as represented in Fig. 49. Notice that the energy

eigenvalues E do not depend on θ . The parameter is solely affecting the eigenstates.

9.2.2 Introduction of a band gap

The Dirac point at E = 0 in the pristine α −T3 lattice is triple degenerate as seen in

Fig. 49. This degeneracy is produced by the equivalence of the three sub-lattices. Breaking this

equivalence will lead to a lifting of the degeneracy and the introduction of a band gap. In general,

one can include this in the Hamiltonian by a term proportional to Û that enters as follows:

Ĥ = Ĥkin +∆Û , (9.4)

with Ĥkin given by Eq. (10.1), and ∆ measures the strength of the symmetry breaking. The

Hamiltonian in Eq. (10.4) is obtained from an expansion of the tight-binding model to nearest

neighbors of the α −T3 lattices around the K point of the first Brillouin zone when different

on-site energies are considered (ILLES, 2017; URBAN et al., 2011; BERCIOUX et al., 2009).

In this work, we consider two different forms of Û , respectively, given by

Û1 =




1 0 0

0 −1 0

0 0 1


 , Û2 =




1 0 0

0 0 0

0 0 −1


 . (9.5)

The effects of the inclusion of the terms Û1 and Û2 on the energy spectrum are shown in Fig. 50

and Fig. 51, respectively.

The term Û1 introduces a site energy on the different sub-lattices as has been dis-

cussed for photonic crystals and optical lattices (SHEN et al., 2010; XU et al., 2015). The
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Figure 50 – Energy spectrum of Dirac Fermions for arbitrary values of the parameter θ in the
α −T3 lattice when the symmetry-breaking term Û = Û1 is used in Eq. (10.4). (a) Full first
Brillouin zone, and (b) spectrum around the K point.

solution of ĤΨ = EΨ for this case gives the eigenenergies

E0 = ∆ , E =±
q

∆2 + h̄2v2
Fk2 . (9.6)

Correspondingly, the wave-functions in this case are given by

|ψ0⟩=




cosθeiφk

0

sinθe−iφk


 , |ψ±⟩=




α cosθe−iφk

γ

α sinθeiφk


 , (9.7)

where α =
√

E +∆, and γ =
√

E −∆.

Similar sublattice symmetry breaking systems have been discussed suggesting that

such mass potential term is attainable by depositing graphene on specif substrates, such SiC (KIM

et al., 2008; NEVIUS et al., 2015), and h-BN (ZHOU et al., 2007). In Eq. (10.6) we find the

presence of a gap 2∆ opening in the energy spectrum. This results in massive Dirac Fermions

with an effective mass defined as m = ∆/v2
F . Since Eq. (10.6) does not depend on the parameter

θ the energy spectrum remains the same for all α −T3 lattices, as shown in Fig. 50. Moreover,

as long as the equivalence between the sites A and C is maintained, the flatband is shifted and

touches only the bottom of the conduction band. Notice that now the bottom of the conduction

band and the top of the valence band are quadratic in k⃗.

On the other hand, the term Û2 defined in Eq. (9.5) has been used to describe the

effect of a pseudomagnetic field (ROMHÁNYI et al., 2015; GORBAR et al., 2019), and the

dispersion relations for this case are obtained from a solution of the non-linear equation

E(∆2 −E2)+ k2(∆cos2θ +E) = 0, (9.8)
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and the eigenstate for the conduction and valence band are given by

|ψ⟩=




α ′ cosθeiφk

γ ′

β sinθe−iφk


 , (9.9)

with α ′ =
p

1+2∆/(E −∆), γ ′ =
p

1+∆cos(2θ)/E and β =
p

1−2∆/(E +∆).

Unlike the previous case, there is no longer equivalence between the site C and the

other sites of the crystal structure, which means that small deviations of the coupling parameter α

results in different eigenenergies as depicted in Fig. 51. In this case the flat band is dispersionless

only when θ = π/4 (dice lattice) and is located in the center of the energy gap (GORBAR et al.,

2019; GREEN et al., 2010), as shown in Fig. 51(a).

9.3 Superlattice

In this chapter one of our goals is investigate how fermions in α − T3 lattices

are affected by a one-dimensional periodic electrostatic potential. In casu, we investigate one-

dimensional potentials with a periodicity much larger than the interatomic distance, i.e. L/a0 ≪ 1.

We consider an infinite number of barriers periodically spaced with unit cell length L =Ww+Wb,

with Ww(Wb) the width of well(barrier), as illustrated in Fig. 52. The general Hamiltonian taking

into account the presence of symmetry-breaking terms is now given by (LAN et al., 2011;

URBAN et al., 2011; ILLES; NICOL, 2017)

Ĥ = Ĥkin +V (x)Î +∆Ûi, (9.10)

with Ĥkin given by Eq. (10.1), V (x) =Vb the periodic potential, and ∆Ûi represent the symmetry-

breaking term which can be translated into a mass term. Due to translation invariance in the y

direction the wave-functions have the form Ψ j(x,y) = Ψ j(x)eikyy with label j = w or j = b used

to denote the region of well(barrier), and Ψ j(x) is given by:

ψ j(x) =
A√
2




α j cosθeiφ j

γ j

β j sinθe−iφ j


eik jx +

B√
2




−α j cosθe−iφ j

γ j

−β j sinθeiφ j


e−ik jx. (9.11)

The angles φw = tan−1(ky/kw) and φb = tan−1(ky/kb) are the angles associated with the direction

of the momentum of the electron in the well and barrier regions, respectively, as depicted in the
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Figure 51 – Energy spectrum of Dirac Fermions in the α −T3 lattice for different values of θ
when the symmetry-breaking term Û = Û2 is used in Eq. (10.4). The full first Brillouin zone is
shown at the top and bellow the energy spectrum around the K point for (a) θ = 0 (graphene-like
case), (b) θ = π/12, (c) θ = π/6, and (d) θ = π/4 (dice case).

inset of Fig. 52, and both in addition to the terms α j, γ j, and β j are obtained from the eigenstates

equation using the Hamiltonian Eq. (10.10).

Moreover, the constants A,B,C,D are determined by requesting continuity of the

wave-functions. Writing the wave-functions given by Eq. (10.11) in the general form Ψ(x) =

(ψA(x),ψB(x),ψC(x)) and by integrating the eigenvalue equation ĤΨ = EΨ over a small interval

x = [−ε,ε] and allowing the interval to approach zero, we obtain the following matching
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Figure 52 – Schematic representation of the superlattice potential in x− y plane. Dark regions
denote the barrier region with height V (x) =Vb and the white region represents the well with
zero potential. The angles φw and φb in the inset, respectively, denote the angles of the carriers in
the wells and barriers regions. The profiles of the 1D periodic potential is given by the figure at
the bottom.

conditions for the wave-function on either side of the superlattice

ψB(−ε) = ψB(ε), (9.12a)

and

cosθψA(−ε)+ sinθψC(−ε) = cosθψA(ε)+ sinθψC(ε). (9.12b)

These matching conditions are different from those of the two limiting cases in the

α −T3 model, i.e. graphene-like (α = 0) and dice lattice (α = π/4) (ALLAIN; FUCHS, 2011;

ILLES; NICOL, 2017). Whereas for graphene which has pseudospin-1/2 the matching conditions

simply require the continuity of each two-component of the wave-function, however for the dice

lattice which has integer pseudospin, the matching condition takes into account a sum of the first

and last component of the three-components of the wave-function, as indicated in Eq. (10.12)

by setting cosθ = sinθ = 1/
√

2. Applying the matching conditions given by Eq. (10.12) into

Eq. (10.11) we obtain the transfer matrix for the α −T3 superlattice

T = Ωkw(L)Ω
−1
kw
(Wb)Ωkb(Wb)Ω−1

kb
(0), (9.13)
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where

Ωk j(x) =


 γ jeik jx γ je−ik jx

λ jeikwx −λ ∗
j e−ikwx


 , (9.14)

with

λ j = cos2 θeiφ j + sin2 θe−iφ j . (9.15)

Inserting Eq. (10.15) into Eq. (10.13) we get:

T =
1

abaw


c+λ †

b + c−λb γb(c+− c−)

d+λ †
b +d−λb γb(d+−d−)


 , (9.16)

where

a j = γ j(λ ∗
j +λ j), (9.17a)

c+ = eikbWbγw (γbb1 +λbb2) ,

c− = e−ikbWbγw (γbb1 −λ ∗
b b2) , (9.17b)

d+ = eikbWb (γbλwλ ∗
wb2 + γwλbb3) ,

d− = e−ikbWb (γbλwλ ∗
wb2 − γwλ ∗

b b3) (9.17c)

with b1 = λ ∗
weikwWw +λwe−ikwWw ,b2 = eikwWw − e−ikwWw and b3 = λweikwWw +λ ∗

we−ikwWw .

According to Bloch’s theorem and requiring det[T ] = 1 the electronic dispersion at

any incident angle is given by 2cos(KxL) = Tr(T ), where Kx = 2πn/L expresses the periodicity

of the superlattice structure. This results into the following nonlinear equation for the dispersion

relation

cos(KxL) =cos(kbWb)cos(kwWw)

−GU sin(kbWb)sin(kwWw), (9.18)

where GU differs by the presence or absence of the symmetry-breaking term. It is denoted by

G0 for the gapless case, G1, and G2 when Û1, and Û2 are taken into account, respectively. As

we will demonstrate further on, since the dispersion relation given in Eq. (9.18) depends on the

symmetry between the atomic sites of the crystal structure, the inclusion of small deviations

between them lead to large changes in the energy spectra and the band gap.
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The allowed states for the superlattice is obtained when −1 ≤ cos(KxL) ≤ 1 in

Eq. (9.18) which corresponds to the energy spectra for this system in the ky plane. In addition,

we can derive the density of states (DOS) represented by D(E) and given by

D(E) = ∑
n,ky

δ (E −En,ky), (9.19)

and expressed in units of D0 = L/h̄vF , which corresponds to the amount of states per unit area

and L is the period of the superlattice.

9.4 Pristine system

To start, we consider the pristine system corresponding to Ûi = 0 in Eq. (10.10). The

solution of ĤΨ j = EΨ j in this case leads to α j = γ j = β j = 1 in the wave-functions given by

Eq. (10.11). Moreover, from the secular equation det(Ĥ −E) = 0 we obtain, respectively, the

wave-vectors in the x−direction in the well and barrier regions

kw =

s�
E

h̄vF

�2

− k2
y , kb =

s�
E −Vb

h̄vF

�2

− k2
y , (9.20)

with h̄vF = 3a0t/2.

From the transfer matrix in Eq. (9.16) we find the dispersion relation given by

Eq. (9.18) with GU = G0 where

G0 =
1

kwkb

"
E(E −Vb)

h̄2v2
F

+
(E2 +(E −Vb)

2)k2
y(cos2(2θ)−1)

2E(E −Vb)
− k2

y cos2(2θ)

#
. (9.21)

An electrostatic superlattice is capable of multiplying the number of Dirac points (BAR-

BIER et al., 2010a). These are points in reciprocal space where the valence and conduction bands

touch each other and around which the energy spectrum is linear. Therefore, it is interesting to

calculate how the α −T3 lattice Dirac point is affected by the superlattice potential.

In order to determine the location of the Dirac points for the symmetric case Wb =

Ww =W we take Kx = 0, and kb = kw in Eq. (9.18). Inserting this latter condition into Eq. (10.21),

we have E =Vb/2. Thus, Eq. (9.18) becomes

1 =cos2 (kbW )+ sin2 (kbW )
"

V 2
0 /4h̄2v2

F +2k2
y cos2(2θ)− k2

y

V 2
0 /4h̄2v2

F − k2
y

#
. (9.22)
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This equation has solutions when the term between brackets is equal to 1, or sin2 (kbW ) = 1.

The first possibility is obtained for ky = 0 and corresponds to the main Dirac point at ky = 0.

The second possibility leads to kbW = nπ with n being a positive integer. This last possibility

determines the position of the extra Dirac points in ky space from Eq. (10.21),

ky =

s
V 2

b

4h̄2v2
F
−
�nπ

W

�2
. (9.23)

Note from Eq. (9.22) that for the symmetric case the condition to determine the

position of Dirac points is regardless of the parameter θ . Note that when θ = 0, Eq. (9.22)

reduces to

1 =cos2 (kbW )+ sin2 (kbW )
�

V 2
b /4h̄2v2

F + k2
y
�
/

V 2

b /4h̄2v2
F − k2

y
��
, (9.24)

which is consistent with the equation that determines the Dirac points for graphene (BARBIER

et al., 2010a). As discussed above, there is no real solution for Eq. (9.24) unless ky = 0 that

represents the usual Dirac point, or kbW = nπ (WANG; ZHU, 2010; BARBIER et al., 2010a;

BREY; FERTIG, 2009).

On the other hand, when we set θ = π/4, Eq. (9.22) leads to

cos2 (kbW )+ sin2 (kbW ) = 1. (9.25)

Unlike the graphene-like case, Eq. (9.22) has many solutions and the condition for allowed states

in the dispersion relation of Eq. (9.18) is always satisfied for arbitrary ky.

In Figs. 53(a-d) we show the electronic band structures at KxL = 0 for some values of

the parameter θ assuming Ww =Wb = L/2 and Vb = 7EL, where EL = h̄vF/L and L/a0 = 1200.

As discussed above, one Dirac point appears at E =Vb/2 and kyL = 0 for 0 ≤ θ < π/4 as shown

in Figs. 53(a-c), moreover the upper and lower bands gradually becomes closer as the structure

reaches θ = π/4 (dice lattice), when the Dirac point disappears and all states at E = 3.5EL are

allowed regardless of the values of kyL, as shown in Fig. 53(d).

The dependence on the parameter θ observed in the energy spectra can be better

understood from the density of states (DOS) shown in Fig. 54 for the same parameters as in

Fig. 53. For the dice case, depicted by the magenta dotted curve, we notice the presence of a

pronounced peak, which agrees with Eq. (9.25) representing the manifestation of the flat band

and, therefore, an enhancement of the number of states.

In Fig. 55 the spectrum resulting from Eq. (9.18) using Eq. (9.21) for equal barrier

and well width is plotted taking L/a0 = 1200, and Vb = 21EL for θ = 0 and θ = π/4. We
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Figure 53 –Electronic band structures at KxL= 0 for (a) θ = 0 (graphene-like case), (b) θ = π/12,
(c) θ = π/6, (d) θ = π/4 (dice case) with Vb = 7EL, Ww =Wb = L/2, where L/a0 = 1200, and
EL = h̄vF/L

Figure 54 – Density of states for θ = 0 (black solid curve), θ = π/12 (blue dashed curve),
θ = π/6 (red dash-dotted curve), θ = π/4 (magenta dotted curve) for the same parameters as in
Fig. 53.

observe for the honeycomb case, i.e. θ = 0, the appearance of extra Dirac points localized to

the left and to the right of the main one at the energy corresponding to Vb = 10.5EL for KxL = 0.

However, at this same point for the dice case the Dirac points disappear giving rise to a flat band,

which can be observed clearer in Fig. 56 where we show the superlattice spectrum along kyL for

KxL = 0 for different values of θ . We notice that as θ increases the spacing between the upper



159

E
/E
L

13.5

12.0

10.5

9.0

7.5
-10

10
-5 50

0
3

-3 K x
L

kyL

0
3

-3
-10

10
-5

50
kyL

K x
L

E
/E
L

13.5

12.0

10.5

9.0

7.5

Figure 55 – Valence and conduction bands of the spectrum of a superlattice considering θ = 0
(graphene-like), and θ = π/4 (dice) with Vb = 21EL, Ww =Wb = L/2, where L/a0 = 1200, and
EL = h̄vF/L.

Figure 56 – Electronic band structures for KxL = 0 with θ = 0 (black solid curve), θ = π/6 (red
dashed curve), and θ = π/4 (blue dot-dashed curve) for KxL= 0 with Vb = 21EL, Ww =Wb = L/2,
where L/a0 = 1200, and EL = h̄vF/L.

and lower bands around the Dirac points decreases.

Moreover, the group velocity along the kyL direction around the main and the extra

Dirac points denoted in Fig. 56 by the labels I and II is shown in Fig. 57. Notice that the slope of

the dispersion relation around these points is strongly reduced as compared to the value vF when

no superlattice is imposed. This result is similar to the collimation effect observed in graphene

as new extra Dirac points are to arise when the height of the potential Vb increases as discussed

in Ref. (BARBIER et al., 2010a). But now, the collimation effect results from changing the

coupling constant θ .



160

Figure 57 – Group velocity along ky direction around the main Dirac point (I), and around the
extra Dirac point (II) indicated in Fig. 56.

9.5 Introduction of gaps in the superlattice energy spectrum

Using the transfer matrix formalism from Sec. 9.3, we analyze the appearance and

morphing in α −T3 superlattices when including deviations in the atomic equivalence of the

three sublattices and by adding the terms Û1 or Û2.

9.5.1 Gapped case Û1 =diag(1,−1,1)

Assuming Û = Û1 in Eq. (10.10), we obtain the wave-functions expressed in

Eq. (10.11) in the well ( j = w) and barrier ( j = b) with αw = βw =
√

E +∆,αb = βb =
√

E −Vb +∆,γw =
√

E −∆ and γb =
√

E −Vb −∆.

The wave-vectors in x− direction in the well and barrier regions are

kw =

s
E2 −∆2

h̄2v2
F

− k2
y , (9.26a)

kb =

s
(E −Vb)2 −∆2

h̄2v2
F

− k2
y . (9.26b)

From the transfer matrix method we get the dispersion relation in Eq.(9.18) with

GU = G1

G1 =−1
2

"�
ηw1

ηb1

+
ηb1

ηw1

�
+ cos2(2θ)

 
k2

y

k2
b

ηb1

ηw1

+
k2

y

k2
w

ηw1

ηb1

!
−2

k2
y

kwkb
cos2(2θ)

#
, (9.27)

with ηw1 = kwh̄vF/(E −∆) and ηb1 = kbh̄vF/(E −Vb −∆).

In order to analyze the effects on the energy spectrum, and investigate how the

Dirac points are affected due to the presence of this symmetry-breaking term, we consider

Wb =WW =W , and kwW =−kbW in Eq. (9.18) at the energy E =Vb/2 where, for gap-less case,
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the Dirac points are found. When we take into account these considerations and we assume

θ = 0, the dispersion relation becomes

cos(KxL) =cos2(kbW )+ sin2(kbW )

"
(V 2

b /4+∆2)/h̄2v2
F + k2

y

(V 2
b /4−∆2)/h̄v2

F − k2
y

#
, (9.28)

which has no real solution regardless of the value of ky, indicating the presence of a band gap in

the energy spectrum. This result can be extended to other cases where cos2θ ̸= 0 in Eq. (9.27).

Assuming the particular case θ = π/4 we get

cos(KxL) = cos2(kbW )+ sin2(kbW )

"
(V 2

b /4+∆2)/h̄2v2
F − k2

y

(V 2

b /4+∆2)/(V 2
b /4−∆2)

�

(V 2
b /4−∆2)/h̄2v2

F − k2
y

#
,

(9.29)

which has a real solution for two touching points ky =±
q

V 2
b /4−∆2/h̄vF . Unlike the dice case

in the absence of a mass term discussed in Sec. 9.3, the energy allowed states in the presence of

a symmetry-breaking term is no longer independent of ky at E =Vb/2.

This becomes more clear when we calculate the electronic band structure for some

particular values of the parameter θ , the effective mass term ∆ = 0.1Vb, Vb = 7EL, and L/a0 =

1200. The results are depicted in Fig. 58, where EL = h̄vF/L. As discussed from Eq. (9.28) and

Eq. (9.29), we can observe the presence of a band gap in the energy spectra at E = Vb/2, or,

in terms of the unit EL, E ≈ 3.5EL. Except for θ = π/4, where the band gap is closed at the

touching points ky =±
q

V 2
b /4−∆2/h̄vF , but we observe the formation of another band gap at

energy E ≈ 5EL. Moreover, the mini-bands present in the energy spectra for intermediate values

of θ are no longer symmetric around the band gap, as shown in Figs. 58(b)-(c). The band gap

morphing and its dependence on θ can be observed when we analyze the density of states (DOS)

of those systems shown in Fig. 59. The appearance of asymmetric mini-bands, and the band gap

shifting observed in Fig. 58(d) becomes clearly apparent. In addiction, unlike the graphene-like

case, when we assume θ ̸= 0 a new allowed energy state arises which appears as a new peak

localized in the energy range 7EL to 8EL as observed in Fig. 59 .

On the other hand, when we take a large value for the mass term ∆ = 0.4Vb maintain-

ing the other parameters used in Fig. 58, beyond the increased gap, we found that the mini-bands

change drastically. When θ ̸= 0, the energy spectra exhibit significant modifications in a large

range of energy, as shown in Figs. 60(b)-(d), where it is possible to see the appearance of new

mini-bands inside the band gap region, unlike the graphene-like case. The appearance of new

allowed states inside the region where for the graphene-like case there is only a band gap, is
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Figure 58 –Electronic band structures at KxL= 0 for (a) θ = 0 (graphene-like case), (b) θ = π/12,
(c) θ = π/6, (d) θ = π/4 (dice case) with Vb = 7EL, Ww =Wb = L/2, ∆ = 0.1Vb and Û = Û1,
where L/a0 = 1200, and EL = h̄vF/L in all cases.

Figure 59 – Density of states for θ = 0 (black solid curve), θ = π/12 (blue dashed curve),
θ = π/6 (red dash-dotted curve), θ = π/4 (magenta dotted curve) for the same parameters as in
Fig. 58.

clearly seen from the density of states, as shown in Fig. 61. In addition, the position of the

touching points given by ky =±
q

V 2
b /4−∆2/h̄vF depends on the mass term value, and these

points are shifted, as shown in Fig. 60(d). From Fig. 61 we observe that there is a prominent

peak when the dice case is considered similar to Fig. 59 but localized at different energy, which

results from the increase of the mass term ∆. Moreover, it is evident that there are more allowed
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Figure 60 –Electronic band structures at KxL= 0 for (a) θ = 0 (graphene-like case), (b) θ = π/12,
(c) θ = π/6, (d) θ = π/4 (dice case) with Vb = 7EL, Ww = Wb = L/2, ∆ = 0.4Vb for Û = Û1,
where L/a0 = 1200, and EL = h̄vF/L in all cases.

Figure 61 – Density of states for θ = 0 (black solid curve), θ = π/12 (blue dashed curve),
θ = π/6 (red dash-dotted curve), θ = π/4 (magenta dotted curve) for the same parameters as in
Fig. 60.

states in the energy range 2EL to 5EL for θ ̸= 0.

In Fig. 62 we show the dispersion relation obtained from Eq. (9.21) and Eq. (9.27)

assuming equal barrier and well widths, L/a0 = 1200, Vb = 21EL, and ∆ = 0.4Vb for θ = 0

and θ = π/4. Unlike the gap-less case, for θ = 0 the main Dirac point at kyL = 0 is no longer

observed, although the extra Dirac points on both sides remains. Similarly, for the dice case, the
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Figure 62 – Valence and conduction bands of the spectrum of a superlattice considering θ = 0
(graphene-like), and θ = π/4 (dice) with Vb = 21EL, Ww =Wb = L/2, Û = Û1, and ∆ = 0.4Vb.
Where L/a0 = 1200, and EL = h̄vF/L.

upper and lower mini-bands touch each other at two-points kyL ̸= 0, similar as in Fig. 58(d) and

Fig. 60(d).

Figure 63 – Electronic band structures at KxL = 0 for θ = 0 (black solid curve), θ = π/6 (red
dashed curve), and θ = π/4 (blue dot-dashed curve) with Vb = 21EL, Ww =Wb = L/2, ∆ = 0.4Vb
where L/a0 = 1200, and EL = h̄vF/L.

Moreover, when we assume the superlattice spectrum along kyL direction for KxL= 0

in Fig. 62 we find that the dispersion gradually changes around the point kyL = 0, becoming

flat for θ = π/4, as shown in Fig. 63. In addition, around the touching points the slope of the

dispersion decreases as θ increases.

9.5.2 Gapped case Û2 =diag(1,0,−1)

For the other symmetry-breaking term denoted by Û = Û2 in Eq. (10.10), we have

αw =
p

1+2∆/(E −∆),αb =
p

1+2∆/(E −Vb −∆),γw =
p

1+∆cos(2θ)/E,γb =
p

1+∆cos(2θ)/(E −
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p
1−2∆/(E +∆), and βb =

p
1−2∆/(E −Vb +∆). Consequently, the wave-functions kw and

kb are given by

kw =

s
(E2 −∆2)E

(h̄2v2
F)(E +∆cos2θ)

− k2
y , (9.30a)

kb =

s
((E −Vb)2 −∆2)(E −Vb)

(h̄2v2
F)(E −Vb +∆cos2θ)

− k2
y . (9.30b)

For this case we have

G2 =−1
2

��
ηw2

ηb2

+
ηb2

ηw2

�
+

 
k2

yηb2

k2
bηw2

((E −Vb)cos2θ +∆)2

(E −Vb +∆cos2θ)2 +
k2

yηw2

k2
wηb2

(E cos2θ +∆)2

(E +∆cos2θ)2

!

−
2k2

y

kwkb

((E −Vb)cos2θ +∆)(E cos2θ +∆)
(E −Vb +∆cos2θ)(E +∆cos2θ)

�
, (9.31)

and

ηw2 =
kw

(E2 −∆2)(E +∆cos2θ)
, (9.32a)

ηb2 =
kb

[(E −Vb)2 −∆2] [(E −Vb)+∆cos2θ ]
. (9.32b)

From Eq. (10.10) assuming ∆ = 0.1Vb for Û = Û2, and the same values of L and Vb as in Fig. 53,

Figure 64 –Electronic band structures at KxL= 0 for (a) θ = 0 (graphene-like case), (b) θ = π/12,
(c) θ = π/6, (d) θ = π/4 (dice case) with Vb = 7EL, Ww =Wb = L/2, ∆ = 0.1Vb when Û = Û2,
where L/a0 = 1200, and EL = h̄vF/L in all cases.
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Figure 65 – Density of states for θ = 0 (black solid curve), θ = π/12 (blue dashed curve),
θ = π/6 (red dash-dotted curve), θ = π/4 (magenta dotted curve) for the same parameters as in
Fig. 64.

we get the energy spectra shown in Fig. 64 for different values of θ . Similar to the case Û = Û1

we observe the presence of a band gap for all values of θ ̸= π/4 around E =Vb/2, i.e E = 3.5EL,

and the mini-bands tend to reach each other around this energy as θ increases until the band

gap is completely closed for the dice case, as shown in Fig. 64(d). Like the gapless case, all

energy states when θ = π/4 are allowed regardless of the ky value, which results in a prominent

peak in the density of states depicted in Fig. 65. This result can be expected when we assume

the condition Wb = Ww = W , E = Vb/2, and θ = π/4 in the dispersion relation for this case.

Under these conditions, the dispersion relation for the dice lattice reduces to the same one for

the gapless case represented in Eq. (9.25).

Moreover, comparing the band gap width observed in Fig. 64 to the one in Fig. 58

the band gap is reduced and shifted up, as observed in Fig. 65.

Similar to the previous gapped case, if we consider a larger value of the mass

term ∆ = 0.4Vb the band gap is increased and other allowed states appear inside them when

intermediate values of θ are considered, as shown in Fig. 66. However the allowed state for

arbitrary values of ky at E =Vb/2 for the dice lattice is preserved and a peak in the density of

states is observed for θ = π/4, as shown in Fig. 67, since this condition is independent of the

value of the effective mass. The spectrum obtained from Eq. (9.18) and Eq. (9.31) considering

equal barrier and well widths, L/a0 = 1200, Vb = 21EL, and ∆ = 0.4Vb for θ = 0 and θ = π/4

are shown in Fig. 68. Similar to previous gapped case, for θ = 0 the upper and lower mini-bands

touch each other in two-points, and at kyL = 0 there is a gap. However, as discussed above, the



167

Figure 66 –Electronic band structures at KxL= 0 for (a) θ = 0 (graphene-like case), (b) θ = π/12,
(c) θ = π/6, (d) θ = π/4 (dice lattice) with Vb = 7EL, Ww =Wb = L/2, ∆ = 0.4Vb when Û = Û2,
where L = 1200, and EL = h̄vF/L in all cases.

Figure 67 – Density of states for θ = 0 (black solid curve), θ = π/12 (blue dashed curve),
θ = π/6 (red dash-dotted curve), θ = π/4 (magenta dotted curve) for the same parameters as in
Fig. 66.

energy where the touching points are localized is no longer at E =Vb/2. On the other hand, for

the dice lattice the spectrum is completely flat at kyL = 0 and E =Vb/2, similar to Fig. 55.

In Fig. 69 we show the superlattice spectrum considering KxL = 0 along kyL direction

for some values of θ . Notice that the energy where the touching points are localized depends on

θ . Moreover, like the gapless case, as θ → π/4 the dispersion becomes flat and shifted to lower
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Figure 68 – Valence and conduction bands of the spectrum of a superlattice considering θ = 0
(graphene-like), and θ = π/4 (dice) with Vb = 21EL, Ww =Wb = L/2, Û = Û2, and ∆ = 0.4Vb.
Where L/a0 = 1200, and EL = h̄vF/L.

Figure 69 – Electronic band structures at KxL = 0 for θ = 0 (black solid curve), θ = π/6 (red
dashed curve), and θ = π/4 (blue dot-dashed curve) with Vb = 21EL, Ww =Wb = L/2, ∆ = 0.4Vb
where L/a0 = 1200, and EL = h̄vF/L.

values of energy.

9.6 Conclusions of this chapter

We investigated the energy spectrum and the density of states (DOS) of α − T3

lattices for different values of interlattice hopping parameter θ = tan−1 α in the presence of a 1D

superlattice. We consider both the case of equivalence between the three sub-lattices, and how

the band gap is affected by small deviations of this equivalence in the limit ∆ ≪ t by considering

two cases of symmetry-breaking terms denoted by Û1 and Û2.

For the pristine system, when no symmetry-breaking term are present, we found

the condition for the appearance of Dirac points that depends on the cosine function of the

parameter θ , indicating that the energy level where they are located remains the same for all
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cases when cos(2θ) ̸= 1. When θ = π/4 all energies are allowed for arbitrary ky. Moreover,

the mini-bands for intermediate values of θ tends to close around the energy level where Dirac

points are localized. In addition, when we considered higher values of the potential, we observed

extra Dirac points localized on the right and on the left of the main one positioned at ky = 0 for

all values of θ ̸= π/4.

When we introduce symmetry-breaking terms into the system, we observed the

appearance of a band gap, whose creation depends on the deviation on the equivalence between

the three sub-lattices. When we considered the case Û1 = diag(1,−1,1), a band gap appears at

energy E =Vb/2. However for the dice case, around this energy, there is no longer a band gap

and the mini-bands touch at two points. This result can be observed either in the energy spectra

and in their corresponding DOS.

In addition, the mini-bands for larger values of the mass term was shifted up, which is

a consequence of the fact that the sites A and C remain equivalent, leading to twofold degeneracy

of the energy spectra, as in the case when there is no periodic potential present. Moreover, for

larger values of the potential the main Dirac point for all θ values is no longer present, only the

extra ones appear and are localized at the energy E =Vb/2.

When Û2 = diag(1,0,−1), the dispersion relation, and consequently, the energy

spectrum is strongly altered. For the dice case, we found that the condition for the allowance

of the energy states at E =Vb/2 is always satisfied regardless of ky, similarly as in the gapless

case. However a band gap is still present but now localized at another energy. In addition, we

noticed that the band gap is smaller than the one observed when Û1. Moreover, for larger values

of the effective mass new energy states were observed inside the band gap as confirmed from

the density of states. In addition, for higher values of the potential considering θ ̸= π/4 only

the extra Dirac points are observed, like for the previous gapped case, but now the energy value

where they are localized depends on the hopping parameter.

The theoretical formalism and results obtained in this work are useful for a better

understanding of the band-gap behaviour of α −T3 lattices, and consequently demonstrate that

these materials are versatile for purposes of band-gap engineering in 2D materials, since the

band-gap is tunable by changing the interlattice hopping parameter and their symmetry.
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10 TUNNELING PROPERTIES IN α −T3 LATTICES: EFFECTS OF SYMMETRY-

BREAKING TERMS

The α −T3 lattice model interpolates a honeycomb (graphene-like) lattice and a T3

(also known as dice) lattice via the parameter α . These lattices are made up of three atoms

per unit cell. This gives rise to an additional dispersionless flat band touching the conduction

and valence bands. Electrons in this model are analogous to Dirac fermions with an enlarged

pseudospin, which provides unusual tunneling features like omnidirectional Klein-tunneling,

also called super-Klein tunneling (SKT). However, it is unknown how small deviations in the

equivalence between the atomic sites, i.e. variations in the α-parameter, and the number of tunnel

barriers changes the transmission properties. Moreover, it is interesting to learn how tunneling

occurs through regions where the energy spectrum changes from linear with a middle flat band

to a hyperbolic dispersion. In this paper we investigate these properties, its dependence on the

number of square-barriers and the α-parameter for either gapped and gapless cases. Furthermore,

we compare these results to the case where electrons tunnel from a region with linear dispersion

to a region with a band-gap. In the latter case, contrary to tunneling through a potential barrier,

the SKT is no longer observed. Finally, we find specific cases where transmission is allowed due

to a symmetry breaking of sublattice equivalence.

10.1 Motivation

The probability for a particle to cross potential barriers even through a classically

forbidden region with a tiny probability is a quantum phenomenon. This counterintuitive

aspect of the transmission takes place when a particle, with some probability, can create a

‘tunnel’ that enables it to traverse a potential barrier even when it is higher than its energy.

Although such tunneling is not expected in a classical particle dynamics approach, an analogous

effect called evanescent wave coupling takes place in optics, in which an electromagnetic

wave is transmitted through a region where the solution of the corresponding wave equation

is exponentially decaying. In quantum mechanics, likewise, the tunneling of a particle can be

said to arise due to the coupling of the propagating solutions of Schrödinger’s equation at either

sides of the potential barrier with decaying solutions in the barrier region, leading to non-zero

transmission probabilities (MARKOS; SOUKOULIS, 2008).

However, counterintuitive effects emerge in the tunneling of relativistic particles (DIRAC,

1928; KLEIN, 1929; DOMBEY; CALOGERACOS, 1999). One example is the total transmis-
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sion of relativist particles through large potential steps at certain values of momentum which is

known as the Klein paradox (KLEIN, 1929; DOMBEY; CALOGERACOS, 1999). Although it

was first described by Klein, experimental realization of a similar effect known as the “Klein

tunneling” (KT), an usual tunneling property characterized by the suppression of backscattering

by potential barriers (KATSNELSON et al., 2006; CHEIANOV; FAL’KO, 2006; JR et al.,

2006), has only recently become possible (HUARD et al., 2007; GORBACHEV et al., 2008;

STANDER et al., 2009; YOUNG; KIM, 2009) following the isolation of stable-single layer

(graphene) and bilayer carbon crystals where the carbon atoms are arranged on a honeycomb

lattice (HCL) (NOVOSELOV et al., 2004; MOROZOV et al., 2008; KATSNELSON et al.,

2006; SONIN, 2009). Since electrons in graphene at low-energy are well described by the

two-dimensional (2D) massless Dirac equation, i.e. the Dirac-Weyl equation with pseudospin

S = 1/2, graphene boosted the exploration of fundamental research in 2D materials (MIRANDA

et al., 2021), bridging condensed matter physics, relativistic quantum mechanics, and quantum

field theory, resulting in the probing of interesting relativistic predictions, such as KT (HUARD et

al., 2007; GORBACHEV et al., 2008; STANDER et al., 2009; YOUNG; KIM, 2009; KATSNEL-

SON et al., 2006; SONIN, 2009) and Zittebewegung (RUSIN; ZAWADZKI, 2008; ZAWADZKI;

RUSIN, 2011; CUNHA et al., 2019; LAVOR et al., 2020).

The KT observed in graphene is strongly related to the conservation of chirality for

carriers in this material and the nature of its pseudospin (ALLAIN; FUCHS, 2011; PEREIRA et

al., 2010). Instigated by such unusual properties lying on the 2D panorama, the search for new

graphene-based materials has been intensified in the past two decades. Examples of these 2D

materials is T3 or dice lattice (RAOUX et al., 2014), Lieb (SLOT et al., 2017) and Kagome (LI

et al., 2018). These lattices result from altering the HCL of graphene by adding an atom at the

center of the hexagons of the unit cell (BORISENKO et al., 2014; SLOT et al., 2017; LI et

al., 2018; LIU et al., 2014; DÓRA et al., 2011; RAOUX et al., 2014; SUTHERLAND, 1986;

LIEB, 1989). As a consequence, the charge carriers are described as enlarged pseudospin Dirac

fermions (DÓRA et al., 2011; RAOUX et al., 2014; MALCOLM; NICOL, 2014; LAN et al.,

2011; WANG; YAO, 2018) and a flatband appears touching the top of the valence and the bottom

of the conduction linear bands in the energy spectrum (ILLES, 2017; IUROV et al., 2019). This

flatband has important and unusual effects on the electronic properties due to its dispersionless

nature (WANG; YAO, 2018; ILLES, 2017; IUROV et al., 2019; XIE et al., 2017; XU; JIN, 2014;

URBAN et al., 2011; TAN et al., 2021; WEEKES et al., 2021; ILLES; NICOL, 2017).
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The α −T3 model interpolates between the HCL and the dice lattice by varying

the parameter α = tanθ , corresponding to the strength between the HCL and the central site,

from α = 0 to α = 1, respectively, with the limiting cases of the HCL (θ = 0) and the dice

lattice (θ = π/4) (ILLES, 2017; URBAN et al., 2011; TAN et al., 2021; WEEKES et al., 2021;

ILLES; NICOL, 2017). Unlike graphene, charge carriers in α −T3 lattices are described as

massless Dirac fermions only in the limiting case α = 1, i.e. dice. For certain energy conditions,

it presents an angular independent Klein tunneling through rectangular electrostatic barriers

called super-Klein tunneling (SKT) (LAN et al., 2011; ILLES; NICOL, 2017). In addition, an

extraordinary Snell law is found allowing a refracted particle beam to be focused at one point,

such as occurs in a Veselago lens (VESELAGO, 1967; CHEIANOV et al., 2007). Furthermore,

there is a general trend of enhanced transmission when increasing the α-parameter (LAN et

al., 2011; MANDHOUR; BOUHADIDA, 2020; ILLES; NICOL, 2017). Moreover, in the case

of the dice lattice the tunneling is less sensitive to the number of barriers for certain values of

energy (YANG et al., 2020), whereas for graphene the number of barriers strongly affects the

tunneling (BARBIER et al., 2008).

Nonetheless, for practical electronic applications such as the fabrication of quantum

information devices the creation of a band-gap is necessary. It was demonstrated that an

additional mass term in α −T3 systems distorts the linear bands around the Dirac cone and

produces an energy gap with a third band in it which could be flat or dispersive (TAN et al.,

2021; WEEKES et al., 2021). In the present work and using the theoretical formalism developed

in Ref. (CUNHA et al., 2021), we theoretically study the emergence of SKT and under what

conditions this phenomena is affected when the equivalence between the sublattices is broken and

by increasing the number of barriers. We find that as a consequence of the enlarged pseudospin

and the symmetry between the three sublattices, for dice the increasing of the number of barriers

effects is less in the transmission properties for electrons with incident energy around half

the height of the potential and omnidirectional tunneling is observed regardless the number of

barriers. Additionally, we investigate the role of the location of the flat band in the transmission

properties of charge carriers across potential barriers for some values of α when different

symmetry-breaking terms are taken into account. In both cases we find that small deviations

in the symmetry between the sublattices, followed by modifications in the electronic band

structures as discussed in Ref. (CUNHA et al., 2021), result in strong modifications on the nature

of wave-vectors inside the barriers, consequently, affecting the tunneling properties of charge
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Figure 70 – (a) Illustration of the α −T3 lattice with three atomic sites (A, B, and C) per unit cell
(yellow rhombus) is shown. α = 0 and α = 1 limits correspond to HC (graphene-like) and dice
lattices. A−B and B−C sites are connected by the hopping amplitude t and αt, respectively.
(b) Low energy spectrum of massless Dirac fermions in the α −T3 lattice, composed by a linear
dispersion and a flat-band.

carriers. Subsequently, we analyze the transmission of chiral electrons in α −T3 lattice through

a region where the electronic spectrum changes from linear dispersion to hyperbolic dispersion

with a band-gap and we compare these results with those for HCL (GOMES; PERES, 2008). We

highlight that KT is prevented to take place and the transmission probability is less than 1 for all

values of θ , although the peaks of resonant transmission becomes smooth as θ increases and a

perfect transmission is observed for larger values of incident angle.

In this chapter we discuss the electronic properties of charge carriers in α − T3

lattices, and how this is affected by small deviations in the atomic equivalence between the sites.

The consequences of the presence of mass terms on the energy spectrum are also discussed. We

develop the transfer-matrix approach to analyze the tunneling of Dirac fermions in α −T3 lattices

through a 1D periodic potential. Using this approach we analyze the transmission properties of

massless fermions and the effects of symmetry-breaking on the tunneling properties. Furthermore

we investigate the tunneling through spatial regions where the energy spectrum of fermions in

α −T3 changes from linear to hyperbolic dispersion.

10.2 Fermions in α −T3 lattice

The low-energy Hamiltonian for the α −T3 model, a crystallographic lattice com-

posed by three atoms per unit cell as illustrated in Fig. 70(a), around the K point in the first

Brillouin zone can be written as

Ĥkin =




0 fk(τ)cosθ 0

f ∗k (τ)cosθ 0 fk(τ)sinθ

0 f ∗k (τ)sinθ 0


 , (10.1)
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where θ = tan−1 α is the angle that provides a continuous evolution from the honeycomb

graphene-like (α = 0) to the dice (α = 1) lattice via the parameter α . The tuning parameter is

proportional to the strength of the coupling between B sites with the additional atoms C at the

center of the HCL, as shown in Fig. 70(a), and the other two atomic sites A and B are connected

by the hopping parameter t. In Eq. (10.1) we defined the function fk(τ) = vF(τkx − iky), with

vF = 3a0t/2h̄ the Fermi velocity, a0 the lattice constant, k⃗ = (kx,ky) the wave vector, and

τ =+1(−1) is the valley index for the K and K′ valleys, respectively. In the absence of external

potentials, the eigenstates of the Hamiltonian are given by

|Ψ±⟩=




cosθeiφk

±1

sinθe−iφk


 , (10.2)

with eigenvalues E± =±h̄vFk, where +(−) indicates the conduction and valence bands, respec-

tively, resulting in graphene-like conical energy bands. The angle φk = tan−1(ky/kx) corresponds

to the polar angle associated with the momentum-vector. In additional to the linear dispersion,

a third energy band, with eigenvalue E = 0, is also found, being a highly degenerate state, as

shown in Fig. 70(b). It is associated to the flat-band state

|Ψ0⟩=




cosθeiφk

0

sinθe−iφk


 , (10.3)

with eigenvalues that do not depend on the θ parameter, which affects only the eigenstates.

10.3 Introduction of band-gap

The degeneracy observed at E = 0 in the energy spectrum shown in Fig. 70(b) is

lifted when the equivalence between the three sub-lattices is broken, and a gap is introduced into

the energy spectrum. In general, we can include this in the Hamiltonian by a term Û , as follows:

Ĥ = Ĥkin +∆Û , (10.4)
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(a)

Figure 71 – Energy spectrum of Dirac fermions around the K point for different values of the
parameter θ in the α −T3 lattices when (a) the sublattice symmetry-breaking term Û = Û1 is
taken in Eq. (10.4), and for the symmetry-breaking term Û = Û2 when (b) θ = 0 (graphene-like),
(c) θ = π/12, (d) θ = π/6, and (e) θ = π/4 (dice).

with the kinetic term Ĥkin given by Eq. (10.1), and ∆ measures the strength of the sublattice

symmetry breaking. We consider two different forms of the Û matrix, respectively, given by

Û1 =




1 0 0

0 −1 0

0 0 1


 , Û2 =




1 0 0

0 −1 0

0 0 −3


 . (10.5)

The effects of the inclusion of the terms Û1 and Û2 on the energy spectrum are shown in Fig. 71(a)

and Figs. 71(b)-71(e), respectively.

The solution of ĤΨ = EΨ when Û = Û1 gives the eigenenergies

E0 = ∆, E =±
q

∆2 + h̄2v2
Fk2 . (10.6)

Correspondingly, the wave-functions in this case are given by

|ψ0⟩=




cosθeiφk

0

sinθe−iφk


 , |ψ±⟩=




α cosθe−iφk

γ

α sinθeiφk


 , (10.7)
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where α =
√

E +∆ and γ =
√

E −∆.

According to Eq. (10.6), one obtains an energy spectrum with a band-gap opening

of 2∆. It is worth mentioning that the format of Û2 in Eq. (10.5) was chosen in order that both

sublattice symmetry-breaking terms Û1 and Û2 give rise to the same 2∆ band-gap opening. This

results in massive Dirac fermions with an effective mass defined as m = ∆/v2
F . Since Eq. (10.6)

does not depend on the parameter θ , the energy spectrum remains the same for all α −T3 lattices,

as shown in Fig. 71(a). Moreover, as long as the equivalence between the sites A and C is

maintained, the flat-band is shifted and touches only the bottom of the conduction band. Notice

that now the bottom of the conduction band and the top of the valence band are quadratic in k.

When we assume Û = Û2 in Eq. (10.4), the energy dispersion relation is obtained

from a non-linear equation

(E +3∆)(E2−∆2)−k2(∆cos2θ+E+2∆cos2 θ)=0, (10.8)

and the eigenstates for the conduction and valence bands are given by

|ψ⟩=




α ′ cosθeiφk

γ ′

β sinθe−iφk


 , (10.9)

with α ′=
p
(E +3∆)/(E −∆), γ ′=

p
(E +∆cos(2θ)+2∆cos2 θ)/(E +∆), and β =

p
(E −∆)/(E +3∆).

Like the previous case, a 2∆ band-gap opening is still observed for all values of

θ , but now the previous flat-band no longer touches the bottom of the conduction band. In

addition, the dispersion of the middle band depends on the θ parameter, being flat only when

θ = π/4 (dice lattice - Fig. 71(e)). Note that for the specific case θ = 0 (graphene-like) the

energy spectra for Û1 (Fig. 71(a)) and Û2 (Fig. 71(b)) differ only by the localization of the flat

band. As we shall discuss later, this results in similar tunneling properties for both gapped cases

when one-dimensional square potentials are applied to these systems.

10.4 Transmission through one-dimensional periodic barriers

First, we investigate the transmission probability of fermions in α−T3 lattice through

a finite number N of electrostatic rectangular barriers of constant height V0, width d and inter-

barrier distance s− d, as depicted in Fig. 72. We consider both gapless and gapped cases as

obtained from the presence of sublattice symmetry-breaking terms given by Eq. (10.5). The
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Figure 72 – Schematic illustration (see top insets) of the wavevectors in the tunneling process
through an electrostatic finite superlattice formed by rectangular barriers of height V0 and width
d. The well width, i.e. the inter-barrier distance, is s−d.

general Hamiltonian taking into account both the presence of the symmetry-breaking term and

electrostatic potential is now given by

Ĥ = Ĥkin +V (x)Î +∆Û , (10.10)

where Ĥkin is given by Eq. (10.1), V (x) denotes the superlattice potential with translational

symmetry breaking along the x-direction, and ∆Û represents the previous sublattice symmetry-

breaking term assumed here by Eq. (10.5). Due to the translation invariance in the y-direction the

wave-functions have the form Ψ j(x,y) = Ψ j(x)eikyy, where the j index is related to the different

potential regions along the x-direction being outside ( j = w) and inside ( j = b) of the barrier.

Therefore, the wave-function can be written as

ψ j(x)=
A j√

2




α j cosθeiφ j

γ j

β j sinθe−iφ j


eik jx+

B j√
2




−α j cosθe−iφ j

γ j

−β j sinθeiφ j


e−ik jx. (10.11)

The angles φ j = tan−1(ky/k j) (with j = ω,b) are the angles associated with the direction of the

momentum of the electron in the regions inside and outside of the potential, as depicted in the

insets of Fig. 72. In addition, the terms α j, γ j, and β j, are obtained from the eigenstates equation

using the Hamiltonian Eq. (10.10).

In order to obtain the transmission probability through electrostatic barriers, we need

to solve the scattering problem by matching wave functions given in Eq. (10.11) at the interfaces

inside and outside the barrier. We assume potential variations that are smooth on the length scale

of the lattice constant a0 but sharp on the scale of the Fermi wavelength λF = 2πvF/|E|.
Writing the wave-functions given by Eq. (10.11) in its general form as

Ψ(x) = [ψA(x),ψB(x),ψC(x)]T and by integrating the eigenvalue equation ĤΨ = EΨ over a

small interval x = [−ε ,ε], in the limit ε → 0, we obtain the following matching conditions for
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the wave-function in each region

ψB(−ε) = ψB(ε), (10.12a)

cosθψA(−ε)+ sinθψC(−ε) = cosθψA(ε)+ sinθψC(ε). (10.12b)

Applying these matching conditions into Eq. (10.11), we obtain the transfer matrix for a single-

barrier

T (1) = Mb(d) ·Mw(0) =


w z

z∗ w∗


 , (10.13)

where Mb and Mw correspond to the transfer matrix into the well and barrier, respectively, and

are given by

Mb(d) = Ω−1
kw
(d)Ωkb(d), (10.14a)

Mw(0) = Ω−1
kb
(0)Ωkw(0), (10.14b)

with

Ωk j(x) =


 γ jeik jx γ je−ik jx

λ jeik jx −λ ∗
j e−ik jx


 , (10.15)

and λ j = α j cos2 θeiφ j +β j sin2 θe−iφ j . Using Eqs. (10.14) and (10.15), one can obtain explicitly

the terms w and z in Eq. (10.13) as

w =
1
a
[e−i(kw−kb)d (λ ∗

wλ ∗
b +η1λ ∗

wλw +η2λ ∗
b λb +λwλb)

+e−i(kw+kb)d (λwλ ∗
b −η1λ ∗

wλw −η2λ ∗
b λb +λ ∗

wλb)], (10.16a)

z =
1
a
[e−i(kw−kb)d


λ ∗

wλ ∗
b − γ2

b λ ∗
wλ ∗

w + γ2
wλ ∗

b λb −λ ∗
wλb

�

+e−i(kw+kb)d

λ ∗

wλb + γ2
b λ ∗

wλ ∗
w − γ2

wλ ∗
b λb −λ ∗

wλ ∗
b
�
], (10.16b)

where a = (λ ∗
w +λw)(λ ∗

b +λb), η1 = γb/γw and η2 = γw/γb.

Correspondingly, the transfer matrix considering double barriers with an inter-

distance s between them is

T (2) = Mb(2d + s) ·Mw(s+d)T (1). (10.17)

Thus, we can extend this result to N identical barriers which is given by the product of transfer

matrices:

T (N) =
N

∏
l=1

Mb(l(d + s)− s) ·Mw((l −1)(d + s)). (10.18)
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Once T (N) is an unimodular matrix and the electron wave originates from the left of the system

in Fig. 72, the transmission probability is obtained as T = 1/|T (N)
22 |2. After some algebraic

calculations, we found the transmission probability through N barriers as

T =
1

1+ |z|2
�

sinNξ
sinξ

�2 , (10.19)

where ξ corresponds to the Bloch wave-function of the whole system and is given by

ξ = cos−1[R(w)cos(kw(d + s))−C(w)sin(kw(d + s))], (10.20)

with z given by Eq. (10.16b), R(w) and C(w) correspond respectively to the real and imaginary

terms of w in Eq. (10.16a).

10.5 Transmission of massless Dirac fermions

Initially, we consider the symmetry-breaking free case, i.e. taking Ûi = 0 in

Eq. (10.10). The solution of ĤΨ j = EΨ j in this case leads to α j = γ j = β j = 1, as can be

seen by comparing Eqs. (10.11) and Eqs. (10.2) for the wave-functions of the dispersion bands,

and consequently, it implies η1 = η2 = 1 in Eq. (10.16a). Moreover, from the secular equation

det(Ĥ −E) = 0 we obtain the wave-vectors in the x−direction in the well and barrier regions,

kw and kb, respectively as

kw =

s�
E

h̄vF

�2

− k2
y , kb =

s�
E −V0

h̄vF

�2

− k2
y , (10.21)

with the eigenvalues in each region respectively given by

E =±
q

h̄2v2
F(k2

w + k2
y), (10.22a)

E −V0 =±
q

h̄2v2
F(k

2
b + k2

y). (10.22b)

Figure 73 shows the transmission probabilities using Eq. (10.19) for a single barrier as a function

of the incident wave energy E and its transverse wave vector ky for different values of the θ

parameter: (a) θ = 0, (b) θ = π/12, (c) θ = π/6, and (d) θ = π/4. The potential height is set to

V0 = 0.2 eV and the barrier width is d = 30 nm. The possible non-null transmission regions in

the (kyd,E/V0) plane of Fig. 73 can be explained by identifying which modes are propagating

inside and outside the potential barrier. The borders between these regions are indicated by

dashed curves superimposed on the density plots, where the black and grey lines correspond
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Figure 73 – Transmission probability through a single-barrier in the (ky,E/V0) plane for (a)
θ = 0 (graphene-like), (b) θ = π/12, (c) θ = π/6, and (d) θ = π/4 (dice) in the symmetry-
breaking free case (Û = 0) for barrier height and width assumed as V0 = 0.2 eV and d = 30 nm,
respectively.

to the energy spectrum outside and inside of the barrier which are given by Eqs. (10.22a) and

(10.22b), respectively. Since wave-functions interfere inside the barrier, we observe for all values

of θ when E/V0 < 1 the appearance of resonance peaks marked by T = 1. In addition, when the

incoming wave-function is perpendicular to the barrier, i.e. kyd = 0, the transmission is total and

the barrier is completely transparent regardless of the potential width and height. This perfect

transmission at normal incidence is a consequence of the conservation of the pseudo-spin at

scattering on the barrier which results in the absence of backscattering of wave-functions, an

effect referred as KT which has been noted previously for the two limiting cases θ = 0 (ALLAIN;

FUCHS, 2011) and θ = π/4 (URBAN et al., 2011).

We note that for 0 < E/V0 < 0.5 sharp resonances in the transmission probabilities

become softer and less pronounced as θ increases, leading to a general enhancement trend of

transmission probability for θ ̸= 0. This result is more evident in Fig. 74, which shows the

transmission probability in the (φw,E/V0)−plane. We observe the broadening of transmission as
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Figure 74 – Contour plot of transmission probability through a single-barrier in the (φw,E/V0)
plane for (a) θ = 0 (graphene-like), (b) θ = π/12, (c) θ = π/6, and (d) θ = π/4 (dice) for the
same potential parameters as in Fig. 73.

Figure 75 – Transmission probability through a single-barrier as function of incident angle φw
at incident energy values (a) E/V0 = 0.25, and (b) E/V0 = 0.5 for θ = 0 (solid black curve),
θ = π/12 (dotted magenta curve), θ = π/6 (dashed red curve), and θ = π/4 (dash-dotted blue
curve) assuming the same potential parameters as in Fig. 73.



182

θ increases in the energy region 0 < E/V0 < 0.5, indicating that the barrier becomes more trans-

parent, as depicted in Fig. 75(a) for a fixed energy E/V0 = 0.25. Furthermore, the special case

θ = π/4 (dice) at E/V0 = 0.5 the barrier becomes fully transparent leading to an omnidirectional

total transmission, as observed in Fig. 74(d) and Fig. 75(b) and discussed in Refs. (URBAN et

al., 2011; ILLES; NICOL, 2017).

However, as shown in Fig. 74 when the energy of incoming waves is 0.5 < E/V0 < 1

for all values of θ there is a reduction of the transmission probability with increasing incident

energy and the transmission curves almost coincide, indicating that, analogously to the total

reflection effect observed in optics, there is an incident critical angle such that above it the

incident wave-function is fully reflected and an evanescent wave-function is found inside the

potential. This angle is determined from the conservation of momentum in the y direction

sinφk =
V0 −E

E
sinφq. (10.23a)

Since the condition for total reflection of incoming wave-function is sinφq = 1, the incident

critical angle φkc is determined by

sinφkc =
V0 −E

E
. (10.24)

Note that the critical angles do not depend on the parameter θ , and the transmission probabilities

are almost the same for E/V0 > 0.5 regardless of θ .

From Eq. (10.19) we analyze the effects of the number N of barriers on the transmis-

sion probabilities in the (φw,E/V0)−plane. The results for transmission assuming N = 2 and

N = 6 are depicted in Figs. 76 and 77, respectively. For all these cases the inter-barrier distance is

30 nm. One notices more resonance peaks in the transmission as the number of barriers increases

as a consequence of the fact that the wave-function interferes more with itself inside the barriers.

Beside that, a perfect transmission T = 1 for normal or near-normal incidence is observed, which

is a signature of the KT. Unlike graphene-like and for intermediate values of θ , the increase

in the number of barriers is much less effective for dice when 0 < E/V0 < 1 and the SKT at

E/V0 = 0.5 is still observed regardless the number of barriers, as shown in Figs. 76(d) and 77(d).

However, for incident energies E/V0 > 1 and E/V0 < 0 the effect of the number of barriers in

the transmission is evident for all values of θ .

Moreover, like the single-barrier case and for 0 < E/V0 < 0.5, as θ increases there

is a broadening of the transmission resonant peaks. Since the increase of the number of barriers

does not affect the nature of pseudo-spin, which depends only on the crystal structure, the KT
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Figure 76 – Contour plot of transmission probability, shown in the (φw,E/V0) plane, through
a double-barrier (N = 2) for (a) θ = 0 (graphene-like), (b) θ = π/12, (c) θ = π/6, and (d)
θ = π/4 (dice) for the same potential parameters as in Fig. 74 and with a inter-barrier distance
of 30 nm.

and the SKT, beside the enhancement of transmission as θ increases, are maintained regardless

the number of barriers.

10.6 Symmetry-breaking effects into the tunneling properties

As discussed in Sec. 10.3, within the low-energy approach, the presence of small

deviations in the equivalence of the atoms generate a band-gap in the energy spectrum resulting

in charge carriers that are described as massive Dirac fermions. Now, we shall discuss the

tunneling properties of those massive fermions in α −T3 lattices under the presence of single and

multiple barriers by considering the symmetry-breaking terms Û1 and Û2 given by Eq. (10.5).
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Figure 77 – The same as Fig. 76, but now for N = 6 barriers.

10.6.1 Case Û = Û1

Assuming Û = Û1 in Eq. (10.10), we obtain the wave-functions expressed in

Eq. (10.11) in the barrier and well regions with αw = βw =
√

E +∆,αb = βb =
√

E −V0 +∆,γw =
√

E −∆, and γb =
√

E −V0 −∆. The wave-vectors in the x−direction inside and outside of the

barrier are

kw =

s
E2 −∆2

h̄2v2
F

− k2
y , (10.25a)

kb =

s
(E −V0)2 −∆2

h̄2v2
F

− k2
y . (10.25b)

The transmission probability is given by Eq. (10.19), and the terms η1 and η2 in Eq. (10.16a) are

η1 =

s
(E +∆)(E −V0 −∆)
(E −V0 +∆)(E −∆)

, (10.26a)

η2 =

s
(E −∆)(E −V0 +∆)
(E −V0 −∆)(E +∆)

. (10.26b)
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Figure 78 – Transmission probability through a single-barrier in the (ky,E/V0) plane for (a)
θ = 0 (graphene-like), (b) θ = π/12, (c) θ = π/6, and (d) θ = π/4 (dice) by assuming the
symmetry-breaking term as Û = Û1, with sublattice unbalance strength ∆ = 0.04 eV, for barrier
height V0 = 0.2 eV and width d = 30 nm.

The transmission probabilities for single-barrier as function of (kyd,E/V0), assuming

V0 = 0.2 eV, d = 30 nm, and ∆ = 0.04 eV for different values of θ are shown in Fig. 78. The

non-zero transmission zones are bounded by the energy levels inside and outside of barrier,

corresponding to the grey and black dashed curves, respectively. It is clearly seen that the

presence of the sublattice symmetry-breaking induced band-gap in the energy spectrum lead

to a suppression of the transmission for all values of the parameter θ , as well as the “fishbone”

transmission shape in the energetic region ∆ < E < 4∆ is suppressed. Beside, the conservation of

chirality does not take place due to the introduction of small deviation in the equivalence between

the atoms and total transmission for normal or near-normal incident angles, or equivalently

smaller kyd, is no longer observed indicating that for all values of θ KT is destroyed, as depicted

in Figs. 78 and 79.

However, while the KT is no longer observed, from Fig. 78(d) one notices perfect

transmission when θ = π/4 at 0 < E/V0 < 0.5 for large kyd values, or equivalently for large
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Figure 79 – Contour plot of transmission probability through a single-barrier in the (φw,E/V0)
plane for (a) θ = 0 (graphene-like), (b) θ = π/12, (c) θ = π/6, and (d) θ = π/4 (dice) for the
same system parameters as in Fig. 78.

Figure 80 – Transmission probability through a single-barrier as function of incident angle φw
at incident energy values (a) E/V0 = 0.25 and (b) E/V0 = 0.5 for θ = 0 (solid black curve),
θ = π/12 (dotted magenta curve), θ = π/6 (dashed red curve), and θ = π/4 (dash-dotted blue
curve) for the same system parameters as in Fig. 78.



187

-1

-0.5

0

0.5

1

1.5

-0.5

0

0.5

1

1.5

-1

Figure 81 – Contour plot of transmission probability through a double-barrier in the (φw,E/V0)
plane for (a) θ = 0 (graphene-like), (b) θ = π/12, (c) θ = π/6, and (d) θ = π/4 (dice) when
Û = Û1, V0 = 0.2 eV, ∆ = 0.04 eV, d = 30 nm, and an inter-barrier distance s = 30 nm.

incident angles as shown in Fig. 79(d). In fact, when θ is tuned from the correspondent value

of graphene-like to dice at incident energy E/V0 = 0.25 the transmission curves tend to exhibit

a completely opposite feature: incident waves nearly parallel to the barrier are completely

transmitted, as shown in Fig. 80(a). On the other hand, for θ = 0 and oblique incident angles

at incident energy E/V0 = 0.5 there is a narrow resonance peak which widens as θ increases,

whereas for dice lattice beyond the broadening of this peak a new total transmission peak appears

for incident angles parallel to the barrier as noticed in Fig. 80(b).

Figure 81 shows the transmission contour plots considering now double-barrier

systems with the same width and potential height used in single-barrier case and an inter-distance

barrier of 30 nm. Comparing to Fig. 79, we observe that beyond total reflection of waves for

smaller incident angles at E/V0 = 0.5, the energy scale where there is non-null transmission

is reduced and for graphene-like and intermediate values of θ there is no transmission at

incident energies close to the value of ∆, i.e E/V0 = 0.2. Nonetheless, for dice lattice the
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Figure 82 – Transmission probability through a (a) single-barrier (N = 1) and (b) double-barrier
(N = 2) as function of incident angle φw at incident energy E/V0 = 1.3 for θ = 0 (solid black
curve), θ = π/12 (dotted magenta curve), θ = π/6 (dashed red curve), and θ = π/4 (dash-dotted
blue curve) for the same system parameters as in Fig. 78 and an inter-barrier distance of 30 nm
for double-barrier system.

perfect transmission of waves near-parallel or parallel to barriers is still observed in the range

E/V0 ∈ [0.2,0.5] and for energies immediately above the potential energy, i.e. 1.2 < E/V0 < 1.3

a peak of transmission occurs for critical incident angle, like in the single-barrier case. This result

is clear when we analyse the transmission curves in Fig. 82 for incident energies E/V0 = 1.3 for

single and double-barriers. While for θ = π/4 and N = 1 there is a peak of total transmission for

incident angles around ±10◦, which corresponds to the critical angle for this value of incident

energy. For the other values of θ the transmission is reduced and falls to zero. Moreover, when

N = 2, beyond the peak of total transmission for dice, there is a peak of almost-total transmission

for θ = π/6.

The perfect transmission at large values of kyd, or incident angles parallel and near-

parallel to the barrier, for θ = π/4 is explained when we analyse Fig. 83(a), where we depict

the electronic band structure along kyd direction of a system consisting of an infinite number of

barriers with the same parameters of potential height, width and inter-barrier distance used in

Fig. 81. We note that for energies at the interval 0.2 < E/V0 < 0.5 the mini-bands touch each

other at large values of kyd, indicating the presence of degenerate states, which is represented

by prominent peaks in the density of states (DOS) in the same energetic range in Fig. 83(b).

Therefore, since more allowed energy states arise, an enhancement of the transmission probability

of electrons under these initial conditions of momentum and energy is observed.
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(a) (b)

Figure 83 – (a) Electronic band structure along the kyd direction for θ = π/4 (dice case)
superlattices taking the same system parameters as in Fig. 81. (b) The corresponding DOS of (a)
is shown.

10.6.2 Case Û = Û2

For the other symmetry-breaking term denoted by Û = Û2 in Eq. (10.10), we have

αw =
p
(E +3∆)/(E −∆), αb =

p
(E −V0 +3∆)/(E −V0 −∆), γw =

p
(E +∆cos(2θ)+2∆cos2 θ)/(E +

γb =
p

(E −V0 +∆cos(2θ)+2∆cos2 θ)/(E −V0 +∆), βw =
p

E −∆/(E +3∆), and βb =
p

E −V0 −∆/(E

Consequently, the wave-vectors kw and kb are given by

kw =

s
(E2 −∆2)(E +3∆)

h̄2v2
F(E +∆cos2θ +2∆cos2 θ)

− k2
y , (10.27a)

kb =

s
((E −V0)2 −∆2)(E −V0 +3∆)

h̄2v2
F(E −V0 +∆cos2θ +2∆cos2 θ)

− k2
y . (10.27b)

For this case, the transmission of fermions through N one-dimensional barriers is

obtained using Eq. (10.19) with η1 and η2 in Eq. (10.16a) given by

η1 =

s�
E −V0 +∆cos2θ +2∆cos2 θ

E +∆cos2θ +2∆cos2 θ

�
η12, (10.28a)

η2 =

s�
E +∆cos2θ +2∆cos2 θ

E −V0 +∆cos2θ +2∆cos2 θ

�
η21, (10.28b)

with η12 =
E+∆

E−V0+∆ and η21 =
E−V0+∆

E+∆ . The transmission probabilities as function of (kyd,E/V0)

for this case are depicted in Fig. 84. Similar to previous cases, the zones where waves are

able to propagate and therefore the transmission is non-null are bounded by the energy levels

inside and outside of the barrier indicated by the grey and black dashed curves superimposed on

the transmission contour plot. As observed in Figs. 71(a) and 71(b), the energy spectrum for
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Figure 84 – Transmission probability through a single-barrier in the (ky,E/V0) plane for (a) θ = 0
(graphene-like), (b) θ = π/12, (c) θ = π/6, and (d) θ = π/4 (dice) when Û = Û2, V0 = 0.2 eV,
∆ = 0.04 eV, and d = 30 nm.

both symmetry-breaking terms Û1 and Û2 for θ = 0 differs only by the position of the flat band

maintaining the conduction and valence bands with the same dispersion and position. Since the

dispersionless bands do not contribute to the transmission, the effects observed in the tunneling

properties for both symmetry-breaking terms for θ = 0 are similar, as noticed when we compare

Fig. 84(a) and Fig. 78(a). However, for θ ̸= 0 the transmission contour plots are quite different

from the previous gapped case, as depicted in Figs. 84(b)-84(d). We note that for incident

energies 0 < E/V0 < 1 depending on θ new zones where there is no propagation of waves appear

in the (ky,E/V0) plane. To understand this result we plot in Fig. 85 a diagram for the wave-vector

kb inside the barrier using the relation given in Eq. (10.27a) for the same parameters used in

Fig. 84. The blue zones indicate where the transmission is due to propagating waves, i.e. kb is

real, in that case the incoming waves might interfere with itself between the two interfaces of

barrier-well, leading to the transmission resonances.

When kb is purely imaginary, indicated by the grey zone in the phase diagram, the
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Figure 85 –Diagram obtained from the relation given in Eq. (10.27a) representing the wave nature
inside the barrier plotted in the (ky,E/V0) plane for (a) θ = 0 (graphene-like), (b) θ = π/12, (c)
θ = π/6, and (d) θ = π/4 (dice) when Û = Û2, ∆ = 0.04 eV, V0 = 0.2 eV, and d = 30 nm. The
blue area is the zone of propagating waves corresponding to a real wave-vector kb, the grey area
is the zone where kb is purely imaginary indicating evanescent waves.

transmission is still possible via evanescent waves but with a reduced amplitude. Furthermore,

the condition to have an evanescent wave is determined by the incident critical angle, so from

the conservation of momentum in the y direction and using Eq. (10.27) we get the expression of

a critical incident angle φkc

sinφkc =

s
Eθ

�
((E −V0)2 −∆2)(E −V0 +3∆)

(E2 −∆2)(E +3∆)

�
, (10.29)

where

Eθ =
(E +∆cos2θ +2∆cos2 θ)

(E −V0 +∆cos2θ +2∆cos2 θ)
. (10.30)

According to Eq. (10.29) and as shown in Fig. 86, unlike the gapless and previous gapped case,

the critical incident angle for transmission and consequently the condition for evanescent or
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Figure 86 – Contour plot of transmission probability through a single-barrier in the (φw,E/V0)
plane for (a) θ = 0 (graphene-like), (b) θ = π/12, (c) θ = π/6, and (d) θ = π/4 (dice) when
Û = Û2, V0 = 0.2 eV, ∆ = 0.04 eV, and d = 30 nm.

propagating waves depends on the value of θ , indicating the appearance of new transmission

zones as θ is tuned from graphene-like to dice.

In Fig. 86 we observe at E/V0 = 0.25 that while the transmission probability is nearly

perfect for θ = π/12 and θ = π/4, for θ = π/6 it becomes smaller, as shown in Fig. 87(a).

In addition, in Fig. 87(b) we note that there is no transmission for θ = π/6 and θ = π/4 at

E/V0 = 0.5, since under these conditions the incident waves are evanescent and localized into

the grey zone in the phase diagram in Fig. 85(c) and Fig. 85(d), respectively.

Furthermore, for double-barrier systems assuming graphene-like and intermediate

values of θ , the transmission is in general reduced for large incident angles and there are more

resonant peaks, as shown in Fig. 88. However, for dice lattice we observe the enhancement of

the transmission, which is almost perfect for all values of incident energy 0.2 < E/V0 < 0.4 and

large values of incident angle, as shown in Fig. 88(d).
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Figure 87 – Transmission probability through a single-barrier as function of incident angle φw
at incident energy values (a) E/V0 = 0.25, and (b) E/V0 = 0.5 for θ = 0 (solid black curve),
θ = π/12 (dotted magenta curve), θ = π/6 (dashed red curve), and θ = π/4 (dash-dotted blue
curve) when Û = Û2, V0 = 0.2 eV, ∆ = 0.04 eV, and d = 30 nm.
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Figure 88 – Contour plot of transmission probability through a double-barrier in the (φw,E/V0)
plane for (a) θ = 0 (graphene-like), (b) θ = π/12, (c) θ = π/6, and (d) θ = π/4 (dice) when
Û = Û2, V0 = 0.2 eV, ∆ = 0.04 eV, d = 30 nm, and inter-barrier distance s = 30 nm
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Figure 89 – Schematic illustration of the electronic energy spectrum in α −T3 lattice at different
spatial regions. In Region II (0 ≤ x ≤ d), there is a band-gap in the energy spectrum induced by
the presence of the symmetry-breaking term ∆Ûi = Û1.

10.7 Tunneling through spatial regions of finite mass

Now we investigate the tunneling properties of electrons in α −T3 lattices when

we assume a region where the electronic spectrum changes from the usual linear dispersion

to a hyperbolic dispersion, due to the presence of a gap originating from the presence of the

symmetry-breaking term Û1, as depicted in Fig. 89. The transmission expression is obtained in a

similar way as in previous section. The wave-function Ψ(x) corresponding to eigenstates with

linear dispersion in region I and III depicted in Fig. 89 is

ψ(x)I,III =
A√
2




cosθeiφk

1

sinθe−iφk


eikxx +

B√
2




−cosθe−iφk

1

−sinθeiφk


e−ikxx. (10.31)

Consequently, the wave-function in region II corresponding to the hyperbolic and gapped energy

spectrum at 0 ≤ x ≤ d is given by

ψII(x) =
A′
√

2




α cosθeiφq

γ

α sinθe−iφq


eiqxx +

B′
√

2




−α cosθe−iφq

γ

−α sinθeiφq


e−iqxx, (10.32)
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The incident angles into the different regions with linear dispersion and band-gap are φk =

tan−1 ky/kx and φq = tan−1 ky/qx, respectively, with momentum along the x− direction given by

kx =

s
E2

h̄2v2
F
− k2

y , qx =

s
E2 −∆2

h̄2v2
F

− k2
y . (10.33)

Using the matching conditions in Eq. (10.12) and the same procedure to get the transfer matrix

in Eq. (10.13), we determine the transmission probability through the spatial regions of finite

mass using the relation T = 1/|T (1)
22 |2:

T =
1

akaq

�
ei(kx+qx)d


ΛkΛ∗

q −η1ΛkΛ∗
k −η2ΛqΛ∗

q +Λ∗
kΛq

�

+ ei(kx−qx)d

ΛkΛq +η1ΛkΛ∗

k +η2ΛqΛ∗
q +Λ∗

kΛ∗
q
��
, (10.34)

where Λ j = cos2 θeφ j + sin2 θe−φ j , a j = Λ j +Λ∗
j with j = k and j = q denoting the linear

energy spectrum and gapped regions, respectively. In that case η1 =
p
(E −∆)/(E +∆) and

η2 =
p

(E +∆)/(E −∆).

Figure 90 shows the transmission probabilities plotted in the (kyd,E/2∆) plane for

different θ , using d = 30 nm, and ∆ = 0.1 eV, resulting in a band-gap opening of 2∆ = 0.2 eV

into Region II. Since our motivation is to compare the transmission results obtained in this

section to the previous one assuming transmission through potential barriers, here we assume a

band-gap with the same energy of that height of potential used in the previous sections.

The energy spectrum in the different regions, i.e. in the region with linear dispersion

and in the region with hyperbolic dispersion are indicated by dashed curves superimposed on the

contour plots. We note that due to the band-gap opening in Region II, when incident energies

are inside the gap −0.1 < E < 0.1 the transmission is exponentially small and for kyd = 0 the

transmission T < 1. Unlike the case of tunneling through barriers discussed in Sec. 10.5, there

is absence of KT. Moreover, beyond the enhancement of the transmission as θ increases, the

transmission curves are almost the same as incident energy increases only for smaller incident

angles φk, as observed in Fig. 91.

From Fig. 91 we observe, in general, that there is a broadening of transmission

curves for greater values of θ , like the barrier system case. However, for energies E < 2∆,

which is analogous to incident energies bellow the potential barrier in the previous sections, the

number of peaks in the transmission curves is the same regardless of the parameter θ , as shown

in Fig. 91(a). In addition, the transmission continues to be enhanced even for incident energy

above the band-gap energy 2∆, as represented in Fig. 91(b) and 91(c). This result is opposite
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Figure 90 – Transmission contour plots as function of kyd of electrons in α −T3 lattice through a
spatial region that begins at x = 0 and width d = 30nm where there is a band-gap 2∆ in the energy
spectrum induced by the presence of the symmetry-breaking term ∆Ûi = Û1 with ∆ = 0.1eV and
for (a) θ = 0, (b) θ = π/12, (c) θ = π/6, and (d) θ = π/4.

to the one observed for tunneling through potential barriers, where the transmission is reduced

for energies above the one associated to the critical angle. Besides, the difference between the

transmission curves as θ is tuned from graphene-like to dice is more evident for values E > 2∆,

as shown in Fig. 91(c), where for θ = π/4 the transmission curve is more smooth for larger

values of φk.

10.8 Conclusions of this chapter

In summary, using the transfer matrix approach, we investigated the tunneling

properties in α −T3 lattices of electrons across square barriers and through regions of space

where the energy spectrum has a finite band-gap. For tunneling across one-dimensional square

barriers, we consider both the case of equivalence between the three sub-lattices, and the ones

where band-gaps originate due to small deviations of this equivalence by including symmetry-
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Figure 91 – Transmission probability as function of incident angle φk, and incident energy (a)
E = 0.15 eV, (b) E = 0.20 eV, (c) E = 0.30 eV for θ = 0 (solid black curve), θ = π/12 (dotted
magenta curve), θ = π/6 (dashed red curve), and θ = π/4 (dash-dotted blue curve) when
Û = Û1 in the Region II in Fig. 89 with ∆ = 0.1 eV and d = 30 nm.

breaking terms. We also investigated tunneling of electrons from regions with a linear to a

hyperbolic dispersion.

For the massless Dirac fermion case, when no symmetry-breaking terms are present,

besides a general trend of enhanced transmission with increasing α , KT at normal incidence

is found for all values of θ , regardless the number of barriers. At oblique incidence, the

transmission increases with increasing θ . For a particular case, E/V0 = 0.5 and θ = π/4 (dice),

an omnidirectional transmission is observed which is called super-Klein tunneling (SKT) effect,

and preserved regardless of the number of barriers. Although the increase in the number of

barriers gives rise to additional resonances in the transmission for all values of θ , this increase is

much less pronounced for the dice lattice, whereas for a graphene-like lattice the transmission

probability is strongly modified. Moreover, we found that, similar to total reflection in optics,

above an incident angle φk there is total reflection of the incident wave-functions. This critical

angle depends only on the incident energy and potential barrier and remains the same for all

values of θ .

The presence of additional symmetry-breaking term in the Hamiltonian distorts

the linear dispersion around the Dirac point and changes the location of the flat band, whose

occurrence depends on the deviation of the equivalence between the three sublattices. The

symmetry-breaking term destroys the KT and SKT in the α −T3 model. It is demonstrated that

the additional term in general suppresses the transmission probabilities for both cases Û1 and Û2.

When the flat band is located at the band edge, i.e. when Û1 = diag(1,−1,1), resonant tunneling

is considerably suppressed and at incident energies 0 < E/V0 < 0.5 the transmission is perfect

for larger values of incident angle, as a consequence of the presence of degenerate states around



198

large values of ky observed from the electronic band structure. In addition, when we consider the

double-barrier system at E/V0 = 0.5, unlike the single-barrier, the transmission is reduced for

smaller φw, and perpendicular or near-perpendicular incident wave-functions are totally reflected.

When Û2 = diag(1,−1,−3), since the nature of wave-vector kb inside the potential

depends on the coupling parameter we note that for 0 < E/V0 < 1 and intermediate values of θ

new zones with total reflection of the wave-function appears as θ is tuned from graphene-like to

dice, indicating the strong relation between the transmission properties and both location and

distortion of the energy band inside the gap. However, the transmission probabilities are much

less affected by an increase of the number of barriers as θ increases.

We also discussed the tunneling properties of electrons in α −T3 lattices when they

traverse a region of space where the spectrum exhibits a finite energy gap. In the case we

considered here, the gap is induced by inclusion of a symmetry-breaking term Û1, rendering the

sub-lattice C non-equivalent. The consequence is the opening of a gap in the energy spectrum.

We have shown that the existence of an energy gap prevents the KT and SKT from taking place

for all values of θ , and the transmission for perpendicular or near-perpendicular waves are

less than 1, unlike the transmission through a potential barrier. Moreover, at larger values of

incident energy we noted a broadening of the transmission curves as θ increases. For dice the

transmission peaks are smoothed as incident energy increases, and at large incident angles the

transmission is perfect as a consequence of degenerate states at large values of ky, as observed in

the potential barrier case when Û1 term was considered.

The results obtained in this work are useful to understand the effects in the trans-

mission properties due to small deviations in the equivalence between the three sublattices in

α −T3 lattices, as well as the role of location and dispersion of the band-inside the gap in the

occurrence of KT and SKT. We discussed a versatile engineering to control and prevent the

SKT and KT, which is a necessary condition for nanoelectronic applications, by changing the

symmetry between the atomic sites of the crystal and consequently, controlling the dispersion of

the middle band.
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11 FINAL CONSIDERATIONS AND PERSPECTIVES

In this thesis, we developed two methods for wave packet propagation based on the

Green’s function formalism and the split-operator technique adapted for multilayer phosphorene

within the continuum model for low-energy electrons, which have not been published before,

to our knowledge. Both theoretical models are then used to study the dynamics of Gaussian

wave packets with different initial wave vectors and different initial pseudospin polarizations

in N-layer phophorene. By calculating the time-dependent average position and velocity, we

observed transient oscillations in these observables due to the effect known as ZBW and verified

that these oscillations are directly related to the splitting of the wave packet into two parts moving

with opposite velocities. We discussed the similarities and discrepancies between the results for

multilayer phosphorene with those ones reported in the literature for graphene and conventional

semiconductors. By comparing the results for different number of BP layers, we showed that

electrons moving in N-layer BP exhibit qualitatively similar results as the ones observed in

monolayer case, except for the oscillation phase difference and final group velocity achieved

after the transient behavior, that is caused by the different curvature of the energy levels for

different N-layer BP. Due to the highly anisotropic band structur, the wave packet propagates

non-uniformly along the different x and y directions and deforms into an elliptical shape, as

a consequence of the different group velocities, effective masses along x and y direction and

the linear ky term on the off-diagonal elements of the continuum Hamiltonian. We believe that

the theoretical descriptions for the time evolution of wave packet propagation in multilayer

BP systems will make possible further investigations of transport properties in many different

BP-based materials in the presence or absence of external fields.

Further on, we theoretically explored the electronic and transport properties of QWs

of anisotropic 2D semiconductors in the presence and in the absence of a perpendicular magnetic

field. In the first part, the energy levels were analytically calculated by means of the effective

mass approximation and analyzed for different parameters, such as: QW width, orientation angle

α with respect to the anisotropy axes, and the magnetic field amplitude. Our results showed

that the energy spectrum is strongly dependent on the alignment angle α , as for instance: the

greater this angle, the smaller the energy levels spacing, implying an increase of the accessible

electronic states; and that in the presence of magnetic field the quantum Hall edge states are

less pronounced the larger the angle α and consequently the plateaus are more evident in the

magnetic dispersion relation. In the second part of this work, the transmission probability, the
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average position, the average velocity, and snapshots of the squared total wavefunction were

numerically computed by using the split-operator technique for two different configurations:

(i) a straight QW rotated and (ii) an elbow-like QW formed by a junction of two QWs with

α = 0 and α ̸= 0. For (i), we demonstrated that the average velocity oscillates for the anisotropic

case in which the initial wave vector and group velocity are not collinear, whereas the average

velocity remains constant for the isotropic case. Such oscillations are due to the non-specular

reflections of the wavepacket at the QW edges and owing the emergence of subwavepackets

with different momentum orientations in this interaction with the edges, whereas for isotropic

QWs the wavepacket disperses over time without splitting. For the latter system (ii), as a

consequence of the energy band mismatching of the two QWs sections and the system anisotropy,

the electrons traveling through the bended QW exhibit scattering processes coming from the

QW geometry itself and the anisotropic angle-dependent confinement, leading to a QW aligned

angle dependence of transmission probability. We believe that the theoretical calculations and

the found results for anisotropic systems with arbitrary alignment direction will make possible

further investigations of transport and electronic properties in a variety of anisotropic materials

in the presence or absence of external fields, which may be useful for designing anisotropic

semiconductor based quantum confinement devices.

We also investigated the consequences on the electronic properties and on the

dynamics of electronic states in graphene due to a generic position-dependent metric, as well

as we made a parallel with analogous quantum systems that exhibit similar results. To do this,

we applied the position-dependent translation operator formalism that leads to a generalized

momentum operator and, consequently, a modification in the Dirac equation used here to describe

the massless Dirac fermions at low-energy regime. We showed that such formalism is able to

introduce additional control of such properties and that the studied system mimics two different

physical scenarios: a deformed graphene due to strain and a non-uniform mass-term, induced by

specific substrate. Within this generalized formalism, we analytically obtained the eigenstates

and the modified Landau levels of the graphene system with a generic metric and under the

presence of a perpendicular magnetic field. We showed that where the metric changes it shifts

the Landau level to lower values, decrease the energy level spacing, and strongly affect the

spatial distribution of the total wave function as well as the two pseudospin components. For the

study of 2D Gaussian wave packet dynamics in graphene with a generic metric, we considered

the well-known split-operator technique that allows us to calculate the time dependence of
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physical observables, such as average position and velocity, and, therefore, to track the wave

packet evolution in order to understand the influence of the metric on the transport properties of

electrons in this system. In this context, we demonstrated for a different metric and for different

choices of the initial pseudospin polarization that the non-null metric leads to an asymmetry for

the wave packet evolution and therefore in some cases it brings up oscillations in the average of

the physical observables and in other cases it suppresses the ZBW, as well as we showed the

consequences on the cyclotron orbit of the electronic trajectory for different metric parameters.

We also discussed the origin of this strong asymmetry in the total probability density that can

be linked with a strong anisotropy in the Fermi velocity and linear momentum to the electron

motion due to the position-dependent spatial metric. This theoretical formalism can be useful for

comparison and analogy to other 2D based system, and we believe that the discussions about the

results found in this work will contribute to a better understanding of the position-dependent

translation operator formalism applied for 2D materials.

Regarding the dice or α − T3 lattices, since they can support flat bands that are

currently a very hot topic in the study of electronic transport properties of materials and these

bands are very sensitive to perturbations, its transport properties can be changed and controlled

making possible the development of new electronic devices. Motivated by these properties we

showed that the inclusion of symmetry-breaking terms translate into deviations in the atomic

equivalence between the atomic sites of the α −T3 lattice which affects for example the number

and appearance of Dirac points and band-gap morphing in their energy spectra. Furthermore,

we demonstrate that the band-gap is strongly dependent on the symmetry between the atomic

sites and the hopping parameter of these lattices. New allowed states in the energy spectrum are

predicted in regions where previously there were band-gaps, which is important for electronic

and transport applications. The theoretical formalism and results obtained are useful to gain a

better understanding of the band-gap behavior of α −T3 lattices, and consequently demonstrate

that these materials are versatile for purposes of band-gap engineering in 2D materials. The

band-gap is tunable by changing the interlattice hopping parameter and their symmetry.

Also, since these lattices present a flat-band in their energy spectra, unusual trans-

mission properties emerge under certain conditions. We show that small deviations in the

equivalence between the atomic sites in α −T3 lattices, as well as the number of barriers can

strongly change the transmission properties in these lattices, leading to a general suppression

of the transmission for example. We demonstrate that by adjusting the symmetry between the
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atomic sites, new tunneling regions are possible. The presence of degenerate states and the

dispersion of a quasi-flat band in the energy spectrum are associated to the enhancement of

the transmission. This indicates that the electronic and transport properties can be controlled

by altering the interlattice hopping parameter, which is a necessary condition for applications

in nanoelectronics. The theoretical formalism and results obtained can be useful to a better

understanding of the role of the location and dispersion of the energy-band-inside the gap in

the occurrence of total transmission in α −T3 lattices, and consequently demonstrate that these

materials are versatile to control the transmission properties in 2D materials. The dispersion

of the middle band can be controlled by changing the interlattice hopping parameter and their

symmetries.

Regarding the study of electronic and transport properties of the charge carriers in

2D materials, in particular, to multi-layer α −T3-related systems, we envision a set of interesting

ideas to be developed in the near future, following the examples of previously investigated

problems in graphene, that in turn, will be covered by assuming α = 0 (honeycomb) and in

addition, it will allow investigating the continuously morphing from graphene-like to dice (α = 1)

systems by an one-parameter simple model, as presented throughout this thesis. Most interesting

is that such systems possess the coexistence of quasi-flat bands and Dirac cones which make them

even more exciting, exhibiting unconventional properties. In this context and as a short-term

perspective, we intend to study the following problems:

– chiral states and their localization that could be originated from the breaking of the

sublattice symmetry due to an asymmetric mass potential or even by the inclusion of

a defect line between two regions of α −T3 material. Such states were investigated in

monolayer graphene (ZARENIA et al., 2012);

– chiral states and extra Dirac cone formation in superlattices composed by electrostatic

kink and anti-kink potential profiles in the bilayer of α −T3. Such structures for single

and double interfaces of electrostatic kinks have been already investigated for bilayer

graphene (ZARENIA et al., 2011b), and we propose to develop an extension of this

investigation to check the role of α variation, number, and widths of interfaces of the

kink-anti-kink-like potentials. Such structures can be created by applying an asymmetric

potential to the upper and the lower layers of the bilayer system;

– twisted bilayer α −T3 system, checking the interplay between the α parameter and the

rotation angle between the two layers of α −T3 material.
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It is worth mentioning that suggestions for similar analogies to the graphene-like

system reported in the last two decades can be easily developed/extended to α −T3 case, as we

intend to do in the near future.



204

BIBLIOGRAPHY

ABDULLAH, H. M.; COSTA, D. da; BAHLOULI, H.; CHAVES, A.; PEETERS, F.; DUPPEN,
B. V. Electron collimation at van der Waals domain walls in bilayer graphene. Physical Review
B, APS, v. 100, n. 4, p. 045137, 2019.

AHARONOV, Y.; CASHER, A. Ground state of a spin-1/2 charged particle in a two-dimensional
magnetic field. Physical Review A, APS, v. 19, n. 6, p. 2461, 1979.

ALLAIN, P. E.; FUCHS, J.-N. Klein tunneling in graphene: optics with massless electrons. The
European Physical Journal B, Springer, v. 83, n. 3, p. 301–317, 2011.

AOKI, N.; CUNHA, C. D.; AKIS, R.; FERRY, D.; OCHIAI, Y. Imaging of integer quantum hall
edge state in a quantum point contact via scanning gate microscopy. Physical Review B, APS,
v. 72, n. 15, p. 155327, 2005.

ASAHINA, H.; MORITA, A. Band structure and optical properties of black phosphorus.
Journal of Physics C: Solid State Physics, IOP Publishing, v. 17, n. 11, p. 1839, 1984.

ASGHARI, M.; PEDRAM, P.; NOZARI, K. Harmonic oscillator with minimal length, minimal
momentum, and maximal momentum uncertainties in SUSYQM framework. Physics Letters B,
Elsevier, v. 725, n. 4-5, p. 451–455, 2013.

AVOURIS, P.; HEINZ, T. F.; LOW, T. 2D Materials. [S. l.]: Cambridge University Press, 2017.

BAI, C.; ZHANG, X. Klein paradox and resonant tunneling in a graphene superlattice. Physical
Review B, APS, v. 76, n. 7, p. 075430, 2007.

BARBAGIOVANNI, E.; FILHO, R. C. Quantum confinement in nonadditive space with a
spatially dependent effective mass for Si and Ge quantum wells. Physica E: Low-dimensional
Systems and Nanostructures, Elsevier, v. 63, p. 14–20, 2014.

BARBAGIOVANNI, E.; LOCKWOOD, D.; ROWELL, N.; FILHO, R. C.; BERBEZIER, I.;
AMIARD, G.; FAVRE, L.; RONDA, A.; FAUSTINI, M.; GROSSO, D. Role of quantum
confinement in luminescence efficiency of group IV nanostructures. Journal of Applied
Physics, American Institute of Physics, v. 115, n. 4, p. 044311, 2014.

BARBIER, M.; PEETERS, F.; VASILOPOULOS, P.; JR, J. M. P. Dirac and Klein-Gordon
particles in one-dimensional periodic potentials. Physical Review B, APS, v. 77, n. 11, p.
115446, 2008.

BARBIER, M.; VASILOPOULOS, P.; PEETERS, F. Extra Dirac points in the energy spectrum
for superlattices on single-layer graphene. Physical Review B, APS, v. 81, n. 7, p. 075438, 2010.

BARBIER, M.; VASILOPOULOS, P.; PEETERS, F. M. Single-layer and bilayer graphene
superlattices: collimation, additional Dirac points and Dirac lines. Philosophical Transactions
of the Royal Society A: Mathematical, Physical and Engineering Sciences, The Royal
Society Publishing, v. 368, n. 1932, p. 5499–5524, 2010.

BARUT, A.; BRACKEN, A. Zitterbewegung and the internal geometry of the electron. Physical
Review D, APS, v. 23, n. 10, p. 2454, 1981.

BARUT, A.; THACKER, W. Covariant generalization of the zitterbewegung of the electron and
its SO(4, 2) and SO(3, 2) internal algebras. Physical Review D, APS, v. 31, n. 6, p. 1386, 1985.



205

BENCZIK, S.; CHANG, L. N.; MINIC, D.; TAKEUCHI, T. Hydrogen-atom spectrum under a
minimal-length hypothesis. Physical Review A, APS, v. 72, n. 1, p. 012104, 2005.

BERCIOUX, D.; URBAN, D.; GRABERT, H.; HÄUSLER, W. Massless Dirac-Weyl fermions
in α −T3 optical lattice. Physical Review A, APS, v. 80, n. 6, p. 063603, 2009.

BERGER, C.; SONG, Z.; LI, T.; LI, X.; OGBAZGHI, A. Y.; FENG, R.; DAI, Z.;
MARCHENKOV, A. N.; CONRAD, E. H.; FIRST, P. N. et al. Ultrathin epitaxial graphite: 2D
electron gas properties and a route toward graphene-based nanoelectronics. The Journal of
Physical Chemistry B, ACS Publications, v. 108, n. 52, p. 19912–19916, 2004.

BETANCUR-OCAMPO, Y.; CIFUENTES-QUINTAL, M.; CORDOURIER-MARURI, G.;
COSS, R. de. Landau levels in uniaxially strained graphene: A geometrical approach. Annals of
Physics, Elsevier, v. 359, p. 243–251, 2015.

BETANCUR-OCAMPO, Y.; GUPTA, V. Perfect transmission of 3D massive Kane fermions in
HgCdTe veselago lenses. Journal of Physics: Condensed Matter, IOP Publishing, v. 30, n. 3,
p. 035501, 2017.

BETANCUR-OCAMPO, Y.; LEYVRAZ, F.; STEGMANN, T. Electron optics in phosphorene pn
junctions: negative reflection and anti-super-Klein tunneling. Nano Letters, ACS Publications,
v. 19, n. 11, p. 7760–7769, 2019.

BIANCO, E.; BUTLER, S.; JIANG, S.; RESTREPO, O. D.; WINDL, W.; GOLDBERGER, J. E.
Stability and exfoliation of germanane: a germanium graphane analogue. ACS Nano, ACS
Publications, v. 7, n. 5, p. 4414–4421, 2013.

BISWAS, T.; GHOSH, T. K. Wave packet dynamics and zitterbewegung of heavy holes in a
quantizing magnetic field. Journal of Applied Physics, American Institute of Physics, v. 115,
n. 21, p. 213701, 2014.

BLIOKH, Y. P.; FREILIKHER, V.; SAVEL’EV, S.; NORI, F. Transport and localization in
periodic and disordered graphene superlattices. Physical Review B, APS, v. 79, n. 7, p. 075123,
2009.

BOLEN, B.; CAVAGLIA, M. (anti-) de Sitter black hole thermodynamics and the generalized
uncertainty principle. General Relativity and Gravitation, Springer, v. 37, n. 7, p. 1255–1262,
2005.

BORISENKO, S.; GIBSON, Q.; EVTUSHINSKY, D.; ZABOLOTNYY, V.; BÜCHNER, B.;
CAVA, R. J. Experimental realization of a three-dimensional Dirac semimetal. Physical Review
Letters, APS, v. 113, n. 2, p. 027603, 2014.

BOSSO, P. Rigorous hamiltonian and lagrangian analysis of classical and quantum theories with
minimal length. Physical Review D, APS, v. 97, n. 12, p. 126010, 2018.

BRAGA, J. a. P. M. Técnica Split Operator em Coordenadas Generalizadas. Tese
(Doutorado), 2010.

BRAGA, J. P.; FILHO, R. N. C. Nonadditive quantum mechanics as a sturm–liouville problem.
International Journal of Modern Physics C, World Scientific, v. 27, n. 04, p. 1650047, 2016.

BRAUN, J.; SU, Q.; GROBE, R. Numerical approach to solve the time-dependent dirac equation.
Physical Review A, APS, v. 59, n. 1, p. 604, 1999.



206

BREY, L.; FERTIG, H. Emerging zero modes for graphene in a periodic potential. Physical
Review Letters, APS, v. 103, n. 4, p. 046809, 2009.

BRIDGMAN, P. Two new modifications of phosphorus. Journal of the American Chemical
Society, ACS Publications, v. 36, n. 7, p. 1344–1363, 1914.

BROMLEY, D.; GREINER, W. Relativistic Quantum Mechanics. Wave Equations. [S. l.]:
Springer, Berlin, Heidelberg, 2013. ISBN 9783662042755.

BRUSHEIM, P.; XU, H. Spin hall effect and zitterbewegung in an electron waveguide. Physical
Review B, APS, v. 74, n. 20, p. 205307, 2006.

BÜTTIKER, M. Absence of backscattering in the quantum Hall effect in multiprobe conductors.
Physical Review B, APS, v. 38, n. 14, p. 9375, 1988.

CANNATA, F.; FERRARI, L. Effects of the nonrelativistic Zitterbewegung on the
electron-phonon interaction in two-band systems. Physical Review B, APS, v. 44, n. 16, p. 8599,
1991.

CANNATA, F.; FERRARI, L.; RUSSO, G. Dirac-like behaviour of a non-relativistic tight
binding Hamiltonian in one dimension. Solid State Communications, Elsevier, v. 74, n. 4, p.
309–312, 1990.

CASTELLANOS-GOMEZ, A. Black phosphorus: narrow gap, wide applications. The Journal
of Physical Chemistry Letters, ACS Publications, v. 6, n. 21, p. 4280–4291, 2015.

CASTELLANOS-GOMEZ, A.; VICARELLI, L.; PRADA, E.; ISLAND, J. O.; NARASIMHA-
ACHARYA, K.; BLANTER, S. I.; GROENENDIJK, D. J.; BUSCEMA, M.; STEELE, G. A.;
ALVAREZ, J. et al. Isolation and characterization of few-layer black phosphorus. 2D Materials,
IOP Publishing, v. 1, n. 2, p. 025001, 2014.

CASTRO, L. B.; OBISPO, A. E. Generalized relativistic harmonic oscillator in minimal length
quantum mechanics. Journal of Physics A: Mathematical and Theoretical, IOP Publishing,
v. 50, n. 28, p. 285202, 2017.

CAVALCANTE, F.; FILHO, R. C.; FILHO, J. R.; ALMEIDA, C. D.; FREIRE, V. Form of the
quantum kinetic-energy operator with spatially varying effective mass. Physical Review B, APS,
v. 55, n. 3, p. 1326, 1997.

CAVALCANTE, L.; CHAVES, A.; COSTA, D. D.; FARIAS, G.; PEETERS, F. All-strain based
valley filter in graphene nanoribbons using snake states. Physical Review B, APS, v. 94, n. 7, p.
075432, 2016.

CHAVES, A.; COSTA, D. D.; SOUSA, G. D.; JR, J. P.; FARIAS, G. Energy shift and
conduction-to-valence band transition mediated by a time-dependent potential barrier in
graphene. Physical Review B, APS, v. 92, n. 12, p. 125441, 2015.

CHAVES, A.; COVACI, L.; RAKHIMOV, K. Y.; FARIAS, G.; PEETERS, F. Wave-packet
dynamics and valley filter in strained graphene. Physical Review B, APS, v. 82, n. 20, p. 205430,
2010.

CHAVES, A.; FARIAS, G.; PEETERS, F.; SZAFRAN, B. Wave packet dynamics in
semiconductor quantum rings of finite width. Physical Review B, APS, v. 80, n. 12, p. 125331,
2009.



207

CHAVES, A.; FARIAS, G.; PEETERS, F.; FERREIRA, R. The split-operator technique for
the study of spinorial wavepacket dynamics. Communications in Computational Physics,
Cambridge University Press, v. 17, n. 3, p. 850–866, 2015.

CHAVES, A.; LOW, T.; AVOURIS, P.; ÇAKIR, D.; PEETERS, F. Anisotropic exciton stark shift
in black phosphorus. Physical Review B, APS, v. 91, n. 15, p. 155311, 2015.

CHEIANOV, V. V.; FAL’KO, V.; ALTSHULER, B. The focusing of electron flow and a Veselago
lens in graphene pn junctions. Science, American Association for the Advancement of Science,
v. 315, n. 5816, p. 1252–1255, 2007.

CHEIANOV, V. V.; FAL’KO, V. I. Selective transmission of dirac electrons and ballistic
magnetoresistance of n- p junctions in graphene. Physical Review B, APS, v. 74, n. 4, p. 041403,
2006.

CHEN, Y.; JIANG, G.; CHEN, S.; GUO, Z.; YU, X.; ZHAO, C.; ZHANG, H.; BAO, Q.; WEN,
S.; TANG, D. et al. Mechanically exfoliated black phosphorus as a new saturable absorber
for both Q-switching and mode-locking laser operation. Optics Express, Optical Society of
America, v. 23, n. 10, p. 12823–12833, 2015.

CHHOWALLA, M.; SHIN, H. S.; EDA, G.; LI, L.-J.; LOH, K. P.; ZHANG, H. The chemistry
of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry,
Nature Publishing Group, v. 5, n. 4, p. 263–275, 2013.

COSTA, B. G. da; BORGES, E. P. Generalized space and linear momentum operators in
quantum mechanics. Journal of Mathematical Physics, American Institute of Physics, v. 55,
n. 6, p. 062105, 2014.

COSTA, D. D.; CHAVES, A.; FARIAS, G.; COVACI, L.; PEETERS, F. Wave-packet scattering
on graphene edges in the presence of a pseudomagnetic field. Physical Review B, APS, v. 86,
n. 11, p. 115434, 2012.

COSTA, D. D.; CHAVES, A.; FARIAS, G.; PEETERS, F. Valley filtering in graphene due to
substrate-induced mass potential. Journal of Physics: Condensed Matter, IOP Publishing,
v. 29, n. 21, p. 215502, 2017.

COSTA, D. D.; CHAVES, A.; SENA, S.; FARIAS, G.; PEETERS, F. Valley filtering using
electrostatic potentials in bilayer graphene. Physical Review B, APS, v. 92, n. 4, p. 045417,
2015.

COSTA, D. D.; CHAVES, A.; ZARENIA, M.; JR, J. P.; FARIAS, G.; PEETERS, F. Geometry
and edge effects on the energy levels of graphene quantum rings: A comparison between
tight-binding and simplified dirac models. Physical Review B, APS, v. 89, n. 7, p. 075418, 2014.

CSERTI, J.; DÁVID, G. Unified description of zitterbewegung for spintronic, graphene, and
superconducting systems. Physical Review B, APS, v. 74, n. 17, p. 172305, 2006.

CUNHA, S.; COSTA, D. da; FELIX, L.; CHAVES, A.; JR, J. M. P. Electronic and transport
properties of anisotropic semiconductor quantum wires. Physical Review B, APS, v. 102, n. 4, p.
045427, 2020.

CUNHA, S.; COSTA, D. da; JR, J. M. P.; FILHO, R. C.; DUPPEN, B. V.; PEETERS, F.
Band-gap formation and morphing in α −T3 superlattices. Physical Review B, APS, v. 104,
n. 11, p. 115409, 2021.



208

CUNHA, S.; COSTA, D. da; SOUSA, G. de; CHAVES, A.; JR, J. M. P.; FARIAS, G.
Wave-packet dynamics in multilayer phosphorene. Physical Review B, APS, v. 99, n. 23, p.
235424, 2019.

DAS, S.; ZHANG, W.; DEMARTEAU, M.; HOFFMANN, A.; DUBEY, M.; ROELOFS,
A. Tunable transport gap in phosphorene. Nano Letters, ACS Publications, v. 14, n. 10, p.
5733–5739, 2014.

DATTOLI, G.; OTTAVIANI, P.; SEGRETO, A.; TORRE, A. Symmetric-split-operator
techniques and finite-difference methods for the solution of classical and quantum evolution
problems. Il Nuovo Cimento B (1971-1996), Springer, v. 111, n. 7, p. 825–839, 1996.

DAVID, G.; CSERTI, J. General theory of zitterbewegung. Physical Review B, APS, v. 81,
n. 12, p. 121417, 2010.

DÁVILA, M.; XIAN, L.; CAHANGIROV, S.; RUBIO, A.; LAY, G. L. Germanene: a novel
two-dimensional germanium allotrope akin to graphene and silicene. New Journal of Physics,
IOP Publishing, v. 16, n. 9, p. 095002, 2014.

DEACON, R.; CHUANG, K.-C.; NICHOLAS, R.; NOVOSELOV, K.; GEIM, A. Cyclotron
resonance study of the electron and hole velocity in graphene monolayers. Physical Review B,
APS, v. 76, n. 8, p. 081406, 2007.

DEGANI, M. H.; MAIALLE, M. Z. Numerical calculations of the quantum states in
semiconductor nanostructures. Journal of Computational and Theoretical Nanoscience,
American Scientific Publishers, v. 7, n. 2, p. 454–473, 2010.

DEMIKHOVSKII, V. Y.; MAKSIMOVA, G.; FROLOVA, E. Wave packet dynamics in a
two-dimensional electron gas with spin orbit coupling: Splitting and zitterbewegung. Physical
Review B, APS, v. 78, n. 11, p. 115401, 2008.

DEMIKHOVSKII, V. Y.; MAKSIMOVA, G.; FROLOVA, E. Wave packet dynamics in hole
luttinger systems. Physical Review B, APS, v. 81, n. 11, p. 115206, 2010.

DEY, B.; GHOSH, T. K. Floquet topological phase transition in the α −T3 lattice. Physical
Review B, APS, v. 99, n. 20, p. 205429, 2019.

DIRAC, P. A. M. The quantum theory of the electron. Proceedings of the Royal Society of
London. Series A, Containing Papers of a Mathematical and Physical Character, The
Royal Society London, v. 117, n. 778, p. 610–624, 1928.

DIVINCENZO, D.; MELE, E. Self-consistent effective-mass theory for intralayer screening in
graphite intercalation compounds. Physical Review B, APS, v. 29, n. 4, p. 1685, 1984.

DOLUI, K.; QUEK, S. Y. Quantum-confinement and structural anisotropy result in
electrically-tunable Dirac cone in few-layer black phosphorous. Scientific Reports, Nature
Publishing Group, v. 5, n. 1, p. 1–12, 2015.

DOMBEY, N.; CALOGERACOS, A. Seventy years of the Klein paradox. Physics Reports,
Elsevier, v. 315, n. 1-3, p. 41–58, 1999.

DÓRA, B.; KAILASVUORI, J.; MOESSNER, R. Lattice generalization of the dirac equation to
general spin and the role of the flat band. Physical Review B, APS, v. 84, n. 19, p. 195422, 2011.



209

DOWNING, C.; STONE, D.; PORTNOI, M. Zero-energy states in graphene quantum dots and
rings. Physical Review B, APS, v. 84, n. 15, p. 155437, 2011.

DREISOW, F.; HEINRICH, M.; KEIL, R.; TÜNNERMANN, A.; NOLTE, S.; LONGHI, S.;
SZAMEIT, A. Classical simulation of relativistic Zitterbewegung in photonic lattices. Physical
Review Letters, APS, v. 105, n. 14, p. 143902, 2010.

DRESSELHAUS, G.; DRESSELHAUS, M. S.; SAITO, R. Physical properties of carbon
nanotubes. [S. l.]: World scientific, 1998.

DU, H.; LIN, X.; XU, Z.; CHU, D. Recent developments in black phosphorus transistors.
Journal of Materials Chemistry C, Royal Society of Chemistry, v. 3, n. 34, p. 8760–8775,
2015.

DU, Y.; LIU, H.; DENG, Y.; YE, P. D. Device perspective for black phosphorus field-effect
transistors: contact resistance, ambipolar behavior, and scaling. ACS Nano, ACS Publications,
v. 8, n. 10, p. 10035–10042, 2014.

DU, Y.; OUYANG, C.; SHI, S.; LEI, M. Ab initio studies on atomic and electronic structures of
black phosphorus. Journal of Applied Physics, American Institute of Physics, v. 107, n. 9, p.
093718, 2010.

EDWALL, D.; CHEN, J.; BAJAJ, J.; GERTNER, E. MOCV DHg1−xCdxTe/GaAs for IR
detectors. Semiconductor Science and Technology, IOP Publishing, v. 5, n. 3S, p. S221, 1990.

ENGLMAN, R.; VERTESI, T. Large berry phases in layered graphene. Physical Review B,
APS, v. 78, n. 20, p. 205311, 2008.

FEIT, M.; FLECK, J.; STEIGER, A. Solution of the schrödinger equation by a spectral method.
Journal of Computational Physics, Elsevier, v. 47, n. 3, p. 412–433, 1982.

FEIT, M.; JR, J. F. Solution of the schrödinger equation by a spectral method ii: Vibrational
energy levels of triatomic molecules. The Journal of Chemical Physics, AIP, v. 78, n. 1, p.
301–308, 1983.

FERRARI, L.; RUSSO, G. Nonrelativistic zitterbewegung in two-band systems. Physical
Review B, APS, v. 42, n. 12, p. 7454, 1990.

FESHBACH, H.; VILLARS, F. Elementary relativistic wave mechanics of spin 0 and spin 1/2
particles. Reviews of Modern Physics, APS, v. 30, n. 1, p. 24, 1958.

FILHO, R. C.; ALMEIDA, M.; FARIAS, G.; JR, J. A. Displacement operator for quantum
systems with position-dependent mass. Physical Review A, APS, v. 84, n. 5, p. 050102, 2011.

FILHO, R. N. C.; ALENCAR, G.; SKAGERSTAM, B.-S.; JR, J. S. A. Morse potential derived
from first principles. EPL (Europhysics Letters), IOP Publishing, v. 101, n. 1, p. 10009, 2013.

FILHO, R. N. C.; BRAGA, J. P.; LIRA, J. H.; JR, J. S. A. Extended uncertainty from first
principles. Physics Letters B, Elsevier, v. 755, p. 367–370, 2016.

FORSYTHE, C.; ZHOU, X.; WATANABE, K.; TANIGUCHI, T.; PASUPATHY, A.; MOON,
P.; KOSHINO, M.; KIM, P.; DEAN, C. R. Band structure engineering of 2d materials using
patterned dielectric superlattices. Nature nanotechnology, Nature Publishing Group, v. 13, n. 7,
p. 566–571, 2018.



210

GAMOW, G. Zur quantentheorie des atomkernes. Zeitschrift für Physik, Springer, v. 51, n. 3,
p. 204–212, 1928.

GERRITSMA, R.; KIRCHMAIR, G.; ZÄHRINGER, F.; SOLANO, E.; BLATT, R.; ROOS, C.
Quantum simulation of the dirac equation. Nature, Nature Publishing Group, v. 463, n. 7277, p.
68–71, 2010.

GHOSH, T. K. Exact solutions for a Dirac electron in an exponentially decaying magnetic field.
Journal of Physics: Condensed Matter, IOP Publishing, v. 21, n. 4, p. 045505, 2008.

GOERBIG, M. Electronic properties of graphene in a strong magnetic field. Reviews of Modern
Physics, APS, v. 83, n. 4, p. 1193, 2011.

GOERBIG, M.; FUCHS, J.-N.; MONTAMBAUX, G.; PIÉCHON, F. Tilted anisotropic dirac
cones in quinoid-type graphene and α − (BEDT −T T F)2I3. Physical Review B, APS, v. 78,
n. 4, p. 045415, 2008.

GOMES, J. V.; PERES, N. Tunneling of Dirac electrons through spatial regions of finite mass.
Journal of Physics: Condensed Matter, IOP Publishing, v. 20, n. 32, p. 325221, 2008.

GORBACHEV, R. V.; MAYOROV, A. S.; SAVCHENKO, A. K.; HORSELL, D. W.; GUINEA,
F. Conductance of pnp graphene structures with “air-bridge” top gates. Nano Letters, ACS
Publications, v. 8, n. 7, p. 1995–1999, 2008.

GORBAR, E.; GUSYNIN, V.; ORIEKHOV, D. Electron states for gapped pseudospin-1
fermions in the field of a charged impurity. Physical Review B, APS, v. 99, n. 15, p. 155124,
2019.

GREEN, D.; SANTOS, L.; CHAMON, C. Isolated flat bands and spin-1 conical bands in
two-dimensional lattices. Physical Review B, APS, v. 82, n. 7, p. 075104, 2010.
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