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ABSTRACT 

 

The breeding programs cross-pollinated crops develop thousands of lines that, when combined, 

generate single-crosses that need to be evaluated for their performance in different sites, making 

this step the most expensive in released new cultivars. The molecular markers have proved to 

be a powerful tool in improving economically essential crops to accelerate this process. 

Currently, there are several genotyping platforms capable of providing thousands of SNP 

(Single Nucleotide Polymorphism) for performing genomic studies. However, the adoption of 

modern genomic enhancement for crops that do not yet have a reference genome is limited. 

Genotyping by sequencing (GBS) has emerged as an alternative to make such technologies 

viable for orphan crops. Once with these data, it is possible to build a simulated genome to 

perform the SNP calling where the discovery of polymorphisms will be intrinsic to the 

population under study without using an external genome. The term “orphan” is derived from 

the condition of neglect and helplessness of these crops by the scientific community, despite 

having great food and nutritional potential. Therefore, our goals were to verify whether the 

source of SNP can influence the assessment of the population structure of parental lines; 

ascertain if the SNP source can affect the determination of heterotic groups and the prediction 

of single-crosses performance, and to test if using GBS and the mock genome efficiently 

performs the SNP calling in orphan crops, the ones that don’t have reference genome available. 

For this, maize was used as a model species, where 330 parental lines were genotyped by two 

standard genotyping platforms, SNP-array and GBS. GBS data were used for two purposes, to 

perform the SNP calling using the parental line B73 (GBS-B73) as a reference genome and to 

build a mock genome (GBS-Mock) to perform the SNP calling without needing an external 

genome, making three genotyping scenarios: SNP-array, GBS-B73, and GBS-Mock. These 

scenarios were used to conduct studies of population structure and genetic diversity among 

parental lines. After, we used phenotypic data of 751 single-crosses generated from the diallel 

of these parental lines. From there, genomic diallel analyses were performed to separate 

parental lines into heterotic groups and choose the best testers. Subsequently, an additive-

dominant model was applied to predict the performance of single-crosses. The results showed 

that the GBS-Mock presented similar results to the standard population structure studies 

approach. The genotyping scenarios also did not differ in the division of heterotic groups and 

the definition of testers. In the genomic prediction study, GBS-Mock performed similarly to the 

SNP-array and GBS-B73. These results showed that a mock genome constructed from the 

population's intrinsic polymorphisms to perform the SNP calling is an excellent strategy to 



 
 

support plant breeders in studies of diversity, population structure, the definition of heterotic 

groups, choice of testers, and genomic prediction in species that still do not have a reference 

genome available. Because it is an alternative to the rapid advance of orphan crop breeding, in 

this context, genotyping via GBS associated with the mock genome is an effective alternative 

for performing genomic studies in orphan crops, especially those that do not have a reference 

genome. 

 

Keywords: GBS, SNP-array; formation of heterotic groups; genomic prediction of single-

crosses; minor crops; underused crops; simulated genome. 

  



 
 

RESUMO 

 

Os programas de melhoramento de culturas de polinização cruzada desenvolvem milhares de 

linhagens que, quando combinadas, geram cruzamentos-simples que precisam ser avaliados 

quanto ao seu desempenho em diferentes locais, tornando esta etapa a mais cara no lançamento 

de novas cultivares. Os marcadores moleculares têm se mostrado uma poderosa ferramenta no 

aprimoramento de culturas economicamente essenciais para acelerar esse processo. 

Atualmente, existem várias plataformas de genotipagem capazes de fornecer milhares de SNP 

(Single Nucleotide Polymorphism) para a realização de estudos genômicos. No entanto, a 

adoção de aprimoramento genômico moderno para culturas que ainda não possuem um genoma 

de referência é limitada. A genotipagem por sequenciamento (GBS) surgiu como uma 

alternativa para viabilizar tais tecnologias para culturas órfãs. Uma vez que, com esses dados, 

é possível construir um genoma simulado para realizar a chamada de SNP, onde a descoberta 

de polimorfismos será intrínseca à população de estudo sem utilizar um genoma externo. O 

termo “órfão” é derivado da condição de abandono e desamparo dessas culturas pela 

comunidade científica, apesar de possuírem grande potencial alimentar e nutricional. Portanto, 

nossos objetivos foram verificar se a fonte de SNP pode influenciar na avaliação da estrutura 

populacional de linhagens parentais; verificar se a fonte de SNP pode afetar a determinação de 

grupos heteróticos e a predição do desempenho de cruzamentos-simples, e testar se o uso de 

GBS e o genoma simulado realizam eficientemente a chamada de SNP em culturas órfãs, 

aquelas que não possuem genoma de referência disponível .Para isso, o milho foi utilizado como 

espécie modelo, onde 330 linhagens parentais foram genotipadas por duas plataformas de 

genotipagem padrão, SNP-array e GBS. Os dados do GBS foram usados para dois propósitos, 

para realizar a chamada de SNP usando a linha parental B73 (GBS-B73) como genoma de 

referência e para construir um genoma simulado (GBS-Mock) para realizar a chamada de SNP 

sem a necessidade de um genoma externo, compondo três cenários de genotipagem: SNP-array, 

GBS-B73 e GBS-Mock. Esses cenários foram usados para realizar estudos de estrutura 

populacional e diversidade genética entre linhagens parentais. Posteriormente, utilizamos dados 

fenotípicos de 751 cruzamentos-simples gerados a partir de um dialelo entre essas linhagens 

parentais. A partir daí, foram realizadas análises dialélicas genômicas para separar as linhagens 

parentais em grupos heteróticos e escolher os melhores testadores. Posteriormente, um modelo 

aditivo-dominante foi aplicado para prever o desempenho dos cruzamentos-simples. Os 

resultados mostraram que o GBS-Mock apresentou resultados de estudos de estrutura 

populacional semelhantes às abordagens padrão. Os cenários de genotipagem também não 



 
 

diferiram na divisão dos grupos heteróticos e na definição dos testadores. No estudo de predição 

genômica, GBS-Mock teve um desempenho semelhante a SNP-array e a GBS-B73. Esses 

resultados mostraram que um genoma simulado construído a partir de polimorfismos 

intrínsecos da população para realizar a chamada de SNP é uma excelente estratégia para apoiar 

melhoristas em estudos de diversidade, estrutura populacional, definição de grupos heteróticos, 

escolha de testadores e predição genômica em espécies que ainda não têm um genoma de 

referência disponível. Por ser uma alternativa para o rápido avanço do melhoramento de 

culturas órfãs, nesse contexto, GBS associada ao genoma simulado é uma alternativa eficaz 

para a realização de estudos genômicos em culturas órfãs, principalmente aquelas que não 

possuem genoma de referência. 

 

Palavras-chave: GBS, SNP-array; formação de grupos heteróticos; predição genômica de 

cruzamentos-simples; culturas menores; culturas subutilizadas; genoma simulado. 
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1 INTRODUCTION 

Breeding programs to obtain single-crosses are generally based on the development 

of inbred lines, followed by the progenies evaluation in heterotic pools. Thus, thousands of lines 

are developed and, when combined, generate single-crosses that needs to be evaluated for their 

performance in different locations making this step the most expensive in new cultivars 

development (BERNARDO, 1994; HALLAUER, 2010). For this reason, the scientific 

community has made significant investments in developing technologies and genomic 

resources to enable breeding programs to develop cultivars faster with cost-effectiveness 

(BATLEY; EDWARDS, 2016; BEVAN et al., 2017; BEVAN; UAUY, 2013). 

In this context, molecular markers have been used to develop genomic tools to be 

employed in improving economically important crops (MAMMADOV et al., 2012; 

THOMSON, 2014). Currently, SNP (Single Nucleotide Polymorphism) markers are the most 

used in genomic studies (FRITSCHE-NETO et al., 2021), as they provide higher resolution due 

to their frequent occurrence and uniformity throughout the genome (GUPTA; RUSTGI; MIR, 

2008). Rapid advances in next-generation sequencing (NGS) technologies, combined with high 

levels of diversity in SNP, have made it possible to develop high-throughput genotyping 

platforms (BACHLAVA et al., 2012). 

The current genomic scenario in cultivated plants has faced a revolution due to NGS 

technologies, which have provided an infinity of sequencing information with remarkable 

improvements in coverage, time, and costs, making it possible to genotype thousands of 

samples with many markers (BEVAN; UAUY, 2013). Currently, there are several genotyping 

platforms for obtaining SNPs throughout the genome, with SNP-array and NGS platforms being 

the most appropriate for this purpose (RASHEED et al., 2017). There are many array-based 

genotyping platforms available in major crops such as maize (UNTERSEER et al., 2014), wheat 

(WINFIELD et al., 2016), rice (SINGH et al., 2015), and soybean (LEE et al., 2015) . These 

platforms have many advantages, such as fast scans with high call rates and density. However, 

they present an investigation bias when the set of individuals does not faithfully represent the 

genetic diversity explored in the study panel. Furthermore, it has a high cost, inaccessible to 

small breeding programs (FRASCAROLI; SCHRAG; MELCHINGER, 2013; MESSING; 

DOONER, 2006), especially those of unprofitable species. 

Beyond crop-specific SNP arrays, NGS-based platforms are adaptable to various 

crops, regardless of prior knowledge of genomics, genome size, organization, or ploidy 
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(RASHEED et al., 2017). Genotyping-by-sequencing (GBS) appears as an alternative to 

overcome the verification bias since it is based on sequencing and, therefore, allows the 

discovery of alleles in the diversity panel analyzed, in addition to having a lower cost compared 

to SNP-array (HESLOT et al., 2013). GBS also appears as an option for genomic studies in 

orphan crops, especially when they do not have a reference genome (SABADIN et al., 2022). 

The term “orphan” is derived from the condition of neglect and helplessness of these crops by 

the scientific community, despite having great food and nutritional potential, leading to the 

designation of such species as underused, neglected, minor, or orphan crops (TADELE; 

ASSEFA, 2012). Adopting this technology in poorly studied crops would have a tangible 

impact on increasing genetic gains. Furthermore, with these data, it is possible to build a 

simulated genome to perform the SNP calling, where the discovery of polymorphisms will be 

intrinsic to the study population without using an external genome (MELO; BARTAULA; 

HALE, 2016). However, GBS generates many low-quality markers with a high rate of lost data 

(HESLOT et al., 2013).  

The number of single-crosses is increasing each year quickly, while the adoption of 

non-hybrid cultivars is decreasing (SILVA DIAS, 2014). Genetic gains within a single-crosses 

breeding program can be accelerated with the help of diversity and population structure studies. 

These studies will support the intended use of germplasm and the identification and allocation 

of inbred lines in heterotic groups (WU et al., 2016). Making it thus, it’s possible to optimize 

complementarity in addition to divergence. This is because it is known that forming these 

groups is the key to maximizing heterosis (BOEVEN; LONGIN; WÜRSCHUM, 2016). In 

crops that still do not have well-established groups, efforts have been made cluster them based 

on the genetic distance among lines. 

Evaluating the performance of all single-crosses combinations of inbred lines that 

stand out is impractical in most cases. In this sense, genetic designs are crucial for identifying 

elite parental lines and assessing hybrid performance. Among them, diallel has been widely 

used to estimate the effects of general and specific combining ability and other genetic 

parameters (BEYENE; MUGO; KARAYA, 2011; FAN et al., 2014; HALLAUER, 2010). 

Additionally, genomic prediction models are useful tools for predicting the performance of 

untested single-crosses. However, the choice of genetic design can influence on the genomic 

prediction accuracy, with factorial and full diallel designs depicting higher accuracy 

(FRITSCHE-NETO; AKDEMIR; JANNINK, 2018). Another important point is that 

incorporate dominance effects are crucial to predict the performance of the population or single-
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crosses' expression of agronomic traits of more complex inheritance, such as productivity 

(ALVES et al., 2019; BERNARDO, 2010; FALCONER; MACKAY, 1996). Therefore, to 

accelerate genetic gain with limited resources, the prediction of single-crosses performance is 

highly important in modern breeding programs (BASNET et al., 2019).  

Recent studies are comparing the performance of genotyping platforms and how 

this choice affects genomic studies (DARRIER et al., 2019; ELBASYONI et al., 2018). Chu et 

al. (2020) compared three genotyping platforms (microsatellites (SSR), GBS, and SNP-array) 

and observed an inquiry bias caused by the SNP-array, causing underestimates of diversity 

within the population. However, the choice of marker system did not significantly influence the 

prediction, except for SSR markers due to the low number of markers. Unlike what was 

observed by Chu et al. (2020), the study carried out by Negro et al. (2019), employing GBS and 

SNP-array platforms to assess genetic diversity in maize lines, revealed similar trends in the 

organization of population structure, suggesting that there is no strong ascertainment bias to 

decipher trends in the genetic structure of the panel. 

Sabadin et al. (2022), using maize as a model species, carried out his study with 

two SNP-genotyping platforms: array and GBS, based on the B73 (tempered) reference 

genome. In addition, they built simulated reference genomes to perform the discovery of SNPs 

to capture the polymorphisms intrinsic to the study population without the need for an external 

genome.  The authors aimed to build simulated references with GBS data and verify if using 

mock genomes to perform SNP calling is suitable for genomic prediction through additive and 

additive-dominant models. They concluded that the simulated genome based on the entire study 

population provides reliable estimatives and is a valid alternative for carrying out studies in 

species where the reference genome is unavailable. 

There are some reports available. However, there is still no consensus on how the 

results provided by different platforms, including the use of a simulated genome, can generate 

in studies of population structure and genetic diversity, especially when the intention is to use 

this information for support the formation of heterotic groups, choice of testers and genomic 

prediction of single-crosses. In addition, the only published study on the mock genome to 

perform hybrid prediction uses a limited diversity panel (SABADIN et al., 2022) which may 

compromise the generated estimates. This information will be valuable to leverage genomic 

studies in minor crops without a reference genome. Therefore, our goals were to verify whether 

the source of SNP can influence the assessment of the population structure of parental lines; to 

ascertain if the source of SNP can affect the determination of heterotic groups and the prediction 
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of single-crosses performance, and check if the GBS and the mock genome efficiently performs 

the SNP calling in orphan crops (without reference genome). 
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2 MATERIAL AND METHODS 

2.1 Phenotypic data 

The phenotypic dataset consists of 903 maize single-crosses (FRITSCHE-NETO et 

al., 2019) derived from a diallel cross between 49 parental lines to a tropical maize diversity, 

selected based on nitrogen use efficiency (MENDONÇA et al., 2017). Field trials were carried 

out in Anhembi (22º50'51''S, 48º01'06''W) and Piracicaba (22º42'23''S, 47º38'12''W), in the 

State of São Paulo, during the second growing season, from January to June 2016 and 2017. 

Single-crosses were evaluated in an augmented block design, where each block consisted of 16 

single-crosses and two checks (commercial single-crosses). In both locations and years, the 

single-crosses were evaluated under two nitrogen (N) conditions, low N with 30 kg N ha-1 and 

ideal N with 100 kg N ha-1. Each location x year x N level combination was defined as an 

environment. 

Each plot consisted of 7 m rows spaced 0.50 m apart. Conventional fertilization and 

weed and pest control were carried out. The traits evaluated were grain yield (GY, mg ha-1), 

plant height (PH, cm), and ear height (EH, cm). The plots were harvested manually, and the 

grain yield was corrected for 13% moisture. More details on the experimental design and 

cultivation practices for phenotypic dataset was previously reported by Fritsche-Neto et al. 

(2018) and Galli et al. (2020). 

2.2 Genetic-statistical model for obtaining BLUEs 

The joint analysis of each trait was performed to estimate the means of the single-

crosses across the environments. Thus, an equation was adjusted to obtain the Best Linear 

Unbiased Estimator (BLUE) for each genotype and, later, the adjusted means of these across 

the environments evaluated by the following mixed model were estimated: 

y = Ql + Sb + Tc + Ug + Vi + Ɛ 

where y is the vector of phenotypic values of single-crosses and checks; l the vector of fixed 

effects of the environment (site x year x N level combination); b is the vector of random effect 

of block nested within environments, where b ~N (0, Iσ²b); c is the vector of fixed effects of 

checks; g is the vector of fixed effects of single-crosses; i is the vector of fixed effects of the 

interaction checks x environments; Ɛ is the vector of random residual effects, where Ɛ ~ N (0, 

De). An unstructured covariance matrix across environments was assumed for the residual term 

(De). Q, S, T, U, and V are the incidence matrices for l, b, c, g, and i. The analysis was performed 

using the ASReml-R (BUTLER et al., 2018). 
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2.3 Genotypic data and analysis 

The 360 lines of tropical maize belonging to the diversity mentioned above panel 

were genotyped using two high SNP density genotyping platforms: 1) Affymetrix® Axiom 

Maize Genotyping Array containing 18,413 SNPs (SNP-array) and 2) Genotyping-by-

sequencing (GBS) method following the protocol described by (POLAND et al., 2012). In this 

last method, individual samples of genomic DNA were digested by two restriction enzymes, 

PstI and MseI, to reduce the genome complexity uniformly. Subsequently, the samples were 

included in a sequencing plate, performed on the Illumina NextSeq 500 platform (Illumina Inc., 

San Diego, CA, United States). 

The raw GBS data were used for two purposes: the first was to perform the SNP 

calling using the B73 line of temperate germplasm as a reference genome. The second purpose 

was to build a simulated reference genome (mock genome), according to the GBS-SNP-CROP 

pipeline proposed by Melo et al. (2016), and use it to perform the SNP calling. More details 

about the mock reference can found in (SABADIN et al., 2022).  

Further analysis were performed considering three SNP datasets: 1) SNP-array; 2) 

GBS with SNP call using B73 as the reference genome (GBS-B73) and 3) GBS with the 

simulated genome being used as the reference genome (GBS-Mock). For GBS datasets, SNPs 

were scored from raw data using the TASSEL 5.0 GBSv2 pipeline (GLAUBITZ et al., 2014) 

according to standard parameters. Using the BWA aligner (LI; DURBIN, 2009), the tags were 

aligned against the reference genome (GBS-B73 and GBS-Mock). 

As two genotyping (SNP-array and GBS) were performed, the lines that showed a 

very contrasting genotypic profile between the two platforms were removed from the analysis 

to obtain a fair comparison. Thus, between sequencing errors and divergences in genotypic 

profiles between platforms, 330 lines remained, among which 45 parental lines make up the 

diallel, which generated 751 single-crosses. All sets of SNPs underwent quality control, in 

which low call rate (<90%) and non-biallelic markers were removed from the datasets. The 

remaining missing data were imputed by the Beagle 5.0 algorithm (BROWNING; ZHOU; 

BROWNING, 2018). Pairwise linkage disequilibrium was calculated as the correlation of allele 

frequencies squared (r²), and values greater than 0.99 were removed from the datasets.  

Subsequently, new quality control was performed, in which heterozygous loci in at 

least one individual were removed, and high-quality polymorphic SNPs from the parental lines 

were combined (in silico) to build an artificial single-crosses genomic matrix. In addition, 
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duplicate markers between chromosomes were removed to avoid overparameterization caused 

by multicollinearity. Finally, markers with MAF (Minor Allele Frequency) < 0.05 were 

removed from the single-crosses genomic matrices. All quality control procedures were made 

using the SNPRelate package (ZHENG et al., 2012). 

2.4 Analysis of population structure and genetic diversity 

The three SNP datasets (SNP-array, GBS-B73, and GBS-Mock) from the 330 

parental lines were used to assess the population structure of the panel. In these analyses, 

precisely, heterozygous loci and rare variants (MAF < 0.05) were considered to capture all 

diversity and variability to perform principal component analysis (PCA), and determine the 

relatedness between parental lines. 

K-means clustering was applied, using the total Within-cluster Sum of Square 

(WSS) method to determine the optimal number of clusters so that the total intra-cluster 

variation is minimized (KASSAMBARA, 2017). For this, the factoextra package 

(KASSAMBARA; MUNDT, 2020) was used. Subsequently, the Kendall method determined 

the coincidence in forming clusters among the different datasets (KENDALL, 1938). Kendall's 

tau correlation coefficient was tested at a probability level of 0.01. PCA was performed, and 

biplots plots were constructed to assess population structure. 

The genetic distances between the parental lines were calculated for each SNP 

dataset using the Rogers distance (ROGERS, 1972). Subsequently, to measure the correlation 

among the kinship matrices, the Mantel correlation test (MANTEL, 1967) was applied to detect 

significance. The Mantel correlation test is non-parametric and computes the significance of 

the correlation similarity measures using 1000 permutations of the rows and columns of one 

distance matrices. The heatmaps of the genetic distance matrices were obtained using the 

superheat R package (BARTER; YU, 2018). Correlations were obtained using the vegan 

package (OKSANEN et al., 2019), and each analysis was performed for each SNP dataset 

scenario. 

2.5 Full diallel genomic analysis 

To find out how diversity and population structure can influence the formation of 

heterotic groups, it was necessary to construct in silico genome of the 751 single-crosses from 

parental lines. So, at this stage, we combined phenotypic and genotypic information from these 

individuals to estimate general (GCA) and specific combining abilities (SCA). For this, the 

following diallel model was adjusted: 
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y = ZPgP + ZHh + Ɛ 

where, y is the adjusted phenotypic data vector of the single-crosses for the trait; gP is the 

random effect vector of the GCA captured by the markers of the parental lines, and h is the 

random effect vector of the SCA that denotes the interaction effects across the parental lines. 

ZP e ZH are incidence matrices that relate y to gP and h to gp ~N (0, σ²pGp) and h ~N (0, σ²HH), 

where σ²P and σ²H are variance components associated with GCA and SCA, respectively. And 

GP and H are relationship matrices for the parental lines and single-crosses, respectively. 

Finally, Ɛ ~ N (0, σ²Ɛ I), where σ²Ɛ is the variance associated with the residuals. 

The GP relationship matrix was calculated using the SNP markers according to 

(VANRADEN, 2008), where WP is the matrix of centered and patterned markers. So, GP = 

����
�

�
  (LOPEZ-CRUZ et al., 2015; TECHNOW et al., 2014), where p is the number of markers. 

This resulted in an average diagonal Gp value of ~ 1; therefore, σ²p was defined on the same 

scale as σ² Ɛ.  

The elements of the H matrix were obtained directly from the GP (BERNARDO, 

2002; TECHNOW et al., 2014). The matrix H for all possible crosses was obtained with the 

Kronecker product between GP’s, H = Gp ⊗ Gp (COVARRUBIAS-PAZARAN, 2016).  

A model was built with their respective kernels for each SNP marker source. 

Analyzes were performed using the ASReml-R package (BUTLER et al., 2018). 

2.6 Heterotic groups and testers 

The determination of heterotic groups was performed based on SCA estimates for 

each trait. These estimates corresponded to a matrix of genetic distances. According to 

(FALCONER; MACKAY, 1996), the genetic distance between parents positively affects 

heterosis. This association depends on dominance effects or differences in the frequency of the 

alleles that control the trait considered (FALCONER, 1960). Burstin et al. (1994) also found 

that SCA variance is an indicator for predicting hybrid performance by genetic distance 

between parents. According to this information, it was assumed that the higher the SCA 

estimates, the greater the distance between the parents and the more significant the heterosis. 

From this, the 45 lines were divided into heterotic groups.  

The SCA estimates were submitted to a clustering algorithm, K-means, which 

grouped them according to the SCA estimates. To estimate the correlation between the heterotic 

groups formed for the different genotyping methods, Pearson's correlation was applied and 
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tested at a probability level of 0.01 by Student's t-test. Subsequently, the identification of the 

best tester in each group was performed according to the GCA estimates. The best tester of a 

given group was the line that showed the highest GCA with the other group. Based on this, the 

coincidence of testers between the scenarios was evaluated. Pearson’s correlations were tested 

at a probability level of 0.01 by Student's t-test. 

2.7 Obtaining single-crosses combinations and genomic prediction 

After the parental lines were divided into heterotic groups, only the single-crosses 

corresponding to interpopulation crosses via North Carolina II (NCII) design were considered 

for the following analyses. The number of single-crosses changed according to the 

configuration of heterotic groups for each trait in the three SNP scenarios.  

For the genomic prediction of the single-crosses, an additive-dominant GBLUP 

(Genomic Best Linear Unbiased Prediction) model was used, as described below: 

 y = Za + Zd + Ɛ 

where, y is the adjusted means vector of the single-crosses for the trait; a is the vector of additive 

genetic effects of individuals, where a ~ N (0, Gaσ²a); d is the vector of dominance effects, 

where d ~ N (0, Gdσ²d); and Ɛ is the random effects vector of the residuals, where Ɛ ~ N (0, I 

σ²Ɛ). Z is the incidence matrix for a and d. σ²a is the additive genomic variance, σ²d is the 

dominance genomic variance, and σ² Ɛ is the residual variance. Ga and Gd are the additive and 

dominance genomic relationship matrices of the single-crosses, where  �� =
����

�

 ∑ ��(����)�
���

 and 

 �� =
����

�

� ∑ (��(����))²�
���

 , where pi is the frequency of an allele at locus i and W is the matrix 

incidence of markers (VANRADEN, 2008). The WA matrix was encoded as 0 for A1A1, 1 for 

A1A2 heterozygote, and 2 for A2A2 homozygote. For WD, genotypes were coded as 0 for both 

homozygotes and 1 for the heterozygote. The genomic relationship matrices were built using 

the snpReady package (GRANATO et al., 2018). And the genomic prediction models were 

performed using the sommer package (COVARRUBIAS-PAZARAN, 2016). It is worth noting 

that all three sets of markers were used to build the kernels. The Mantel correlation test 

(MANTEL, 1967) was applied to detect significance between the additive and dominance 

genomic relationship matrices. 

To evaluate the model, an alpha-based cross-validation scheme (CV-α) was used  

(YASSUE et al., 2021), which is an extension of the methodology proposed by Shao (1993). 
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This methodology is based on assigning treatments to folds based on alpha-lattice principles. 

CV-α plans to create scenarios with two, three, or four replications, regardless of the number 

of treatments. Each repetition was divided into folds, and the number of folds determined the 

percentage of training and validation sets. Each fold between repetitions was based on α (0.1) 

to reduce the simultaneity of any two treatments in the same fold (block) between repetitions 

(PATTERSON; WILLIAMS, 1976). We used five folds with four repetitions to estimate the 

predictive capabilities. 

The predictive ability was estimated by Pearson's correlation between predicted 

genotypic and observed values. Correspondence between phenotypic and genotypic selection 

was calculated for each set of markers through the percentage of common genotypes selected 

by their adjusted means from the phenotypic analysis and their Genomic Estimated Breeding 

Values (GEBV) from the genomic prediction model concerning different intensities of selection 

(1%, 10%, 20%, 30%, and 40%). The heritability in the broad-sense (H²) and the narrow-sense 

(h²) was also estimated by the equations below:  

H =
���

���� ²

(���
���� 

����Ɛ
�)

 and h =
���

�

(���
���� 

� ���Ɛ
�)

 

where #$%
 is the additive genetic variance, #$&

 is the dominance genetic variance, and #$Ɛ
 is the 

residual variance.  
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3 RESULTS 
 

3.1 Quality control 

The first quality control, carried out to prepare the parental lines subset, generated 

a more accentuated reduction of markers. GBS-B73 was the most affected dataset, with a 

decrease of 91.5%, followed by GBS-Mock with 89.5% and SNP-array with 31%. The second 

quality control, which prepared the set of markers for the analysis of single-crosses, reduced 

the markers more moderately (Table 1). 

3.2 Genetic diversity and population structure 

According to the WSS method, for all datasets, the optimal number of clusters 

among the 330 lines that minimized within-group variance and maximized between-group 

variance was six (Fig. 1). Subsequently, the K-means clustering method showed the six 

subpopulations formed between the parental lines for all datasets (Fig. 2). There is a remarkable 

similarity in the arrangement of clusters among datasets. This similarity is confirmed by the 

coincidence values in the clustering (Table 2), with correlation coefficients above 0.95. 

Concerning principal component analysis (PCA), the SNP datasets showed similar 

performances regarding the variance explained by the principal components. The first principal 

components hold the highest percentage of explained variance (Fig. 3a). When considering the 

first ten main components, SNP-array showed the highest value of cumulative explained 

variance (27.3%). At the same time, GBS-B73 and GBS-Mock presented discounts of 24.1% 

and 16.8%, respectively (Fig. 3b). 

In general, PCA revealed that the first eigenvectors exhibited similar patterns of 

variance in all combinations between datasets, supported by the coefficient of determination 

(R²). However, the other eigenvectors showed less similarity between the captured variance 

patterns (Fig. 4). The first four eigenvectors of SNP-array and GBS-B73 showed high values 

of R² (Fig. 4a). In contrast, for SNP-array and GBS-Mock, the highest values of R² were 

concentrated in the first three eigenvectors (Fig. 4b). For GBS-B73 and GBS-Mock all 

eigenvectors showed high magnitude R², the former being slightly higher than the others (Fig. 

4c). 

Bi-plots were constructed to visualize the spatial distribution of lines in all SNP 

datasets (Fig. 5, Fig. S1, Fig. S2). For this, the first three PCs were used, together with the 

information obtained by the K-means clustering method (Fig. 2). All datasets showed the same 
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pattern of dispersion among the lines, in agreement with the cluster analysis, which suggests 

that the SNP datasets capture similar patterns of variance (Fig. 5). 

Rogers distance matrices (GD) from all SNP datasets sampled similar groups and 

subgroups, with slight differences between them (Fig. 6). Regarding the Mantel correlations 

between the GDs, high magnitude correlations (>0.83) were observed involving different 

scenarios (Table 3). 

3.3 Variance components, genomic heritability, and genomic relationship matrices 
(GRMs) 

 

Broad and narrow heritabilities were higher for EH, followed by PH and GY (Table 

S1). For all SNP datasets, GY showed broad-sense heritability, on average, 36% higher than 

narrow-sense heritability. This difference is significantly smaller for the other characteristics, 

15% and 6%, for PH and EH, respectively. For GY, the narrow-sense heritability for all SNP 

datasets was practically the same. As for PH, there was a slight difference in SNP-array, and 

GBS-Mock presented heritability slightly higher than GBS-B73. For EH traits, narrow-sense 

heritability varied little among SNP datasets, with GBS-Mock and SNP-array showing the 

highest heritabilities. The heritabilities in the broad-sense (H²) followed the same tendency. 

Regarding the additive genomic relationship matrices (Ga) across the single-

crosses, SNP-array, GBS-B73, and GBS-Mock showed high Mantel correlations (Table 4, Fig. 

7a, b, c). On the other hand, the genomic dominance relationship matrices (Gd) showed lower 

correlations than Ga. The correlations between the dominant relationship matrices (Gd) were 

lower but still from medium to high. GBS-Mock stands out with a correlation of 0.72 with GBS-

B73.  

3.4 Heterotic groups and testers 
 

The 45 parental lines were divided into heterotic groups based on SCA estimates as 

the genetic distance between them for the evaluated traits, GY, PH, and EH. Accordingly, two 

heterotic groups were formed for all SNP datasets (Fig. 8). The formation of heterotic groups 

among the SNP datasets was quite similar, with high correlations, higher than 0.94 for GY and 

0.87 for PH and EH (Table 5). There was, at most, a change in the allocation of two parental 

lines between heterotic groups in different SNP datasets. Likewise, the SCA correlations of the 

parental lines among the SNP datasets were higher than 0.96 (Table S2). 
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GCA estimates from each parental line, trait, and SNP dataset were used to choose 

the best tester in each group (Table 6). Thus, the testers matched among SNP datasets in the 

respective heterotic groups for each trait. The tester chosen, based on GY, for heterotic group 

one (HP1) was L023, and for heterotic group two (HP2), it was L006. As for PH and EH, L001 

was elected as HP1 tester and L003 as HP2 tester. The correlations between the GCAs confirm 

this result, with maximum correlations (Table S3). 

3.5 Genomic prediction 

The predictive ability estimated by the additive-dominant model for all traits did 

not vary significantly among SNP datasets (Fig. 9). The mean values of PA were 0.58 for GY, 

0.64 for PH, and 0.83 for EH. The coincidence between selected individuals based on the 

adjusted means of the phenotypic analysis and the GEBVs of the genomic prediction model 

was generally satisfactory. It increased with rising selection intensity (Fig. 10). Although GY 

is considered the most complex, the selection coincidence levels of this one was similar to the 

other traits. SNP-array showed slightly higher coincidence values for almost all selection 

intensities. However, the different datasets showed approximate coincident values.  
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4 DISCUSSION 

Recent advances in crop genetics and genomics have gained remarkable attention 

and offered genotyping technologies (CHAKRADHAR; HINDU; REDDY, 2017). Various 

genotyping platforms are available to meet the most diverse needs regarding costs per sample 

and different marker densities (THOMSON, 2014). Genotyping-by-sequencing (GBS), in 

particular, has emerged as a cost-effective strategy for genome-wide SNP discovery and 

population genotyping due to the simple library preparation and the robust approach to genome 

reduction (ELSHIRE et al., 2011). 

All this progress, including well-characterized genes and vast collections of genetic 

and genomic resources, focus on a small group of crops (TESTER; LANGRIDGE, 2010), into 

the detriment of smaller agricultural species, considered as orphans, historically poorly 

researched (MAYES et al., 2012), in that the large majority do not have a reference genome. 

Sabadin et al. (2022) showed that using mock genomes could be a worthy strategy that permit 

to use SNP markers for genomic selection in orphan crops. However, orphan crops breeding 

program focused on hybrids development also need to determine heterotic groups to maximize 

the heterosis. Our study aims to go forward and verify the usefulness of mock genomes as a 

method to permit a reliable heterotic groups clustering.  

4.1 Influence of genotyping methods on population structure and diversity 

The study of the characterization of genetic diversity, population structure, and 

genetic relationships among elite parents of germplasm, based on the use of molecular markers, 

can accelerate genetic gains in breeding programs (ADU et al., 2019; ROMAY et al., 2013). 

This study helps understand how the germplasm is organized in selecting parents that present 

effective contributions and in the designation of heterotic groups (WU et al., 2016). In this 

sense, genomic data not only allows the estimation of genetic diversity but also combines them 

with phenotypic information to find new functional genes and build prediction models 

(MILNER et al., 2019). However, in this topic, the focus is on whether, with the simulated 

reference genome, there is the discovery of the same polymorphisms and how it reflects on the 

population structure of the lines. 

The WSS method indicated the optimal number of clusters by locating a curve on 

the plot, generally considered an indicator of the optimal number of clusters (KASSAMBARA, 

2017). With this information and the results of the K-means clustering, the parental lines were 

partitioned into subpopulations, where the SNP datasets showed similar behavior  (Fig.1, Fig. 

2, Table 2), in agreement with the spatial distributions obtained in the bi-plot graphs (Fig. 5), 
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in which all SNP datasets showed the same dispersion pattern between lines. This suggests that 

the SNP datasets capture similar patterns of variance, despite the difference in the number of 

markers between them, where GBS-Mock has a lower number (Table 1) and the difference in 

the genotyping platform itself (array and GBS). Thus, SNP-array, GBS-B73, and GBS-Mock 

revealed similar performances concerning genetic diversity and the population structure of 

parental lines. Darrier et al. (2019), when comparing the performance of two genotyping 

platforms, SNP-array and GBS, to investigate the extent and pattern of genetic variance within 

a collection of barley genotypes, observed that the two methodologies selectively access the 

informative polymorphism in different portions of the barley genome. But despite this, their 

results showed that in the comparison between similarity matrices, there was a positive 

correlation between both approaches, supporting the validity of the use of both. 

 PCA shows that these variance patterns captured by the SNP datasets are more 

similar concerning the first eigenvectors (Fig. 4). However, the captured variance is more 

consistent when comparing GBS-B73 and GBS-Mock (Fig. 4c). This can be explained by the 

verification bias existing in the SNP-array since this bias arises when the markers are not 

obtained from a random sample of the polymorphisms of the population of interest, since the 

matrix is constructed using temperate maize lines (FRASCAROLI; SCHRAG; 

MELCHINGER, 2013; HESLOT et al., 2013; UNTERSEER et al., 2014), and the lines in the 

study are from tropical germplasm.  

The matrices of genetic distances among the parental lines revealed similar 

patterns, showing the formation of subpopulations between the lines (Fig. 6). When using wheat 

as a model species to test for the presence of verification bias and investigate its impact on 

genetic diversity estimates, Chu et al. (2020) observed a tendency for SNP-array, leading to an 

underestimation of molecular diversity within the population. These results agree with a 

previous study on wheat lines (ELBASYONI et al., 2018) and maize lines (FRASCAROLI; 

SCHRAG; MELCHINGER, 2013). Despite the verification bias mentioned above and the 

difference between the reference genome used, the temperate B73 genome, or the Mock 

genome, the population structure between the lines did not show a significant difference, as the 

correlations between the matrices of genetic distances were of high magnitude. Even though 

GBS-Mock uses a different reference genome from SNP-array and GBS-B73, the correlation 

between them was high (Table 3). Elbasyoni et al. (2018), investigating the influence of SNPs 

from different genotyping platforms on genomic prediction, observed a high correlation (r = 

0.77) between SNP-array and GBS genetic distance matrices. These high magnitude 
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correlations suggest that the broad sampling of diversity is well represented by the approaches 

used in the study. This is supported by the GWAS study by Darrier et al. (2019). They indicated 

that methods using SNP-array and GBS could detect markers closely associated with genes that 

control key phenotypic traits. 

 

4.2 Influence of genotyping methods in the determination of heterotic groups and choice 

of testers 

Heterosis is a fundamental phenomenon in obtaining superior hybrids. Establishing 

heterotic groups to exploit them effectively throughout the breeding cycles is necessary. These, 

in turn, are made up of genetically related parental lines, which generate little or no heterosis 

when crossed with each other. Crossing with lines from another heterotic group tends to result 

in vigorous hybrids (LEE, 1995). Therefore, genetic diversity among heterotic groups tends to 

increase the level of heterosis detected in hybrid combinations (FALCONER; MACKAY, 

1996; FU et al., 2014). Badu-Apraku et al. (2011) reported in their diallel study between maize 

lines that their genetic diversity was small and, because of this, distinct heterotic groups could 

not be identified. Significant genetic diversity was found in a similar study with other maize 

lines, and two clear heterotic groups were identified. The type of predominant gene action in 

the parents under investigation is another factor that affects heterotic clustering. When additive 

and non-additive effects are significant, and there is a predominance of additive gene action 

over non-additive gene action, heterotic groups are easily identified (BADU-APRAKU et al., 

2015, 2016a, 2016b). 

The PH and EH traits showed higher proportions of additive variance captured by 

the Ga matrices than GY (Table S1). Although these traits have polygenic inheritance, GY is 

the most complex trait and most influenced by dominance deviations (Fischer et al., 2008; 

Hallauer, 2010). According to Hallauer (2010), most of the loci involved with GY in maize are 

due to the occurrence of dominance. This is reflected in a greater difference between H² and h² 

for GY than for the other traits, confirming the greater influence of dominance deviations on 

this trait. The additive genomic relationship matrices of the single-crosses (Ga) showed high 

correlations among SNP-array, GBS-B73, and GBS-Mock, indicating that these approaches 

capture similar additive variance patterns. GBS-Mock captures additive relationships in single-

crosses similar to standard procedures, SNP-array, and GBS-B73 (Table 4, Fig. 7a, b, c). On 

the other hand, the correlations between the dominant relationship matrices (Gd) were lower 

but still from medium to high.  In both Ga and Gd, the correlations between SNP-array and 
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GBS-Mock were lower, which can be explained by the fact that these SNP datasets use different 

reference genomes to perform SNP calling. 

SCA reflects the action of non-additive gene effects, indicating intra-allelic 

interactions, is one of the most important parameters in identifying superior hybrids, and is an 

indicator of genetic distance between parents (CARVALHO, 1993; SPRAGUE; TATUM, 

1942). Thus, using the SCA estimates as the genetic distance between the lines to identify the 

panel structure, two heterotic groups were formed, in which the distance between them is 

maximized. The correlations between the SCA estimates were almost perfect (Table S2). In 

other words, SNP-array, GBS-B73, and GBS-Mock presented equivalent SCA estimates. Thus, 

the composition of heterotic groups practically did not change from one SNP dataset to another. 

Therefore, the determination of heterotic groups was similar regardless of the platform used 

(Fig. 8, Table 5). 

In addition to presenting distinct heterotic groups, a well-established breeding 

program also offers good testers. When crossed with parental lines, these provide information 

about the genetic value of the lines when evaluating the ability to combine between them since 

it is associated with the additive effects of alleles and additive-type epistatic actions 

(ALBRECHT et al., 2014; CRUZ; VENCOVSKY, 1989). The correct choice of a tester can 

have great significance in the expectation of a successful selection process (MIRANDA 

FILHO, 2018). According to Hallauer and Martinson (1975), a good tester presents simplicity 

in use, information that correctly classifies the relative merit of the lines, and potential for 

maximizing genetic gain. Thus, based on the GCA estimates between the lines, testers were 

elected for each heterotic group based on the evaluated traits and the SNP datasets. As expected, 

there were no differences in tester choice between SNP datasets, as the correlations between 

GCA estimates across rows were perfect (Table 6, Table S3). 

Once previous results regarding the study of population structure of parental lines, 

the genotyping approaches produced very similar results but not the same, it was expected that 

this would somehow influence the formation of heterotic groups and the choice of testers. 

However, given the results, the genotyping platform, and, more specifically, the approach that 

uses the simulated genome as a strategy, the GBS-Mock, produces similar results to the standard 

procedures. 

4.3 Influence of genotyping methods on genomic prediction of single-crosses 

Assessing the performance of all single-crosses combinations of parental lines that 

excel in a breeding program is impractical in most cases, given that the number of combinations 
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grows exponentially as the number of elite parents increases. Thus, obtaining estimates of the 

genetic values of single-crosses not evaluated became viable with the increased availability of 

molecular markers and genomic prediction models (HALLAUER, 2010). Therefore, to 

accelerate genetic gain with limited resources, the prediction of single-crosses performance is 

highly important in modern breeding programs (BASNET et al., 2019). 

However, few works still address how genotyping platforms influence single-

crosses' prediction and, more specifically, regarding the mock genome as a tool for more 

sophisticated studies, such as genomic prediction. Only one recent study shows the mock 

genome's efficiency in predicting maize single-crosses, which may be an alternative for crops 

that do not yet have a reference genome (SABADIN et al., 2022). However, our study is more 

complete and more representative because getting approaches from the population structure 

phase is crucial for the intended use of germplasm through the division of heterotic groups, the 

definition of testers, and, finally, the genomic prediction of single-crosses. 

GY showed the lowest predictive abilities in all SNP datasets, and EH was the 

highest by the additive-dominant GBLUP prediction model (Fig. 9, Table S1). Combs and 

Bernardo (2013) suggested that genomic predictions are more accurate for traits with higher 

heritability. In the results of Hayes et al. (2010), complex traits controlled by many small effect 

loci, such as GY, showed lower predictive abilities than less complex traits. Although GBS-

Mock has a lower number of markers, this approach presented a similar performance to the 

other SNP datasets for all characteristics, corroborating the hypothesis that it is possible to 

substantially reduce the number of markers and maintain a high predictive ability (MA et al., 

2016; SOUSA et al., 2019; TAYEH et al., 2015), with the caveat that over the generations, the 

accuracy decreases significantly. Higher markers densities are recommended for better long-

term selection responses (DOVALE et al., 2022). These results were expected since the 

prediction model used was the GBLUP, which uses a genomic relationship matrix between 

individuals to perform the predictions. The genetic distance estimates between the SNP datasets 

were very similar (Fig. 6). 

Selection intensity must be chosen thoughtfully, as genetic variability can be 

drastically reduced with high selection pressure. The choice of appropriate selection intensities 

depends on the size of the population and the duration of the breeding program, whether short-

term or long-term. In general, selection intensities ranging from 10 to 40% are used in plant 

breeding, the highest being applied at the beginning of a breeding program (HALLAUER, 

2010). For the coincidence of individuals by phenotypic selection and genomic selection, the 

SNP datasets showed similar behavior as the selection intensity was increased, being more 
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pronounced from 1 to 10% of selection intensity. From then on, observing the coincidence of 

selection gains smaller increments (Fig. 10). Our results for predictive ability and coincidence 

of selection agree with the results of Sabadin et al. (2022). It is valid to consider that different 

intensities modify the response rates. Thus, this coincidence between phenotypic and genomic 

selections is expected to reach a plateau and subsequently decrease. 

Despite the apparent differences between SNP datasets, the general message is 

that these approaches perform comparably in the types of analyses performed in this study, even 

accessing different types of genomic sequences. While SNP-array is derived from exome 

capture and therefore focused on coding sequence variation, the GBS data represent a wider 

diversity survey in genomic regions associated with low levels of DNA methylation, which 

may also include many genes and gene regulatory regions (DARRIER et al., 2019; NEGRO et 

al., 2019). On the other hand, the physical distribution of markers reveals higher frequencies of 

SNPs at the gene-rich telomeric ends of each of the chromosomes for both approaches, with 

this frequency being more pronounced in SNP-array (BAYER et al., 2017). The platforms 

probably capture nearby markers in linkage disequilibrium with QTLs (Quantitative Trait 

Loci). In this sense, using different platforms can be advantageous, as it allows the identification 

of different QTLs. 

 

4.4 Possible applications of the Mock genome in plant breeding 

The advances in genomics in recent years have increased the accuracy and 

efficiency of breeding programs for many crops, especially those that dominate global food 

production. However, the adoption of genomic enhancement for several other staple crops 

essential in developing countries is still limited, especially for traits under complex genetic 

control, which are crucial to crop performance (VARSHNEY et al., 2012). Until recently, only 

the main commercial crops benefited from state-of-the-art technologies. However, the 

development of the GBS platform emerged as an alternative for using such technologies to be 

viable for orphan crops (DAVEY et al., 2011; VARSHNEY et al., 2009; VARSHNEY; MAY, 

2012). Approaches like this have the potential to convert orphan crops into crops rich in 

genomic resources (VARSHNEY et al., 2012). 

With the development of new technologies accessible to these neglected crops, the 

breeding process can be substantially reduced. Previously, this process was much slower than 

nowadays. Rice, for example, took almost 20 years to stop being an orphan crop and become a 

basic model for cereals (VARSHNEY et al., 2009). Introducing these crops into the genomic 
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era also accelerates the identification of genes underlying important agronomic traits and 

improves our understanding of the evolution of these species (YE; FAN, 2021). However, many 

more minor crops are becoming rich in genetic resources as a result of investments from various 

public and private initiatives, such as the African Orphan Crops Consortium (AOCC) 

(HENDRE et al., 2019), which is a global partnership that is generating resources genomics for 

101 African orphans. One of the objectives of this Consortium is to create reference genomes 

for these cultures. According to Armstead et al. (2009), species without a reference genome are 

harmed by being left out of these technologies that can improve breeding schemes and 

accelerate the development of new cultivars. Although some efforts are being made to pay 

greater attention to these cultures (CHIURUGWI et al., 2019; GREGORY et al., 2019; 

JAMNADASS et al., 2020; PADULOSI, 2017), the ideal is still far from being achieved with 

a view to several species relevant to local diets around the world that are understudied. 

This process takes time despite initiatives and investments to sequence and 

assembles reference genomes for orphan crops. Not all crops will benefit, so they will not be 

able to take advantage of modern breeding tools. While these advances are being consolidated, 

mock genomes can an alternative, where the absence of a reference genome presented a barrier 

to the efficient use of GBS data (HALE; MELO; GUSTAFSON, 2018; MELO; GUTHRIE; 

HALE, 2017). In the meantime, the present study has shown that using a population-adapted 

mock reference to perform SNP discovery is a valid alternative, particularly for species where 

the reference genome is unavailable. With this approach, it was possible to carry out studies to 

outline a breeding program as a whole, from studies of diversity and population 

structure(ARREDONDO; MARCHINI; CRUZAN, 2018; BARTAULA et al., 2018; SUNSERI 

et al., 2018), to genomic prediction studies Sabadin et al. (2022). However, it is important to 

emphasize that a population with maximum representativeness must be considered when 

building a mock reference aiming to capture all polymorphism into the population (SABADIN 

et al., 2022). 

Despite these significant advantages, using a mock genome in genomic studies must 

consider some caveats. For example, cross-pollinated crops or orphan polyploid crops have 

genomes too complex to be sequenced. Another challenge lies in the SNP calling due to the 

limitations of GBS, which can lead to incorrect identification of homozygotes and 

heterozygotes because of the low coverage of NGS reads, in addition to a large number of lost 

and low-quality data (HESLOT et al., 2013). According to Sabadin et al. (2022), the mock 

genomes do not present the physical position of the markers in a constant reference, which 

hinders studies such as GWAS and candidate gene discovery. The study by Negro et al., (2019) 
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states that SNP-array and GBS are complementary to detect QTLs tagging different haplotypes 

in association studies. In this sense, using other platforms can be advantageous, as it allows the 

identification of additional QTLs. However, no studies still demonstrate the performance of 

using mock genome for these purposes. When looking for these larger effect marks, the results 

will probably differ from those obtained with SNP-array due to changes in coverage between 

platforms. 

Given what has been shown, it is possible to infer and recommend that a mock 

genome constructed from the population's polymorphisms to perform the SNP calling is an 

excellent strategy to support plant breeders in studies of diversity, population structure, the 

definition of heterotic groups, choice of testers and genomic prediction in species that still do 

not have a reference genome available, which is an alternative for the rapid advancement of 

orphan crop improvement. This approach will play a key role in improving the genetic potential 

of orphan crops and helping develop sustainable food systems. 

  



37 
 

 

5 CONCLUSIONS 

Different SNP sources showed similar results regarding the population structure of 

the lines, determining heterotic groups, and in the genomic prediction of single-crosses, in 

which GBS-Mock gives results comparable to the standard approaches, i.e., SNP-array and 

GBS with the B73 line genome as the reference genome. In this context, GBS associated with 

the mock genome is an effective alternative for performing genomic studies in orphan crops, 

especially for species that do not have a genome reference. 
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APPENDIX A - LIST OF TABLES AND FIGURES 
 

Table 1 Number of markers scored (raw data) and the final number of markers used to assess 
330 tropical parental lines and 751 maize single-crosses after quality control for all SNPs 
datasets 
  SNP datasetsa 

 SNP-array GBS-B73 GBS-Mock 
Raw data 18,413 131,350 46,926 
Linesb 12,704 11,153 4,935 
Single-crossesc 11,884 10,361 4,801 

a SNP-array: Affymetrix® Axiom Maize Genotyping array; GBS-B73: genotyping-by-sequence with SNP calling 
using B73 as reference genome; GBS-Mock: genotyping-by-sequence with SNP calling using the mock reference 
built with all parental lines; 
b number of markers used to evaluate parental lines (population structure) 
c number of markers used to assess single-crosses (diallel, heterotic groups, genomic prediction). 
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Figure 1 Optimal number of clusters formed among the 330 parental lines for all SNP datasets 
by Total Within Sum of Square (WSS) method. a SNP-array; b GBS-B73; c GBS-Mock. 
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Figure 2 K-means clustering method among the 330 parental lines for all SNP datasets a SNP-array; b GBS-B73; c GBS-Mock. 
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Table 2 Kendall's correlation in the clustering of datasets 
  GBS-B73 GBS-Mock 

SNP-array 0.99** 0.96** 
GBS-B73 - 0.97** 

SNP-array: Affymetrix® Axiom Maize Genotyping array; GBS-B73: genotyping-by-sequence with SNP calling 
using B73 as reference genome; GBS-Mock: genotyping-by-sequence with SNP calling using the mock reference 
built with all parental lines. 
** Empirical significance level from permutations. 
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Figure 3 a Variance explained by the principal components (PCA) from SNP-array, GBS-B73 
e GBS-Mock SNP datasets for 330 tropical parental lines; b Cumulative explained variance 
estimated by principal components from SNP-array, GBS-B73 e GBS-Mock SNP datasets for 
360 tropical parental lines. 
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Figure 4 Heatmap of the coefficient of determination (R²) of the ten first eigenvectors among a SNP-array and GBS-B73; b SNP-
array and GBS-Mock; e c GBS-B73 and GBS-Mock. 

a b c 
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Figure 5 Bi-plot among two first principal components using all datasets for 330 tropical parental lines a SNP-array; b GBS-B73 and c 
GBS-Mock. Explained variance percentages of each principal component are in parentheses. Clusters were used to color-coded parental 
lines. 
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Figure 6. Heatmaps of the Rogers genetic distance matrices estimated from a SNP-array, b GBS-B73, and c GBS-Mock-All SNP datasets 
for 330 tropical parental lines. Lines and columns of each plot were clustered according to the Euclidian distance performed in the Roger 
genetic distance matrix from the SNP-array dataset. 

a b c 
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Table 3. Mantel correlation of Rogers genetic distance (GD) matrices estimated from SNP-
array, GBS-B73, and GBS-Mock markers. 

  GBS-B73 GBS-Mock 
SNP-array 0.91** 0.83** 
GBS-B73 - 0.91** 

SNP-array: Affymetrix® Axiom Maize Genotyping array; GBS-B73: genotyping-by-sequence with SNP calling 
using B73 as reference genome; GBS-Mock: genotyping-by-sequence with SNP calling using the mock reference 
built with all parental lines. 
** Empirical significance level from permutations. 
Roger's genetic distance (GD) matrices were computed with markers from 330 parental lines data. 
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Table 4. Mantel correlation of additive genomic relationship (��) and dominance genomic 
relationship (��) matrices from SNP-array, GBS-B73, and GBS-Mock markers 

   GBS-B73 GBS-Mock 

Ga 
SNP-array 0.97** 0.96** 
GBS-B73 - 0.99** 

Gd 
SNP-array 0.78** 0.58** 
GBS-B73 - 0.72** 

SNP-array: Affymetrix® Axiom Maize Genotyping array; GBS-B73: genotyping-by-sequence with SNP calling 
using B73 as reference genome; GBS-Mock: genotyping-by-sequence with SNP calling using the mock reference 
built with all parental lines. 
** Empirical significance level from permutations. 
�� and �� matrices were computed with markers from 751 maize singles-crosses.  
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 Figure 7 Heatmaps of the (a, b and c) additive genomic relationship (��), and (d, e and f) dominance genomic 

relationship (��) matrices estimated from (a and d) SNP-array, (b and e) GBS-B73, and (c and f) GBS-Mock SNP 
datasets for 751 tropical maize single crosses. Lines and columns of each plot were clustered according to the 
Euclidian distance performed in the genomic relationship matrices from the SNP-array dataset. 
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Figure 8 Heterotic groups among the 45 tropical parental lines for all traits a SNP-array (GY), 
b GBS-B73 (GY), c GBS-Mock (GY), d SNP-array (PH), e GBS-B73 (PH), f GBS-Mock (PH), 
g SNP-array (EH), h GBS-B73 (EH), and i GBS-Mock (EH). GY: grain yield; PH: plant height: 
EH: ear. 
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Table 5 Coincidence in dividing the parental lines into heterotic groups among datasets. 

    GBS-B73 GBS-Mock 

GY 
SNP-array 0.94** 1.00** 

GBS-B73  - 0.94** 

PH 
SNP-array 0.94** 0.93** 

GBS-B73 -  0.87** 

EH 
SNP-array 0.94** 0.93** 

GBS-B73  - 0.87** 
SNP-array: Affymetrix® Axiom Maize Genotyping array; GBS-B73: genotyping-by-sequence with SNP calling 
using B73 as reference genome; GBS-Mock: genotyping-by-sequence with SNP calling using the mock reference 
built with all parental lines. 
** Significant at the 0.01 probability level by the t-test. 
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Table 6 The best tester per trait, dataset, and heterotic group 
   Testers 
  HP 1 HP 2 

 SNP-array L023 L006 
GY GBS-B73 L023 L006 
 GBS-Mock L023 L006 
 SNP-array L001 L003 
PH GBS-B73 L001 L003 
 GBS-Mock L001 L003 

 
EH 

SNP-array L001 L003 
GBS-B73 L001 L003 
GBS-Mock L001 L003 

SNP-array: Affymetrix® Axiom Maize Genotyping array; GBS-B73: genotyping-by-sequence with SNP calling 
using B73 as reference genome; GBS-Mock: genotyping-by-sequence with SNP calling using the mock reference 
built with all parental lines. 
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Figure 9 Predictive ability via additive-dominant GBLUP model from SNP datasets (SNP-
array, GBS-B73, and GBS-Mock).  
Different letters indicate significant group differences (post hoc nonparametric Tukey’s test, P < 0.05). 

GY: grain yield; PH: plant height: EH: ear. 
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Figure 10 Coincidence of selection according to the genomic prediction model. Coincidence 

of selection percentage (y-axis) over a series of continuous selection intensities (1-40%) (x-

axis).  
Color lines represent the SNP datasets (SNP-array, GBS-B73, and GBS-Mock). 

GY: grain yield; PH: plant height: EH: ear. 
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Figure S1 Bi-plot the first and third principal components using all datasets for 330 tropical parental lines a SNP-array; b GBS-B73 

and c GBS-Mock. Explained variance percentages of each principal component are in parentheses. Clusters were used to color-coded 

parental lines. 
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Figure S2 Bi-plot the second and third principal components using all datasets for 330 tropical parental lines a SNP-array; b GBS-

B73 and c GBS-Mock. Explained variance percentages of each principal component are in parentheses. Clusters were used to color-

coded parental lines. 
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Table S1 Variance components and genomic heritability of traits from SNP datasets 

    GY PH EH 
 SNP-array 0.14 34.27 31.55 

'�(
) GBS-B73 0.15 30.36 31.34 
 GBS-Mock 0.14 35.82 32.49 

'�*
) 

SNP-array 0.07 5.83 1.95 

GBS-B73 0.09 7.88 3.08 

GBS-Mock 0.08 3.62 1.01 

'�Ɛ
) 

SNP-array 0.17 17.92 6.70 

GBS-B73 0.16 18.02 7.03 

GBS-Mock 0.16 20.55 7.61 

H² 
SNP-array 0.56 0.69 0.83 

GBS-B73 0.60 0.68 0.83 

GBS-Mock 0.57 0.66 0.81 

h² 
SNP-array 0.36 0.59 0.78 

GBS-B73 0.37 0.54 0.76 

GBS-Mock 0.37 0.60 0.79 
SNP-array: Affymetrix® Axiom Maize Genotyping array; GBS-B73: genotyping-by-sequence with SNP calling 

using B73 as reference genome; GBS-Mock: genotyping-by-sequence with SNP calling using the mock reference 

built with all parental lines. 

GY: grain yield; PH: plant height: EH: ear. 

#$%
, #$&

 and #$Ɛ
: Additive, dominance and residual variances, respectively: H²: broad-sense heritability; h²: narrow-

sense heritability. 
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Table S2 SCA's correlation of the lines between the SNP datasets 

    GBS-B73 GBS-Mock 

GY  
SNP-array 0.97** 0.96** 

GBS-B73  - 0.97** 

PH 
SNP-array 0.97** 0.96** 

GBS-B73  - 0.97** 

EH 
SNP-array 0.97** 0.96** 

GBS-B73 -  0.97** 
SNP-array: Affymetrix® Axiom Maize Genotyping array; GBS-B73: genotyping-by-sequence with SNP calling 

using B73 as reference genome; GBS-Mock: genotyping-by-sequence with SNP calling using the mock reference 

built with all parental lines. 

** Significant at the 0.01 probability level by the t-test. 
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Table S3 GCA's correlation of the lines between the SNP datasets 

    GBS-B73 GBS-Mock 

GY 
SNP-array 0.99** 1.00** 

GBS-B73 -  0.99** 

PH 
SNP-array 1.00** 1.00** 

GBS-B73  - 1.00** 

EH 
SNP-array 1.00** 1.00** 

GBS-B73  - 1.00** 
SNP-array: Affymetrix® Axiom Maize Genotyping array; GBS-B73: genotyping-by-sequence with SNP calling 

using B73 as reference genome; GBS-Mock: genotyping-by-sequence with SNP calling using the mock reference 

built with all parental lines. 

** Significant at the 0.01 probability level by the t-test. 


