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RESUMO

O uso de técnicas de álgebra tensorial em processamento de sinais têm crescido nas últimas
décadas. Em aplicações como, processamento de imagens, processamento de sinais biomédicos,
processamento de sinais em arranjos de sensores, e comunicações em geral, técnicas de proces-
samento baseadas em tensores têm sido amplamente empregadas para problemas de estimação,
recuperação, e classificação de sinais. Uma das principais razões de se usar técnicas baseadas
em tensores para processamento de sinais é devido à sua capacidade de explorar efetivamente
a estrutura multi dimensional dos sinais e também as propriedades de unicidade relativas às
decomposições tensoriais. Por exemplo, em sistemas de comunicações sem-fio, um sinal possui
diversas dimensões, como espaço (antenas), tempo, frequência, polarização, feixe, etc. Esta
tese é divida em duas partes. Na primeira parte propomos a aplicação de algoritmos baseados
em tensores para sistemas MIMO-OFDM (do inglês, multiple-input multiple-output orthogo-
nal frequency division multiplex) considerando imperfeições do sistema como ruídos de fase.
Mais especificamente, nós propomos um receptor de dois estágios, baseado em tensores, para a
estimação conjunta de canal, ruído de fase, e dados. No primeiro estágio, nós mostramos que
o sinal recebido nas portadoras piloto pode ser escrito como um modelo tensorial PARAFAC
de terceira ordem. A partir deste modelo, é proposto dois algoritmos para estimação do ruído
de fase e do canal nas portadoras piloto. No segundo estágio do receptor proposto os dados
transmitidos são estimados. Para tal, propomos um receptor ZF (do inglês zero forcing) o qual
capitaliza a estrutura tensorial do sinal recebido nas portadoras de dados usando o operador
proposto SKP (do inglês selective Kronecker product). Resultados de simulação mostram que o
receptor proposto atinge um desempenho superior em taxa de error de símbolo (SER, do inglês
symbol error rate) e também NMSE (do inglês normalized mean squared error). Na segunda
parte desta tese, focamos na aplicação da modelagem tensorial em sistemas MIMO assistidos
por uma IRS (do inglês intelligent reconfigurable surface) para reduzir o gargalo de sinalização
de controle. Para isto, uma aproximação de baixo rank é proposta para o vetor de fase ótimo
de uma IRS. A principal ideia é representar o vetor de fase ótimo da IRS, em que pode possuir
centenas ou milhares de elementos, usando um modelo tensorial de baixo rank, o qual é definido
como uma combinação de Kronecker, com número de fatores, tamanho de cada fator, número
de componentes pré-definidos. Resultados de simulação mostram que o modelo proposto reduz
drasticamente a sinalização de controle requerida (em bits). Também é mostrado que, o modelo
proposto é especialmente atrativo nos casos em que as componentes de linha de visada, dos
canais de comunicação envolvidos, são consideravelmente fortes.

Keywords: 5G, 6G, sistemas MIMO-OFDM, estimação de ruído de fase, produto de Kronecker
seletivo (SKP), IRS, sinalização de controle, aproximação de baixo rank, modelagem tensorial,
decomposição PARAFAC, decomposição Tucker.



ABSTRACT

The use of tensor algebra techniques in signal processing has been growing over the last two
decades. Applications like image processing, biomedical signal processing, radar, machine/deep
learning, and communications in general, largely employ tensor-based techniques for recovery,
estimating, and classifying signals. One of the main reasons for using tensor signal processing is
the exploitation of the multidimensional structure of signals, while benefiting from the uniqueness
properties of tensor decomposition. For example, in wireless communications, the signals can
have several ”dimensions", e.g., space, time, frequency, polarization, beamspace, etc.. This thesis
is divided into two parts, first, in the application of a tensor-based algorithm in multiple-input
multiple-output (MIMO)-orthogonal frequency division multiplexing (OFDM) systems with
the presence of phase-noise impairments. In this first part, we propose a two-stage tensor-based
receiver for a joint channel, phase-noise, and data estimation in MIMO-OFDM systems. In
the first stage, we show that the received signal at the pilot subcarriers can be modeled as a
third-order PARAFAC tensor. Based on this model, we propose two algorithms for channel and
phase-noise estimation at the pilot subcarriers. The second stage consists of data estimation, for
which we propose a ZF receiver that capitalizes on the tensor structure of the received signal
at the data subcarriers using the proposed SKP operator. Numerical simulations show that the
proposed receivers achieves an improved performance compared to the state-of-art receivers in
terms of symbol error rate (SER) and normalized mean square error (NMSE) of the estimated
channel and phase-noise matrices. The second part of this thesis focuses on the application of
tensor modeling to reduce the control signaling overhead in future wireless systems aided by
intelligent reflecting surfaces (IRS). To this end, we propose a low-rank approximation of the
near-optimal IRS phase-shifts, which would incur prohibitively high communication overhead
on the BS-IRS controller links. The key idea is to represent the potentially large IRS phase-shift
vector using a low-rank tensor model. This is achieved by factorizing a tensorized version of
the IRS phase-shift vector, where each component is modeled as the Kronecker product of a
predefined number of factors of smaller sizes, which can be obtained via tensor decomposition
algorithms. We show that the proposed low-rank models drastically reduce the required feedback
requirements associated with the BS-IRS control links. Simulation results indicate that the
proposed method is especially attractive in scenarios with a strong line of sight component,
in which case nearly the same spectral efficiency is reached as in the cases with near-optimal
phase-shifts, but with a drastically reduced communication overhead.

Keywords: 5G, 6G, MIMO-OFDM systems, phase-noise estimation, selective Kronecker prod-
ucts, IRS, control signaling, low-rank approximation, tensor modeling, PARAFAC decomposi-
tion, Tucker decomposition.



ZUSAMMENFASSUNG

Der Einsatz von Tensor-Algebra-Techniken in der Signalverarbeitung hat in den letzten
zwei Jahrzehnten zugenommen. Anwendungen wie Bildverarbeitung, biomedizinische Signal-
verarbeitung, radar, maschinelles Lernen, deep Learning und Kommunikation im Allgemeinen
verwenden weitgehend tensorbasierte Verarbeitungstechniken zur Wiederherstellung, Schätzung
und Klassifizierung von Signalen. Einer der Hauptgründe für den Einsatz der Tensorsignal-
verarbeitung ist die Ausnutzung der mehrdimensionalen Struktur von Signalen, wobei die
Einzigartigkeitseigenschaften der Tensor-Zerlegung profitieren. Bei der drahtlosen Kommu-
nikation beispielsweise können die Signale mehrere "Dimensionen" haben, wie Raum, Zeit,
Frequenz, Polarisation, usw. Diese Arbeit ist in zwei Teile gegliedert. Im ersten Teil betrachten
wir die Anwendung von Tensor-basierten Algorithmen für multiple-input multiple-output (MI-
MO) orthogonal frequency division multiplexing (OFDM) Systeme unter Berücksichtigung von
Vorhandensein von Phasenrauschenstörungen. In diesem Teil schlagen wir einen zweistufigen
tensorbasierten Empfänger für eine gemeinsame Kanal-, Phasenrausch- und Datenschätzung
in MIMO-OFDM-Systemen vor. In der ersten Stufe zeigen wir, dass das empfangene Signal
auf den Pilotunterträgern als PARAFAC-Tensor dritter Ordnung modelliert werden kann. Auf
der Grundlage dieses Modells werden zwei Algorithmen für die Schätzung der Phasen- und
Kanalrauschen in den Pilotton vorgeschlagen. In der zweiten Stufe werden die übertragenen
Daten geschätzt. Zu diesem Zweck schlagen wir einen Zero Forcing (ZF)-Empfänger vor, der
sich die Tensorstruktur des empfangenen Signals auf den Datenträgern zunutze macht, indem er
den vorgeschlagenen selektiven Kronecker-Produkt-Operators (SKP) kapitalisiert. Die Simulati-
onsergebnisse zeigen, dass der vorgeschlagene Empfänger sowohl bei der Symbolfehler rate als
auch beim normalisierten mittleren quadratischen Fehler des geschätzten Kanal- und Phasen-
rauschmatrizen eine bessere Leistung im Vergleich zum Stand der Technik erzielt. Der zweite
Teil dieser Arbeit befasst sich mit der Anwendung der Tensormodellierung zur Reduzierung des
Kontrollsignalisierungsoverhead in zukünftigen drahtlosen Systemen, die durch intelligent recon-
figurable surfaces (IRSs) unterstützt werden. Zu diesem Zweck schlagen wir eine Annäherung
an die nahezu optimalen IRS-Phasenverschiebungen vor, die sonst einen prohibitiv hohen Kom-
munikationsoverhead auf den BS-IRS-Kontrollverbindungen verursachen würde. Die Hauptidee
besteht darin, den optimalen Phasenvektor des IRSs, der Hunderte oder Tausende von Elementen
haben kann, durch ein Tensormodell mit niedrigem Rang darzustellen. Dies wird erreicht durch
Faktorisierung einer tensorisierten Version des IRS-Phasenverschiebungsvektors, wobei jede
Komponente als Kronecker-Produkt einer vordefinierten Anzahl von Faktoren mit kleinerer
Größe modelliert wird, die durch Tensor Zerlegungsalgorithmen erhaltet werden können. Wir
zeigen, dass die vorgeschlagenen Low-Rank-Modelle die Rückkopplungsanforderungen für die
BS-IRS-Kontrollverbindungen drastisch reduzieren. Die Simulationsergebnisse zeigen, dass die
vorgeschlagene Methode besonders in Szenarien mit einer starken Sichtverbindung attraktiv sind.
In diesem Fall wird fast die gleiche spektrale Effizienz erreicht wie in den Fällen mit nahezu



optimalen Phasenverschiebungen, jedoch mit einem drastisch reduzierten Kommunikations-
Overhead.

Keywords: 5G, 6G, MIMO-OFDM-Systeme, Phasenrauschschätzung, selektives Kronecker-
Produkt, IRS, Kontrollsignalisierung, Low-Rank-Approximation, Tensor-Modellierung, PARAFAC-
Zerlegung, Tucker-Zerlegung.
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1 INTRODUCTION

1.1 Motivation

The use of tensor algebra techniques in signal processing has been growing over the
last two decades. Applications like image processing [1, 2, 3, 4], biomedical signal processing [5,
6, 7, 8], array processing [9, 10, 11, 12], machine/deep learning [13, 14, 15, 16], and communi-
cations [17, 18, 19, 20, 21, 22], in general, largely employ tensor-based techniques for recovery,
estimating, and classifying signals. One of the main reasons for using tensor signal processing
is the exploitation of the multidimensional structure of signals, where the information can be
analyzed trough different dimensions. For example, in wireless communications, the signals can
have several dimensions, e.g., space, time, frequency, polarization, beamspace, etc. In addition,
tensor-based models, compared to matrix-based processing, benefits from a more flexible unique-
ness properties, where uniqueness means that a tensor factor (or parameter) is unique estimated,
under a scaling and/or permutation ambiguity if some mild conditions are satisfied [23, 24].
For example, for the PARAllel FACtors (PARAFAC) decomposition [25], uniqueness can be
granted by satisfying the Kruskal conditions, while for the Tucker decomposition [26] if the
core tensor is known a priori, the factors can be uniquely estimated under scaling ambiguities.
Other tensor models that have appeared in the literature are the constrained factor (CONFAC)
[18], PARATuck [27], Nested Tucker [28], and the Nested PARAFAC [29], which constitute
different generalizations, or combinations, of the PARAFAC and Tucker decompositions. More
recently, the tensor train (TT) decomposition [30] has attracted interest in large-scale tensor data
processing [1, 31, 32, 33, 34].

As mentioned, tensor-based signal processing has application in several research
areas. In image processing, the authors of [1] apply the TT decomposition to image and video
recovery. In [2] and [4], the Tucker decomposition is proposed in hyperspectral image denoising,
where in [2], the authors used a joint approach of the Tucker model and principal component
analysis by exploiting the correlation among all data dimensions, while [4] accounts the spatial
nonlocal similarity structures. In [3], the authors proposes a Tucker decomposition for lossy
image compression by exploiting the sparsity of the images.

Regarding the biomedical research area, the work [8] proposes a PARAFAC model
combining electroencephalography (EEG) and magnetoencephalography (MEG) data. In [7],
a rank-one tensor model is used for dictionary learning in the context of spectral computed
tomography reconstruction. The authors of [6] propose an online compression of multi-lead
electrocardiogram (MECG) data using a PARAFAC model. Finally, a survey of tensor-based
signal processing in biomedical signals is presented in [5].

In the array processing research, tensor-based processing is largely employed. The
work [9], is a prior work where the authors show the link of PARAFAC model in sensor array
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processing, exploiting its uniqueness property. In [10], the authors propose a spatial smoothing
tensor-based method using the higher-order singular value decomposition (HOSVD) algorithm,
improving signal subspace estimation. In [12], the authors proposed a tensor-based channel
estimation method for dual-polarized antennas in massive multiple-input multiple-output (MIMO)
systems. More specifically, they consider a low-rank PARAFAC model for the channel, due to
the massive number of antennas at the transmitter and receiver sides. Finally, in [11], an overview
of the applications of tensor-based methods in MIMO radar system is presented.

In wireless communication systems, several works employ tensor-based signal
processing methods. The work of [17] was the first to link PARAFAC modeling to design blind
receivers, where a direct sequence code division multiple access (DS-CDMA) communication
system was considered. In [19], the authors propose a semi-blind receiver based on double Khatri-
Rao space-time codes. In [20] a tensor-based framework for channel estimation in MIMO systems,
namely TENCE, is proposed, where the authors show a performance improvement compared to
matrix-based signal processing schemes. The works of [35, 36, 37] consider the application of
tensor-based signal processing in MIMO-Orthogonal frequency division multiplexing (OFDM)
systems. In [38], the authors propose to model the received signal as the double tensor contraction
between the transmitted PARAFAC signal and the channel, allowing the receiver to fully exploit
the received signal spatial and coding diversity. In [36] and [37], tensor-based channel estimation
methods are considered. By assuming millimeter-wave (mmWave) channels the authors exploit
the sparsity of the channel with compressing sensing (CS) tools. The work of [36] proposes a
Tucker model framework for channel estimation, while [37] considers a low-rank PARAFAC
modeling approach. Recently, the IRS topic emerges as a potential key technology for future
fifth-generation (5G) and sixth-generation (6G) networks. In this context, the work of [22]
proposes a tensor-based framework for channel estimation in MIMO IRS-assisted networks.

In summary, tensor-based signal processing has a major impact in many research
areas. This thesis is divided into two parts. First, we develop new tensor-based signal processing
receivers for MIMO-OFDM systems with the presence of phase-noise impairments. Second, we
derive a low-rank tensor approximation model to reduce the control signal overhead in MIMO
IRS-assisted communication system.

1.2 Major Contributions

The main contributions of this thesis can be listed in the following three research areas:

• Tensor algebra;

• MIMO-OFDM systems;

• IRS-aided systems.

Tensor Algebra: In this context, we propose a new operator, namely selective Kronecker product
(SKP), that allows defining the spreading of the Kronecker product into specific dimensions,
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while keeping the others fixed. As it is described in Chapter 2, the selective Kronecker product
(SKP) is a middle-term operator, i.e., lies between the traditional Kronecker product and the
outer product. This operator plays a key role in Chapter 4 allowing to model the received data
signal using a structured Tucker model.

MIMO-OFDM systems: We derive a two-stage tensor-based receiver. In the first stage, the pilot
received signal is modelled as a PARAFAC tensor. Then, two algorithms are proposed to jointly
estimate the phase-noise impairments and the pilot channel matrix. The first algorithm is based
on an iterative solution (BALS), while the second algorithm is based on a closed-form solution
(LSKRF). In the second stage, based on the proposed SKP operator, the data received signal is
modelled as a structured Tucker tensor, and the transmitted data is estimated all-at-once.

IRS-aided systems: We propose a low-rank approximation of the near-optimal IRS phase-shift
vector to reduce IRS phase-shift feedback overhead. To this end, two tensor-based models,
namely PARAFAC-IRS and Tucker-IRS, are proposed to factorize a tensorized version of the
IRS phase-shift vector. In both models, each component is modeled as the Kronecker product of
a predefined number of factors of smaller sizes, which can be obtained via tensor decomposition
algorithms. The proposed method is especially attractive in scenarios with a strong line of sight
component, in which case nearly the same spectral efficiency is reached as in the cases with
near-optimal phase-shifts, but with a drastically reduced communication overhead.

1.3 Thesis Organization

This thesis is organized into six chapters, including this introductory. Figure 1.1
depicts the link between the chapters and their main topics. The rest of the chapters are briefly
summarized as

Chapter 2: Matrix and Tensor Algebra Preliminaries details the matrix and tensor properties and
operations, including the proposed SKP operator. We focus on the discussion of the PARAFAC
and Tucker tensor decompositions where state-of-the-art algorithms are revisited. More especially,
we present the alternating least squares (ALS), and the higher-order singular value decomposition
(HOSVD) algorithms for tensor factor estimation. In addition, the least squares Khatri-Rao
factorization (LSKRF) and the least squares Kronecker product (LSKP) factorizations are
discussed in detail. This chapter contains the tools that are largely employed in the applications
in Chapters 4 and 5.

Chapter 3: Intelligent Reconfigurable Surfaces Overview presents an overview of intelligent
reflecting surfaces (IRS) technology, its benefits, and applications in future 5G and 6G networks.
In addition, the channel estimation problem and the beamforming optimization methods are
discussed. Finally, we emphasize the discussion over the IRS phase-shift feedback overhead
problem where we present the current state-of-the-art model for IRS phase-shift overhead-aware
feedback.
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Figure 1.1 – Link between the chapters.

Source: Created by the author.

Chapter 4: Tensor-Based Receiver for Parameter Estimation in MIMO-OFDM Systems. In
this chapter, we discuss the phase-noise impairment in MIMO-OFDM systems that leads to
inter-carrier interference (ICI), causing a perturbation in the system that must be taken into
account. To this end, we propose a tensor-based solution in which we derive a two-stage receiver.
In the first stage, the pilot signal is modelled as a PARAFAC tensor, two algorithms are proposed
to jointly estimate the phase-noise matrix and the pilot channel matrix. In the second stage, a zero
forcing filter is derived to estimate the transmitted data, thanks to the proposed SKP operator.

Chapter 5: Tensor-Based Method for Reducing the Control Signaling in IRS-assisted MIMO

Systems. In this chapter, we propose two tensor-based models, namely PARAFAC-IRS and
Tucker-IRS, to reduce the IRS phase-shift feedback overhead in IRS-assisted MIMO systems.
We show that in the proposed tensor-based models the total number of phase-shifts required to
be conveyed to the IRS controller is drastically reduced compared to the state-of-the-art IRS
phase-shift feedback overhead-aware method.
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Chapter 6: Conclusion and Future Perspectives. In this chapter, we draw the final comments on
the application of tensor-based methods in wireless communications, especially in MIMO-OFDM
and IRS-assisted systems.

1.4 Main Scientific Production

The content of this thesis is published/submitted in the following journals and
conferences:

1.4.1 Journal Papers

[J1] SOKAL, B.; GOMES, P. R. B.; de ALMEIDA, A. L. F.; HAARDT, M. “Tensor-

Based Receiver for Joint Channel, Data, and Phase-Noise Estimation in MIMO-

OFDM Systems," Journal of Selected Topics in Signal Processing, vol. 15, no. 3,
pp. 803-815, April 2021, doi: 10.1109/JSTSP.2021.3061917.

[J2] SOKAL, B.; GOMES, P. R. B.; de ALMEIDA, A. L. F.; MAKKI, B.; FODOR,
G. “Reducing the Control Overhead of Intelligent Reconfigurable Surfaces Via a

Tensor-Based Low-Rank Factorization Approach," submitted to: IEEE Transac-
tions on Wireless Communications

1.4.2 Conference Papers

[C1] SOKAL, B.; de ALMEIDA, A. L. F.; HAARDT, M. “Semi-Blind Receiver for Two-

Hop MIMO Relaying Systems via Selective Kronecker Product Modeling". In: 2019
IEEE 8th International Workshop on Computational Advances in MultiSensor
Adaptive Processing (CAMSAP), 2019, Le gosier.

[C2] SOKAL, B.; GOMES, P. R. B.; de ALMEIDA, A. L. F.; HAARDT, M. “Joint

Channel, Data, and Phase-Noise Estimation in MIMO-OFDM Systems Using a

Tensor Modeling Approach," in Proceedings IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2021, pp. 4460-4464, doi:
10.1109/ICASSP39728.2021.9414541.

[C3] SOKAL, B.; GOMES, P. R. B.; de ALMEIDA, A. L. F.; MAKKI, B.; FODOR, G.
“IRS Phase-Shift Feedback Overhead-Aware Model Based on Rank-One Tensor

Approximation," submitted to: IEEE GLOBECOM 2022

1.4.3 Patent

[P1] SOKAL, B.; GOMES, P. R. B.; de ALMEIDA, A. L. F.; MAKKI, B.; FODOR, G.
“APROACH FOR CONTROL OF A RADIO REFLECTOR," P. number: 103277

It is important to mention that, the works [J1], [C1], and [C2] were part of the Ph.D. cotutelle
program established between the UFC and the Technische Universität Ilmenau (TUI). In addition,
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the works [J2], [C3], and [P1] were promoted under the project UFC.48 Technical Cooperation
Contract Ericsson/UFC.

1.5 Other Scientific Production

During the Ph.D. duration, the author was also involved at the publication and of the
following research papers

1.5.1 Journal Papers

[J3] SOKAL, B.; de ALMEIDA, A. L. F.; HAARDT, M. “Semi-blind receivers for

MIMO multi-relaying systems via rank-one tensor approximations," Signal Pro-
cessing, Volume 166, January 2020, pp.107254, ISSN 0165-1684, doi: 10.1016 /
j.sigpro.2019.107254.

[J4] PESSOA, A. M.; SOKAL, B.; SILVA, C. F. M.; MACIEL, T. F.; ALMEIDA, A.
L. F.; CAVALCANTI, F. R. P. “A CDL-based channel model with dual-polarized

antennas for 5G MIMO systems in rural remote areas,", in IEEE Access, vol. 8,
pp. 163366-163379, Aug. 2020, doi: 10.1109/ACCESS

[J5] GOMES, P. R. B.; ARAÚJO G. T.; SOKAL, B.; de ALMEIDA, A. L. F.; MAKKI,
B.; FODOR, G. “Channel Estimation in RIS-Assisted MIMO Systems Operating

Under Imperfections," submitted to: IEEE Transactions on Vehicular Technology

1.5.2 Conference Papers

[C4] SOKAL, B.; de ALMEIDA, A. L. F.; HAARDT, M. “Rank-One Tensor Modeling

Approach to Joint Channel and Symbol Estimation in Two-Hop MIMO Relaying

Systems". In: XXXV Simpósio Brasileiro de Telecomunicações e Processamento
de Sinais, 2017, São Pedro - SP

[C5] RIBEIRO, L; SOKAL, B.; de ALMEIDA, A. L. F.; MOTA, João C. . “Sepa-

rable Least-Mean Squares Beamforming". In: XXXVI Simpósio Brasileiro de
Telecomunicações e Processamento de Sinais, 2018, Campina Grande - PB
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Model for 5G MIMO Systems in Remote Rural Areas,", In: 2019 16th International
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16th International Symposium on Wireless Communication Systems (ISWCS),
2019. pp. 21-26, doi: 10.1109/ISWCS.2019.8877334.

• [C7] FERREIRA, A.; MENDES, L.; DIAS, W.; MARTINS, T; GASPAR, D;
PESSOA, A. M.; SILVA, C. F. M.; SOKAL, B. “5G-RANGE project field trial," in
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2 MATRIX AND TENSOR ALGEBRA PRELIMINARIES

In this chapter, some of the key definitions and properties of the matrix and tensor
algebra that are useful in this document are discussed. In addition, the PARAllel FACtors
(PARAFAC) and Tucker tensor decompositions are presented, with a detailed discussion on their
uniqueness properties and estimation algorithms. Finally, we discuss the Kronecker factorization
(KF) and the Khatri-Rao factorization (KRF) algorithms where the matrix estimation problem is
recast into rank-one matrix and tensor problems. For more details, the reader can find in [23, 39,
40] a very detailed survey on tensors applications and properties.

2.1 Matrix Basics

In this document, we use the concepts of the Kronecker, Khatri-Rao, Hadamard
products. In addition, we provide essential properties and concepts involving those products.

2.1.1 Hadamard Product

The Hadamard product is an element-wise product. In other words, is only possible
when the factors have the same dimensions. Consider two matrices 𝐴𝐴𝐴 ∈ ℂ𝐼×𝑅 and 𝐵𝐵𝐵 ∈ ℂ𝐼×𝑅. The
Hadamard product between them is defined as

𝐶𝐶𝐶 = 𝐴𝐴𝐴⊙ 𝐵𝐵𝐵 ∈ ℂ𝐼×𝑅, (2.1)

where 𝑐𝑖, 𝑗 = 𝑎𝑖, 𝑗𝑏𝑖, 𝑗 for 𝑖 = {1, . . . , 𝐼}, and 𝑗 = {1, . . . , 𝐽}. Inversely, we define the element-wise
division operator ⊘, as

𝐶𝐶𝐶 = 𝐴𝐴𝐴⊘ 𝐵𝐵𝐵 ∈ ℂ𝐼×𝑅, (2.2)

where, in this case, 𝑐𝑖, 𝑗 = 𝑎𝑖, 𝑗/𝑏𝑖, 𝑗 for 𝑖 = {1, . . . , 𝐼}, and 𝑗 = {1, . . . , 𝐽}.

2.1.2 Kronecker Product

The Kronecker product combines two or more factors that can have different sizes.
Let us assume 𝑋𝑋𝑋 ∈ ℂ𝐼×𝐽 and 𝑌𝑌𝑌 ∈ ℂ𝑀×𝑁 . The Kronecker product between them is defined as

𝑍𝑍𝑍 = 𝑋𝑋𝑋 ⊗𝑌𝑌𝑌 ∈ ℂ𝑀𝐼×𝑁𝐽 , (2.3)

=


[
𝑥1,1𝑌𝑌𝑌

]
𝑀×𝑁 . . .

[
𝑥1,𝐽𝑌𝑌𝑌

]
𝑀×𝑁

...
. . .

...[
𝑥𝐼,1𝑌𝑌𝑌

]
𝑀×𝑁 . . .

[
𝑥𝐼,𝐽𝑌𝑌𝑌

]
𝑀×𝑁

 . (2.4)

It is important to note that, the factor on the right side of the Kronecker operator is the one that
has its elements vary faster. We can observe that the whole matrix 𝑌𝑌𝑌 varies under one element
variation of 𝑋𝑋𝑋 , forming a block structure. In this document, we order the dimensions of the
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resulting matrix by the ones that varies faster, which in this case, for 𝑍𝑍𝑍 is the dimension 𝑀 in
rows, and 𝑁 in the columns.

2.1.3 Khatri-Rao Product

The Khatri-Rao product is also known as the column-wise Kronecker product,
consequentially, requires matrices with the same number of columns. Let us define the matrices
𝐴𝐴𝐴 ∈ ℂ𝐼×𝑅 and 𝐵𝐵𝐵 ∈ ℂ𝐽×𝑅, the Khatri-Rao product between them is defined as

𝐶𝐶𝐶 = 𝐴𝐴𝐴⋄𝐵𝐵𝐵 ∈ ℂ𝐽𝐼×𝑅 (2.5)

=

[
𝑎𝑎𝑎1 ⊗ 𝑏𝑏𝑏1, . . . 𝑎𝑎𝑎𝑟 ⊗ 𝑏𝑏𝑏𝑟, . . . 𝑎𝑎𝑎𝑅 ⊗ 𝑏𝑏𝑏𝑅

]
, (2.6)

where 𝑎𝑎𝑎𝑟 and 𝑏𝑏𝑏𝑟 are the 𝑟-th column of 𝐴𝐴𝐴 and 𝐵𝐵𝐵, respectively.

2.1.4 Vectorization

Let us consider a matrix 𝐴𝐴𝐴 = [𝑎𝑎𝑎1, . . . , 𝑎𝑎𝑎𝑅] ∈ ℂ𝐼×𝑅. We define the vec(·) operator as

𝑎𝑎𝑎 = vec (𝐴𝐴𝐴) =


𝑎𝑎𝑎1
...

𝑎𝑎𝑎𝑅

 , (2.7)

inversely, we define the unvecdim(·) operator that reshapes a vector into a matrix (or a tensor),
expressed as

𝐴𝐴𝐴 = unvec𝐼×𝑅 (𝑎𝑎𝑎) ∈ ℂ𝐼×𝑅. (2.8)

2.1.5 Outer Product

The outer product between two vectors 𝑎𝑎𝑎 ∈ ℂ𝐼×1, and 𝑏𝑏𝑏𝐽×1 defines a rank-one matrix,
i.e.,

𝐶𝐶𝐶 = 𝑎𝑎𝑎◦ 𝑏𝑏𝑏 ∈ ℂ𝐼×𝐽

= 𝑎𝑎𝑎𝑏𝑏𝑏T. (2.9)

2.1.6 Properties of Hadamard, Kronecker, and Khatri-Rao Products

Some of the key properties of the above discussed products and operators are the
following

(𝐴𝐴𝐴⊗ 𝐵𝐵𝐵) (𝐶𝐶𝐶 ⊗ 𝐷𝐷𝐷) = (𝐴𝐴𝐴𝐶𝐶𝐶) ⊗ (𝐵𝐵𝐵𝐷𝐷𝐷) , (2.10)

(𝐴𝐴𝐴⊗ 𝐵𝐵𝐵) (𝐶𝐶𝐶 ⋄𝐷𝐷𝐷) = (𝐴𝐴𝐴𝐶𝐶𝐶) ⋄ (𝐵𝐵𝐵𝐷𝐷𝐷) , (2.11)

vec (𝐴𝐴𝐴𝐵𝐵𝐵𝐶𝐶𝐶) =
(
𝐶𝐶𝐶T ⊗ 𝐴𝐴𝐴

)
vec (𝐵𝐵𝐵) , (2.12)

vec (𝐴𝐴𝐴diag (𝑣𝑣𝑣)𝐶𝐶𝐶) =
(
𝐶𝐶𝐶T⋄ 𝐴𝐴𝐴

)
𝑣𝑣𝑣, (2.13)

vec (𝑎𝑎𝑎◦ 𝑏𝑏𝑏) = 𝑏𝑏𝑏⊗ 𝑎𝑎𝑎. (2.14)
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2.2 Tensor Basics

A tensor is an multidimensional array with dimensions greater than two. In fact,
scalars, vectors and matrices can be considered as tensors of dimensions zero, one, and two,
respectively. A 𝑁-th order tensor is defined as X ∈ ℂ𝐼1×𝐼2×...×𝐼𝑁 . The scalar representation of X is
given as X 𝑖1,𝑖2,...,...,𝑖𝑁 , with 𝑖𝑛 = {1, . . . , 𝐼𝑛} and 𝑛 = {1, . . . , 𝑁}.

2.2.1 Tensor Slices

Slices are formed by fixing two dimensions and varying one or more. Depending on
the tensor order, they can form lower-order tensor or matrices. For a better visualization, let us
consider the third-order tensor Q ∈ ℂ𝐼×𝐽×𝐾 . We can slice the tensor Q in three different ways, as
illustrated in Fig. 2.1. The frontal, lateral and horizontal slices are depicted in Fig. 2.1 (a), (b),
and (c), respectively. In the case of third order tensors, its slices are matrices, defined as

Figure 2.1 – Illustration of a third-order tensor and its different slices.

Frontal 
Slices

Lateral 
Slices

Horizontal 
Slices

Source: Created by the author.

Q ..𝑘 ∈ ℂ𝐼×𝐽 , for 𝑘 = {1, . . . 𝐾}, (2.15)

Q . 𝑗. ∈ ℂ𝐼×𝐾 , for 𝑗 = {1, . . . 𝐽}, (2.16)

Q 𝑖.. ∈ ℂ𝐽×𝐾 , for 𝑖 = {1, . . . 𝐼}. (2.17)

In other words, we have 𝐾 matrices of size 𝐼× 𝐽 by frontal slicing Q, 𝐽 matrices of size 𝐼× 𝐾 by
considering the lateral slices of Q, and 𝐼 matrices of size 𝐽 × 𝐾 if we slice Q in the horizontal
direction. Nevertheless, the concept of slicing a tensor can be generalized to a 𝑁-th order tensor
since the idea is to fix two or more of dimensions, while varying the others.

2.2.2 Tensor Unfolding

The tensor unfolding operation consists of mapping the elements of a tensor into
a matrix. This is proceeded by selecting one dimension of the tensor and fixing it as rows of
the matrix, while the remaining dimensions are fixed as columns. Taking, for example, the third
order tensor Q, illustrate in Figure 2.1, we can define three unfolding matrices, called as 1-mode
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unfolding, 2-mode unfolding, and 3-mode unfolding. They can formed by collecting the frontal
slices of Q, as

[Q] (1) = [Q ..1, . . . ,Q ..𝐾] ∈ ℂ𝐼×𝐽𝐾 , (2.18)

[Q] (2) =
[
QT
..1, . . . ,Q

T
..𝐾

]
∈ ℂ𝐽×𝐼𝐾 , (2.19)

[Q] (3) =
[
vec(QT

..1), . . . ,vec(QT
..𝐾)

]
∈ ℂ𝐾×𝐼 𝐽 , (2.20)

respectively. For a 𝑁-th order tensor, we have 𝑁 matrices unfoldings. The mapping of el-
ements from the 𝑁-th order tensor X 𝑖1,𝑖2,...,𝑖𝑛,...,𝑖𝑁 to its 𝑛-mode unfolding matrix [X] (𝑛) ∈
ℂ𝐼𝑛×𝐼1···𝐼𝑛−1 𝐼𝑛+1···𝐼𝑁 is given by

X 𝑖1,𝑖2,...,𝑖𝑛,...,𝑖𝑁 → [X] (𝑛) 𝑖𝑛;𝑖1+(𝑖2−1) 𝐼1+...+(𝑖𝑁−1) 𝐼𝑁−1···𝐼𝑛+1 𝐼𝑛−1···𝐼1 ∈ ℂ𝐼𝑛×𝐼1···𝐼𝑛−1 𝐼𝑛+1···𝐼𝑁 .

2.2.3 Tensor Generalized Unfolding

The traditional unfolding operation only selects one dimension of a tensor and fix
it as rows of a matrix, while the remaining dimensions are combined and fixed as columns.
The generalized unfolding operation consists of defining two subsets of dimensions, where
the first subset 𝕊1 is used to define the rows of the generalized unfolding matrix, while the
second subset 𝕊2 defines the columns. For example, let us consider a fourth order tensor
P ∈ ℂ𝑅1×𝑅2×𝑅3×𝑅4 . We can define 𝕊1 = {𝑅1, 𝑅2} as the set that contains the first and second
dimension of P, and 𝕊2 = {𝑅3, 𝑅4} containing the third and fourth dimension of P. An example
of generalized unfolding of P is [P] ( [𝕊1],[𝕊2]) = [P] ( [1,2],[3,4]) ∈ ℂ𝑅1𝑅2×𝑅3𝑅4 . Note that, in this
example, different generalized unfoldings can be formed, for example [P] ( [1,3],[2,4]) ∈ℂ𝑅1𝑅3×𝑅2𝑅4 ,
and [P] ( [1,4],[2,3]) ∈ ℂ𝑅1𝑅4×𝑅2𝑅3 .

2.2.4 Tensor 𝑛-mode product

The 𝑛-mode product performs a linear combination of a tensor with a matrix. Let us
consider the 𝑁-th order tensor X and a matrix 𝐴𝐴𝐴 ∈ ℂ𝐽×𝐼𝑛 . The 𝑛-mode product results in a new
tensor, W denoted by

W = X×𝑛 𝐴𝐴𝐴 ∈ ℂ𝐼1×...×𝐽×...𝐼𝑁 , (2.21)

and can be written as function of its 𝑛-mode unfolding as

[W] (𝑛) = 𝐴𝐴𝐴 [X] (𝑛) ∈ ℂ𝐽×𝐼1···𝐼𝑛−1 𝐼𝑛+1···𝐼𝑁 . (2.22)

Note that, the product in (2.21) can be generalized to multiple modes, i.e., supposing a set of
matrices 𝐴𝐴𝐴(𝑛) ∈ ℂ𝐽𝑛×𝐼𝑛 , for 𝑛 = {1, . . . , 𝑁}, we can define the tensor W as

W = X×1 𝐴𝐴𝐴
(1) ×2 𝐴𝐴𝐴

(2) ×3 . . .×𝑁 𝐴𝐴𝐴
(𝑁) ∈ ℂ𝐽1×𝐽2×...×𝐽𝑁 . (2.23)

This is also known as a Tucker decomposition, which will be discussed in details further in this
chapter. The 𝑛-mode unfolding of W is given by

[W] (𝑛) = 𝐴𝐴𝐴(𝑛) [X] (𝑛)
(
𝐴𝐴𝐴(𝑁) ⊗ . . .⊗ 𝐴𝐴𝐴(𝑛+1) ⊗ 𝐴𝐴𝐴(𝑛−1) ⊗ . . .⊗ 𝐴𝐴𝐴(1)

)T
. (2.24)
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2.2.5 Identity Tensor

An identity matrix, defined 𝐼𝐼𝐼𝑅 ∈ ℝ𝑅×𝑅, is a square matrix whose elements are equal
to one if the row and column indices are equal, i.e., 𝑟1 = 𝑟2, for 𝑟1 and 𝑟2 = {1, . . . , 𝑅}, while being
zero otherwise. Likewise, a 𝑁-th order identity tensor I𝑁,𝑅 ∈ℝ𝑅×𝑅×...×𝑅 is a tensor with elements
equal to one when the indices 𝑟1 = 𝑟2 = . . . = 𝑟𝑛 = . . . = 𝑟𝑁 , for 𝑟𝑛 = {1, . . . , 𝑅} and 𝑛 = {1, . . . , 𝑁},
and elements equal to zero otherwise. The upper index 𝑁 indicates the order of the tensor, while
the 𝑅 indicates the number of elements different from zero e equal to one, where if 𝑅 = 𝑁, the
tensor is called a diagonal tensor [23]. Its 𝑛-mode unfolding is given by

[I] (𝑛) = 𝐼𝐼𝐼𝑅 (𝐼𝐼𝐼𝑅 ⋄ . . .⋄ 𝐼𝐼𝐼𝑅)T︸           ︷︷           ︸
𝑁−1 factors

∈ ℝ𝑅×𝑅···𝑅, (2.25)

and, as it can be noticed, [I] (1) = [I] (2) = . . . = [I] (𝑁) since it is the Khatri-Rao product of
𝑁 −1 identity matrices of size 𝑅× 𝑅. In addition, [I] (𝑛) only contains 𝑅 columns different from
zero.

2.2.6 Tensor contraction

As the 𝑛-mode product combines the columns of one (or more) matrices, the tensor
contraction combines the same size dimensions of two (or more) tensors. For example, consider
the tensor A ∈ ℂ𝐼×𝐽×𝐾×𝐿 and the tensor B ∈ ℂ𝑀×𝐾×𝐿×𝑁 , we can combine them into a new tensor
C ∈ ℂ𝐼×𝐽×𝐿×𝑀×𝐿×𝑁 , defined as

C =A•2
3 B, (2.26)

where • defines the contraction operator. In this case, we have combined the third dimension
(lower index of •) of A with the second dimension (upper index of •) of B. This operation is
expressed in element-wise notation as

C 𝑖, 𝑗,𝑙,𝑚,𝑙,𝑛 =

𝐾∑︁
𝑘=1

A 𝑖, 𝑗,𝑘,𝑙B𝑚,𝑘,𝑙,𝑛. (2.27)

This can also be expressed in function of the unfoldings of A and B as

[C] ( [1,2,3],[4,5,6]) = [A]T
(3) [B] (2) ∈ ℂ𝐼 𝐽𝐿×𝑀𝐿𝑁 . (2.28)

Moreover, the fourth dimension of A is the same as the third dimension of B. Thus, we can
extend the definition on (2.26) to a double contraction. Let us define the tensor Z as

Z =A•2,3
3,4 B ∈ ℂ𝐼×𝐽×𝑀×𝑁 . (2.29)

In this case, the double contraction is expressed in element-wise notation as,

Z 𝑖, 𝑗,𝑚,𝑛 =

𝐾∑︁
𝑘=1

𝐿∑︁
𝑙=1

A 𝑖, 𝑗,𝑘,𝑙B𝑚,𝑘,𝑙,𝑛. (2.30)
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Using the generalized unfolding definition, we can express Z as

[Z] ( [1,2],[3,4]) = [A] ( [1,2],[3,4]) [B] ( [2,3],[1,4]) , (2.31)

one can note that, the column indices of [A] ( [1,2],[3,4]) are the lower indices of the contraction
operator (2.29), while the row indices of [B] ( [2,3],[1,4]) are the upper indices in the contraction
operator.

2.2.7 Tensor Outer Product

Consider a 𝑁-th order tensor X ∈ ℂ𝐼1×...×𝐼𝑁 , and a 𝑀-th order tensor Y ∈ ℂ𝑅1×...×𝑅𝑀 .
The outer product between forms a (𝑁 +𝑀)-th order tensor, and its defined as

Z = X◦Y ∈ ℂ𝐼1×...×𝐼𝑁×𝑅1×...×𝑅𝑀 , (2.32)

Z 𝑖1,...,𝑖𝑁 ,𝑟1,...,𝑟𝑀 =

𝐼1∑︁
𝑖1=1

· · ·
𝐼𝑁∑︁
𝑖𝑁=1

𝑅1∑︁
𝑟1=1

· · ·
𝑅𝑀∑︁
𝑟𝑚=1

X 𝑖1,...,𝑖𝑁Y𝑟1,...,𝑟𝑀 . (2.33)

2.2.8 Tensor Kronecker Product

The tensor Kronecker product can be viewed as a special case of the outer product,
where the dimensions are expanded by merging two or several dimensions into one. For example,
considering the previous example for the case where 𝑁 = 𝑀 = 3, the tensor Kronecker product
between X and Y forms a third order tensor defined as

T = X ⊗Y ∈ ℂ𝑅1 𝐼1×𝑅2 𝐼2×𝑅3 𝐼3 (2.34)

T 𝑙1,𝑙2,𝑙3 =

𝐼1∑︁
𝑖1=1

𝐼2∑︁
𝑖2=1

𝐼3∑︁
𝑖3=1

𝑅1∑︁
𝑟1=1

𝑅2∑︁
𝑟2=1

𝑅3∑︁
𝑟3=1

X 𝑖1,𝑖2,𝑖3Y𝑟1,𝑟2,𝑟3 , (2.35)

where 𝑙𝑢 = {1, . . . 𝑅𝑢, . . . 𝑅𝑢𝐼𝑢}, for 𝑢 = {1,2,3}, is the element index of the expanded tensor T ,
mapped as 𝑙𝑢 = 𝑟𝑢 + (𝑖𝑢−1)𝑅𝑢. In the general case, where 𝑁 ≠ 𝑀 we have

T = X ⊗Y ∈ ℂ𝑅1 𝐼1×𝑅2 𝐼2×...×𝑅𝑀 𝐼𝑁−𝑀×𝐼𝑁−𝑀+1×...×𝐼𝑁 , (2.36)

when 𝑁 > 𝑀, and

T = X ⊗Y ∈ ℂ𝑅1 𝐼1×𝑅2 𝐼2×...×𝑅𝑀−𝑁 𝐼𝑁×𝑅𝑀−𝑁+1×...×𝑅𝑀 , (2.37)

for the case where 𝑀 > 𝑁.

2.2.9 Selective Kronecker Product

The outer product between tensors performs a dimension spread, while the Kronecker
product performs an expansion. The SKP is a middle-term operator that selects which dimensions
are combined to perform an expansion. For example, let us consider the previous Kronecker
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product case for 𝑁 = 𝑀 = 3. As shown in (2.34), we have a third order tensor T , with the frontal
matrices slices defined as

T ..𝑙 = X ..𝑖3 ⊗Y ..𝑟3 ∈ ℂ𝑅1 𝐼1×𝑅2 𝐼2 , (2.38)

where 𝑙 = {1, . . . , 𝑅2, . . . , 𝑅2𝐼2} is the index of the 𝑙-th frontal slice of T , with 𝑙 = 𝑟3 + (𝑖3 −1)𝑅3.
However, using the SKP we can split the third dimension of T spreading it into a fourth
dimension. This is given as

T̄ ..𝑟3,𝑖3 = X ..𝑖3 ⊗Y ..𝑟3 ∈ ℂ𝑅1 𝐼1×𝑅2 𝐼2 , (2.39)

where T̄ ∈ ℂ𝑅1 𝐼2×𝑅2 𝐼2×𝑅3×𝐼3 is a fourth order tensor. Note that, the right hand side of (2.38) is
equal to the right hand side of (2.39). The main difference is that we have splitted the third
dimension of T , 𝑅3𝐼3, into two dimensions, 𝑅3 and 𝐼3. This tensor operation is denoted by

T̄ = X ⊗1,2
1,2 Y ∈ ℂ𝑅1 𝐼1×𝑅2 𝐼2×𝑅3×𝐼3 , (2.40)

where the upper and lower indices in ⊗ indicates the combined dimensions of X and Y, respec-
tively. In other words, we are combining the first dimension of X with the first dimension of Y
(⊗1

1), and the second dimension of X with the second dimension of Y (⊗2
2).

In general, the SKP can be performed in any dimensions of the factors. For example:

X ⊗2,3
1,2 Y ∈ ℂ𝑅2 𝐼1×𝑅3 𝐼2×𝑅1×𝐼3

X ⊗1,3
2,3 Y ∈ ℂ𝑅1 𝐼2×𝑅3 𝐼3×𝑅2×𝐼1

X ⊗1,2
2,3 Y ∈ ℂ𝑅1 𝐼2×𝑅2 𝐼3×𝑅3×𝐼1

X ⊗1,2,3
3,1,2 Y ∈ ℂ𝑅2 𝐼1×𝑅3 𝐼2×𝑅3 𝐼2 .

In the presented example, the tensor Kronecker product and the SKP are related as

X ⊗Y = X ⊗1,2,3
1,2,3 Y ∈ ℂ𝑅1 𝐼1×𝑅2 𝐼2×𝑅3 𝐼3 . (2.41)

The proposed SKP operator will be later used, in Chapter 4, to derive a tensor-based
model for the received signal, where the transmitted data is estimated.

Inspired by the work [39], in Figs. 2.2 to 2.5 we illustrate the above operations using
a graph representation.
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Figure 2.2 – Graph illustrations of tensor slices, unfoldings, and generalized
unfolding.

Source: Created by the author.

Figure 2.3 – Graph illustrations of tensor 𝑛-mode product and tensor
double contraction.

Source: Created by the author.
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Figure 2.4 – Graph illustrations of tensor outer and Kronecker product.

Outer Product

Kronecker Product

Kronecker Product

Source: Created by the author.

Figure 2.5 – Graph illustrations of some examples of the SKP.

Source: Created by the author.
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2.2.10 Rank-One Tensors

A 𝑁-th order rank-one tensor is denoted by the outer product of 𝑁 vectors. Consider
a set of 𝑁 vectors 𝑠𝑠𝑠(𝑛) ∈ℂ𝐼𝑛×1, for 𝑛 = {1, . . . , 𝑁}, we can define the rank-one tensor S ∈ℂ𝐼1×...×𝐼𝑁

as
S = 𝑠𝑠𝑠(1) ◦ 𝑠𝑠𝑠(2) ◦ . . . ◦ 𝑠𝑠𝑠(𝑁) . (2.42)

The 𝑛-th mode unfolding of S, is a rank-one matrix denoted by [S] (𝑛) ∈ ℂ𝐼𝑛×𝐼1···𝐼𝑛−1 𝐼𝑛+1···𝐼𝑁 and is
given by

[S] (𝑛) = 𝑠𝑠𝑠(𝑛)
(
𝑠𝑠𝑠(𝑁) ⊗ . . .⊗ 𝑠𝑠𝑠(𝑛+1) ⊗ 𝑠𝑠𝑠(𝑛−1) ⊗ . . .⊗ 𝑠𝑠𝑠(1)

)T
. (2.43)

The vectorization of S is defined as vec (S) = 𝑠𝑠𝑠 ∈ ℂ𝐼1 𝐼2···𝐼𝑁×1 and by generalizing Propery 2.14,
is given by

𝑠𝑠𝑠 = 𝑠𝑠𝑠(𝑁) ⊗ . . .⊗ 𝑠𝑠𝑠(2) ⊗ 𝑠𝑠𝑠(1) . (2.44)

2.2.11 Tensorization

The tensorization operation consists of mapping the elements of a vector into a

higher order tensor. Let us define the vector 𝑦𝑦𝑦 ∈ ℂ𝑁×1, in which 𝑁 =
𝑃∏
𝑝=1

𝑁𝑝, where 𝑁𝑝 is the size

of the 𝑝-th partition of this vector. By applying the tensorization operator, defined as T {·}, we
can form a 𝑃-th order tensor Y = T {𝑦𝑦𝑦} ∈ ℂ𝑁1×𝑁2×...×𝑁𝑃 . The mapping of elements from Y to 𝑦𝑦𝑦

is defined as

Y𝑛1,𝑛2,...,𝑛𝑃 = 𝑦𝑦𝑦𝑛, (2.45)

where 𝑛 = {1, . . . , 𝑁1, . . . 𝑁1𝑁2, . . . 𝑁1𝑁2 · · ·𝑁𝑃}, for 𝑝 = {1, . . . , 𝑃}. For example considering the
vector 𝑠𝑠𝑠, given in (2.44), and applying the tensorization operator, we have the 𝑁-th order rank-one
tensor S = T {𝑠𝑠𝑠} ∈ ℂ𝐼1×𝐼2×...×𝑁𝑃 given in (2.42). In other words, we have the following properties

S = T {𝑠𝑠𝑠} = 𝑠𝑠𝑠(1) ◦ 𝑠𝑠𝑠(2) ◦ . . . ◦ 𝑠𝑠𝑠(𝑁) ∈ ℂ𝐼1×𝐼2×...×𝐼𝑃 (2.46)

𝑠𝑠𝑠 = vec (S) = 𝑠𝑠𝑠(𝑁) ⊗ . . .⊗ 𝑠𝑠𝑠(2) ⊗ 𝑠𝑠𝑠(1) ∈ ℂ𝐼1 𝐼2···𝐼𝑃 . (2.47)

2.3 Tensor Decompositions

In the past two decades several tensor decompositions were proposed in the signal
processing community. Some of these decomposition are Nested PARAFAC [29], Nested Tucker
[28], PARATUck [27], Tensor-Train [30]. However, most of these decompositions are special
cases or combinations of the PARAFAC [25] and Tucker [26, 41] decompositions. In this section,
we review the PARAFAC and the Tucker decompositions and the classical algorithms in the
literature that can be used to compute each decomposition.
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Figure 2.6 – Illustration of a third-order PARAFAC tensor as a sum of 𝑅
rank-one tensors.

Source: Created by the author.

Figure 2.7 – Illustration of a third-order PARAFAC tensor as a combination of
its factor matrices and an identity tensor.

Source: Created by the author.

2.3.1 PARAFAC Decomposition

Any matrix of rank 𝑅 can be expressed by the summation of its rank-one components,
e.g., singular value decomposition (SVD). In the case of tensors, a tensor of rank 𝑅 is given by
the summation of its rank-one tensors components. This decomposition is called PARAFAC [25].
For a 𝑃-th order tensor Y ∈ ℂ𝐼1×𝐼2×...×𝐼𝑃 , its PARAFAC decomposition is given as

Y =

𝑅∑︁
𝑟=1

𝑎𝑎𝑎
(1)
𝑟 ◦ 𝑎𝑎𝑎(2)𝑟 ◦ . . . ◦ 𝑎𝑎𝑎(𝑃)𝑟 ∈ ℂ𝐼1×𝐼2×...×𝐼𝑃 , (2.48)

Y = I𝑃,𝑅 ×1 𝐴𝐴𝐴
(1) ×2 𝐴𝐴𝐴

(2) × . . .× 𝐴𝐴𝐴(𝑃) . (2.49)

where 𝑎𝑎𝑎(𝑝)𝑟 ∈ ℂ𝐼𝑝×1, is the column of the 𝑝-th factor matrix 𝐴𝐴𝐴(𝑝) ∈ ℂ𝐼𝑝×𝑅, for 𝑝 = {1, . . . , 𝑃}, and
I𝑃,𝑅 ∈ ℝ𝑅×𝑅×...×𝑅 is the 𝑃-th order indentity tensor. The 𝑝-th mode unfolding of Y, defined as
[Y] (𝑝) , is expressed as

[Y] (𝑝) = 𝐴𝐴𝐴(𝑝)
(
𝐴𝐴𝐴(𝑃) ⋄ . . .⋄ 𝐴𝐴𝐴(𝑝+1) ⋄ 𝐴𝐴𝐴(𝑝−1) ⋄ . . .⋄ 𝐴𝐴𝐴(1)

)T
∈ ℂ𝐼𝑝×𝐼1···𝐼𝑝−1 𝐼𝑝+1···𝐼𝑃 . (2.50)
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Figure 2.6 illustrates a PARAFAC tensor, for 𝑃 = 3, as the summation of rank-one tensors. In
this case, the three unfolding matrices of Y, depicted in Figure 2.7, are given by

[Y] (1) = 𝐴𝐴𝐴(1) [I3,𝑅
]
(1)

(
𝐴𝐴𝐴(3) ⊗ 𝐴𝐴𝐴(2)

)T
∈ ℂ𝐼1×𝐼2 𝐼3 , (2.51)

[Y] (2) = 𝐴𝐴𝐴(2) [I3,𝑅
]
(2)

(
𝐴𝐴𝐴(3) ⊗ 𝐴𝐴𝐴(1)

)T
∈ ℂ𝐼2×𝐼1 𝐼3 , (2.52)

[Y] (3) = 𝐴𝐴𝐴(3) [I3,𝑅
]
(3)

(
𝐴𝐴𝐴(2) ⊗ 𝐴𝐴𝐴(1)

)T
∈ ℂ𝐼3×𝐼1 𝐼2 . (2.53)

where
[
I3,𝑅

]
(𝑝) ∈ ℂ𝑅×𝑅𝑅 is the 𝑝-th mode unfolding of I, for 𝑝 = {1,2,3}. As discussed in

Section 2.2.5, we have that
[
I3,𝑅

]
(1) =

[
I3,𝑅

]
(2) =

[
I3,𝑅

]
(3) , are column selection matrices.

Based on this, we can replace these matrices with the identity matrix 𝐼𝐼𝐼𝑅 ∈ ℝ𝑅×𝑅 while replacing
the Kronecker operator ⊗ with the Khatri-Rao operator ⋄. We have that

[Y] (1) = 𝐴𝐴𝐴(1)
(
𝐴𝐴𝐴(3) ⋄ 𝐴𝐴𝐴(2)

)T
∈ ℂ𝐼1×𝐼2 𝐼3 , (2.54)

[Y] (2) = 𝐴𝐴𝐴(2)
(
𝐴𝐴𝐴(3) ⋄ 𝐴𝐴𝐴(1)

)T
∈ ℂ𝐼2×𝐼1 𝐼3 , (2.55)

[Y] (3) = 𝐴𝐴𝐴(3)
(
𝐴𝐴𝐴(2) ⋄ 𝐴𝐴𝐴(1)

)T
∈ ℂ𝐼3×𝐼1 𝐼2 . (2.56)

In addition, for the third order PARAFAC tensor, illustrated in Fig. 2.6, we can express its frontal
slices in function of its factor matrices as

Y ..𝑖3 = 𝐴𝐴𝐴diag𝑖3
(
𝐴𝐴𝐴(3)

)
𝐴𝐴𝐴(2)T ∈ ℂ𝐼1×𝐼2 , (2.57)

where diag𝑖3
(
𝐴𝐴𝐴(3)

)
∈ ℂ𝑅×𝑅 is the diagonal matrix formed by diagonalizing the 𝑖3-th row of 𝐴𝐴𝐴(3) ,

for 𝑖3 = {1, . . . , 𝐼3}.

2.3.1.1 Uniqueness

Matrix products are not unique since if we have 𝐶𝐶𝐶 = 𝐴𝐴𝐴𝐵𝐵𝐵, we also have that 𝐶𝐶𝐶 =

𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇−1𝐵𝐵𝐵, with 𝑇𝑇𝑇 being a non-singular matrix. The SVD is unique under the singular matrix
orthogonality constraint. Unlike matrix product, the uniqueness property often comes easily in
a higher-order PARAFAC tensors. In other words, uniqueness means that the rank-one tensor
sum given (2.48) is the only possible combination to generate Y, with the exception to some
permutation and scaling factors, i.e., we can rewrite (2.49) as

Y = I3,𝑅 ×1 𝐴𝐴𝐴
(1)ΠΔ1 ×2 𝐴𝐴𝐴

(2)ΠΔ2 ×3 𝐴𝐴𝐴
(2)ΠΔ3, (2.58)

where Π is a permutation matrix and Δ𝑖, for 𝑖 = {1,2,3}, is a scaling diagonal matrix, with
Δ1Δ2Δ3 = 𝐼𝐼𝐼𝑅. For third-order tensors, Kruskal [24] derived a not necessary but sufficient condition
for uniqueness. The author define the 𝑘-rank of a matrix as the maximum value of columns that
are linearly independents. Denoting as 𝑘𝐴𝐴𝐴(1) , 𝑘𝐴𝐴𝐴(2) and 𝑘𝐴𝐴𝐴(3) as the 𝑘-rank of 𝐴𝐴𝐴(1) , 𝐴𝐴𝐴(2) , and 𝐴𝐴𝐴(3) ,
the PARAFAC decomposition in (2.48) is unique if

𝑘𝐴𝐴𝐴(1) + 𝑘𝐴𝐴𝐴(2) + 𝑘𝐴𝐴𝐴(3) ≥ 2𝑅+2. (2.59)
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This condition was further generalized in [42] to 𝑁-th order PARAFAC tensor, by
𝑁∑︁
𝑛=1

𝑘A(𝑛) ≥ 2𝑅+ (𝑁 −1). (2.60)

2.3.1.2 Alternating Least Squares Estimation

In literature, the ALS (Alternating Least-Squares) algorithm is a classical algorithm
originally proposed by Carrol, Chang, and Harshaman [25] to estimate the tensor factor matrices
by solving multiple least squares (LS) problems in a iterative way [23, 43, 44, 45]. For example,
let us consider the following third order PARAFAC tensor

X = I3,𝑅 ×1 𝐴𝐴𝐴×2 𝐵𝐵𝐵×3 𝐶𝐶𝐶 ∈ ℂ𝐼×𝐽×𝐾 , (2.61)

where 𝐴𝐴𝐴 ∈ ℂ𝐼×𝑅, 𝐵𝐵𝐵 ∈ ℂ𝐽×𝑅, and 𝐶𝐶𝐶 ∈ ℂ𝐾×𝑅 are the factor matrices. To estimate X we solve the
following problem

min
X̂

����X−X̂
����2

F , (2.62)

the alternating least squares (ALS) algorithm recast the above minimization problem into three
LS problems as

min
�̂�𝐴𝐴

����[X] (1) − �̂�𝐴𝐴 (𝐶𝐶𝐶 ⋄𝐵𝐵𝐵)T����2
F , (2.63)

min
�̂�𝐵𝐵

��������[X] (2) − �̂�𝐵𝐵
(
𝐶𝐶𝐶 ⋄ �̂�𝐴𝐴

)T
��������2

F
, (2.64)

min
�̂�𝐶𝐶

��������[X] (3) − �̂�𝐶𝐶
(
�̂�𝐵𝐵⋄ 𝐴𝐴𝐴

)T
��������2

F
, (2.65)

which the solutions are, respectively, given by

�̂�𝐴𝐴 = [X] (1)
[
(𝐶𝐶𝐶 ⋄𝐵𝐵𝐵)T]+ ∈ ℂ𝐼×𝐽𝐾 , (2.66)

�̂�𝐵𝐵 = [X] (2)
[(
𝐶𝐶𝐶 ⋄ �̂�𝐴𝐴

)T
]+

∈ ℂ𝐽×𝐼𝐾 , (2.67)

�̂�𝐶𝐶 = [X] (3)
[(
�̂�𝐵𝐵⋄ �̂�𝐴𝐴

)T
]+

∈ ℂ𝐾×𝐼𝐾 . (2.68)

The algorithm starts with problem (2.63) by randomly initializing the matrices 𝐵𝐵𝐵 and 𝐶𝐶𝐶 and
solving it using (2.66). For problem (2.64), the solution for �̂�𝐴𝐴 is plugged in (2.64) which is
solved using (2.67). Finally, for the last LS problem, the solutions of problems (2.66) and (2.67)
are plugged into (2.65), and the problem is solved in (2.68), finalizing the first iteration of the
ALS algorithm. The process is repeated until reaches at pre-determined number of iterations, or
achieves a convergence threshold.

Generalizing to the 𝑁-th order PARAFAC tensor, Y, given in (2.49), the ALS
algorithm solves the following problem, for 𝑝 = {1, . . . , 𝑃},

min
�̂�𝐴𝐴
(𝑝)

��������[Y] (𝑝) − �̂�𝐴𝐴
(𝑝) (

𝐴𝐴𝐴(𝑃) ⋄ . . .⋄ 𝐴𝐴𝐴(𝑝+1) ⋄ 𝐴𝐴𝐴(𝑝−1) ⋄ . . .⋄ 𝐴𝐴𝐴(1)
)T

��������2
F
, (2.69)
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with solution given by

�̂�𝐴𝐴
(𝑝)

= [Y] (𝑝)
((
𝐴𝐴𝐴(𝑃) ⋄ . . .⋄ 𝐴𝐴𝐴(𝑝+1) ⋄ 𝐴𝐴𝐴(𝑝−1) ⋄ . . .⋄ 𝐴𝐴𝐴(1)

)T
)+
. (2.70)

The ALS algorithm for a 𝑃-th order PARAFAC tensor is summarized in Algorithm 1.

Algorithm 1 PARAFAC ALS
1: Inputs: Tensor Y, 𝑅
2: Initialize the matrices �̂�𝐴𝐴(2)

0 , . . ., �̂�𝐴𝐴(𝑃)
0 . Iteration i = 0.

3: Define a maximum number of iteration 𝐼.
4: for 𝑖 = 1 : 𝐼 do
5: for 𝑝 = 1 : 𝑃 do
6: Compute an estimate of the 𝑝-th factor matrix 𝐴𝐴𝐴

(𝑝)
i as

�̂�𝐴𝐴
(𝑝)
𝑖 = [Y] (𝑝)

((
�̂�𝐴𝐴
(𝑃)
𝑖−1⋄ . . .⋄ �̂�𝐴𝐴

(𝑝+1)
𝑖−1 ⋄ �̂�𝐴𝐴(𝑝−1)

𝑖−1 ⋄ . . .⋄ �̂�𝐴𝐴(1)
𝑖−1

)T
)+

7: end for
8: end for
9: Return �̂�𝐴𝐴

(1) , . . ., �̂�𝐴𝐴(𝑃) .

Note that, the factor matrices output of the ALS algorithm, in Algorithm 1, are
a permuted and scaled versions of the true matrices. In other words, we have the following
relationship

�̂�𝐴𝐴
(𝑝)

= 𝐴𝐴𝐴(𝑝)ΠΔ𝑝 ∈ ℂ𝐼𝑝×𝑅, (2.71)

with
𝑃∏
𝑝=1

Δ𝑝 = 𝐼𝐼𝐼𝑅.

2.3.1.3 Rank-One Estimation

For the case where 𝑅 = 1, we have a rank-one tensor, as defined in Section 2.2.10. In
this case, (2.48) becomes

Y = 𝑎𝑎𝑎(1) ◦ 𝑎𝑎𝑎(2) ◦ . . . ◦ 𝑎𝑎𝑎(𝑃) ∈ ℂ𝐼1×𝐼2×...×𝐼𝑃 . (2.72)

Instead of using the ALS algorithm to estimate the factors, we can perform a rank-one HOSVD
[41]. From the fact that each unfolding of Y is a rank-one matrix (see (2.43)), each factor can be
estimated by computing the SVD of each unfolding. In other words, we compute 𝑃 independents
SVDs. The rank-one HOSVD algorithm is summarized in Algorithm 2. Note that, since 𝑅 = 1
there is no permutation matrix affecting the output, only a scaling ambiguity is present, i.e., the

estimated factors are related to the true factors as �̂�𝑎𝑎(𝑝) = 𝛼𝑝𝑎𝑎𝑎, for 𝑝 = {1, . . . , 𝑃}, with
𝑃∏
𝑝=1

𝛼𝑝 = 1.
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Algorithm 2 Rank-One HOSVD
1: Input: Y
2: for 𝑝 = 1 : 𝑃 do
3: Compute the SVD of the 𝑝-mode unfolding of Y as

[Y] (𝑝) = 𝑈𝑈𝑈 (𝑝)Σ(𝑝)𝑉𝑉𝑉 (𝑝)H.

4: Set an estimation of 𝑎𝑎𝑎(𝑝) by truncating the left singular matrix to its first

�̂�𝑎𝑎(𝑝) = 𝑢𝑢𝑢(𝑝)
.1 (𝜎)1/𝑃 .

5: end for
6: Return �̂�𝑎𝑎(1) , . . . , �̂�𝑎𝑎(𝑃) .

Figure 2.8 – Illustration of a third order Tucker tensor and its
factor matrices and core tensor.

Source: Created by the author.

2.3.2 Tucker Decomposition

The Tucker decomposition was originally proposed by Tucker in 1964 [26]. It consist
of a tensor compression or expansion and expresses a tensor as a set of factor matrices and a core
tensor. A 𝑃-th order tensor Q ∈ ℂ𝐼1×...×𝐼𝑃 that admits a Tucker decomposition, can be written as

Q = G×1 𝐵𝐵𝐵
(1) ×2 . . .×𝑃 𝐵𝐵𝐵

(𝑃) ∈ ℂ𝐼1×...×𝐼𝑃 , (2.73)

where 𝐵𝐵𝐵(𝑝) ∈ ℂ𝐼𝑝×𝑅𝑝 is the 𝑝-th factor matrix, for 𝑝 = {1, . . . , 𝑃}, and G ∈ ℂ𝑅1×...×𝑅𝑃 is the core
tensor. The tensor Q can also be represented as the outer product of its factors, given as

Q =

𝑅1∑︁
𝑟1=1

. . .

𝑅𝑃∑︁
𝑟𝑃=1

G𝑟1,...,𝑟𝑃

(
𝑏𝑏𝑏
(1)
𝑟1 ◦ . . . ◦ 𝑏𝑏𝑏(𝑃)𝑟𝑃

)
,

where 𝑏𝑏𝑏(𝑝) ∈ ℂ𝐼𝑝×1 is the 𝑟𝑝-th column of the 𝑝-th factor matrix 𝐵𝐵𝐵(𝑝) ∈ ℂ𝐼𝑝×𝑅𝑝 , for 𝑝 = {1, . . . , 𝑃}
and 𝑟𝑝 = {1, . . . , 𝑅𝑝}. The 𝑝-th mode unfolding matrix of Q, defined as [Q] (𝑝) ∈ℂ𝑁𝑝×𝑁1···𝑁𝑝−1𝑁𝑝+1···𝑁𝑃 ,
is given by

[Q] (𝑝) = 𝐵𝐵𝐵(𝑝) [G] (𝑝)
(
𝐵𝐵𝐵(𝑃) ⊗ . . .⊗ 𝐵𝐵𝐵(𝑝+1) ⊗ 𝐵𝐵𝐵(𝑝−1) ⊗ . . .⊗ 𝐵𝐵𝐵(1)

)T
. (2.74)
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Algorithm 3 HOSVD
1: Set the unfoldings ranks 𝑅1, . . . , 𝑅𝑃
2: for 𝑝 = 1 : 𝑃 do
3: Compute the SVD of the 𝑝-mode unfolding of Q as

[Q] (𝑝) = 𝑈𝑈𝑈 (𝑝)Σ(𝑝)𝑉𝑉𝑉 (𝑝)H.

4: Set an estimation of 𝐵𝐵𝐵(𝑝) by truncating the left singular matrix to its first 𝑅𝑝 columns

�̂�𝐵𝐵
(𝑝)

= 𝑈𝑈𝑈
(𝑝)
.1:𝑅𝑝 .

5: end for
6: Compute an estimate of the core tensor 𝑔𝑔𝑔 = vec (G) as

�̂�𝑔𝑔 =
(
�̂�𝐵𝐵
(𝑃)H ⊗ . . .⊗ �̂�𝐵𝐵

(1)H)
vec (Q) .

7: Define Ĝ = T {�̂�𝑔𝑔}.
8: Return �̂�𝐵𝐵

(1)
, . . . , �̂�𝐵𝐵

(𝑃) and Ĝ.

Inversely, the core tensor G ∈ ℂ𝑅1×𝑅2×...×𝑅𝑃 is given by

G = Q×1 𝐵𝐵𝐵
(1)+×2 𝐵𝐵𝐵

(2)+×3 . . .×𝑃 𝐵𝐵𝐵
(𝑃)+, (2.75)

or, using the vec operator, we have

𝑔𝑔𝑔 =
(
𝐵𝐵𝐵(𝑃)+ ⊗ . . .⊗ 𝐵𝐵𝐵(2)+ ⊗ 𝐵𝐵𝐵(1)+

)
𝑞𝑞𝑞, (2.76)

where 𝑔𝑔𝑔 = vec(G) ∈ ℂ𝑅1···𝑅𝑃×1 and 𝑔𝑔𝑔 = vec(Q) ∈ ℂ𝐼1···𝐼𝑃×1.

Fig. 2.8, illustrates the Tucker decomposition for the case of 𝑃 = 3. Its three mode unfoldings are
given by

[Q] (1) = 𝐵𝐵𝐵(1) [G] (1)
(
𝐵𝐵𝐵(3) ⊗ 𝐵𝐵𝐵(2)

)T
∈ ℂ𝐼1×𝐼2 𝐼3 , (2.77)

[Q] (2) = 𝐵𝐵𝐵(2) [G] (2)
(
𝐵𝐵𝐵(3) ⊗ 𝐵𝐵𝐵(1)

)T
∈ ℂ𝐼2×𝐼1 𝐼3 , (2.78)

[Q] (3) = 𝐵𝐵𝐵(3) [G] (3)
(
𝐵𝐵𝐵(2) ⊗ 𝐵𝐵𝐵(1)

)T
∈ ℂ𝐼3×𝐼1 𝐼2 , (2.79)

while the core tensor is given as

G = Q×1 𝐵𝐵𝐵
(1)+×2 𝐵𝐵𝐵

(2)+×3 𝐵𝐵𝐵
(2)+, (2.80)

𝑔𝑔𝑔 =
(
𝐵𝐵𝐵(3)+ ⊗ 𝐵𝐵𝐵(2)+ ⊗ 𝐵𝐵𝐵(1)+

)
𝑞𝑞𝑞. (2.81)

2.3.2.1 HOSVD Algorithm

For a Tucker decomposition, the factor matrices and the core tensor are usually
estimated using the HOSVD algorithm [46], which boils down to computing multiple (indepen-
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dent) SVDs, one for each unfolding of the tensor Q [23, 46]. The HOSVD is summarized in
Algorithm 3.

2.3.2.2 Uniqueness

The Tucker decomposition is not unique from the fact that, as in matrices, we can
apply any transformation in the core tensor without changing the tensor fit [23]. However, as
shown in [28], if the core tensor is known, then the Tucker decomposition is unique.

Proof.
Let us consider the Tucker tensor in (2.73), its vectorization is given by

vec (Q) =
(
𝐵𝐵𝐵(𝑃) ⊗ . . .⊗ 𝐵𝐵𝐵(2) ⊗ 𝐵𝐵𝐵(1)

)
vec (G) . (2.82)

Replacing 𝐵𝐵𝐵(𝑝) for 𝐵𝐵𝐵(𝑝)𝑍𝑍𝑍(𝑝) , for 𝑝 = {1, . . . , 𝑃}, and applying Property (2.10), we have that

vec (Q) =
(
𝐵𝐵𝐵(𝑃)𝑍𝑍𝑍(𝑃) ⊗ . . .⊗ 𝐵𝐵𝐵(2)𝑍𝑍𝑍(2) ⊗ 𝐵𝐵𝐵(1)𝑍𝑍𝑍(1)

)
vec (G) (2.83)

=

(
𝐵𝐵𝐵(𝑃) ⊗ . . .⊗ 𝐵𝐵𝐵(2) ⊗ 𝐵𝐵𝐵(1)

) (
𝑍𝑍𝑍(𝑃) ⊗ . . .⊗ 𝑍𝑍𝑍(2) ⊗ 𝑍𝑍𝑍(1)

)
vec (G) , (2.84)

the expressions in (2.82) and (2.84) are equal only if the core tensor G is known, and(
𝑍𝑍𝑍(𝑃) ⊗ . . .⊗ 𝑍𝑍𝑍(2) ⊗ 𝑍𝑍𝑍(1)

)
= 𝐼𝐼𝐼𝑅1···𝑅𝑃 .

This is equivalent to have 𝑍𝑍𝑍(𝑝) = 𝛼𝑝𝐼𝐼𝐼𝑅𝑝 , for 𝑝 = {1, . . . , 𝑃}, with 𝛼𝑝 being a scaling factor, and
𝑃∏
𝑝=1

𝛼𝑝 = 1. In other words, if the core tensor of a Tucker decomposition is known, then its factor

matrices are unique under a scaling factor ambiguity.

2.4 Kronecker Product Factorization

Let us assume a matrix 𝑋𝑋𝑋 = 𝐴𝐴𝐴 ⊗ 𝐵𝐵𝐵+ 𝑁𝑁𝑁 ∈ ℂ𝐼2 𝐼1×𝑅2𝑅1 , where 𝐴𝐴𝐴 ∈ ℂ𝐼1×𝑅1 , 𝐵𝐵𝐵 ∈ ℂ𝐼2×𝑅2 ,
and 𝑁𝑁𝑁 is a noise matrix. The problem consist of finding an optimal estimation of 𝐴𝐴𝐴 and 𝐵𝐵𝐵 based
on the observation 𝑋𝑋𝑋 , i.e.,

min
𝐴𝐴𝐴,𝐵𝐵𝐵

| |𝑋𝑋𝑋 − 𝐴𝐴𝐴⊗ 𝐵𝐵𝐵| |2F . (2.85)

The authors of [47] proposed to recast the problem (2.85) into a rank-one approximation problem,
i.e.,

min
𝐴𝐴𝐴,𝐵𝐵𝐵

�����̄�𝑋𝑋 −vec (𝐵𝐵𝐵) ◦vec (𝐴𝐴𝐴)
����2

F , (2.86)

where �̄�𝑋𝑋 ∈ ℂ𝐼2𝑅2×𝐼1𝑅1 is a rearranged version of 𝑋𝑋𝑋 ∈ ℂ𝐼2 𝐼1×𝑅2𝑅1 . This is possible since the Kro-
necker product by its nature is a block-wise product. Thus, rearranging the elements of these
blocks yields a rank-one structure. This process is illustrated in Fig. 2.9.
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Figure 2.9 – Illustration the rearranging of elements of matrix 𝑋𝑋𝑋 into �̄�𝑋𝑋 .

Source: Created by the author.

In fact, to obtain an optimal estimation of the factors 𝐴𝐴𝐴 and 𝐵𝐵𝐵 we can compute the
SVD of �̄�𝑋𝑋 as 𝑈𝑈𝑈Σ𝑉𝑉𝑉H and define the factor estimations as

vec
(
�̂�𝐵𝐵
)
=
√
𝜎1𝑢𝑢𝑢.1, (2.87)

vec
(
�̂�𝐴𝐴
)
=
√
𝜎1𝑣𝑣𝑣

∗
.1, (2.88)

where 𝜎1 is the largest singular value of �̄�𝑋𝑋 . Nevertheless, due to the SVD, the estimations on (2.87)
and (2.88) are only basis to the real factors, i.e., vec

(
�̂�𝐵𝐵
)
= 𝛼vec (𝐵𝐵𝐵), and vec

(
�̂�𝐴𝐴
)
= 1

𝛼
vec (𝐴𝐴𝐴),

where 𝛼 is a scaling factor ambiguity. Thus, one element of 𝐴𝐴𝐴 or 𝐵𝐵𝐵 must be known a priori in
order to remove this ambiguity, i.e., 𝛼 = 𝐵𝐵𝐵1,1/�̂�𝐵𝐵1,1, or 1

𝛼
= 𝐴𝐴𝐴1,1/�̂�𝐴𝐴1,1.

The problem in (2.85) can be extended to the case that we have 𝑁 matrices. Let
us consider that we have 𝑋𝑋𝑋 = 𝐴𝐴𝐴(𝑁) ⊗ . . . ⊗ 𝐴𝐴𝐴(1) + 𝑁𝑁𝑁 ∈ ℂ𝐼1···𝐼𝑁×𝑅1···𝑅𝑁 , where 𝐴𝐴𝐴(𝑛) ∈ ℂ𝐼𝑛×𝑅𝑛 , for
𝑛 = {1, . . . , 𝑁} is the 𝑛-th factor matrix. We can rewrite the minimization problem in (2.85) as

min
𝐴𝐴𝐴(𝑁 ) ,...,𝐴𝐴𝐴(1)

������𝑋𝑋𝑋 − 𝐴𝐴𝐴(𝑁) ⊗ . . .⊗ 𝐴𝐴𝐴(1)
������2

F
. (2.89)

In this case, instead of rearranging the elements of 𝑋𝑋𝑋 as a rank-one matrix, we rearrange it as a
𝑁-th order rank-one tensor X̄ ∈ ℂ𝐼1𝑅1×𝐼2𝑅2×...×𝐼𝑁𝑅𝑁 . The problem in (2.91) becomes

min
𝑎𝑎𝑎(𝑁 ) ,...,𝑎𝑎𝑎(1)

������X̄ − 𝑎𝑎𝑎(1) ◦ 𝑎𝑎𝑎(2) ◦ . . . ◦ 𝑎𝑎𝑎(𝑁)
������2

F
, (2.90)

where 𝑎𝑎𝑎(𝑛) = vec
(
𝐴𝐴𝐴(𝑛)

)
∈ ℂ𝐼𝑛𝑅𝑛×1, for 𝑛 = {1, . . . , 𝑁}. The tensor X̄ is obtained via a similar

rearranging than the one illustrated in Fig. 2.9, with the difference that in a 𝑁-th factor Kronecker
product, we have a long hierarchical block structure. However, this can be easily programmed
using permutation and reshaping functions. For example, the Algorithm 4, shows this process
using a MATLAB syntax.
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Algorithm 4 𝑁-th order Kronecker Factorization

1: Input: 𝑋𝑋𝑋 ∈ ℂ𝐼1···𝐼𝑁×𝑅1···𝑅𝑁

2: Reshaping: Define X′ ∈ ℂ𝐼1×𝐼2×...×𝐼𝑁×𝑅1×𝑅2×...×𝑅𝑁 as the 2𝑁-th order tensor by reshaping the
elements of 𝑋𝑋𝑋 , i.e., X′ = reshape (𝑋𝑋𝑋, 𝐼1, 𝐼2, . . . , 𝐼𝑁 , 𝑅1, 𝑅2, . . . , 𝑅𝑁).

3: Permuting: Define X̄′ ∈ ℂ𝐼1×𝑅1×𝐼2×𝑅2×...×𝐼𝑁×𝑅𝑁 as the 2𝑁-th order tensor which is a permuta-
tion version of X′, i.e., X̄′

= permute (X′, [1, 𝑁 +1,2, 𝑁 +2, . . . , 𝑁,2𝑁]).
4: Reshaping: Define X̄ ∈ℂ𝐼1𝑅1×𝐼2𝑅2×...×𝐼𝑁𝑅𝑁 as the 𝑁-th order tensor that is formed by grouping

every two dimensions of X̄′, i.e., X̄ = reshape
(
X̄′
, 𝐼1 · 𝑅1, 𝐼2 · 𝑅2, . . . , 𝐼𝑁 · 𝑅𝑁

)
.

5: for 𝑛 = 1 : 𝑁 do
6: Compute the SVD of the 𝑛-mode unfolding of X̄ as

[
X̄

]
(𝑛) = 𝑈𝑈𝑈

(𝑛)Σ(𝑛)𝑉𝑉𝑉 (𝑛)H and compute
an estimation of 𝑎𝑎𝑎(𝑛) as

�̂�𝑎𝑎(𝑛) = 𝑢𝑢𝑢(𝑛)
.1

(
𝜎
(𝑛)
1

)1/𝑁
.

7: end for
8: Output: �̂�𝑎𝑎(𝑁) , . . . , �̂�𝑎𝑎(1) .

The outputs of Algorithm 4, �̂�𝑎𝑎(𝑛) , for 𝑛 = {1, . . . , 𝑁}, are unique under a scaling

ambiguity, i.e., they are related to the true factor as 𝑎𝑎𝑎(𝑛) = 𝛼(𝑛) �̂�𝑎𝑎(𝑛) , with
𝑁∏
𝑛=1

𝛼(𝑛) = 1. In other

words, to remove this scaling effect, we need to know the first element of 𝑁−1 factors. Supposing
that the first element of 𝑎𝑎𝑎(𝑛) , we have that 𝛼𝑛 = 𝑎𝑎𝑎

(𝑛)
1 /�̂�𝑎𝑎(𝑛)1 , for 𝑛 = {1, . . . , 𝑁 − 1}. Then �̂�𝑎𝑎(𝑁) =

1
𝛼1𝛼2···𝛼𝑁−1

𝑎𝑎𝑎(𝑁) .

2.5 Khatri-Rao Product Factorization

The Khatri-Rao approximation problem [40, 48] has a similar proceeding to the
Kronecker approximation problem. The main difference is that the rearranging of elements is
performed per column. Let us consider 𝑌𝑌𝑌 = 𝐵𝐵𝐵(𝑁) ⋄ . . .⋄𝐵𝐵𝐵(1) +𝑁𝑁𝑁 ∈ ℂ𝐼1···𝐼𝑁×𝑅, where 𝐵𝐵𝐵(𝑛) ∈ ℂ𝐼𝑛×𝑅

is the 𝑛-th factor matrix, for 𝑛 = {1, . . . , 𝑁}. The problem is formulated as

min
𝐵𝐵𝐵(𝑁 ) ,...,𝐵𝐵𝐵(1)

������𝑌𝑌𝑌 − 𝐵𝐵𝐵(𝑁) ⋄ . . .⋄𝐵𝐵𝐵(1) ������2
F
. (2.91)

From the fact that the Khatri-Rao product is defined as the column-wise Kronecker product, the
𝑟-th column of 𝑌𝑌𝑌 is given by

𝑦𝑦𝑦 .𝑟 = 𝑏𝑏𝑏
(𝑁)
𝑟 ⊗ . . .⊗ 𝑏𝑏𝑏(1)𝑟 ∈ ℂ𝐼1···𝐼𝑁×1. (2.92)

From the property (2.14), the elements of 𝑦𝑦𝑦𝑟 are rearranged into the 𝑁-th order rank one tensor
Y (𝑟) which is defined

Y (𝑟) = unvec𝐼1×...×𝐼𝑁 (𝑦𝑦𝑦𝑟) = 𝑏𝑏𝑏
(1)
𝑟 ◦ . . . ◦ 𝑏𝑏𝑏(𝑁)𝑟 . (2.93)

The factors 𝑏𝑏𝑏(𝑛)𝑟 ∈ ℂ𝐼𝑛×1 can be estimated using the steps 5-7 of Algorithm 4. This process is
repeated for every column of 𝑌𝑌𝑌 and its summarized in Algorithm 5.
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Algorithm 5 𝑁-th order Khatri-Rao Factorization

1: Input: 𝑌𝑌𝑌 ∈ ℂ𝐼1···𝐼𝑁×𝑅

2: for 𝑟 = 1 : 𝑅 do
3: Define Y (𝑟) = unvec𝐼1×...×𝐼𝑁 (𝑦𝑦𝑦𝑟)
4: for 𝑛 = 1 : 𝑁 do
5: Compute the SVD of the 𝑛-mode unfolding of Y (𝑟) as

[
Y (𝑟)

]
(𝑛)

= 𝑈𝑈𝑈 (𝑟,𝑛)Σ(𝑟,𝑛)𝑉𝑉𝑉 (𝑟,𝑛)H

and compute an estimation of 𝑏𝑏𝑏(𝑛)𝑟 as

�̂�𝑏𝑏
(𝑛)
𝑟 = 𝑢𝑢𝑢

(𝑟,𝑛)
.1

(
𝜎
(𝑟,𝑛)
1

)1/𝑛
.

6: end for
7: end for
8: Output: �̂�𝐵𝐵(𝑁) = [�̂�𝑏𝑏(𝑁)1 , . . . , �̂�𝑏𝑏

(𝑁)
𝑅 ], . . ., �̂�𝐵𝐵(1) = [�̂�𝑏𝑏(1)1 , . . . , �̂�𝑏𝑏

(1)
𝑅 ].

The outputs of Algorithm 5, �̂�𝑏𝑏
(𝑛)
𝑟 ∈ ℂ𝐼𝑛×1 for 𝑛 = {1, . . . , 𝑁}, are related to the true

factors as 𝑏𝑏𝑏(𝑛)𝑟 = 𝛽
(𝑛)
𝑟 �̂�𝑏𝑏

(𝑛)
𝑟 , with

∏
𝛽 (𝑛) = 1. However, in the Khatri-Rao Factorization, we perform

the rank-one approximation 𝑅 times, i.e., one per number of columns of the observation matrix
𝑌𝑌𝑌 . Thus, the factor matrices are related to the true ones as, 𝐵𝐵𝐵(𝑛) = �̂�𝐵𝐵

(𝑛)diag
(
𝛽𝛽𝛽 (𝑛)

)
, where 𝛽𝛽𝛽 (𝑛) =

[𝛽 (𝑛)1 , . . . , 𝛽
(𝑛)
𝑅 ] ∈ ℂ𝑅×1 is the scaling vector that collects the scaling factors of the 𝑛-th factor,

for all rank-one approximation, with
𝑁∏
𝑛=1

diag
(
𝛽𝛽𝛽 (𝑛)

)
= 𝐼𝐼𝐼𝑅. This means that, the knowledge of the

first row of 𝑁 −1 factor matrices is required to remove the scaling ambiguity. Supposing that
we know a priori the first row of the factors 𝐵𝐵𝐵(𝑛) for 𝑛 = {1, . . . , 𝑁 − 1}, we can estimate this
ambiguity as: 𝛽𝛽𝛽 (𝑛) = 𝐵𝐵𝐵

(𝑛)
1,. ⊘ �̂�𝐵𝐵

(𝑛)
1,. . Then 𝐵𝐵𝐵(𝑁) = �̂�𝐵𝐵

(𝑁)diag
(
111𝑅 ⊘

(
𝛽𝛽𝛽 (𝑁−1) ⊙ . . .⊙ 𝛽𝛽𝛽 (1)

))
.
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3 OVERVIEW OF INTELLIGENT RECONFIGURABLE SURFACES

In this chapter, a brief overview of the role of the IRS technology in future 5G and
6G networks is presented. More specifically, a general state-of-the-art view on its hardware
implementation, its different operation modes, uses cases in single-cell and multi-cell, channel
estimation methods, phase-shift design, and control feedback overhead is discussed.

3.1 What is an IRS?

The IRS, also known as reconfigurable intelligent surface (RIS), is a new technol-
ogy to be introduced in wireless communication networks that has the capability to re-direct
the impinging electromagnetic wave into a specific direction, i.e., it controls the propagation
directions [49, 50, 51]. An IRS is a 2-D surface or metasurface [49, 50, 51] that contains several
reconfigurable reflective elements and a smart controller who is responsible to reconfigure the
phase-shift, amplitude coefficient of each IRS element. An example of IRS is illustrated in Fig.
3.1, where a smart controller is connected to the surface reconfigure the elements. In the literature,
there are several different fabrication types of IRS. From electronic components devices such
as positive-intrinsic-negative (PIN) diodes, field-effect transistors (FETs), varactors, [49] to
metamaterials like graphene and liquid crystals [50, 52].

Figure 3.1 – Illustration of an IRS.

-th elementSmart Controller

IRS

Source: Created by the author.

Assuming the illustrated IRS has 𝑁 reconfigurable elements, we can define the vector
that collects it as

𝑠𝑠𝑠 =
[
𝛽1𝑒

𝑗𝜃1 , 𝛽2𝑒
𝑗𝜃2 , . . . , 𝛽𝑁𝑒

𝑗𝜃𝑁
]T ∈ ℂ𝑁×1, (3.1)

where 𝛽𝑛 is the coefficient amplitude of the 𝑛-th IRS element, and 𝜃𝑛 is the phase-shift applied
to the 𝑛-th IRS element. Typically, the coefficient amplitude defines the amount of energy of the
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impinging signal that is reflected, varying between zero and one, i.e., 𝛽𝑛 = [0,1].
Nowadays, IRS technology is not restricted to only performing a reflection of

the signal. In fact, its reflection property is one of its operational modes. We can separate
IRS hardware model implementation into two major groups, passive IRSs, and active IRSs,
while in terms of operation modes, we have reflection, transmission, sensing, absorption, and
simultaneously transmission and reflection [52].

Summarizing, the IRS is a paradigm changing in wireless communications since
usually the propagation medium is considered to be uncontrollable due to the several scatters
present between the transmitter and receiver. In Fig. 3.2 we illustrate a comparison between
massive MIMO and MIMO IRS-assisted networks. In Fig. 3.2 (a) the base station (BS) is
equipped with tens or hundreds of antenna elements to generate sharp beams and serve the
users at a high rate and reliability. However, from the fact that IRS is a large panel with several
reconfigurable elements of a low-cost implementation device, one can exploit these advantages
to extensively deploy IRSs in the network to create sharp beams to serve multiple users without
the need to equip the BS with a massive number of antennas [50], as illustrated in In Fig. 3.2
(b). But this does not mean that MIMO IRS-assisted systems should replace massive MIMO

Figure 3.2 – Paradigm shift in wireless networks.
(a) Massive MIMO system.

UE3Massive MIMO
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UE2
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(b) MIMO IRS-assisted system.
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Source: Created by the author.
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Figure 3.3 – Illustration of different applications of IRS in wireless communication network.

(a) Increasing network coverage. (b) Increasing channel rank at the UE.

(c) IRS-assisted multi-user scenario. (d) IRS-assisted to physical layer security.
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systems. These two technologies can be combined to improve even more system reliability, rate,
and user quality of service. In [53], the authors discuss the benefits and trade-offs between spatial
multiplexing and path loss decrease, when combining IRS with massive MIMO systems.

3.1.1 Advantages of IRS

In Figure 3.3, some of the advantages of implementing the IRS in wireless commu-
nication networks are illustrated. Similar to relays stations, the IRS can increase the network
coverage by overcoming obstacles, making it possible for the BS to serve more users, and
enhance the system capacity [54]. In Fig. 3.3 (a) the BS is only able to connect with UE2 through
an IRS-assisted link, where it can be viewed as a virtual line-of-sight (LOS) link. Compared to
the relay station case, the deployment of IRSs in the network is far easier since IRSs are made of
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low-cost implementation components with a lower power consumption [50, 54].
Fig. 3.3 (b) shows the use of the IRS to increase the rank of the channel in BS-user

equipment (UE) communication [50]. In this case, IRS1 and IRS2 act like an artificial scatter
configured to improve the channel conditions at the receiver [50]. The multi-user scenario is
also envisioned with the aid of the IRS, as illustrated in Fig. 3.3 (c). In this case, the IRS can be
partitioned into regions to serve different users, wherein each region the phase-shifts are properly
designed for the users. The main problem is how to handle the interference among the users
of different regions. In [55], the authors proposed a solution based on non-orthogonal multiple
access (NOMA) to overcome this issue, while in [56], the authors solve this problem using a
machine learning based algorithm.

Another application of IRS in wireless communication networks is its use to improve
physical layer security, as illustrated in 3.3 (d). To improve the communication secrecy, the IRS
is configured to enhance the received signal-to-noise ratio (SNR) such that the BS can transmit
to UE2 using minimal power for information, while the rest of the power is used to generate
artificial noise [57]. The works of [58] and [59] show the use of IRS in NOMA networks, while
in [58], the authors proposed a design of the IRS phase-shift to eliminate the received signal at
the Eve. In [59], the authors show that the secrecy diversity order depends on the number of IRS
elements and the fading parameter of the Nakagami-𝑚 model.

3.2 IRS Characteristics

In this section, we discuss some of the hardware designs for implementing an IRS.
We focus on the discussion of passive v.s. active IRS. Also, we overview some of its operation
modes, e.g., reflection, transmission, and simultaneous transmission and reflection, and its usual
fabrication technology, PIN diodes, varactors, and metamaterial such as graphene.

3.2.1 Hardware Design

Although the IRS hardware design has a lot of distinguishing functionalities, it is
mainly divided into two categories, passive and active IRS.

3.2.1.1 Passive IRS:

As it was briefly introduced, passive IRSs contain several reconfigurable passive
elements that are capable to manipulate the incoming electromagnet waves and re-direct to a
pre-determined direction, and are made of low-cost and low-power hungry components [49, 50,
52]. Its structure is based on metal layers printed on dielectric substrates to control the incident
electromagnet waves. In particular, the reflective elements are implemented using technologies
such as, for example, PIN diodes, and varactor circuits [51], where the phase-shift adjustment
is done by the IRS controller which practically is the only active component (usually made
of a field-programmable gate array (FPGA) [50]). By applying a bias voltage on the tunable
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elements, the IRS controller changes the circuit impedance and consequentially the phase-shift
of an element or group of elements.

The main advantage of passive IRS is its low-cost implementation and low-power
consumption allowing it to be deployed in e.g., building facades, indoor environments, malls, etc.
[49, 50, 52]. Also, passive IRSs are full-duplex devices having no noise amplification achieving
a close to higher EE and SE compared to other technologies such as amplify-and-forward (AF)
and decode-and-forward (DF) relays [54, 60, 61], depending on the number of elements. On the
other hand, passive IRS does not possess any radio frequency (RF) chain, and consequentially
no signal processing is possible. This turns the channel information acquisition problem harder
since only the cascaded channel, i.e., the TX-IRS-RX equivalent channel, is available at the
receiver side. However, the optimum phase-shift configuration for the IRS elements depends on
the angles of the cascade channel, not being necessary to separate them [50, 62, 63].

Figure 3.4 – Illustration of a IRS with few active elements .
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IRS
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Source: Created by the author.

3.2.1.2 Active IRS:

In the active design, the IRS contains several or few a elements with dedicated RF
chains. In the case of a few active elements, they are often used for sensing (sending pilots) and
processing signals [64, 65, 66], while the rest of the elements has a passive design. This IRS is
illustrated in Fig. 3.4, and comparing it with the passive IRS case, the active elements introduce
an additional power-consumption to the system, but, as a benefit, it can process pilots to assist in
the channel estimation problem. In this case, the channel response of the passive elements can be
obtained, for example, using CS techniques [64], or matrix completion techniques [67].

The case of a surface where the element size is much larger than the operational
wavelength is known as large intelligent surfaces (LIS) [52, 68, 69]. In the LIS implementation,
the far-field plane wave assumption does not hold and new techniques based on the near-field
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spherical waves are adopted [69], e.g., Holographic MIMO [70, 71, 72], which consists of
adopting a very large number 𝑁 →∞ of elements on a surface.

Figure 3.5 – Illustration of a LIS with different element spacing.

(a) (b) (c)

Source: Created by the author.

In Fig. 3.5, an IRS with 𝑁 = 𝑁𝑥𝑁𝑌 elements is illustrated. Assuming 𝜆 as the operation
wavelength, in Figure 3.5 (a) we have an IRS with element spacing 𝑑 = 0.5𝜆, while in (b), with
a smaller inter-element spacing 𝑑 < 0.5𝜆, a higher number of element are concentrated in the
same area, and in (c), with 𝑑 → 0, we have a continuous surface. Fig. 3.5 (a) and (b) are also
called as discrete IRSs, while (c) is considered a continuous IRS [52]. The reduction of element
spacing is possible in higher operational frequencies. For example, in sub-Tera-Hertz (THz)
communications, the size of a IRS element from a graphene-based fabrication, is of 200𝜇m ×
190𝜇m at 𝜆 ≈ 1360𝜇m [72, 73].

3.2.2 Operation Modes

The main operational modes of IRSs are listed as:

3.2.2.1 Reflecting IRSs

This was the original design purpose of passive IRS, i.e., a device capable to be
reconfigurable to control the angular propagation of the impinging electromagnet waves [50],
[52]. The ability to control the environment comes from low-cost eletronic components such
as PIN diodes, varactors circuits [49], where, by applying a bias voltage in the elements, the
IRS smart controller changes the circuit impedance, thus controling the angular reflection to the
desired direction. However, [49] [50] shows that using these low-cost materials, the angular and
the amplitude coefficients of the IRS are not independent.
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3.2.2.2 Receiving IRSs

This operation mode is directly correlated with the active IRS with few active
elements. The idea is to have a few elements with dedicated RF chains to perform channel
estimation, pilot sequence processing, etc. The channel on the passive elements can be estimated
using, for example, CS methods [64], or matrix completion based techniques [67].

3.2.2.3 Simultaneous Reflecting and Sensing IRSs

In this case, an element of the IRS is composed of two parts, one for reflecting and
the other for sensing. These parts are connected via a wave-guide which can be connected to
an RF chain. Consequentially, a portion of the received signal can be digitally processed [52,
74]. This hybrid IRS is also implemented using low-cost eletronic components, such as the ones
previously mentioned, PIN and varactor diodes.

3.2.2.4 Simultaneous Transmitting and Reflecting IRSs

This implementation called simultaneous transmitting and reflecting (STAR)-IRS, is
a recent type of IRS proposed by [75, 76, 77]. It is a 2-D surface where the element can reflect a
portion of the received signal to a specific direction while transmitting a portion of the received
signal to a different direction. The transmission capability act like the refraction phenomena.
The STAR-IRS elements can operate in three different ways, 1) to perform transmission and
reflection with an energy splitting protocol, 2) to perform only reflection, or 3) only transmission.
The STAR-IRS controller can switch the operation of the elements based on system demand.
Different from traditional IRSs, the STAR-IRS has 360◦ coverage, being suitable in scenarios,
for example, I2O and O2I. A similar implementation to the STAR-IRS is called intelligent
omni-surface (IOS), which also has a 360◦ coverage capability, it was proposed in [78, 79]. Both
STAR-IRS and IOS are made of low-cost eletronic components.

3.3 IRS Use Cases

In Section 3.1.1, the advantages of deploying the IRS in wireless communication
from a single-cell point of view were discussed. In this section, we extend to the possible IRS
use cases in macro scenarios, such as I2O and O2I, multi-cell, and cell-free scenarios.

In Fig. 3.6 we show a macro scenario of an I2O and O2I. In the first moment, the
IRS can be deployed in, e.g., buildings facades, to assist I2O and O2I communication. This can
be accomplished using, for example, STAR-IRSs, where one can transmit and reflect in 360◦

degrees of coverage [75, 77]. Also, as mentioned, STAR-IRS can act in three principles, energy
splitting for reflection and transmission, only reflection, or only transmission. Thus, depending
on the network, the STAR-IRS can switch to outdoor-to-outdoor (O2O), or indoor-to-indoor
(I2I). Recently, unmanned aerial vehicle (UAV) IRS-assisted networks were proposed in [80,
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Figure 3.6 – General application of IRS in I2O and O2I scenarios.

Source: Created by the author.

81, 82, 83, 84, 85]. In [80], the authors collect several applications and scenarios for UAV
in IRS-assisted networks, such as Internet of Things (IoT) [83], capacity enhancement [85],
physical layer security, parameter optimization [82, 84], relaying [84, 85], and energy saving in
wireless power transfer systems [81], etc.

The deployment of IRSs in the multi-cell system has caught the attention of re-
searchers in recent years [86, 87, 88, 89]. The main advantages of IRS in multi-cell systems
are that they are the low-cost implementation which makes there easy to deploy at, e.g., the
cell-edges to assist the high attenuated users. Also, the IRS can be configured to suppress the
inter-cell interference, by properly adjusting its phase-shifts [87]. The work of [86] considers a
multi-cell multi-band scenario and investigates the sum-rate maximization by minimizing the
transmitted power. They also provide a frequency-depending design for the IRS phase-shifts. In
[87], the authors consider a multi-cell NOMA network with a single IRS, where they propose a
resource allocation framework to enhance the SE. The works of [89] and [88] propose a sum
rate problem to joint design the transmit beamforming and the IRS phase-shift in multi-cell
multiple-input single-output (MISO) systems.

With the advances of 5G networks, where mmWave frequencies will be employed
to deliver higher rates, the radius of the communication cells is smaller, especially in the 5G
frequency range (FR)2, where the frequency range is 24.250 up to 52.600 Giga-Hertz (GHz),
much higher than FR1 where the frequencies are from 410 Mega-Hertz (MHz) to 7.125 GHz [90].
Consequentially, a massive BS deployment is expected, implying a high infrastructure cost, such
as the backhauling fiber connection. To overcome this issue, in 5G networks there is the concept
of integrated access and backhaul (IAB) nodes [91, 92], where the backhaul link connection is
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Figure 3.7 – General application of IRS in multi-cell system with multiple
users and multiple IRSs.

Source: Created by the author.

through a wireless channel. Nowadays, the use of IRS to aid in IAB communications is under
investigation [93, 94, 95]. In [93], the authors propose a network plan integrating IAB nodes and
IRS to overcome blockages in 5G mmWave networks. The authors of [94] show the benefits of
IRS in UAV-IAB networks in terms of energy efficiency. In [95], a performance analysis over
IRS-assisted IAB networks is provided, considering single and multi-hop backhauling in a mesh
topology.

Following the context of 5G mmWave and future 6G networks, there is the concept
of cell-free MIMO, where the communication cell has no more boundaries, and there are many
access points (APs), each serving a small number of users, distributed over the cell and connected
to a central unit process [96, 97]. Following this idea, the works [98, 99, 100] are related to
IRS-assisted cell-free MIMO networks. The work [98] proposes the use of IRS attached in UAVs
to assist the communication between the AP and the user. In [99], a decentralized framework
is proposed, where the transmitted beamforming and the IRS phase-shifts are jointly optmized
for cell-free MIMO systems. The authors of [100] tackles the ernegy cost problem of large BS
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deploy with multiple IRS. Their scheme consist of a hybrid beamforming architeture where the
digital BS beamformer and analog IRS beamforme is proposed.

Although the above mentioned scenarios are under discussion, the process of stan-
dardization of IRS for future beyond fifth-generation (B5G) networks may take some time.
According to [52], in3rd Generation Partnership Project (3GPP), one possibility to start the
standardization of IRSs is in Release 19 describing the channel model, use cases, and deployment
scenarios, which can be expected in the year 2023.

3.4 Channel Estimation

Several works have addressed the channel state information (CSI) acquisition prob-
lem in IRS-assisted networks, e.g., [22, 101, 102, 103, 104, 105, 106, 107]. Usually, the channel
estimation phase, the IRS phase-shift is pre-designed as discrete Fourier transform (DFT)-based
or Hadamard structure, due to its Hermitian properties.

The work of [102] proposes a compressed sensing approach in a multi-user up-
link MIMO scenario. In [103], a two time-scale channel estimation framework is proposed
to overcome the pilot overhead in a multi-user IRS-aided system. Also, [104] addresses the
channel estimation problem in millimiter-wave MIMO systems, where random blockages that
can be caused by rough weather conditions were taken into consideration. The authors of [105]
propose a low-complexity framework for channel estimation and passive beamforming in MIMO
IRS-assisted systems. In [101], a semi-blind receiver is proposed for joint channel and symbol
estimation in multi-user IRS-assisted MIMO systems. In [107] the authors propose a channel
estimation and joint passive and active beamforming design in MIMO multi-IRS-assisted system.
In this scenario, each IRS is aligned to a different channel path to enhance the achievable data
rate.

The works of [108, 109, 110, 111] focus on the channel estimation problem in
mmWave and/or massive MIMO by exploiting the sparsity of the channels and solving the
parameters recovery problem using CS tools. More specifically, the authors of [108] propose a
channel estimation framework, namely TRICE (Two-Stage RIS-aided Channel Estimation) for
mmWave IRS-assisted single-user MIMO systems exploiting the sparsity at both BS and UE
side, while on the other hand, the authors of [109] proposed a recovery problem exploiting the
sparsity only at the side of the BS. Different from these works, [110] considers the broadband
channel estimation problem by combining massive MIMO and IRS with OFDM to overcome the
frequency selectivity of the sparse channels. The authors of [111] consider the channel estimation
problem using holographic IRS in THz frequencies by taking into account the sparsity of the
THz channels in the angular and time (delay) domain.

In [22] a tensor-based method for channel estimation in MIMO IRS-assisted systems
is proposed. They show the benefits of exploiting the multidimensional structure of the received
signal, where thanks to the tensor-based signal processing, allows separating the involved
channels from the cascade channel to refine its estimation. Basically, they consider a frame
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structure with two time dimensions. More specifically, they consider a frame structure of 𝐾
blocks, each of 𝑇 time-slots. Assuming that 𝐺𝐺𝐺 ∈ ℂ𝑀𝑅×𝑁 and 𝐻𝐻𝐻 ∈ ℂ𝑁×𝑀𝑇 are the IRS-RX and
TX-IRS channels, the received signal at the 𝑘-th block frame is

𝑌𝑌𝑌 𝑘 = 𝐺𝐺𝐺diag𝑘 (𝑆𝑆𝑆) 𝐻𝐻𝐻𝑋𝑋𝑋T +𝑉𝑉𝑉𝑘 ∈ ℂ𝑀𝑅×𝑇 , (3.2)

where 𝑉𝑉𝑉𝑘 is the additive noise matrix on the 𝑘-th block, 𝑋𝑋𝑋 ∈ ℂ𝑇×𝑀𝑇 is the pilot matrix with 𝑇
being the length of the pilot sequence, and 𝑆𝑆𝑆 ∈ ℂ𝐾×𝑁 is the IRS phase-shift matrix with a DFT
design. Noting that (3.2) represents the 𝑘-th frontal slice of a PARAFAC tensor, the received
PARAFAC tensor signal is given by

Y = I3,𝑁 ×1𝐺𝐺𝐺×2 𝑋𝑋𝑋𝐻𝐻𝐻
T ×3 𝑆𝑆𝑆 ∈ ℂ𝑀𝑅×𝑇×𝐾 +V . (3.3)

From the fact that the matrices 𝑋𝑋𝑋 (pilots) and 𝑆𝑆𝑆 (DFT-based) are known at the receiver, the work
of [22] proposes two algorithms to estimate the channels 𝐺𝐺𝐺 and 𝐻𝐻𝐻, one is based on closed-form
solution Khatri-Rao factorization (KRF), while the second algorithm is iterative, based on the
bilinear alternating least squares (BALS) solution. The authors have shown that separating the
cascade channel using the tensor-based approach to refine the individual channels has a better
performance than classical LS solutions. However, the main drawback of their solution is the long
pilot sequence, since, to fulfill the identifiability conditions of the KRF and BALS algorithms, it
is required that the number of blocks, times the minimum number between the receiving antennas
and the length of the pilot sequence, must be greater or equal to the number of IRS elements, i.e.,
𝐾min(𝑇,𝑀𝑅) ≥ 𝑁, with 𝑇 ≥ 𝑀𝑇 .

3.5 IRS Phase-shift Optimization

In this section, we briefly discuss the IRS phase-shift optimization for IRS-assisted
single-input single-output (SISO) and MIMO.

3.5.1 SISO Case

Ideally, the IRS contains 𝑁 independent phase-shifts, which can provide an SNR
gain in order of O

(
𝑁2) [51, 112]. This comes from the fact the IRS with passive elements

is full-duplex by nature, i.e., the incoming signal is instantaneously reflected into a specific
direction, with no noise amplification, while the received power is proportional to 𝑁. To achieve
this SNR gain, the IRS phase-shifts must be optimized to promote a coherent and constructive
superposition of the reflected signal copies at the receiver. Let us assume a SISO case where the
TX-IRS and IRS-RX involved channels are denoted by ℎℎℎ ∈ ℂ1×𝑁 , and 𝑔𝑔𝑔 ∈ ℂ𝑁×1, respectively, and
the IRS vector that contains the phase-shifts is given by 𝑠𝑠𝑠 =

[
𝛽1𝑒

𝑗𝜃1 , 𝛽2𝑒
𝑗𝜃2 , . . . , 𝛽𝑁𝑒

𝑗𝜃𝑁
]T ∈ ℂ𝑁×1.
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In this case, the SNR is given by

𝛾 =

��𝑔𝑔𝑔Hdiag (𝑠𝑠𝑠) ℎℎℎ𝑥
��2

𝜎2
𝑣

, (3.4)

=

���� 𝑁∑
𝑛=1

𝑔∗𝑛𝛽𝑛𝑒
𝑗𝜙𝑛ℎ𝑛𝑥

����2
𝜎2
𝑣

, (3.5)

where 𝑥 is the transmitted symbol with 𝔼 [𝑥𝑥∗] = 1, 𝜎2
𝑣 is the variance of the received additive

noise. Noting that the channels entries are complex-valued, the 𝑛-th element of the channels
ℎℎℎ and 𝑔𝑔𝑔 are denoted as ℎ𝑛 = |ℎ𝑛 |𝑒 𝑗𝜑

(ℎ)
𝑛 , and 𝑔𝑛 = |𝑔𝑛 |𝑒 𝑗𝜑

(𝑔)
𝑛 . It is clear that, in order to maximize

the SNR in (3.5) the amplitude coefficient 𝛽𝑛 = 1∀𝑛 ∈ 𝑁, while the IRS phase-shift should be
aligned with the channels angles, i.e.,

𝜙
(opt)
𝑛 = −(𝜑(𝑔)∗

𝑛 +𝜑(ℎ)
𝑛 ),∀𝑛 ∈ 𝑁. (3.6)

Substituting (3.6) into (3.5), we have

𝛾 =

���� 𝑁∑
𝑛=1

|𝑔𝑛 |𝑒 𝑗𝜑
(𝑔)∗
𝑛 𝑒 𝑗𝜙

opt
𝑛 |ℎ𝑛 |𝑒 𝑗𝜑

(ℎ)
𝑛 𝑥

����2
𝜎2
𝑣

, (3.7)

=

���� 𝑁∑
𝑛=1

|𝑔𝑛 |𝑒
𝑗
(
𝜑

(𝑔)∗
𝑛 +𝜑(ℎ)

𝑛 −(𝜑(𝑔)∗
𝑛 +𝜑(ℎ)

𝑛 )
)
|ℎ𝑛 |𝑥

����2
𝜎2
𝑣

, (3.8)

=

���� 𝑁∑
𝑛=1

|𝑔𝑛 | |ℎ𝑛 |𝑥
����2

𝜎2
𝑣

(3.9)

= 𝑁2 |𝑔𝑔𝑔H |2 |ℎℎℎ|2

𝜎2
𝑣

. (3.10)

3.5.2 MIMO Case

In the MIMO case, the optimization of the IRS phase-shift becomes more challenging.
In this case, the problem becomes

max
𝑠𝑠𝑠=[𝑒 𝑗𝜃1 ,...,𝑒 𝑗𝜃𝑁 ]

log2

(
𝐼𝐼𝐼𝑀𝑟

+ 𝐺
𝐺𝐺Hdiag (𝑠𝑠𝑠) 𝐻𝐻𝐻𝑅𝑅𝑅𝑥𝑥𝐻𝐻𝐻Hdiag (𝑠𝑠𝑠∗)𝐺𝐺𝐺

𝜎2
𝑣

)
, (3.11)

where 𝑅𝑅𝑅𝑥𝑥 = 𝔼
[
𝑥𝑥𝑥𝑥𝑥𝑥H

]
∈ ℂ𝑀𝑇×𝑀𝑇 . The authors of [113] proposed an alternating optimization

procedure to solve the problem in (3.11). The main idea is to split (3.11) in 𝑁 sub-problems.
In the literature, several other works proposed different strategies for phase-shift

optimization in IRS-assisted MIMO systems. In the work of [114], a low-complexity framework
to optimize the IRS phase-shift based on the maximization of the average received SNR is
proposed. In [115], the authors proposed the IRS phase-shift optimization for multi-user MISO
systems (virtually MIMO), based on an IRS phase-shift selection algorithm.
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3.5.3 MIMO Single Stream Transmission Case

In this thesis, we focus our attention on the MIMO single stream transmission case
proposed in [116] since this scenario will be considered in Chapter 5.

Let us consider a single stream transmission, and assume that there is no direct link
between the TX and RX, e.g., BS. First, the TX sends a pilot signal to the RX with the aid of
the IRS. Since the IRS has no signal processing capabilities, the channel estimation and the IRS
phase-shifts optimization are performed at the RX. The received signal after processing the pilots
is given by

𝑦 = 𝑤𝑤𝑤H𝐺𝐺𝐺diag (𝑠𝑠𝑠) 𝐻𝐻𝐻𝑞𝑞𝑞+𝑤𝑤𝑤H𝑏𝑏𝑏, (3.12)

where 𝑏𝑏𝑏 ∈ ℂ𝑀𝑅×1 is the additive noise at the receiver with 𝔼[𝑏𝑏𝑏𝑏𝑏𝑏H] = 𝜎2
𝑏
𝐼𝐼𝐼𝑀𝑟

, 𝑤𝑤𝑤 ∈ ℂ𝑀𝑅×1 and
𝑞𝑞𝑞 ∈ ℂ𝑀𝑇×1 are the receiver and transmitter combiner and precoder, respectively. 𝐻𝐻𝐻 ∈ ℂ𝑁×𝑀𝑇 and
𝐺𝐺𝐺 ∈ ℂ𝑀𝑅×𝑁 are the TX-IRS and IRS-RX involved channels, and 𝑠𝑠𝑠 = [𝑒 𝑗𝜃1 , . . . , 𝑒 𝑗𝜃𝑁 ] ∈ ℂ𝑁×1 being
the IRS phase-shift vector, where 𝜃𝑛 is the phase-shift applied to the 𝑛-th IRS element. The
optimization problem in (3.11) becomes:

max
𝑠𝑠𝑠,𝑞𝑞𝑞,𝑤𝑤𝑤

��𝑤𝑤𝑤H𝐺𝐺𝐺diag (𝑠𝑠𝑠) 𝐻𝐻𝐻𝑞𝑞𝑞
�� , (3.13)

with | |𝑤𝑤𝑤| | = 1, | |𝑞𝑞𝑞| | = 1, and 𝜃𝑛 ∈ [−𝜋,𝜋], for 𝑛 = {1, . . . , 𝑁}. To solve (3.13), the authors in
[116] proposed three different algorithms, an upper-bound, an lower-bound, and an alternating
optimization solution. We drive our attention to the upper-bound solution.

Upper-bound solution [116]: Let us assume the SVDs of 𝐻𝐻𝐻 ∈ ℂ𝑁×𝑀𝑇 and 𝐺𝐺𝐺 ∈
ℂ𝑀𝑅×𝑁 , with rank(𝐻𝐻𝐻) = 𝐼, and rank(𝐺𝐺𝐺) = 𝐽, as 𝐻𝐻𝐻 =

𝐼∑
𝑖=1
𝜎
(ℎ)
𝑖
𝑢𝑢𝑢
(ℎ)
𝑖
𝑣𝑣𝑣
(ℎ)H
𝑖

= 𝑈𝑈𝑈 (ℎ)Σ(ℎ)𝑉𝑉𝑉 (ℎ)H and 𝐺𝐺𝐺 =

𝐽∑
𝑗=1
𝜎
(𝑔)
𝑖
𝑢𝑢𝑢
(𝑔)
𝑗
𝑣𝑣𝑣
(𝑔)H
𝑗

= 𝑈𝑈𝑈 (𝑔)Σ(𝑔)𝑉𝑉𝑉 (𝑔)H. From the natural ordering of the SVD, the singular values are

distributed as 𝜎(ℎ)1 ≥ 𝜎
(ℎ)
2 ≥ . . . ≥ 𝜎

(ℎ)
𝐼 , and 𝜎(𝑔)1 ≥ 𝜎

(𝑔)
2 ≥ . . . ≥ 𝜎

(𝑔)
𝐽 , the optimal design for 𝑤𝑤𝑤, 𝑞𝑞𝑞,

and 𝑠𝑠𝑠 is given by [116]

𝑞𝑞𝑞 = 𝑣𝑣𝑣
(ℎ)
1 ∈ ℂ𝑀𝑇×1, (3.14)

𝑤𝑤𝑤 = 𝑢𝑢𝑢
(𝑔)
1 ∈ ℂ𝑀𝑅×1, (3.15)

𝜃𝑛 = −∠
(
𝑣
(𝑔)∗
𝑛,1 ·𝑢(ℎ)1,𝑛

)
,∀𝑛 ∈ 𝑁 (3.16)

𝑠𝑠𝑠 =
[
𝑒 𝑗𝜃1 , . . . , 𝑒 𝑗𝜃𝑛 , . . . , 𝑒 𝑗𝜃𝑁

]
∈ ℂ𝑁×1, (3.17)

i.e., the strongest TX-IRS and IRS-RX links are selected to design the precoder, combiner, and
phase-shifts of the IRS.

3.6 IRS Phase-shift Feedback Overhead

Although the IRS technology brings all the discussed advantages and scenarios in
5G and future 6G wireless communications, there is the issue of control signaling overhead. For



Chapter 3. Overview of Intelligent Reconfigurable Surfaces 59

example, let us consider the MIMO single stream example. After the channel estimation step, the
precoder and the combiner (active beamformers) vectors 𝑤𝑤𝑤 and 𝑞𝑞𝑞, and the IRS phase-shift vector
𝑠𝑠𝑠 (passive beamformer) are optimized. Later, the RX needs to feedback to the IRS controller
the designed phase-shifts so that the IRS controller tunes the phase-shift for each IRS element.
Because this feedback occurs in a limited capacity control channel and the IRS may contain
several hundred to thousands of reflecting elements, the feedback of each phase-shift with a
certain resolution imposes a signaling overhead.

In this regard, the works of [116, 117] propose two different approaches to overcome
the feedback issue in MIMO IRS-assisted networks. The work of [117] considers a MIMO-
OFDM IRS-assisted system, focusing on the channel state information (CSI) feedback. The
authors consider that the channel response in a region of the IRS is approximately the same
due to the spatial correlation among the close elements. In other words, the authors propose to
split the IRS into 𝐾 regions, each having 𝐵 elements. In this case, the IRS phase-shift vector is
reformulated as

𝑠𝑠𝑠 = 111𝐵 ⊗ 𝑠𝑠𝑠 ∈ ℂ𝐾𝐵×1, (3.18)

where 𝑠𝑠𝑠 ∈ ℂ𝐾×1 is the total number of independent phase-shifts per region, with the total number
of IRS elements being 𝑁 = 𝐾𝐵. Thus, only 𝐾 entries of the channels are fed back to the TX
to design the precoder beamformer. The authors in [117] analyse the trade-off when 𝐾 and 𝐵,
where, for example, when the number of elements inside a group 𝐵 increases, the total number
of groups 𝐾 decreases since 𝑁 = 𝐵𝐾, thus the spectral efficiency and the feedback overhead
decreases. On the other hand, reducing 𝐵 results in increasing 𝐾 which means a higher spectral
efficiency and feedback overhead since more channel elements are fed back.

The work [116] focus on the IRS phase-shift feedback overhead to the IRS controller.
They model the feedback duration as

𝑇F =
𝑁𝑏F

𝐵Flog
(
1+ 𝑝F |𝑔F |2

𝐵F𝑁0

) , (3.19)

where 𝑁 is the total number of IRS phase-shifts to be fed back, 𝐵F, 𝑝F are the feedback bandwidth
and power, respectively, 𝑔F is the scalar control channel used, 𝑏F is the resolution of each phase-
shift, and 𝑁0 is the noise power density.

In Fig. 3.8, we illustrate the total number of bits to be feedback as we increase the
number of IRS elements and its their resolution, i.e., the numerator of (3.19). It becomes clear
that, for a large 𝑁 with a high resolution 𝑏F, the feedback duration of the IRS phase-shifts causes
a control signaling overhead that degradates the system SE, given in (3.20). To overcome this
issue, the authors of [116] focus on the problem of SE and EE maximization by optimizing the
resource allocation, where the SE is given by

SE =

(
1− 𝑇𝐸 +𝑇𝐹

𝑇

)
𝐵log2

(
1+ 𝑝TX |𝑤𝑤𝑤H𝐺𝐺𝐺diag (𝑠𝑠𝑠) 𝐻𝐻𝐻𝑞𝑞𝑞|2

𝐵𝑁0

)
, in bps, (3.20)
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Figure 3.8 – Feedback payload, in bits, as function of the number of IRS
elements 𝑁 and the feedback quantization bits 𝑏F.
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with 𝑇𝐸 and 𝑇 being the duration of the channel estimation phase and the total time interval, and 𝐵
the transmission bandwidth. The EE is given by EE = Rate/𝑃tot, and the total power consumption
𝑃tot can be expressed as

Ptot = 𝑃E +
𝑇 −𝑇E −𝑇F

𝑇
𝜇𝑝+ 𝜇F𝑝F𝑇F

𝑇
+ 𝑃c, (3.21)

where 𝑃E is the power used for the channel estimation phase, 1/𝜇 is the efficiency of the
transmitter power amplifier, 𝑝F is the power used during 𝑇F seconds, and 𝜇F is the efficiency
of the transmit amplifier used for feedback. The work [116] maximizes (3.20) and (3.21) by
optimizing the resources 𝑝TX, 𝑝F, 𝐵, 𝐵F.

In Chapter 5, we propose a new feedback overhead method by focusing on the
numerator of (3.19), where we reduce the number of the IRS phase-shifts to be conveyed to the
IRS controller thanks to the proposed tensor-based factorization.
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4 TENSOR-BASED RECEIVER FOR PARAMETER ESTIMATION IN MIMO-OFDM
SYSTEMS

OFDM has been adopted in third-generation (3G)/fourth-generation (4G) Long
Term Evolution (LTE) services due to its well known robustness to multi-path propagation,
frequency-selective fading, as well as low complexity implementation and equalization [118,
119]. However, these advantages rely on a perfect system synchronization to keep intact the
orthogonality among the subcarriers. In practical scenarios, synchronization impairments lead to
ICI that degrades the ultimate system performance. The two most common impairments that
destroy subcarrier orthogonality is the carrier frequency offset (CFO), which is caused by the
Doppler frequency shift effect induced by the mobility of the user, as well as the PN originated
by hardware imperfections at the transmitter and receiver oscillators [118].

The PN compensation problem has been extensively studied in the past years [120,
121, 122, 123, 124, 125, 126, 127, 128, 129]. For instance, in [120] and [122], techniques for
PN compensation are proposed for SISO systems. However, they assume a perfect knowledge
of the CSI at the receiver, which may not be feasible in practice. In MIMO systems, the PN
compensation becomes more challenging due to the presence of multiple independent phase-
noise processes, i.e., one for each transmit and receive antenna. The authors of [123] propose
a novel placement of pilot subcarriers in the preamble and data portions of the MIMO-OFDM
frame for joint channel and PN estimation. The authors in [124, 125] propose compensation
schemes based on the knowledge of the statistical model for the PN process.

In [126], a detailed study on the variance of the ICI as a function of the PN is
provided, and an algorithm to compensate the so-called common phase error (CPE) and the ICI
is formulated. The work [127] proposes a PN compensation method based on channel estimation
via a linear time domain interpolation. In [128], the authors propose LS and weighted LS (WLS)
methods for data, channel, and phase-noise tracking over a OFDM frame.

More recently, [129] presents a pilot signal design scheme for PN mitigation in
mmWave MIMO-OFDM systems, where the combined channel and PN term is estimated and
compensated for data detection. The work [121] proposes a PN compensation technique for
high-frequency MIMO-OFDM systems using an LS method.

The use of tensor decompositions for modeling MIMO systems has been growing [18,
19, 28, 29, 130, 131, 132, 133, 134, 135, 136, 137], and more recently, has resulted in proposals
of tensor-based receivers for MIMO-OFDM systems [35, 37, 38, 138, 139], However, these
works do not take into account system impairments such as the phase-noise that leads to ICI. As
discussed in these many references, the main reasons for using tensor-based modeling and signal
processing are their ability to exploit the inherent multidimensional structure of the transmitted
and/or received signals (e.g., time, frequency, space, polarization, etc.), as well as their built-
in identifiability properties that allow us to derive blind or semi-blind receiver algorithms and
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operate under more flexible conditions than matrix-based processing receivers. These key features
are a natural consequence of the uniqueness properties of tensor decompositions compared to
matrix decompositions [23].

In this chapter, we propose a tensor-based method for frequency-selective MIMO-
OFDM channel, PN, and data estimation. By assuming that the PN is approximately constant
over a very short symbol length, and motivated by the multidimensional structure of the received
signal, a third-order PARAFAC (Parallel Factors) tensor model is developed for the received
signal at the pilot subcarriers [25]. This model is exploited to separate the PN contribution from
the channel. Then, we propose a two-stage receiver for joint channel, PN, and data estimation.
In the first stage, we propose two algorithms to estimate the channel at the pilot subcarriers
jointly with the PN impairments. The first one is an iterative solution based on the BALS,
which consists of estimating the channel and phase-noise by solving two LS problems in an
alternating way. The second one is a closed-form algorithm based on the least squares Khatri-Rao
factorization (LSKRF) solution that solves multiple rank-one factorizations to jointly estimate
the channel gains and phase-noise terms. The channel at the data subcarrieris is then obtained via
interpolation. In the second stage, a zero-forcing (ZF) equalizer that exploits a PARATuck tensor
structure of the signal is used to estimate the transmitted data. The identifiability conditions and
computational complexity for both processing stages are also discussed.

Our simulation results show the effectiveness and high accuracy of the proposed
receiver for the joint estimation of the channel, data, and PN impairments. We can summarize
the main contributions of this chapter as follows:

1. A tensor decomposition based formulation to solve the problem of joint channel,
PN, and data estimation in MIMO-OFDM systems, by assuming different PN
perturbations for every pair of transmit and receive antenna. The proposed ap-
proach allows to separate the phase-noise from the channel gains, even without
any CSI knowledge;

2. A two-stage receiver to jointly estimate the channels, PN terms, and data symbols.
The first stage estimates the channel and the phase-noise (via BALS or LSKRF),
while the second stage extracts the symbol estimates from a SKP formulation by
means of a ZF filtering.

4.1 System Model

Let us consider a MIMO-OFDM system with 𝑀𝑇 transmit antennas, 𝑀𝑅 receive
antennas, and 𝐹 subcarriers. The total duration of an OFDM frame corresponds to 𝐾 blocks of
size 𝐿𝑃 symbols each. We assume that each transmit and receive antenna is equipped with its
own independent oscillator, so that the phase-noise (PN) is assumed to be different between the
antennas and is constant within a block 𝑘, with 𝑘 = {1, . . . , 𝐾}. Note that the assumption that the
transmit/receive antennas are subject to different PN perturbations has been addressed in the
literature, such as in [119, 121, 128, 129]. As mentioned in [119, 140], this assumption copes
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Figure 4.1 – MIMO system with antenna-dependent phase-noise impair-
ments.

Source: Created by the author.

with realistic mmWave massive MIMO setups, including distributed MIMO scenarios.
Figure 4.1 illustrates the a MIMO system with antenna-dependent PN impairments.

Let ℎ𝑚𝑟 ,𝑏 [𝑛] and 𝑠𝑚𝑡 ,𝑖 [𝑛] be the discrete-time channel and the transmitted symbol, for 𝑚𝑟 =

{1, . . . , 𝑀𝑅}, 𝑚𝑡 = {1, . . . , 𝑀𝑇 }, 𝑖 = {1, . . . , 𝐿𝑃}. Then, the sampled discrete-time received signal
at the period 𝑛, for 𝑛= {0, . . . , 𝐹−1}, can be represented as

𝑦𝑚𝑟 ,𝑖,𝑘 [𝑛]= 𝑒
𝑗𝜙

[r]
𝑘,𝑚𝑟

[𝑛]
ℎ𝑚𝑟 ,𝑚𝑡

[𝑛] ⊛ 𝑒 𝑗𝜙
[t]
𝑘,𝑚𝑡

[𝑛]
𝑠𝑖,𝑚𝑡

[𝑛] + 𝑣𝑚𝑟 ,𝑖,𝑘 [𝑛], (4.1)

where “⊛" stands for time-domain convolution, 𝜙(r)
𝑘,𝑚𝑟

[𝑛] and 𝜙(t)
𝑘,𝑚𝑡

[𝑛] are the phase-noise (PN)
impairment. Both are modeled as a Wiener process1, i.e.,

𝜙
[x]
𝑘,𝑚x

[𝑛+1] = 𝜙[x]
𝑘,𝑚x

[𝑛] + 𝜖[x]
𝑘,𝑚x

, (4.2)

with 𝜖[x]
𝑘,𝑚x

∼ N(0, 𝜎2
𝜙[x] ), for x ∈ {r, t}. Moreover, 𝑣𝑚𝑟 ,𝑖,𝑘 [𝑛] is the additive white Gaussian noise

(AWGN) at the receiver ∼ CN(0, 𝜎2
𝑣). Applying the discrete Fourier transform (DFT), the

received signal at the 𝑓 -th subcarrier is given by

𝑌𝑚𝑟 ,𝑖,𝑘 [ 𝑓 ] =
𝐹−1∑︁
𝑛=0

𝑦𝑚𝑟 ,𝑖,𝑘 [𝑛]𝑒−2 𝑗𝜋 𝑓 𝑛/𝐹

𝑌𝑚𝑟 ,𝑖,𝑘 [ 𝑓 ] = Φ[r]
𝑘,𝑚𝑟

[0]𝐻𝑚𝑟 ,𝑚𝑡
[ 𝑓 ]Φ[t]

𝑘,𝑚𝑡
[0]𝑆𝑚𝑡 ,𝑖 [ 𝑓 ] +𝑉𝑚𝑟 ,𝑖,𝑘 [ 𝑓 ] (4.3)

+
𝐹−1∑︁

𝑝=0,𝑝≠ 𝑓
Φ[r]
𝑘,𝑚𝑟

[ 𝑓−𝑝]𝐻𝑚𝑟 ,𝑚𝑡
[𝑝]

𝐹−1∑︁
𝑞=0,𝑞≠ 𝑓

Φ[𝑡]
𝑘,𝑚𝑡

[𝑝−𝑞]𝑆𝑚𝑡 ,𝑖 [𝑞]︸                                                             ︷︷                                                             ︸
ICI components

𝑌𝑚𝑟 ,𝑖,𝑘 [ 𝑓 ] = Φ[r]
𝑘,𝑚𝑟

[0]𝐻𝑚𝑟 ,𝑚𝑡
[ 𝑓 ]Φ[t]

𝑘,𝑚𝑡
[0]𝑆𝑖,𝑚𝑡

[ 𝑓 ]+ (4.4)

𝐺𝑚𝑟 ,𝑖,𝑘 [ 𝑓 ] +𝑉𝑚𝑟 ,𝑖,𝑘 [ 𝑓 ],

1 The PN variance, 𝜎2
𝜙[x] is usually defined as 𝜎2

𝜙[x] = 4𝜋𝛽𝑇𝑠𝑝, with 𝛽 being the single-sided of the 3 dB bandwidth

of the Lorentzian spectrum for 𝑒 𝑗𝜙
[x] [𝑛] and 𝑇𝑠𝑝 is the sampling period [121, 141]. In this chapter, we assume a

very high phase-noise variance 𝜎2
𝜙[x] = 5 ·10−3rad2.
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where 𝑓 = {0, . . . , 𝐹−1} is the subcarrier index in the frequency domain. The matrices Φ[r]
𝑘,𝑚𝑟

[0] =
1
𝐹

𝐹−1∑
𝑛=0

𝑒
𝑗𝜙

[r]
𝑘,𝑚𝑟

[𝑛]
𝑘,𝑚𝑟

and Φ[t]
𝑘,𝑚𝑡

[0] = 1
𝐹

𝐹−1∑
𝑛=0

𝑒
𝑗𝜙

[t]
𝑘,𝑚𝑡

[𝑛]
𝑘,𝑚𝑡

are the common phase error (CPE) generated by

the receive and transmit antennas, respectively, and 𝐺𝑚𝑟 ,𝑖,𝑘 [ 𝑓 ] is the inter-carrier interference
(ICI) term. 2 For convenience, the detailed steps from equation (4.1) to (4.4) are given in the
Appendix A.

The received signal 𝑌𝑚𝑟 ,𝑖,𝑘 [ 𝑓 ] is modelled as a fourth-order tensor Y ∈ ℂ𝑀𝑅×𝐿𝑃×𝐾×𝐹

and we make use of the proposed tensor notation, introduced in Chapter 2, to develop our
receivers. Let us introduce a combiner matrix 𝑊𝑊𝑊 ∈ ℂ𝑀𝑅×𝑀𝑅 that is assumed to be fixed over the
𝐾 blocks and all 𝐹 subcarriers. Resorting to the slice-wise notation, the received signal tensor
Y ..𝑘 𝑓 ∈ ℂ𝑀𝑅×𝐿𝑃 at the 𝑘-th block and 𝑓 -th subcarrier can be written as

Y ..𝑘 𝑓 =𝑊𝑊𝑊diag𝑘
(
Φ[r] [0]

)
H .. 𝑓diag𝑘

(
Φ[t] [0]

)
ST
.. 𝑓 +𝑊𝑊𝑊G ..𝑘 𝑓 +𝑊𝑊𝑊V ..𝑘 𝑓 , (4.5)

where Φ[x] [0] ∈ ℂ𝐾×𝑀𝑋 , for x ∈ {r, t}, is the phase-noise matrix formed by collecting the phase-
noise CPE terms across the 𝐾 blocks and the 𝑀𝑋 antennas, i.e.,

Φ[x] [0] =


Φ(x)

1,1 [0] . . . Φ(x)
1,𝑀𝑋

[0]
...

. . .
...

Φ(x)
𝐾,1 [0] . . . Φ(x)

𝐾,𝑀𝑋
[0]

 . (4.6)

The third-order tensor S ∈ ℂ𝐿𝑃×𝑀𝑇×𝐹 is obtained by collecting the transmitted symbols 𝑆𝑖,𝑚𝑡
[ 𝑓 ]

across all 𝐿𝑃 symbol periods, 𝑀𝑇 antennas and 𝐹 subcarriers, for 𝑖 = {1, . . . , 𝐿𝑃}, 𝑚𝑡 = {1, . . . , 𝑀𝑇 },
and 𝑓 = {1, . . . , 𝐹}.

In (4.5), H .. 𝑓 represents the 𝑓 -th frontal slice of the frequency-selective channel
tensor H ∈ ℂ𝑀𝑅×𝑀𝑇×𝐹 , which, in Appendix A, is given by

H 𝑎,𝑏, 𝑓 =

𝐿∑︁
𝑙=1

ℎ̄𝑎,𝑏 [𝑙]𝑒−2 𝑗𝜋 𝑓𝜏𝑙𝑑F , (4.7)

where ℎ̄𝑎,𝑏 [𝑙] is the channel gain of the 𝑙-th propagation path, 𝑙 = {1, . . . , 𝐿}, 𝜏𝑙 is the associated
delay (in seconds), 𝑑F = 1/𝑇𝑠 is the frequency spacing between two subcarriers (in Hertz), and 𝑇𝑠
is the symbol duration.

In tensor notation, (4.5) can be considered as a special case of a fourth-order
PARATuck model. However, in order to exploit the known factors at the receiver, i.e., the
pilot matrix 𝑆𝑆𝑆(P) and the combiner matrix 𝑊𝑊𝑊, we will show how to recast such PARATuck model
as an equivalent PARAFAC model for the joint phase-noise and channel estimation.



Chapter 4. Tensor-Based Receiver for Parameter Estimation in MIMO-OFDM Systems 65

Figure 4.2 – Illustration of frame and block structures. The total frame length is
𝐾 · 𝐿𝑃.
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Source: Created by the author.

4.2 PARAFAC Pilot Modeling

The symbol tensor S ∈ ℂ𝐿𝑃×𝑀𝑇×𝐹 is given by the concatenation of a pilot tensor
S (P) ∈ ℂ𝐿𝑃×𝑀𝑇×𝐹P and a data symbol tensor S (D) ∈ ℂ𝐿𝑃×𝑀𝑇×𝐹D , such that 𝐹 = 𝐹P+ 𝐹D, as illustrated
in Figure 4.2. This concatenation depends on the value of 𝐷 = 𝐹/𝐹P, which is the distance
between the pilot and data subcarriers, counted in indices. We can write the concatenation of the
pilot and symbol tensors using the slice notation as

S =

[
S (P)
..1 ⊔3 S (D)

..1:𝐷−1 ⊔3 . . .⊔3 S (P)
..𝐹P

⊔3 S (D)
..𝐷+𝐹P:𝐹D

]
. (4.8)

Likewise, the channel tensor H is divided into a pilot channel part H (P) ∈ ℂ𝑀𝑅×𝑀𝑇×𝐹P and a data
channel part H (D) ∈ ℂ𝑀𝑅×𝑀𝑇×𝐹D .

As a first step, the receiver extracts only the pilot preamble of each block. From (4.5),
the contribution of the pilot part Y (P)

..𝑘 𝑓𝑝
∈ ℂ𝑀𝑅×𝐿𝑃 associated with the 𝑘-th block at the 𝑓𝑝-th pilot

subcarrier can be expressed as

Y (P)
..𝑘 𝑓𝑝

=𝑊𝑊𝑊diag𝑘
(
Φ[𝑟] [0]

)
H (P)

.. 𝑓𝑝
diag𝑘

(
Φ[𝑡] [0]

)
S (P)T
.. 𝑓𝑝

+𝑊𝑊𝑊V (P)
..𝑘 𝑓𝑝

+𝑊𝑊𝑊G (P)
..𝑘 𝑓𝑝

∈ ℂ𝑀𝑅×𝐿𝑃 . (4.9)

Let us consider that the same pilot is transmitted across all pilot subcarriers, i.e.,

S (P)
.. 𝑓𝑝

= 𝑆𝑆𝑆(P) ∈ ℂ𝐿𝑃×𝑀𝑇 ∀ 𝑓𝑝 ∈ 𝐹P. (4.10)

Then, we can write equation (4.9) as

Y (P)
..𝑘 𝑓𝑝

=𝑊𝑊𝑊diag𝑘
(
Φ[r] [0]

)
H (P)

.. 𝑓𝑝
diag𝑘

(
Φ[t] [0]

)
𝑆𝑆𝑆(P)T +𝑊𝑊𝑊V (P)

..𝑘 𝑓𝑝
+𝑊𝑊𝑊G (P)

..𝑘 𝑓𝑝
. (4.11)

2 Note that the ICI structure in eq. (4.3) consists of a summation of phase-noise, channel frequency responses,
and OFDM symbols, and can be modeled as an AWGN process ∼ CN(0, 𝜎2

ICI) [119], reducing the receiver
complexity [121, 129]. In Appendix B, we derive an expression to calculate 𝜎2

ICI, which mainly depends on the
phase-noise variance 𝜎2

𝜙[x] and the total number of subcarriers 𝐹.
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Defining 𝑦𝑦𝑦
(P)
𝑘 𝑓𝑝

= vec
(
Y (P)

..𝑘 𝑓𝑝

)
∈ ℂ𝑀𝑅𝐿𝑃×1, ℎℎℎ 𝑓𝑝 = vec(H (P)

.. 𝑓𝑝
) ∈ ℂ𝑀𝑅𝑀𝑇×1 and applying

properties (2.10)-(2.14) to (4.11), neglecting the noise and the ICI terms, yields

𝑦𝑦𝑦
(P)
𝑘 𝑓𝑝

=

(
𝑆𝑆𝑆(P) ⊗𝑊𝑊𝑊

)
vec

(
diag𝑘

(
Φ[r] [0]

)
H (P)

.. 𝑓𝑝
diag𝑘

(
Φ[t] [0]

))
=

(
𝑆𝑆𝑆(P) ⊗𝑊𝑊𝑊

) (
diag𝑘

(
Φ[t] [0]

)
⊗ diag𝑘

(
Φ[r] [0]

))
ℎℎℎ
(P)
𝑓𝑝

=

(
ℎℎℎ
(P)T
𝑓𝑝

⋄ (𝑆𝑆𝑆(P) ⊗𝑊𝑊𝑊)
) (

Φ[t] [0]𝑘. ⊗Φ[r] [0]𝑘.
)T

=

(
𝑆𝑆𝑆(P) ⊗𝑊𝑊𝑊

)
diag

(
ℎℎℎ
(P)
𝑓𝑝

)
𝜙𝜙𝜙T
𝑘. (4.12)

where 𝜙𝜙𝜙𝑘. = Φ[t] [0]𝑘.⊗Φ[r] [0]𝑘. ∈ℂ1×𝑀𝑅𝑀𝑇 is the combined transmitter and receiver phase-noise
at the 𝑘-th block. Collecting the vectorized received pilots 𝑦𝑦𝑦 (P)

𝑘 𝑓𝑝
for all the 𝑘 = 1, . . . , 𝐾 blocks as

the columns of the resulting matrix 𝑌𝑌𝑌 (P)
𝑓𝑝

=

[
𝑦𝑦𝑦
(P)
1, 𝑓𝑝 , . . . , 𝑦

𝑦𝑦
(P)
𝐾, 𝑓𝑝

]
, and according to the definition of

the Khatri-Rao product, we have

𝑌𝑌𝑌
(P)
𝑓𝑝

=

(
𝑆𝑆𝑆(P) ⊗𝑊𝑊𝑊

)
diag

(
ℎℎℎ
(P)
𝑓𝑝

) [
𝜙𝜙𝜙T

1., . . . ,𝜙𝜙𝜙
T
𝐾.

]
=

(
𝑆𝑆𝑆(P) ⊗𝑊𝑊𝑊

)
diag

(
ℎℎℎ
(P)
𝑓𝑝

)
ΦT ∈ ℂ𝑀𝑅𝐿𝑃×𝐾 , (4.13)

where Φ =

(
Φ[𝑡]T [0] ⋄Φ[𝑟]T [0]

)T
∈ ℂ𝐾×𝑀𝑅𝑀𝑇 is the combined phase-noise concatenated across

all the 𝐾 blocks and antennas. According to (2.57), 𝑌𝑌𝑌 (P)
𝑓𝑝

can be interpreted as the 𝑓𝑝-th frontal

slice of the third-order tensor Y (P) ∈ ℂ𝑀𝑅𝐿𝑃×𝐾×𝐹P which corresponds to the following PARAFAC
decomposition

Y (P) = I3,𝑀𝑅𝑀𝑇
×1 (𝑆𝑆𝑆(P) ⊗𝑊𝑊𝑊) ×2 Φ×3 [H] (P)(3) , (4.14)

where [H] (P)(3) ∈ ℂ𝐹P×𝑀𝑅𝑀𝑇 is the 3-mode unfolding of the pilot channel tensor H (P) ∈ ℂ𝑀𝑅×𝑀𝑇×𝐹P .

The 1-mode, 2-mode and 3-mode unfoldings of Y (P) , denoted by
[
Y (P)

]
(1)

,
[
Y (P)

]
(2)

and[
Y (P)

]
(3)

respectively, admit the following factorizations:[
Y (P)

]
(1)

=

(
𝑆𝑆𝑆(P) ⊗𝑊𝑊𝑊

) (
[H] (P)(3) ⋄Φ

)T
∈ ℂ𝑀𝑅𝐿𝑃×𝐾𝐹P , (4.15)[

Y (P)
]
(2)

= Φ
(
[H] (P)(3) ⋄

(
𝑆𝑆𝑆(P) ⊗𝑊𝑊𝑊

))T
∈ ℂ𝐾×𝑀𝑅𝐿𝑃𝐹P , (4.16)[

Y (P)
]
(3)

= [H] (P)(3)

(
Φ⋄

(
𝑆𝑆𝑆(P) ⊗𝑊𝑊𝑊

))T
∈ ℂ𝐹P×𝑀𝑅𝐿𝑃𝐾 . (4.17)

Equations (4.15)-(4.17) are the basis for the first-stage of the proposed receiver, where two
different algorithms can be used to estimate the combined phase-noise and the pilot channel.

4.3 Proposed Receiver

The proposed tensor-based receiver is composed of two processing stages. In the
first stage, two different algorithms are derived to estimate the channel at the pilot subcarriers
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and the phase-noise (PN) impairments. The first algorithm is based on bilinear alternating least
squares (BALS), and consists of estimating the channel from the pilot subcarriers and the PN
terms in an iterative way, while the second one has a closed-form solution based on the least
squares Khatri-Rao factorization (LSKRF) for simultaneous channel and phase-noise estimation.
Once the channel coefficients associated with the pilot subcarriers are estimated, the channel
coefficients at the data subcarriers are obtained by interpolating the estimated channel at the
pilot subcarriers. In the second stage, the proposed zero forcing selective Kronecker product
(ZFSKP) receiver, a zero-forcing (ZF) approach based on the selective Kronecker product (SKP)
formulation , is used to estimate the data symbols. These two stages are detailed below.

4.3.1 Stage 1: Channel and PN estimation via BALS

The first stage of the proposed receiver consists of jointly estimating the channel and
PN impairments from the received signal tensor in (4.14), which can be done by exploiting the
unfoldings

[
Y (P)

]
(2)

and
[
Y (P)

]
(3)

from equations (4.16) and (4.17), respectively. To this end,

we make use of the BALS algorithm that alternates between the estimation of the factor matrices
[H] (P)(3) and Φ by optimizing the following two least squares (LS) criteria:

[
Ĥ

] (P)
(3)

= argmin
[H] (P)(3)

[Y (P)
]
(3)

−
[
Ĥ

] (P)
(3)

(
Φ⋄

(
𝑆𝑆𝑆(P) ⊗𝑊𝑊𝑊

))T
2

F
,

Φ̂ = argmin
Φ

[Y (P)
]
(2)

−Φ
(
[H] (P)(3) ⋄

(
𝑆𝑆𝑆(P) ⊗𝑊𝑊𝑊

))T
2

F
,

the solutions of which are given, respectively, by[
Ĥ

] (P)
(3)

=

[
Y (P)

]
(3)

[(
Φ⋄

(
𝑆𝑆𝑆(P) ⊗𝑊𝑊𝑊

))T
]+

(4.18)

Φ̂ =

[
Y (P)

]
(2)

[(
[H] (P)(3) ⋄

(
𝑆𝑆𝑆(P) ⊗𝑊𝑊𝑊

))T
]+
. (4.19)

Due to the knowledge of𝑊𝑊𝑊 and 𝑆𝑆𝑆(P) at the receiver, each iteration of the BALS algorithm contains
only two updating steps. At each step, the fitting error is minimized with respect to one factor
matrix by fixing the other to its value obtained at the previous updating step. This procedure
is repeated until the convergence of the BALS stage at the 𝑖-th iteration. The convergence is
declared when |𝑒(𝑖) − 𝑒(𝑖−1) | ≤ 10−6 , where 𝑒(𝑖) denotes the residual error calculated as

𝑒(𝑖) =

Y (P) −Ŷ (P)
(𝑖)

2

FY (P)
2

F

, (4.20)

where Ŷ (P)
(𝑖) is the reconstructed tensor Y (P) computed from the estimated factor matrices at the

end of the 𝑖-th iteration.
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Algorithm 6 Stage1: BALS

1: Inputs: Received tensor pilot signal Y ((P), pilot matrix 𝑆𝑆𝑆(P) , and combiner 𝑊𝑊𝑊.
2: Generate �̂�[𝑟] [𝑛] ∼ N

(
0, 𝜎2

𝜙[r]

)
and �̂�[𝑡] [𝑛] ∼ N

(
0, 𝜎2

𝜙[t]

)
using the Wiener model;

3: Set Φ̂[𝑟]
𝑘,𝑚𝑟

[0] = 1/𝐹
𝐹−1∑
𝑛=0

𝑒
𝑗�̂�

[𝑟]
𝑘,𝑚𝑟

[𝑛] and Φ̂
[𝑡]
𝑘,𝑚𝑡

[0] = 1/𝐹
𝐹−1∑
𝑛=0

𝑒
𝑗�̂�

[𝑡]
𝑘,𝑚𝑡

[𝑛] ;

4: Iteration 𝑖 = 0;
5: Set Φ̂(0) = Φ̂

[𝑡]T [0] ⋄ Φ̂[𝑟]T [0];
6: 𝑖 = 𝑖+1;

7: Compute an estimation for
[
Ĥ

] (P)
(3) (𝑖)

using

[
Ĥ

] (P)
(3) (𝑖)

=

[
Y (P)

]
(3)

[(
Φ̂(𝑖−1) ⋄

(
𝑆𝑆𝑆(P) ⊗𝑊𝑊𝑊

))T
]+
,

8: Compute an estimation for Φ̂(𝑖) using

Φ̂(𝑖) =
[
Y (P)

]
(2)

[( [
Ĥ

] (P)
(3) (𝑖)

⋄
(
𝑆𝑆𝑆(P) ⊗𝑊𝑊𝑊

))T
]+
,

9: Reconstruct tensor Ŷ (P)
(𝑖) and compute the residual error according to equation (4.20);

10: Return to step 5 and repeat until convergence;

11: Estimate the channel at the data subcarriers
[
Ĥ

] (D)

(3)
by interpolating

[
Ĥ

] (P)
(3)

;

12: Outputs: Estimated combined PN matrix Φ̂, and channels
[
Ĥ

] (P)
(3)

, and
[
Ĥ

] (D)

(3)
.

Note that, for the initialization of Algorithm 6, we consider that the phase-noise
variance is known at the receiver. This assumption is realistic if we note that the phase-noise
variance parameters (𝛽 and 𝑇sp) are usually known at the receiver, or can be considered known
in advance, since they are intrinsic parameters of the oscillators and fixed by the system design
[128].

4.3.2 Stage 1: Channel and PN estimation via LS-KRF

The proposed least squares Khatri-Rao factorization (LSKRF) algorithm estimates
the channel at the pilot subcarriers and the PN contributions in a closed-form manner. Transposing
the unfolding [Y] (P)(1) in (4.15), and applying a pseudo-inverse at the right, we have

[H] (P)(3) ⋄Φ ≈
[
Y (P)

]T

(1)

(
𝑆𝑆𝑆(P)T ⊗𝑊𝑊𝑊T

)+
. (4.21)

Note that the uniqueness of the Khatri-Rao product term in (4.21) requires that 𝑆𝑆𝑆(P)T ⊗𝑊𝑊𝑊 to be
full-column rank, which implies 𝐿𝑃 ≥ 𝑀𝑇 .

Let us define 𝑍𝑍𝑍 ≈ [H] (P)(3) ⋄Φ ∈ ℂ𝐾𝐹P×𝑀𝑅𝑀𝑇 and note that the 𝑟-th column of 𝑍𝑍𝑍, defined
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Algorithm 7 Stage 1 LSKRF

1: Inputs: Received 1-mode pilot tensor signal [Y] ((P)
(1) , pilot matrix 𝑆𝑆𝑆(P) , and combiner 𝑊𝑊𝑊.

2: Compute an estimate of 𝑍𝑍𝑍 as

�̂�𝑍𝑍 =

[
Y (P)

]T

(1)

(
𝑆𝑆𝑆(P)T ⊗𝑊𝑊𝑊T

)+
.

3: for 𝑟 = 1 : 𝑀𝑅𝑀𝑇 do
4: Define �̄�𝑍𝑍(𝑟) = unvec𝐾×𝐹P (�̂�𝑍𝑍.𝑟).
5: Compute the SVD of 𝑍 = 𝑈𝑈𝑈 (𝑟)Σ(𝑟)𝑉𝑉𝑉 (𝑟)H.

6: Estimate Φ̂.𝑟 =

(
Σ(𝑟)

1,1

)1/2
𝑈𝑈𝑈

(𝑟)
.1

7: Estimate
[
Ĥ

] (P)
(3).𝑟

=

(
Σ(𝑟)

1,1

)1/2
𝑉𝑉𝑉
(𝑟)∗
.1 .

8: end for
9: Estimate the channel at the data subcarriers

[
Ĥ

] (D)

(3)
by interpolating

[
Ĥ

] (P)
(3)

;

10: Outputs: Estimated combined PN matrix Φ̂, and channels
[
Ĥ

] (P)
(3)

, and
[
Ĥ

] (D)

(3)
.

as 𝑍𝑍𝑍.𝑟 ≈ [H] (P)(3).𝑟 ⊗Φ.𝑟 ∈ ℂ𝐾𝐹P , with 𝑟 = {1, . . . , 𝑀𝑅𝑀𝑇 }. From Property (2.14), we have

vec
(
Φ.𝑟 ◦ [H] (P)(3).𝑟

)
= [H] (P)(3).𝑟 ⊗Φ.𝑟 ≈ 𝑍𝑍𝑍.𝑟 ∈ ℂ𝐾𝐹P×1. (4.22)

Applying the unvec(·) operator, we defined

�̄�𝑍𝑍
(𝑟)

= unvec𝐾×𝐹P (𝑍𝑍𝑍.𝑟) ≈ Φ.𝑟 · [H] (P)T(3).𝑟 ∈ ℂ𝐾×𝐹P . (4.23)

Hence, an estimation of Φ.𝑟 and [H] (P)T(3).𝑟 can be obtained, respectively, from the dominant left

and right singular vectors of �̄�𝑍𝑍(𝑟) = 𝑈𝑈𝑈 (𝑟)Σ(𝑟)𝑉𝑉𝑉 (𝑟)H, i.e.,

Φ̂.𝑟 =

(
Σ(𝑟)

1,1

)1/2
𝑈𝑈𝑈

(𝑟)
.1 (4.24)[

Ĥ
] (P)
(3).𝑟

=

(
Σ(𝑟)

1,1

)1/2
𝑉𝑉𝑉
(𝑟)∗
.1 , (4.25)

𝑟 = 1, . . . , 𝑀𝑅𝑀𝑇 . The estimation of the entire matrices Φ̂ and
[
Ĥ

] (P)
(3)

requires the computation

of 𝑀𝑅𝑀𝑇 rank-one matrix approximations. Instead of computing SVDs, efficient solutions based
on the power method can be used [142].

4.3.3 Scaling ambiguity in the estimated parameters at Stage 1

It is important to mention that, after the BALS and the LSKRF in Stage 1, the
estimated matrices are linked to the true ones by the following relationship:[

Ĥ
] (P)
(3)

= [H] (P)(3) Λ, Φ̂ = ΦΛ−1, (4.26)
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where Λ = diag(𝜆𝜆𝜆) ∈ ℂ𝑀𝑅𝑀𝑇×𝑀𝑅𝑀𝑇 , with 𝜆𝜆𝜆 =
[
𝛼1, . . . ,𝛼𝑀𝑅𝑀𝑇

]
being a vector containing 𝑀𝑅𝑀𝑇

scaling factors. To solve these scaling ambiguities, one row of Φ or [H] (P)(3) has to be known,
which physically means that the phase-noise process at a certain block 𝑘 is known, or, alterna-
tively, that the CSI at a certain pilot subcarrier 𝑓𝑝 is available. However, since we are interested in
data estimation, the scaling factors affecting the channel matrix are canceled with the ones acting
over the phase-noise matrix, i.e., ΛΛ−1 = 𝐼𝐼𝐼𝑀𝑅𝑀𝑇

. Thus, the role of the BALS and the LS-KRF
algorithms is to decouple and refine the estimates of the channel and phase-noise matrices before
combining them for the data estimation, according to eq. (4.31).

4.3.4 Stage 2: Data estimation using the ZFSKP approach

We derive an SKP-based ZF approach, namely zero forcing selective Kronecker
product (ZFSKP), to estimate the transmitted symbol tensor from the data subcarriers. Let us
consider the received signal at the 𝑘-th frame and 𝑓𝑑-th data subcarrier in equation (4.5). By
defining 𝑦𝑦𝑦

(D)
𝑘 𝑓𝑑
� vec(Y (D)

..𝑘 𝑓𝑑
) ∈ ℂ𝑀𝑅𝐿𝑃×1 and ℎℎℎ

(D)
𝑓𝑑

= vec(H (D)
.. 𝑓𝑑

) ∈ ℂ𝑀𝑅𝑀𝑇×1, and neglecting the
noise and the ICI terms (for notational convenience), we have

𝑦𝑦𝑦
(D)
𝑘 𝑓𝑑

= vec
(
𝑊𝑊𝑊𝐷𝑘

(
Φ[r] [0]

)
H (D)

.. 𝑓𝑑
𝐷𝑘

(
Φ[t] [0]

)
S (D)T
.. 𝑓𝑑

)
=

(
S (D)
.. 𝑓𝑑

⊗𝑊𝑊𝑊
)

diag(ℎℎℎ(D)
𝑓𝑑

)
(
Φ[t] [0]𝑘. ⊗Φ[r] [0]𝑘.

)T
.

By collecting data during the 𝐾 frames, we obtain

𝑌𝑌𝑌
(D)
𝑓𝑑

=

(
S (D)
.. 𝑓𝑑

⊗𝑊𝑊𝑊
)

diag(ℎℎℎ(D)
𝑓𝑑

)ΦT ∈ ℂ𝑀𝑅𝐿𝑃×𝐾 . (4.27)

Note that (4.27) differs from (4.13) since the term S (D)
.. 𝑓𝑑

varies over the 𝐹D subcarriers, which
means that equation (4.27) does not fit a PARAFAC model. However, by collecting all the 𝐹D

terms in 𝑌𝑌𝑌 (D) = [𝑌𝑌𝑌 (D)
1 . . .𝑌𝑌𝑌

(D)
𝐹D

] ∈ ℂ𝑀𝑅𝐿𝑃×𝐾𝐹D , we get

𝑌𝑌𝑌 (D) =
[(
S (D)
..1 ⊗𝑊𝑊𝑊

)
, . . . ,

(
S (D)
..𝐹D

⊗𝑊𝑊𝑊
)]

diag
©«

ℎℎℎ
(D)
1
...

ℎℎℎ
(D)
𝐹𝐷


ª®®®¬

Φ

. . .

Φ


T

=

(
[S] (D)

(1) ⊗𝑊𝑊𝑊
)

diag
(
vec( [H] (D)T

(3) )
) (
𝐼𝐼𝐼𝐹D ⊗Φ

)T
. (4.28)

The received data matrix 𝑌𝑌𝑌 (D) ∈ ℂ𝑀𝑅𝐿𝑃×𝐾𝐹D can be interpreted as a generalized
unfolding of the fourth-order received data tensor Y (D) ∈ ℂ𝑀𝑅×𝐿𝑃×𝐾×𝐹D given by

Y (D) =H (D) ×1𝑊𝑊𝑊 ×2 [S] (D)
(1) ×3 Φ×4 𝐼𝐼𝐼𝐹D , (4.29)

where H (D)
is the core tensor of the data received signal, which corresponds to a reshaping

of the elements of diag(vec( [H] (D)T
(3) )) ∈ ℂ𝑀𝑅𝑀𝑇 𝐹D×𝑀𝑅𝑀𝑇 𝐹D as a fourth-order tensor H (D) ∈
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Algorithm 8 Stage 1 LSKRF

1: Inputs: Received data tensor Y (D) , and the outputs of Algorithm 6 or 7.

2: Reshape the elements of diag(vec
( [
Ĥ

] (D)T

(3)

)
) into H (D)

using (4.30).

3: Estimate the transmitted data as[
Ŝ
] (D)

(1)
= [Y] (D)

(2)

( [
Ĥ

] (D)

(2)
(𝐼𝐼𝐼𝐹D ⊗ Φ̂⊗𝑊𝑊𝑊)T

)+
, (4.32)

4: Outputs: Estimated symbols
[
Ŝ
] (D)

(1)
∈ ℂ𝐿P×𝑀𝑇 𝐹D .

ℂ𝑀𝑅×𝑀𝑇 𝐹D×𝑀𝑅𝑀𝑇×𝐹D that can be constructed similar to the using the SKP structure introduced in
Section 2.2.9 as

H (D)
=

©«
I3,𝐹D ⊗

2,4
2,3

(
I3,𝑀𝑇

⊗2,3
2,3 I3,𝑀𝑅

)
︸                               ︷︷                               ︸

∈ℝ𝑀𝑅×𝑀𝑇 𝐹D×𝑀𝑅𝑀𝑇 ×𝑀𝑅𝑀𝑇 𝐹D×𝐹D

ª®®®®¬
×4 vec

(
[H] (D)T

(3)

)T
. (4.30)

From equation (4.29), an estimate of the data symbol tensor can be obtained as[
Ŝ
] (D)

(1)
= [Y] (D)

(2)

( [
Ĥ

] (D)

(2)
(𝐼𝐼𝐼𝐹D ⊗ Φ̂⊗𝑊𝑊𝑊)T

)+
, (4.31)

where Φ̂ is the PN matrix estimated in the first stage, and
[
Ĥ

] (D)

(2)
is the 2-mode unfolding of the

tensor H (D)
. The ZFSKP receiver is summarized in Algorithm 8.

4.3.5 Uniqueness and Identifiability Conditions

In this section, we discuss the range of parameter settings that ensure the uniqueness
and identifiability of the proposed receiver. First, recall equation (2.59), where the uniqueness
condition for a third-order PARAFAC model is stated. Adapting this condition to our system
context, we can rewrite (2.59) as

𝑘(𝑆𝑆𝑆 (P)⊗𝑊𝑊𝑊) + 𝑘Φ + 𝑘[H] (P)(3)
≥ 2(𝑀𝑅𝑀𝑇 ) +2. (4.33)

Since the factor 𝑆𝑆𝑆(P) ⊗𝑊𝑊𝑊 ∈ℂ𝑀𝑅𝐿𝑃×𝑀𝑅𝑀𝑇 is known at the receiver, we can ensure by a proper design
such that 𝑆𝑆𝑆(P) ⊗𝑊𝑊𝑊 has full rank, so that 𝑘(𝑆𝑆𝑆 (P)⊗𝑊𝑊𝑊) = rank

(
𝑆𝑆𝑆(P) ⊗𝑊𝑊𝑊

)
=𝑀𝑅𝑀𝑇 . The factor [H] (P)(3) ∈

ℂ𝐹P×𝑀𝑅𝑀𝑇 can also be assumed to be a full rank matrix under a rich scattering propagation
environment, which implies that 𝑘[H] (P)(3)

= rank
(
[H] (P)(3)

)
= 𝑀𝑅𝑀𝑇 . Under these assumptions, we

can deduce from (4.33) that 𝑘Φ ≥ 2 is enough to ensure the uniqueness of model (2.59) and,
hence, to guarantee a joint channel and phase-noise recovery.

Finally, note that LS estimation steps 7 and 8 of Algorithm 6 require that 𝐹𝐿𝑃 ≥
𝑀𝑇 and 𝐾𝐿𝑃 ≥ 𝑀𝑇 , while the ZF estimation of the data symbols in (4.31) requires that
𝑀𝑇 ≤ 𝑀𝑅𝐾.
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4.3.6 Computational Complexity

Here we derive the computational complexity of the proposed receiver in terms of
FLOPS (Floating-point Operations Per Second). Considering a matrix 𝐴𝐴𝐴 ∈ ℂ𝑀×𝑁 , we know that
the computation of its dominant singular value and singular vectors have a cost of O(𝑙 · (𝑁2𝑀 +
𝑀2𝑁)), where 𝑙 is the maximum number of iterations of the power method (see [142]). In our ex-
periments, we have noted that 𝑙 = 1 is enough to achieve a good accuracy. Moreover, we know that
O(𝑁2𝑀) operations are required to compute the pseudo-inverse of 𝐴𝐴𝐴, with 𝑁 < 𝑀. Using these re-
sults, we find that Stage 1 via BALS has a complexity of order O(𝐼 ·2

(
(𝑀𝑅𝑀𝑇 )2𝑀𝑅𝐿𝑃 (𝐹P + 𝐾)

)
),

where 𝐼 is the number of iterations required to achieve the convergence. If the LS-KRF is used in
Stage 1, we have a complexity of O(𝑀𝑅𝑀𝑇 (𝐹P𝐾 (𝐹P + 𝐾))). Finally, the complexity associated
with the data symbol estimation in Stage 2 is given by O

(
(𝐹D𝑀𝑇 )3) .

4.4 Simulation Results

We evaluate the performance of the proposed receiver in terms of the normalized
mean square error (NMSE) between the estimated and true frequency-selective MIMO channel
and the combined phase-noise matrix, and transmitted symbol error rate (SER). Our simulation
results represent an average over 𝑀 = 5000 independent Monte Carlo runs. Each run corresponds
to an independent realization of the channel, pilots, data, additive white Gaussian noise (AWGN),
ICI, and PN. The transmitted symbols are normalized such that the SNR = 1

𝜎2
𝑣

is controlled by
varying the noise power 𝜎2

𝑣 of the AWGN tensor V, while the variance of the ICI 𝜎2
ICI is kept

constant, since it depends on the variance of the phase-noise and on the number of subcarriers,
as detailed in the Appendix B. The combiner matrix 𝑊𝑊𝑊 ∈ ℂ𝑀𝑅×𝑀𝑅 is designed as a DFT matrix.
The NMSE is defined as

NMSE(Ĥ (D)) = 1
𝑀

𝑀∑︁
𝑚=1

∥H (D) −Ĥ (D) ∥F

∥H (D) ∥F

2

, (4.34)

NMSE(Φ̂) = 1
𝑀

𝑀∑︁
𝑚=1

∥Φ− Φ̂∥F

∥Φ∥F

2

, (4.35)

The pilots and data symbols follow a 4-QAM constellation. For the channel model in (4.7),
the coefficients {ℎ[𝑙]} are i.i.d. complex Gaussian random variables with zero mean and unit
variance. The number of propagation paths is equal to 𝐿 = 16, and the frequency spacing between
two subcarriers is 𝑑F = 15 kilo-Hertz (kHz). The path delays are chosen as 𝜏𝑙 = DS · 𝑣𝑙, where
𝑣𝑙 is a random variable that follows a normal distribution with 𝑣𝑙 ∼ N(0,1) and DS = 1𝜇s is
the channel delay spread. To estimate the channel coefficients at the data subcarriers from
those at the pilot subcarriers, we consider cubic splines for the channel interpolation [143].
Indeed, in our simulations, the channel delay taps do not necessarily coincide with the sampling
period, i.e., 𝜏𝑙𝑑F ≠

𝑙
𝐹

in eq. (4.7). In this situation, the spline-based interpolation provides a more
accurate reconstruction of the frequency-domain channel compared to the traditional DFT-based
interpolation.
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In the following experiments, we compare the performance of the proposed receivers,
namely, the BALS and ZFSKP, as well as the LSKRF and ZFSKP, with those of two different
competitors: 1) the PN compensation scheme based on [129] and 2) the Baseline LS estimator.

The competing receivers start from the LS estimate provided by (4.21), i.e., 𝑍𝑍𝑍 ≈
[H] (P)(3) ⋄Φ ∈ ℂ𝐾𝐹P×𝑀𝑅𝑀𝑇 . The PN compensation scheme of [129] considers 𝑍𝑍𝑍 as the effective

pilot channel. An estimate of the effective data channel Ẑ (D) ∈ ℂ𝑀𝑅×𝑀𝑇×𝐹D is then obtained from
the time-domain by averaging over the 𝐾 blocks followed by interpolation. We use the following
subcarrier-wise ZF for data estimation:

Ŝ (D)
.. 𝑓D

=

(
𝑊𝑊𝑊Ẑ (D)

.. 𝑓D

)+
Ȳ (D)

.. 𝑓𝐷
, . (4.36)

where Ȳ (D)
.. 𝑓𝐷

= 1
𝐾

𝐾∑
𝑘=1

Y (D)
..𝑘 𝑓𝐷

∈ ℂ𝑀𝑅×𝐿𝑃 . For the baseline LS estimator, we consider the solution of

problem (4.21) in two different manners. To obtain an estimate of the pilot channel matrix [H] (P)(3) ,
we assume a perfect knowledge of the PN matrix Φ and we perform the Khatri-Rao factorization
algorithm with one known factor, as discussed in [40], then the spline interpolation is applied
to obtain an estimate of the data channel matrix [H] (D)

(3) . Likewise, to have an estimation of the
phase-noise matrix Φ, the Baseline LS estimator assumes the knowledge of the pilot channel
matrix [H] (P)(3) and perform the Khatri-Rao factorization algorithm with one known factor. Thus,
the Baseline LS estimator is a benchmark receiver in the NMSE experiments. With these two
benchmark estimations, the Baseline LS estimator applies the following ZF filtering to estimate
the data symbols:

Ŝ (D)
.. 𝑓𝐷

=

(
𝑊𝑊𝑊 ( ¯̂Φ⊙ Ĥ (D)

.. 𝑓𝐷
)
)+

Ȳ (D)
.. 𝑓𝐷

, (4.37)

where ¯̂Φ = 1
𝐾

𝐾∑
𝑘=1

unvec(Φ̂𝑘.) ∈ ℂ𝑀𝑅×𝑀𝑇 is phase-noise matrix estimated by averaging it over the

𝐾 blocks, Ĥ (D)
.. 𝑓𝐷

∈ ℂ𝑀𝑅×𝑀𝑇 is the estimated data channel at the 𝑓𝐷 data subcarrier, and ⊙ stands
for the Hadamard product.

4.4.1 ICI power

Fig. 4.3 depicts the values of the ICI power for different number of subcarriers
with different values of the transmitter and receiver phase-noise variance (B.4). This result is
based on the development detailed in Appendix B, where the ICI power mainly depends on the
number of subcarriers and the PN variance. In this chapter, we evaluate the proposed BALS and
LSKRF receivers considering two cases: 1) 𝐹 = 64 subcarriers with the transmitter and receiver
phase-noise variance 𝜎2

𝜙[t] = 𝜎
2
𝜙[r] = 5 ·10−3, leading to a ICI power 𝜎2

ICI ≈ 0.04 dB, and 2) 𝐹 = 128
subcarriers with the transmitter and receiver phase-noise variance 𝜎2

𝜙[t] = 𝜎
2
𝜙[r] = 10−3, resulting

𝜎2
ICI ≈ 0.02 dB.
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Figure 4.3 – ICI power vs the number of subcarriers for different values of
phase-noise power.
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4.4.2 Data Detection

In this section, we evaluate the performance of the proposed receiver in two parameter
configurations, each of comparing four different cases. In Fig. 4.4 we have the configuration
of 𝑀𝑇 = 𝐿𝑃 = 2, and 𝑀𝑅 = 𝐾 = 4, where we consider the number of subcarriers 𝐹 = 64 and
𝐹 = 128 and the cases with and without the ICI. In Fig. 4.4 (a), we evaluate the performance
assuming 𝐹 = 64 and 𝐹P = 16 pilots subcarriers with the presence of a high phase-noise variance
𝜎2
𝜙[x] = 5 · 10−3 at the transmitter and the receiver which induces a significant ICI perturbation

(𝜎2
ICI ≈ 0.04 dB), explaining the saturation of the curves at higher SNR values. Note that, our

proposed receivers achieve a target SER of 10−3 at a SNR of 20 dB, while the Baseline LS
receiver only achieves this target SER at an SNR close to 30 dB. Therefore, a significant SNR
gain can be obtained by exploiting the tensor structure of the data model. More specifically,
this remarkable gain comes from two factors: 1) the decoupling of the channel matrix from
the phase-noise matrix, which allows us to successfully refine these estimates via BALS and
LSKRF, improving the data estimation performance; 2) the all-at-once estimation of the data
symbols using the ZFSKP filter that exploits the tensor structure of the received signal through
the combination of all the subcarriers. In Fig. 4.4 (b) we have the case of 𝐹 = 128, 𝐹P = 32 pilot
subcarriers which we consider the phase-noise variance of 𝜎2

𝜙[x] = 10−3 at the transmitter and
the receiver resulting in a ICI power 𝜎2

ICI ≈ 0.02 dB. As expected, with a lower ICI, a better
performance is achieved by the proposed BALS ZFSKP and LSKRF ZFSKP receivers. We can
observe that, at a SNR of 30 dB, the proposed receivers achieves a target SER of 10−4, while the
competitors receivers, due to the the high ICI power, are unable to achieve this gain. In Figs. 4.4
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Figure 4.4 – Illustration of the SER assuming 𝑀𝑅 = 𝐾 = 4, and 𝑀𝑇 = 𝐿𝑃 = 2 in four cases (a)
𝐹 = 64, 𝐹P = 16, (b) 𝐹 = 128, 𝐹P = 32 (c) 𝐹 = 64, 𝐹P = 16 assuming no ICI, (d)
𝐹 = 128, 𝐹P = 32 assuming no ICI.
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(c) and (d), we consider an ideal scenario where the ICI is perfectly suppressed, i.e., 𝜎2
ICI = 0. In

this case, we can observe that all the receivers has approximately the same performance, showing
that, the proposed receivers achieve a satisfactory SER performance compared to the competitors
in the practical and challenging scenarios where the ICI is present.

In scenario of Fig. 4.5, we assume the parameter configuration of 𝑀𝑇 = 𝐿𝑃 = 2,
and 𝑀𝑅 = 4 𝐾 = 8. Similar to the results of Figs. 4.4 (a) and (b), we have that the proposed
receivers, BALS ZFSKP and LSKRF ZFSKP, outperform the competitors in the cases of 𝐹 = 64
and 𝐹 = 128 subcarriers, respectively. This results follows the explanation of the ones if Figs.
4.4 (a) and (b), but with the difference that, by increasing the number of blocks to 𝐾 = 8 the
performances of the all receivers are enhanced, since, as expected, we have a higher number
of transmitted pilots. In Fig. 4.5 (c) and (d), the ideal scenario where the ICI is suppressed is
depicted, for 𝐹 = 64 and 𝐹 = 128 subcarriers, respectively. In this case, due to the fact of an
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Figure 4.5 – Illustration of the SER assuming 𝑀𝑅 = 4, 𝐾 = 8, and 𝑀𝑇 = 𝐿𝑃 = 2 in four cases
(a) 𝐹 = 64, 𝐹P = 16, (b) 𝐹 = 128, 𝐹P = 32 (c) 𝐹 = 64, 𝐹P = 16 assuming no ICI, (d)
𝐹 = 128, 𝐹P = 32 assuming no ICI.
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increased number of frames 𝐾 = 8, the proposed BALS ZFSKP and LSKRF ZFSKP receivers
outperforms the competitors. This result shows the that proposed receivers effectively exploit the
tensor structure of the received signal, while the Baseline LS solution and the PN compensation
scheme [129] perform the phase-noise compensation on a per subcarrier basis, thus ignoring the
multidimensional structure of the problem.

Summarizing the results on Figs. 4.4 and 4.5, we have that the tensor-based receivers
efficiently exploit the multidimensional structure of the received tensor signal by separating the
contributions of the pilot channel matrix from the phase-noise matrix, where their estimates are
refined using the BALS and LSKRF algorithms. Also, it is worth to mention that, in tensor-based
algorithms, such as the BALS and LSKRF, a scaling factor is always present on the estimated
algorithms. However these scaling factors cancel each other in the data estimation (4.31), thus
not affecting the data detection.
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Figure 4.6 – Illustration of the NMSE of the PN matrix assuming 𝑀𝑅 = 4, 𝐾 = 4, and 𝑀𝑇 = 𝐿𝑃 = 2
in four cases (a) 𝐹 = 64, 𝐹P = 16, (b) 𝐹 = 128, 𝐹P = 32.

(a) 𝜎2
𝜙[t] = 𝜎

2
𝜙[r] = 5 ·10−3, 𝜎2

ICI ≈ 0.04 dB.

0 5 10 15 20 25 30 35 40

SNR in dB

-28

-26

-24

-22

-20

-18

-16

-14

-12

-10

-8

N
M

S
E

 P
h

a
s

e
-N

o
is

e
 i

n
 d

B

BALS and ZFSKP

LSKRF and ZFSKP

LS Baseline

(b) 𝜎2
𝜙[t] = 𝜎

2
𝜙[r] = 10−3, 𝜎2

ICI ≈ 0.02 dB.

0 5 10 15 20 25 30 35 40

SNR in dB

-35

-30

-25

-20

-15

-10

N
M

S
E

 P
h

a
s

e
-N

o
is

e
 i

n
 d

B

BALS and ZFSKP

LSKRF and ZFSKP

LS Baseline

Source: Created by the author.

Figure 4.7 – Illustration of the NMSE of the PN matrix assuming 𝑀𝑅 = 4, 𝐾 = 8, and 𝑀𝑇 = 𝐿𝑃 = 2
in four cases (a) 𝐹 = 64, 𝐹P = 16, (b) 𝐹 = 128, 𝐹P = 32.
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4.4.3 Phase-Noise NMSE

In Figs. 4.6 and 4.7 we compare the NMSE of the estimated phase-noise matrix
Φ ∈ ℂ𝐾×𝑀𝑅𝑀𝑇 . In all scenarios we have that the LS Baseline competitor outperforms the proposed
receivers BALS ZFSKP and LSKRF ZFSKP. This can be explained by the fact that the LS
Baseline competitor receiver considers the knowledge of the pilot channel matrix [H] (P)(3) to
perform the Khatri-Rao factorization with one factor known in (4.21) [40]. On the other hand,
the proposed receivers only consider the knowledge one row of the phase-noise matrix Φ, in
order to remove the scaling effects discussed in Section 4.3.3. It is worth to mention that, the
knowledge of one row of the phase-noise matrix Φ is only considered in the NMSE experiments,
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Figure 4.8 – Illustration of the NMSE of the data channel matrix assuming 𝑀𝑅 = 4, 𝐾 = 4, and
𝑀𝑇 = 𝐿𝑃 = 2 in four cases (a) 𝐹 = 64, 𝐹P = 16, (b) 𝐹 = 128, 𝐹P = 32.
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Figure 4.9 – Illustration of the NMSE of the data channel matrix assuming 𝑀𝑅 = 4, 𝐾 = 8, and
𝑀𝑇 = 𝐿𝑃 = 2 in four cases (a) 𝐹 = 64, 𝐹P = 16, (b) 𝐹 = 128, 𝐹P = 32.
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not being necessary in the data estimation stage.

4.4.4 Data Channel NMSE

In Figs. 4.8 and 4.9 we compare the NMSE of the estimated data matrix [𝐻𝐻𝐻] (D)
(3) ∈

ℂ𝐹D×𝑀𝑅𝑀𝑇 . Similar to the discussions Figs. 4.6 and 4.7, we have that the proposed receivers
BALS ZFSKP and LSKRF ZFSKP have a close performance to the LS Baseline competitor
and outperforms the PN compensation scheme of [129]. This can be explained by the fact that,
the PN compensation scheme of [129] does not considers the separation of the pilot channel
matrix and the phase-noise matrix, thus the data channel is estimated via the interpolation of



Chapter 4. Tensor-Based Receiver for Parameter Estimation in MIMO-OFDM Systems 79

Figure 4.10 – Computational complexity of the BALS, LS-KRF, and Base-
line LS algorithms for different scenarios.

8 16 32 64

Number of pilot subcarriers

0

1

2

3

4

5

6

7

8

9

F
L
O

P
S

10
5

BALS M
R

 = 2

LS-KRF M
R

 = 2

Baseline LS M
R

 = 2

BALS M
R

 = 4

LS-KRF M
R

 = 4

Baseline LS M
R

 = 4

Source: Created by the author.

the LS estimation of 𝑍𝑍𝑍 in (4.21), while the proposed receivers exploits the separability of the
pilot channel matrix [𝐻𝐻𝐻] (P)(3) ∈ ℂ𝐹P×𝑀𝑅𝑀𝑇 and the phase-noise matrix Φ ∈ ℂ𝐾×𝑀𝑅𝑀𝑇 to refine its

estimations. On the other hand, to have an estimate of the data channel [𝐻𝐻𝐻] (D)
(3) , the LS Baseline

competitor considers the knowledge of the phase-noise matrix Φ to perform the Khatri-Rao
factorization with one factor known in (4.21) [40] to estimate the pilot channel. Then, the
data channel is obtained by interpolation. In this experiment, the proposed receiver considers
the knowledge of one row of the PN matrix Φ to remove the scaling factor intrinsic to the
tensor-based algorithms.

4.4.5 Computational Complexity

Fig. 4.10 compares the computational complexity between the BALS and LSKRF
algorithms for different numbers of pilot subcarriers. It is important to mention that, for the
BALS algorithm in Algorithm 6, 𝐼 = 6 iterations are needed to achieve the convergence for higher
SNR values (> 10 dB). Note that the pseudo-inverse cost in step 1 in Algorithm 7 is not taken into
account since the factors 𝑆𝑆𝑆(P)T and 𝑊𝑊𝑊 are known, which means that it can be computed off-line.
A trade-off between BALS and LSKRF exists. The first is more attractive for a small number
of receiving antennas (e.g., downlink), while the second is preferable when assuming a larger
number of receiving antennas (e.g., uplink). Regarding the Baseline LS estimator, we can observe
that it is a cheaper algorithm compared to the BALS and the LSKRF algorithms. However, as
shown in Figs. 4.4 and 4.5, our proposed receivers achieves a better SER performance. Also, the
Baseline LS estimator can be considered as a benchmark receiver since the pilot channel and



Chapter 4. Tensor-Based Receiver for Parameter Estimation in MIMO-OFDM Systems 80

phase-noise matrices are assumed to be known.

4.5 Summary

In this chapter, we have proposed a two-stage tensor-based receiver for joint channel,
PN, and data estimation in MIMO-OFDM systems. For the first stage, we have derived two
algorithms for channel and phase-noise estimation. The first one consists of an iterative solution
based on the BALS, while the second algorithm has a closed-form solution based on the LLSKRF.
Our numerical simulations show that both algorithms achieve a similar performance, but LSKRF
becomes preferable as compared to the BALS when the number of receiving antennas is increased
due to its lower computational complexity. We also have proposed a ZFSKP equalizer that
exploits the tensor structure of the received signal via the selective Kronecker product (SKP)
operator, allowing us to estimate the data on all subcarriers at once. In terms of performance, we
have shown that our proposed receiver outperforms its competitors in challenging scenarios with a
high phase-noise variance inducing a significant ICI power. As one perspective, the investigation
of different strategies for the pilot symbol allocation with the objective of enhancing the symbol
detection.
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5 TENSOR-BASED METHOD FOR REDUCING THE CONTROL SIGNALING IN
IRS-ASSISTED MIMO SYSTEMS

5.1 Introduction

As presented in Chapter 3, the IRS is a candidate technology for beyond fifth genera-
tion and sixth generation networks due to its ability to control the electromagnetic properties
of the radio-frequency waves by performing an intelligent phase-shift to the desired direction
[50, 51, 52, 62, 63, 144, 145, 146], and are defined as a planar (2-D) surface with a large number
of independent reflective elements, in which they can be fully passive or with some active
elements [65, 66, 147]. The IRS elements are connected to a smart controller that sets the desired
phase-shift for each reflective element, by applying bias voltages at the elements e.g., PIN diodes.
The main advantage of fully passive IRSs is its full-duplex nature, i.e., no noise amplification is
observed since no signal processing is possible. However, the fully passive nature of the IRSs
makes the CSI acquisition process difficult, since no pilots are processed, thus only the cascade
channel can be estimated. Nevertheless, in the case of employing a few active elements in the IRS,
this issue is suppressed and channel can be estimated using, for example, CS tools [147]. Another
advantage of an IRS with fully passive elements is that the power consumption is concentrated at
the controller. This makes the IRS a more attractive technology in terms of energy efficiency
compared to alternative technologies, e.g., amplify-and-forward and decode-and-forward relays
[54, 148, 149].

Several works in the literature have addressed the CSI acquisition problem in IRS-
assisted networks, as discussed in Section 3.4. However, since they consider passive IRSs, the
active (precoder and combiner) and the passive beamformers (IRS phase-shifts) are computed
at different system node, which means that they need to be fed back to the IRS controller and
the TX, and since the IRS may contain several hundreds to thousand of elements, this feedback
causes a control signaling overhead. On this issue, as discussed in 3.6, two works in the literature
focused on two different strategies have addressed the control signaling overhead. The work
of [117] proposed a grouping strategy to reduce the CSI feedback, while in [116] a resource
allocation framework was proposed to mitigate the IRS phase-shift feedback overhead.

In this chapter, we propose a overhead-aware model for designing the IRS phase-
shifts. Our idea is to represent the IRS phase-shift vector with a low-rank model. This is achieved
by factorizing a tensorized version of the IRS phase-shift vector, where each component is
modelled as the Kronecker product of a predefined number of factors. These factors are estimated
using tensor decompositions such as the PARAFAC [25] and Tucker [26]. After the estimation
process, the phases of the factors are quantized and fed back to the IRS controller, which can
reconstruct the IRS phase-shift vector based on the chosen low-rank tensor model. The main
contributions of this work are the following:

1) Our proposed IRS phase-shift factorization allows to save network resources by
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reducing the total IRS phase-shift feedback overhead. This allows a more frequent IRS phase-
shift feedback, for a fixed feedback load, which can significantly improve the end-to-end latency,
crucial in a fast varying channels, high mobility scenarios and/or the cases with moderate/large
sizes of the IRS. Also, thanks to the significant reduction on the feedback overhead, the IRS-
assisted network can decide to multiplex phase-shifts associated with a higher number of users
in the same feedback channel.

2) The proposed IRS phase-shift factorization provides a flexible feedback design
by controlling the parameters of the low-rank factorization model, such as the number of
components, the number and the size of the factors, as well as their respective resolution. This is
an important feature of our proposed feedback-aware model, since for limited feedback control
links, the low-rank model and its factorization parameters can be efficiently adjusted to the
available capacity of the feedback link, providing more degrees of freedom to system design.

3) The proposed tensor-based factorization approach relies on the optimum IRS
phase-shift vector, which means that it can be implemented in every IRS-assisted network
and in multiple communication links, i.e., downlink or uplink, in single-input single-output,
multiple-input single-output, as well in MIMO systems.

5.1.1 Related works

Different from the works of [117] and [116], we aim to reduce the IRS phase-shifts
feedback overhead by conveying to the IRS controller only the factors of our proposed low-rank
model. Our approach is analytical and provides a systematic way of controlling the feedback
overhead by adjusting the parameters of the low-rank IRS model, namely, its rank and the
corresponding number of factors of each rank-one component. Our simulations show that the
proposed low-rank model for the IRS phase-shifts can achieve the same SE as the state-of-
the-art [116] in LOS scenarios, while the feedback payload (number of bits to be fed back)
is dramatically reduced. For example, taking an IRS with 𝑁 = 1024 elements, the feedback
duration can be 50 times smaller than the state-of-the-art [116], depending on the low-rank
model parameters. Also, when taking into account the total system SE and EE, i.e., both the
IRS phase-shift feedback duration, and the channel estimation duration, our proposed model
outperforms the state-of-the-art.

5.2 System Model

We consider the system illustrated in Fig. 5.1, where the TX is equipped with a
uniform linear array (ULA) with 𝑀𝑇 antenna elements, the RX is equipped with ULA with
𝑀𝑅 antenna elements and the IRS has 𝑁 reflective elements. To simplify the discussion, let us
consider a single stream transmission, and assume that there is no direct link between the TX
and RX, e.g., BS. First, the TX sends a pilot signal to the RX with the aid of the IRS. Since
the IRS has no signal processing capabilities, the channel estimation and the IRS phase-shifts
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Figure 5.1 – System model illustration.
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Source: Created by the author.

optimization are performed at the RX. The received signal after processing the pilots is given by

𝑦 = 𝑤𝑤𝑤H𝐺𝐺𝐺diag (𝑠𝑠𝑠) 𝐻𝐻𝐻𝑞𝑞𝑞+𝑤𝑤𝑤H𝑏𝑏𝑏, (5.1)

where 𝑏𝑏𝑏 ∈ ℂ𝑀𝑅×1 is the additive noise at the receiver with 𝔼[𝑏𝑏𝑏𝑏𝑏𝑏H] = 𝜎2
𝑏
𝐼𝐼𝐼𝑀𝑟

, 𝑤𝑤𝑤 ∈ ℂ𝑀𝑅×1 and
𝑞𝑞𝑞 ∈ ℂ𝑀𝑇×1 are the receiver and transmitter combiner and precoder (active beamformers), re-
spectively. 𝐻𝐻𝐻 ∈ ℂ𝑁×𝑀𝑇 and 𝐺𝐺𝐺 ∈ ℂ𝑀𝑅×𝑁 are the TX-IRS and IRS-RX involved channels, and
𝑠𝑠𝑠 = [𝑒 𝑗𝜃1 , . . . , 𝑒 𝑗𝜃𝑁 ] ∈ ℂ𝑁×1 being the IRS phase-shift vector, and 𝜃𝑛 is the phase-shift applied to
the 𝑛-th IRS element (passive beamformer). The channels in (5.1) are modelled as

𝐻𝐻𝐻 =

√︂
𝛼𝐻

𝐾𝐻

𝐾𝐻 +1
𝐻𝐻𝐻LOS +

√︂
𝛼𝐻

1
𝐾𝐻 +1

𝐻𝐻𝐻NLOS, (5.2)

𝐺𝐺𝐺 =

√︂
𝛼𝐺

𝐾𝐺

𝐾𝐺 +1
𝐺𝐺𝐺LOS +

√︂
𝛼𝐺

1
𝐾𝐺 +1

𝐺𝐺𝐺NLOS, (5.3)

where 𝛼𝐻 and 𝛼𝐺 are the path-loss components of the TX-IRS and IRS-RX links, respectively.
The scalars 𝐾𝐻 and 𝐾𝐺 are the Rician factors associated with the channel matrices 𝐻𝐻𝐻 and 𝐺𝐺𝐺,
respectively. 𝐻𝐻𝐻LOS, 𝐺𝐺𝐺LOS follow a geometric-based channel model, while the entries of 𝐻𝐻𝐻NLOS,
𝐺𝐺𝐺NLOS are modeled as circularly symmetric complex Gaussian random variables, with zero mean
and unit variance, i.e., 𝐻𝐻𝐻NLOS ∼ CN(0, 𝐼𝐼𝐼𝑀𝑇

) and 𝐺𝐺𝐺NLOS ∼ CN(0, 𝐼𝐼𝐼𝑀𝑅
). The the LOS components

are given as

𝐻𝐻𝐻LOS = 𝑏𝑏𝑏IRS · 𝑎𝑎𝑎H
TX ∈ ℂ𝑁×𝑀𝑇 , (5.4)

𝐺𝐺𝐺LOS = 𝑏𝑏𝑏RX · 𝑎𝑎𝑎H
IRS ∈ ℂ𝑀𝑅×𝑁 . (5.5)
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Assuming that the TX and the RX are equipped with ULAs with half-wavelength inter-element
spacing, their steering vectors can be written as

𝑎𝑎𝑎TX =

[
1, 𝑒 𝑗𝜋sin𝜃TX , . . . , 𝑒 𝑗𝜋(𝑀𝑇−1)sin𝜃TX

]T
∈ ℂ𝑀𝑇×1, (5.6)

𝑏𝑏𝑏RX =

[
1, 𝑒 𝑗𝜋sin𝜃RX , . . . , 𝑒 𝑗𝜋(𝑀𝑅−1)sin𝜃RX

]T
∈ ℂ𝑀𝑅×1, (5.7)

where 𝜃TX and 𝜃RX are the TX and RX angle of departure (AOD) and angle of arrival (AOA),
respectively, which are generated from a uniform random distribution with {𝜃TX,𝜃RX} ∈ [−𝜋,𝜋].
Since the IRS is a 2-D panel, the steering vectors associated with arrival and departure angles can
be factorized as the Kronecker product of horizontal and vertical component vectors, respectively,
𝑏𝑏𝑏IRS = 𝑏𝑏𝑏

(𝑣)
IRS ⊗ 𝑏𝑏𝑏

(ℎ)
IRS ∈ ℂ𝑁ℎ𝑁𝑣×1, and 𝑎𝑎𝑎IRS = 𝑎𝑎𝑎

(𝑣)
IRS ⊗ 𝑎𝑎𝑎

(ℎ)
IRS ∈ ℂ𝑁ℎ𝑁𝑣×1, where 𝑁 = 𝑁ℎ𝑁𝑣, 𝑏𝑏𝑏

(ℎ)
IRS ∈ ℂ𝑁ℎ×1

and 𝑏𝑏𝑏(𝑣)IRS ∈ ℂ𝑁𝑣×1 are the AOA steering vectors in the azimuth and elevation directions, respec-
tively. Likewise, 𝑎𝑎𝑎(ℎ)IRS ∈ ℂ𝑁ℎ×1 and 𝑎𝑎𝑎(𝑣)IRS ∈ ℂ𝑁𝑣×1 are the AOD steering vectors in the azimuth and
elevation directions, respectively. The vertical and horizontal vectors are given as

𝑏𝑏𝑏
(ℎ)
IRS = [1, 𝑒 𝑗𝜋sin𝜓AOA

IRS cos𝜙AOA
IRS , . . . , 𝑒 𝑗𝜋(𝑁ℎ−1)sin𝜓AOA

IRS cos𝜙AOA
IRS ], (5.8)

𝑏𝑏𝑏
(𝑣)
IRS = [1, 𝑒 𝑗𝜋cos𝜙AOA

IRS , . . . , 𝑒 𝑗𝜋(𝑁ℎ−1)cos𝜙AOA
IRS ], (5.9)

𝑎𝑎𝑎
(ℎ)
IRS = [1, 𝑒 𝑗𝜋sin𝜓AOD

IRS cos𝜙AOD
IRS , . . . , 𝑒 𝑗𝜋(𝑁ℎ−1)sin𝜓AOD

IRS cos𝜙AOD
IRS ], (5.10)

𝑎𝑎𝑎
(𝑣)
IRS = [1, 𝑒 𝑗𝜋cos𝜙AOD

IRS , . . . , 𝑒 𝑗𝜋(𝑁ℎ−1)cos𝜙AOD
IRS ], (5.11)

where 𝜙AOA
IRS and 𝜙AOD

IRS are the elevation angles of arrival and departure, while 𝜓AOA
IRS and 𝜓AOD

IRS

are the azimuth angles of arrival and departure. The azimuth angles 𝜓AOA
IRS and 𝜓AOD

IRS are generated
from a uniform random distribution with {𝜓AOA

IRS ,𝜓AOD
IRS } ∈ [−𝜋,𝜋], while the elevation angles

𝜙AOA
IRS and 𝜙AOD

IRS are generated from an uniform random distribution with {𝜙AOA
IRS ,𝜙AOD

IRS } ∈
[0,𝜋/2].

5.2.1 Channel Estimation and Beamforming Optimization

In this chapter, we focus on the IRS phase-shifts feedback overhead problem, thus
the channels 𝐺𝐺𝐺 and 𝐻𝐻𝐻 are available at the receiver and have been obtained using a prior art
method, e.g., [22] discussed in Section 3.4. Also, we assume that the Upper Bound algorithm
[116], discussed in Section 3.5.3, is used to obtain the joint optimization of the active and passive
beamformers 𝑞𝑞𝑞, 𝑤𝑤𝑤, and 𝑠𝑠𝑠. Different optimization algorithms can be found in, e.g., [50, 114].

5.2.2 Feedback Overhead Model

In this section we provide an elaborate discussion on the proposed IRS phase-shift
feedback overhead reduction methods, where we aim to reduce the IRS phase-shift feedback
duration given by

𝑇F =
𝑁𝑏F

𝐵Flog
(
1+ 𝑝F |𝑔F |2

𝐵F𝑁0

) . (5.12)
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As discussed in Section 3.6, the authors in [116] proposed a method for reducing the
total IRS feedback overhead by optimizing the network resources, i.e., the feedback bandwidth
𝐵F, feedback power 𝑝F. The proposed methods focus on the feedback overhead reduction by
factorizing the numerator of (5.12). In other words, we proposed two tensor-based models,
namely, PARAFAC-IRS and Tucker-IRS, to reduce the feedback overhead by factorizing the
IRS phase-shift vector into smaller factors, as explained in the following section.

5.3 Proposed Feedback Overhead Model

In this section, we describe the proposed tensor low-rank approximation based
feedback-aware methods that focus on reducing the feedback duration 𝑇F given in (5.12). Our
initial idea [150] consists of factorizing 𝑠𝑠𝑠 (optimized in (3.17)) as the Kronecker product of 𝑃
factors, i.e.,

𝑠𝑠𝑠 ≈ 𝑠𝑠𝑠(𝑃) ⊗ . . .⊗ 𝑠𝑠𝑠(1) ∈ ℂ𝑁𝑃 ···𝑁1×1, (5.13)

where 𝑠𝑠𝑠(𝑝) ∈ ℂ𝑁𝑝×1 is the 𝑝-th factor and 𝑁 =
𝑃∏
𝑝=1

𝑁𝑝. The equality in (5.13) only occurs when

(𝐾𝐻 , 𝐾𝐺) →∞, since, in this case, the channels are composed only by their LOS components.
Noting that, the LOS components are separable, according to (5.6)-(5.11), with a Vandermonde
structure, and every Vandermonde vector of size 𝑁 can be factorized as the Kronecker product of

𝑃 smaller factors [130], such that 𝑁 =
𝑃∏
𝑝=1

𝑁𝑝, with 𝑁𝑝 being the size of the 𝑝-th factor. In order to

estimate the factors in (5.13), first we tensorize 𝑠𝑠𝑠 as a 𝑃-th order tensor S ∈ ℂ𝑁1×...×𝑁𝑃 . In other
words, since 𝑠𝑠𝑠 is a Kronecker structure vector, we have similar to (2.46), a rank-one tensor

S = T {𝑠𝑠𝑠} ≈ 𝑠𝑠𝑠(1) ◦ . . . ◦ 𝑠𝑠𝑠(𝑃) . (5.14)

The Algorithm 2 can be used to perform a rank-one approximation to find the 𝑃 factors 𝑠𝑠𝑠(1) , . . . ,

𝑠𝑠𝑠(𝑃) . This means that, instead of feedback to the IRS controller 𝑁 =
𝑃∏
𝑝=1

𝑁𝑝 phase-shifts, we only

convey the phase-shifts of the individual factors, i.e.,
𝑃∑
𝑝=1

𝑁𝑝.

Example: To get the first insight into the impact of this factorization on the IRS
phase-shift feedback overhead, let us consider a simple scenario with 𝑁 = 1024 phase-shifts,
and we apply our factorization method by choosing 𝑃 = 3 factors. Consider, as one example,
the following factors 𝑠𝑠𝑠(1) = [𝑒 𝑗𝜃

(1)
1 , . . . , 𝑒 𝑗𝜃

(1)
32 ] ∈ ℂ32×1, 𝑠𝑠𝑠(2) = [𝑒 𝑗𝜃

(2)
1 , . . . , 𝑒 𝑗𝜃

(2)
8 ] ∈ ℂ8×1 and 𝑠𝑠𝑠(3) =

[𝑒 𝑗𝜃
(3)
1 , . . . , 𝑒 𝑗𝜃

(3)
4 ] ∈ ℂ4×1, i.e., 𝑁1 = 32, 𝑁2 = 8 and 𝑁3 = 4. Note that, 𝑁1, 𝑁2, 𝑁3 can have every

size as long 𝑁1 ×𝑁2 ×𝑁3 = 𝑁 = 1024. In this scenario, instead of conveying to the IRS controller
1024 phase-shifts, we only need to convey the phase-shifts of the factors, i.e., 32+8+4 = 44,
reducing drastically the total amount of phase-shift overhead. Physically, the Kronecker product
in (5.13) represents a summation of the factors phase-shifts. It is clear that, in a general model

for a large 𝑁, and based on the choice of 𝑃, we have that
𝑃∑
𝑝=1

𝑁𝑃 << 𝑁 =
𝑃∏
𝑝=1

𝑁𝑃. The discussed

example is illustrated in Fig. 5.2. ■
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Figure 5.2 – (a) IRS with 𝑁 = 1024 elements without factorization, (b) IRS
with 𝑁 = 1024 elements factorized into 𝑃 = 3 factors.

Source: Created by the author.

In the following, we generalize the model (5.13) by factorizing the IRS phase-shift
vector 𝑠𝑠𝑠 ∈ ℂ𝑁×1 based on the PARAFAC and Tucker LRA models.

5.3.1 PARAFAC-IRS Low-Rank Approximation

In (5.14), the IRS phase-shift vector is approximated by a rank-one tensor. In this
section, we generalize this model to a rank-𝑅 tensor approximation. More specifically, the
optimum phase-shift vector 𝑠𝑠𝑠 is factorized according to a PARAFAC model, i.e.,

𝑠𝑠𝑠 ≈
𝑅∑︁
𝑟=1

𝑠𝑠𝑠
(𝑃)
𝑟 ⊗ . . .⊗ 𝑠𝑠𝑠(1)𝑟 ∈ ℂ𝑁1···𝑁𝑃×1, (5.15)

which, using (2.46) and (2.47), implies that

S ≈
𝑅∑︁
𝑟=1

𝑠𝑠𝑠
(1)
𝑟 ◦ . . . ◦ 𝑠𝑠𝑠(𝑃)𝑟 ∈ ℂ𝑁1×···×𝑁𝑃 , (5.16)

where S = T {𝑠𝑠𝑠}, 𝑅 is the number of components (or tensor rank) and 𝑠𝑠𝑠
(𝑝)
𝑟 ∈ ℂ𝑁𝑝×𝑟 is the 𝑟-th

column of the 𝑝-th factor matrix 𝑆𝑆𝑆(𝑝) = [𝑠𝑠𝑠(1)1 , . . . , 𝑠𝑠𝑠
(𝑝)
𝑅 ] ∈ ℂ𝑁𝑝×𝑅, for 𝑝 = {1, . . . , 𝑃}.

The main idea of adding components is to mitigate the approximation error when
having strong non-line-of-sight (NLOS) components in the channels. Ideally, when considering
continuous phase-shifts, the approximation error will decrease as the number of components
𝑅 increase. However, in practice, we have to quantize the phase-shift and the weights of each
component, inducing a quantization error. Also, increasing 𝑅 implies a higher feedback overhead
payload, since more components are required to be conveyed. A detailed discussion on the choice
and the physical impact of the number of components 𝑅, the number of factors 𝑃, and the size of
each factor 𝑁𝑝 for 𝑝 = {1, . . . , 𝑃} is given in Section 5.4 and 5.5.
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Algorithm 9 PARAFAC-IRS ALS

1: Inputs: Tensor S ∈ ℂ𝑁1×···×𝑁𝑃 , the number of components 𝑅, and maximum number of
iterations 𝐼.

2: Randomly initialize the factors �̂�𝑆𝑆(2)0 , . . ., �̂�𝑆𝑆(𝑃)0 . Iteration 𝑖 = 0.
3: Define a maximum number of iteration 𝐼.
4: for 𝑖 = 1 : 𝐼 do
5: for 𝑝 = 1 : 𝑃 do
6: Compute an estimate of the 𝑝-th factor 𝑆𝑆𝑆(𝑝)i as

�̂�𝑆𝑆
(𝑝)
𝑖 =[S] (𝑝)

((
�̂�𝑆𝑆
(𝑃)
𝑖−1⋄ . . .⋄�̂�𝑆𝑆

(𝑝+1)
𝑖−1 ⋄ �̂�𝑆𝑆(𝑝−1)

𝑖−1 ⋄ . . .⋄ �̂�𝑆𝑆(1)𝑖−1

)T
)+

7: for 𝑟 = 1 : 𝑅 do
8: Normalize the 𝑟-th column of �̂�𝑆𝑆(𝑝)(𝑖) , defined as 𝑠𝑠𝑠(𝑝)

𝑟,(𝑖) , and store its norm as the 𝑟-th

element of the vector 𝜆𝜆𝜆 (𝑝) ∈ ℝ𝑅×1

𝜆
(𝑝)
𝑟 =

������𝑠𝑠𝑠(𝑝)
𝑟,(𝑖)

������
2
, 𝑠𝑠𝑠

(𝑝)
𝑟,(𝑖) =

𝑠𝑠𝑠
(𝑝)
𝑟,(𝑖)

𝜆
(𝑝)
𝑟

.

9: end for
10: end for
11: Define the weighting vector 𝜆𝜆𝜆 = 𝜆𝜆𝜆 (1) ⊙ · · · ⊙ 𝜆𝜆𝜆 (𝑃) ∈ ℂ𝑅×1.
12: end for
13: Return �̂�𝑆𝑆(1) , . . ., �̂�𝑆𝑆(𝑃) and 𝜆𝜆𝜆.

The RX estimates the factor components solving the following problem[
𝑠𝑠𝑠
(1)
𝑟 , . . . , 𝑠𝑠𝑠

(𝑃)
𝑟

]
for 𝑟=1,...,𝑅

= argmin
𝑠𝑠𝑠
(1)
𝑟 ,...,𝑠𝑠𝑠

(𝑃)
𝑟

�����
�����S−

𝑅∑︁
𝑟=1

𝑠𝑠𝑠
(1)
𝑟 ◦ . . . ◦ 𝑠𝑠𝑠(𝑃)𝑟

�����
�����2
F

, (5.17)

where 𝑠𝑠𝑠(𝑝)𝑟 ∈ ℂ𝑁𝑝×1 is the 𝑝-th factor component. Let us define 𝑆𝑆𝑆(𝑝) =
[
𝑠𝑠𝑠
(𝑝)
1 , . . . , 𝑠𝑠𝑠

(𝑝)
𝑅

]
∈ ℂ𝑁𝑝×𝑅 as

the 𝑝-th factor matrix, for 𝑝 = {1, . . . , 𝑃}. From (2.50), the 𝑝-mode unfolding of S, defined as
[S] (𝑝) ∈ ℂ𝑁𝑝×𝑁1···𝑁𝑝−1𝑁𝑝+1···𝑁𝑃 , is given as

[S] (𝑝) ≈ 𝑆𝑆𝑆(𝑝)
(
𝑆𝑆𝑆(𝑃) ⋄ . . .⋄𝑆𝑆𝑆(𝑝+1) ⋄𝑆𝑆𝑆(𝑝−1) ⋄ . . .⋄𝑆𝑆𝑆(1)

)T
. (5.18)

To solve the problem in (5.17), the RX can use the ALS algorithm [23], described in
Algorithm 9. Different from Algorithm 1, the Algorithm 9 normalize each factor to unit norm
and collecting the result as a weighting factor. The ALS algorithm contains 𝐼 iterations, where,
in each iteration, 𝑃 LS problems are solved. The 𝑝-th LS problem is defined as

�̂�𝑆𝑆
(𝑝)

= argmin
𝑆𝑆𝑆 (𝑝)

������[S] (𝑝) −𝑆𝑆𝑆(𝑝) (𝑆𝑆𝑆(𝑃) ⋄ . . .⋄𝑆𝑆𝑆(𝑝+1) ⋄𝑆𝑆𝑆(𝑝−1) ⋄ . . .⋄𝑆𝑆𝑆(1)
)T

������2
F

(5.19)

where its solution is given by

�̂�𝑆𝑆
(𝑝)

= [S] (𝑝)
((
𝑆𝑆𝑆(𝑃) ⋄ . . .⋄𝑆𝑆𝑆(𝑝+1) ⋄𝑆𝑆𝑆(𝑝−1) ⋄ . . .⋄𝑆𝑆𝑆(1)

)T
)+
. (5.20)
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In the first iteration, the first step is to estimate [S] (1) based on (5.20), for 𝑝 = 1. Then, its
𝑅 columns are normalized to unit norm and stored in as elements of the vector 𝜆𝜆𝜆 (1) ∈ ℝ𝑅×1.
After the normalization, the estimated

[
Ŝ
]
(1)

is plugged in the LS solution (5.20) for 𝑝 = 2.

Likewise, the columns of the estimated factor
[
Ŝ
]
(2)

are normalized and stored in a vector

defined 𝜆𝜆𝜆 (2) ∈ ℝ𝑅×1, and then, the normalized estimations
[
Ŝ
]
(1)

and
[
Ŝ
]
(2)

are plugged into

the LS solution (5.20) for 𝑝 = 3. This process continues for the 𝑃−3 remaining LS problems.
Then, we compute the weighting vector 𝜆𝜆𝜆 ∈ ℝ𝑅×1 as the Hadamard product of all 𝑃 factors
norms, i.e., 𝜆𝜆𝜆 = 𝜆𝜆𝜆 (1) ⊙ 𝜆𝜆𝜆 (2) ⊙ · · · ⊙ 𝜆𝜆𝜆 (𝑃) , finalizing the first iteration of the ALS. Then, the process
repeats for all 𝐼 iterations or until reaching a convergence threshold by checking the NMSE of
the reconstructed tensor in a window of consecutive iterations. The NMSE at the 𝑖-th iteration is
given as

e(𝑖) =

��������[S] (1),(𝑖) − [
Ŝ
]
(1),(𝑖)

��������2
F����[S] (1),(𝑖) ����2F ,

where
[
Ŝ
]
(1),(𝑖)

is the reconstructed 1-mode unfolding at the 𝑖-th ALS iteration, given by[
Ŝ
]
(1),(𝑖)

= �̂�𝑆𝑆
(1)diag (𝜆𝜆𝜆)

(
�̂�𝑆𝑆
(𝑃) ⋄ . . .⋄ �̂�𝑆𝑆(2)

)T
. (5.21)

If |e(𝑖) −e(𝑖−1) | ≤ 𝜖, where 𝜖 is a pre-defined threshold, the algorithm stops [23]. In this document,
we consider 𝜖 = 10−6.

After the ALS algorithm, the phase-shifts of each factor and the weighting vector 𝜆𝜆𝜆
are quantized to be conveyed to the IRS controller. In this case, the feedback duration is given by

𝑇
(PARAFAC)
F =

TPR + 𝑅
𝑃∑
𝑝=1

𝑁𝑝 · 𝑏(𝑝)F + (𝑅−1) · 𝑏(w)
F

𝐵Flog
(
1+ 𝑝F |𝑔F |2

𝐵F𝑁0

) , (5.22)

where TPR is the number of bits required for a preamble of the frame, in order to inform the
IRS controller the factorization parameters, such as 𝑃, 𝑅 and the quantization bits 𝑏(𝑝)F , and 𝑏(w)

F ,
where the 𝑏(𝑝)F is the number of bits used for quantize the phase-shifts of the 𝑝-th factor, while
𝑏
(w)
F is the number of bits for quantizing the elements of the weighting vector 𝜆𝜆𝜆.

As one example, Fig. 5.3 illustrates the ratio between the state-of-the-art [116],
where 𝑁 IRS phase-shifts are fed back, with the proposed PARAFAC-IRS approach where we

have 𝑅
𝑃∑
𝑝=1

𝑁𝑃 phase-shifts, i.e., we analyse the ratio 𝑁/(𝑅
𝑃∑
𝑝=1

𝑁𝑃). To this end, let us define a

vector 𝑁𝑁𝑁P = [𝑁1 . . . 𝑁𝑃] ∈ℝ𝑃×1 that contains the factor’s size for a certain 𝑃. We can observe that,
for 𝑅 = 1, the feedback duration of the proposed approach for the case of 𝑃 = 2, 𝑁1 = 256, 𝑁2 = 4,
is almost five times smaller than the state-of-the-art. In addition, when we increase the number
of factors 𝑃, the size of the factors can be reduced, thus decreasing the feedback duration. In the
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Figure 5.3 – PARAFAC-IRS feedback payload ratio for 𝑁 = 1024.
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Source: Created by the author.

case of 𝑃 = 10 and 𝑁𝑝 = 2, for 𝑝 = {1, . . . , 𝑃}, the feedback overhead of the proposed approach
is approximately fifty times smaller than the state-of-the art [116]. As noticed, with increasing
𝑃, the feedback duration of our proposed approach decreases, but also, as it will be discussed
in Section 5.5, the SE in NLOS scenarios. Thus, to overcome this loss the RX can increase the
number of components 𝑅 at the cost of a higher feedback overhead. In this way, the proposed
overhead-aware method shows off a trade-off between SE and feedback overhead.

5.3.2 Tucker-IRS Low-Rank Approximation

In this section, we consider the case where the RX node chooses to fit the phase-shift
tensor S as a Tucker model, i.e.,

S ≈
𝑅1∑︁
𝑟1=1

. . .

𝑅𝑃∑︁
𝑟𝑃=1

G𝑟1,...,𝑟𝑃

(
𝑠𝑠𝑠
(1)
𝑟1 ◦ . . . ◦ 𝑠𝑠𝑠(𝑃)𝑟𝑃

)
∈ ℂ𝑁1×...×𝑁𝑃 , (5.23)

where G ∈ ℂ𝑅1×...×𝑅𝑃 is the 𝑃-th order core tensor and 𝑠𝑠𝑠
(𝑝)
𝑟𝑝 ∈ ℂ𝑁𝑝× is the 𝑟𝑝-th column of the

𝑝-th factor matrix 𝑆𝑆𝑆(𝑝) ∈ ℂ𝑁𝑝×𝑅𝑝 , for 𝑝 = {1, . . . , 𝑃} and 𝑟𝑝 = {1, . . . , 𝑅𝑝}. The main idea of using
the Tucker model is to add more degrees of freedom to fit the IRS phase-shift tensor S. In
other words, comparing (5.16) with (5.23), in the 𝑃-th order Tucker tensor each factor can have
different numbers of components which are combined based on the elements of a core tensor G.
The added degrees of freedom provided by the Tucker-IRS model results in a better SE than the
PARAFAC-IRS model in NLOS scenarios, at the cost of a higher feedback overhead, as will be
discussed in Section 5.5.
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Figure 5.4 – Tucker-IRS feedback payload ratio for 𝑁 = 1024.
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According to (2.74), the 𝑝-th mode unfolding of S is given by

[S] (𝑝) ≈ 𝑆𝑆𝑆(𝑝) [G] (𝑝)
(
𝑆𝑆𝑆(𝑃) ⊗ . . .⊗ 𝑆𝑆𝑆(𝑝+1) ⊗ 𝑆𝑆𝑆(𝑝−1) ⊗ . . .⊗ 𝑆𝑆𝑆(1)

)T
. (5.24)

Based on the Tucker-IRS model, the RX estimates each factor matrix 𝑆𝑆𝑆(𝑝) ∈ ℂ𝑁𝑝×𝑅, for 𝑝 =
{1, . . . , 𝑃}, and the core tensor G. This estimation procedure can be performed using, e.g., the
HOSVD algorithm [41] given in Algorithm 10. In this case, the RX estimates the factors matrices
by computing the SVD of all 𝑃-mode unfolding matrices of S independently. Defining the SVD
of [S] (𝑝) as 𝑈𝑈𝑈 (𝑝)Σ(𝑝)𝑉𝑉𝑉H, an estimate of 𝑆𝑆𝑆(𝑝) is given by

�̂�𝑆𝑆
(𝑝)

= 𝑈𝑈𝑈
(𝑝)
.1:𝑅𝑝 ∈ ℂ𝑁𝑝×𝑅𝑝 , (5.25)

which is the truncation of the left singular matrix 𝑈𝑈𝑈 (𝑝) to its first 𝑅𝑃 columns, 𝑝 = {1, . . . , 𝑃}.
The diagonal of the truncated singular matrix Σ(𝑝) , defined as 𝜎𝜎𝜎(𝑝) = diag(Σ(𝑝)

1:𝑅𝑝,1:𝑅𝑝) ∈ ℂ𝑅𝑝×1, is
stored to provide the weights to the 𝑅𝑝 components in the quantization procedure. Once the 𝑃
factor matrices are estimated, the RX obtains an estimate of the core tensor G as

�̂�𝑔𝑔 =
(
�̂�𝑆𝑆
(𝑃) ⊗ . . .⊗ �̂�𝑆𝑆(1)

)H
𝑠𝑠𝑠,∈ ℂ𝑅1···𝑅𝑃×1, (5.26)

where �̂�𝑔𝑔 = vec
(
Ĝ

)
and 𝑠𝑠𝑠 = vec (S) are the vectorization of the core tensor and the IRS phase-shift

tensor, respectively. The feedback duration of the Tucker-IRS model is given as

𝑇
(Tucker)
F =

TPR +
(
𝑃∑
𝑝=1

𝑅𝑝𝑁𝑝𝑏
(𝑝)
F

)
+

𝑃∏
𝑝=1

𝑅𝑝𝑏
(𝑝)
F + 𝑏(w)

F

𝑃∑
𝑝=1

(𝑅𝑝−1)

𝐵Flog
(
1+ 𝑝F |𝑔F |2

𝐵F𝑁0

) , (5.27)
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Algorithm 10 Tucker-IRS HOSVD
1: Inputs: Tensor S, the number of components 𝑅𝑝, for 𝑝 = {1, . . . , 𝑃}.
2: for 𝑝 = 1 : 𝑃 do
3: Compute the SVD of the 𝑝-mode unfolding of S as

[S] (𝑝) = 𝑈𝑈𝑈 (𝑝)Σ(𝑝)𝑉𝑉𝑉 (𝑝)H.

4: Store the diagonal of the truncated singular matrix defined as 𝜎𝜎𝜎(𝑝) = diag
(
Σ(𝑝)

1:𝑅𝑝,1:𝑅𝑝

)
∈

ℂ𝑅𝑝×1.
5: Set an estimation of 𝑆𝑆𝑆(𝑝) by truncating the left singular matrix to its first 𝑅𝑝 columns

�̂�𝑆𝑆
(𝑝)

= 𝑈𝑈𝑈
(𝑝)
.1:𝑅𝑝 .

6: end for
7: Compute an estimate of the core tensor 𝑔𝑔𝑔 = vec (G) as

�̂�𝑔𝑔 =
(
�̂�𝑆𝑆
(𝑃)H ⊗ . . .⊗ �̂�𝑆𝑆(1)H

)
vec (S) .

8: Define Ĝ = T {vec (�̂�𝑔𝑔)}.
9: Return �̂�𝑆𝑆(1) , . . . , �̂�𝑆𝑆(𝑃) and Ĝ.

where TPR is the preamble cost that informs to the IRS controller the chosen tensor-based
model, the number of factors 𝑃, and the number of components 𝑅𝑝, for 𝑝 = {1, . . . , 𝑃}. The term
𝑃∑
𝑝=1

𝑅𝑝𝑁𝑝𝑏
(𝑝)
F represents the cost, in bits, of the conveyed phase-shifts,

𝑃∏
𝑝=1

𝑅𝑝 is the cost of the

phase-shifts of the core tensor, and 𝑏(w)
F

𝑃∑
𝑝=1

(𝑅𝑝−1) is the term related to the cost of the weighting

factors.

Fig. 5.4 illustrates the ratio between state-of-the-art [116] and the Tucker-IRS model.
First, we define the vector 𝑅𝑅𝑅𝑃 = [𝑅1, . . . , 𝑅𝑃] ∈ ℝ𝑃×1 that contains the number of components
for a certain number of factors 𝑃 and 𝑁𝑁𝑁𝑃 = [𝑁1, . . . , 𝑁𝑃] ∈ ℝ𝑃×1 the vector that contains the

size of the factors for a certain number of factors 𝑃. We compare the ratio 𝑁/
(
𝑁𝑁𝑁T
𝑝𝑅𝑅𝑅𝑝 +

𝑃∏
𝑝=1

𝑅𝑝

)
.

Similar to the results of Fig. 5.3, when the number of factors 𝑃 increases, the feedback overhead
decreases, where in this case, for the Tucker-IRS model, we have almost forty times less than the
state-of-the-art in the case of 𝑃 = 10, 𝑅𝑅𝑅10 = [1118,2 ·1112] and 𝑁𝑁𝑁10 = 2 ·11110 ∈ ℝ10×1. Comparing to
the PARAFAC-IRS model, the Tucker-IRS in general have a higher feedback payload due the

core tensor phase-shift feedback, costing
𝑃∏
𝑝=1

𝑅𝑝 bits. However, as will be discussed in Section

5.5, the Tucker-IRS has more degrees of freedom, resulting a better parameter adjusting which
increases the performance in NLOS scenarios.
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5.4 Discussion on Quantization, Reconstruction and Parameter Choices

5.4.1 Phase-shift Quantization

After estimating the factors in Algorithms 9 or 10, the RX quantizes the phase-shifts
of each factor with 𝑏

(𝑝)
𝐹 bits. Let us define �̃�𝑎𝑎 = Q{𝑎𝑎𝑎, 𝑏} as the quantization operation, which

quantizes a phase-shift vector 𝑎𝑎𝑎 with 𝑏 bits. For the PARAFAC-IRS model, we have the following
quantized factors 𝑠𝑠𝑠(𝑝)𝑟 = Q

{
𝑠𝑠𝑠
(𝑝)
𝑟 , 𝑏

(𝑝)
F

}
for 𝑝 = {1, . . . , 𝑃} and 𝑟 = {1, . . . , 𝑅}. In addition, for the

Tucker-IRS model, we have the following quantized factors and core tensor 𝑠𝑠𝑠(𝑝)𝑟𝑝 = Q
{
𝑠𝑠𝑠
(𝑝)
𝑟𝑝 , 𝑏

(𝑝)
F

}
and G̃𝑟1,...,𝑟𝑃 = Q

{
Ĝ𝑟1,...,𝑟𝑃 , 𝑏

(𝑝)
F

}
, for 𝑝 = {1, . . . , 𝑃} and 𝑟𝑝 = {1, . . . , 𝑅𝑝}. We use the following

codebook to quantize the phase-shifts of the 𝑝-th factor,

C (𝑝)
𝜙

=

{
−𝜋+ 2𝜋

2𝑏
(𝑝)
F

, −𝜋+ 4𝜋

2𝑏
(𝑝)
F

, . . . , 𝜋

}
.

5.4.2 Weighting Factor Quantization

For the PARAFAC-IRS model, let us define 𝜆max as the largest element of 𝜆𝜆𝜆. Nor-
malizing 𝜆𝜆𝜆 by 𝜆max we have 𝜆𝜆𝜆′ = 𝜆𝜆𝜆/𝜆max ∈ ℝ𝑅×1. Since the largest element of 𝜆𝜆𝜆′ is one, we do
not need to quantize this element. Hence, we define a new vector �̄�𝜆𝜆 ∈ ℝ𝑅−1×1 that contains all
elements of 𝜆𝜆𝜆′, with the exception the of the largest one. Then, we quantize the weighting vector
by defining ˜̄𝜆𝜆𝜆 = Q

{
�̄�𝜆𝜆, 𝑏

(w)
F

}
. Finally, we define �̃�𝜆𝜆 ∈ ℝ𝑅×1 as the quantized weighting vector by

inserting in the correct position the largest element of 𝜆𝜆𝜆′ (one) in ˜̄𝜆𝜆𝜆 ∈ ℝ𝑅−1×1. At the end, the
weighting vector quantization for the PARAFAC-IRS model cost (𝑅−1)𝑏(w)

F bits.
For the Tucker model, a similar approach is made, with the difference that there

are 𝑃 weighting vectors sorted by their largest value due to the SVD procedure. Considering
the 𝑝-th weighting vector 𝜎𝜎𝜎(𝑝) ∈ ℝ𝑅𝑝×1, we normalize it by the first element, yielding 𝜎𝜎𝜎(𝑝)′ =

𝜎𝜎𝜎(𝑝)/𝜎(𝑝)1 . For the quantization, we define a vector �̄�𝜎𝜎(𝑝) ∈ ℝ𝑅𝑝−1×1 that contains all elements of
𝜎𝜎𝜎(𝑝)′ with exception of the first one. Then, we define the quantized 𝑝-th weighting factor as
˜̄𝜎𝜎𝜎(𝑝) = Q

{
�̄�𝜎𝜎(𝑝) , 𝑏(w)

F

}
∈ ℝ𝑅𝑝−1×1. Finally, for the 𝑝-th quantized vector, we define the quantized

vector �̃�𝜎𝜎(𝑝) = [1, �̃�𝜎𝜎(𝑝)′] ∈ ℝ𝑅𝑝×1. At the end, the quantization of the 𝑃 weighting factors for the

Tucker model costs 𝑏(w)
F ·

𝑃∑
𝑝=1

(
𝑅𝑝−1

)
bits. For both PARAFAC-IRS and Tucker-IRS models, we

define the following amplitude codebook

Cw = {0.01, 0.01+ 𝑙, 0.01+2𝑙, . . . , 1} , (5.28)

where 𝑙 = 1−0.01

2𝑏
(w)
F −1

is a pre-defined step. For simplicity, the values of the amplitudes in (5.28) are

rounded to the second decimal point.
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5.4.3 IRS Phase-shift Vector Reconstruction

After quantization, the RX conveys the factors to the IRS controller. Then, the
phase-shift vector is reconstructed as

𝑠𝑠𝑠 = 𝑒 𝑗∠𝑠𝑠𝑠 ∈ ℂ𝑁×1, (5.29)

where 𝑠𝑠𝑠 is given by

𝑠𝑠𝑠 =

𝑅∑︁
𝑟=1

�̃�𝑟

(
𝑠𝑠𝑠
(𝑃)
𝑟 ⊗ . . .⊗ 𝑠𝑠𝑠(1)𝑟

)
, (5.30)

for the PARAFAC-IRS model, while for the Tucker-IRS model, 𝑠𝑠𝑠 is rebuilt as

𝑠𝑠𝑠 =

𝑅1∑︁
𝑟1=1

. . .

𝑅𝑃∑︁
𝑟𝑃=1

G̃𝑟1,...,𝑟𝑃

[(
�̃�
(𝑃)
𝑟𝑃 𝑠𝑠𝑠

(𝑃)
𝑟𝑃

)
⊗ . . .⊗

(
�̃�
(1)
𝑟1 𝑠𝑠𝑠

(1)
𝑟1

)]
. (5.31)

5.4.4 On the Effect of the Factorization Parameters

In this section, we discuss the choice of the factorization parameters and the system
performance implications.

• Number of factors 𝑃: This parameter defines the total number of factors used in
the LRA. Its minimum value for the proposed factorization is 𝑃 = 2, i.e., 𝑃 = 1
means that no factorization is employed, its maximum value is log2(𝑁), for the
case where all the factors have size 𝑁𝑝 = 2 for 𝑝 = {1, . . . , 𝑃}. By increasing
the value of 𝑃, the number of factors increases, allowing to reduce the size of
the factor components 𝑁𝑝. Consequently, increasing 𝑃 reduces the phase-shift
feedback overhead. Nevertheless, by selecting the minimum value of 𝑃, the size
of each factor component increases, which increases the SE at the cost of a higher
feedback overhead.

• Number of components: For the PARAFAC model, we have 𝑅 components,

while for the Tucker model we have
𝑃∑
𝑝=1

𝑅𝑝 components. For both models, the

number of components is a performance indicator since when it is increased, the
approximation error of the LRA in (5.16) and (5.23) decreases. The RX selects its
value based on the estimated channels. For example, if the channels have low-rank,
or in the presence of a moderate/strong LOS component, the RX may choose
𝑅 = 1. Also, 𝑅 = 1 (PARAFAC model) or 𝑅𝑝 = 1 (for the Tucker model) are the
choices that minimizes the feedback overhead. On the other hand, by increasing 𝑅
(or 𝑅𝑝), the SE increases at the cost of a higher feedback load.

• Size of factor components 𝑁𝑝: The size of the factor components indicates the
total number of independent phase-shifts in the proposed solution, which it also
affects the performance. For example, for 𝑁 = 256, 𝑃 = 2 and 𝑅 = 1, two possible
configurations are (𝑁1 = 128, 𝑁2 = 2) and (𝑁1 = 𝑁2 = 16). For the first choice, the
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system has more independent phase-shifts (130), thus a higher SE. However, its
feedback overhead is higher than the second configuration that requires only 32
phase-shifts to be reported in the feedback channel.

5.4.5 On the Effect of the Phase-shift and Weighting Factor Quantization

After the factorization step, the phase-shifts of the factor matrices 𝑆𝑆𝑆(𝑝) are quantized
before being conveyed to the IRS controller. From the fact that the proposed method factorizes
the IRS phase-shift vector into 𝑃 smaller factors, we can select different numbers of bits for
the quantization of each factor, unlike the conventional IRS-assisted systems, where the RX (or
TX) conveys the 𝑁 phase-shifts with the same quantization resolution of 𝑏F bits. The proposed
method allows the system to adapt the phase-shift resolution of the factors to the available control
link capacity, i.e., for each factor we may have a different resolution of 𝑏(𝑝)F in bits, 𝑝 = {1, . . . , 𝑃},
providing more flexibility to the system design. Regarding the weighting factors, they play
a more important role when the number of components 𝑅 > 1 (in the PARAFAC model), or
𝑅𝑝 > 1, 𝑝 = {1, . . . , 𝑃} (in the Tucker model), since they control the importance of the rank-one
components in each model.

5.5 Simulation Results

In this section, we evaluate the performance of the proposed IRS phase-shift overhead-
aware feedback model in terms of feedback duration, achievable data rate, SE and EE. To this
end, 𝐿 = 5 ·103 Monte Carlo runs were performed, where in each trial the channels are generated
according (5.3) and (5.2). In Figs. 5.5-5.9, we set 𝛼𝐻 = 𝛼𝐺 = 1, and consider 𝐾𝐻 = 𝐾𝐺 = 𝐾 to
simplify the presentation of the figures. However, we have tested the results for a broad range of
channel models and parameter settings and observed the same qualitative conclusions as those
presented.

5.5.1 IRS Phase-shift Normalized Mean Square Error

In this section we discuss the accuracy of the PARAFAC-IRS and the Tucker-IRS
LRA models. To this end, we compare the NMSE of the optimized IRS phase-shift vector, given
in (3.17), with the proposed LRA models, the PARAFAC-IRS model and the Tucker-IRS model,
after the phase-shift vector reconstruction in the IRS controller. For the sake of illustration, we
consider continuous phase-shifts and weighting factors, thus being an ideal scenario. The NMSE
is calculated as

NMSE =
1
𝐿

𝐿∑︁
𝑙=1

| |𝑠𝑠𝑠𝑙 − 𝑠𝑠𝑠𝑙 | |22
| |𝑠𝑠𝑠𝑙 | |22

, (5.32)

where 𝐿 is the total number of Monte Carlo trials, and 𝑠𝑠𝑠𝑙 is the reconstructed IRS phase-shift
vector using the PARAFAC-IRS and the Tucker-IRS models, in (5.30) and (5.31), respectively.
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Figure 5.5 – NMSE between the optimum IRS phase-shift vector given in
(3.17) and the PARAFAC-IRS (a) and Tucker-IRS (b) LRA
models, in (5.30) and (5.31), for different number of compo-
nents.

(a) NMSE PARAFAC-IRS model.
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(b) NMSE Tucker-IRS model.
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Source: Created by the author.

Assuming the setup 𝑁 = 1024 elements, 𝑃 = 3 factors with sizes 𝑁1 = 64, 𝑁2 = 4,
and 𝑁3 = 4, from Figs. 5.5 (a) and (b), it becomes clear that as the number of components 𝑅 (for
the PARAFAC-IRS model) and the number of components in 𝑅𝑅𝑅3 (for the Tucker-IRS model)
increases, the NMSE decreases. This is from the fact that we are adding more components to
the tensor model to fit the IRS phase-shift vector. Also, when the Rician factor 𝐾 increases, the
NMSE decreases. This is explained by the fact that the LOS components of the channels 𝐺𝐺𝐺 and 𝐻𝐻𝐻
are separable with a Vandermonde structure, and every Vandemonde vector can be decomposed
as the Kronecker product of smaller factors, which is the main idea of the proposed models. In
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Figure 5.6 – Illustration of the ratio of the weighting factors.
(a) Ratio of the weighting factors of the
PARAFAC-IRS model.
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(b) Ratio of the weighting factors of the Tucker-
IRS model for [S] (1) .
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(c) Ratio of the weighting factors of the Tucker-
IRS model for [S] (2) .
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(d) Ratio of the weighting factors of the Tucker-
IRS model for [S] (3) .
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Source: Created by the author.

other words, when 𝐾 →∞ the optimization of the IRS vector aligns the IRS phase-shifts with
the LOS components of the channels 𝐺𝐺𝐺 and 𝐻𝐻𝐻, which are separable and can be approximated
using a low-rank tensor model.

5.5.2 Distribution of the Weighting Factors in the PARAFAC-IRS and the Tucker-IRS models

In this section, the relationship between the weighting factors in the PARAFAC-
IRS and the Tucker-IRS models are discussed. To this end, we assume 𝑃 = 3 factors, 𝑅 = 4
components for the PARAFAC-IRS, and for the Tucker-IRS model, we consider the vector
of components 𝑅𝑅𝑅3 = [𝑅1, 𝑅2, 𝑅3]T = [8,4,4]T. In Fig. 5.6 (a), we assume that the weighting
factor vector 𝜆𝜆𝜆 = [𝜆1, 𝜆2, 𝜆3, 𝜆4] of the PARAFAC-IRS model components are sorted such that
𝜆1 > 𝜆2 > 𝜆3 > 𝜆4. As expected we can notice that the weighting factor ratio decreases when
𝐾 increases. However, the gap between the ratios of, e.g., 𝜆2/𝜆1 and 𝜆3/𝜆1 are not negligible,
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indicating a sensitivity in the quantization process, even in the LOS regime. In Figs. 5.6 (b)-
(d), we illustrate the distribution of the weighting factor ratios in the Tucker-IRS model using
the HOSVD Algorithm 10, i.e., for all factors [S] (1) , [S] (2) , and [S] (3) the weights (singular
values) are sorted as 𝜎(𝑝)1 > 𝜎

(𝑝)
2 > . . . > 𝜎

(𝑝)
𝑟𝑝 , for 𝑝 = {1,2,3} and 𝑟𝑝 = {1, . . . 𝑅𝑝}. In Fig. 5.6 (b)

illustrates the ratio distribution of the first factor [S] (1) ∈ ℂ64×16, assuming the truncation in
𝑅1 = 8 components, while in Fig. 5.6 (c) we have the ratio for the second factor [S] (2) ∈ ℂ4×256,
assuming the truncation in 𝑅2 = 4 components, and finally, in Fig. 5.6 (d) we show the weighting
factors ratio for the third factor [S] (3) ∈ ℂ4×256, assuming the truncation in 𝑅3 = 4 components.
As expected, in Figs. 5.6 (b)-(d), as 𝐾 increases, the relative importance of the components
decreases. But, different from the PARAFAC-IRS model, the gap between the ratios of the
components is pratically negligible for 𝐾 > 0 dB, indicating that the Tucker-IRS model is less
sensitive than the PARAFAC-IRS model in the weighting factor quantization process.

5.5.3 PARAFAC-IRS vs Tucker-IRS

As a first experiment, we compare, in terms of achievable data rate, the two proposed
strategies, PARAFAC-IRS and Tucker-IRS, with the state-of-the-art method [116], where the
IRS phase-shift vector is not factorized. The achievable data rate is given by

log2

(
1+ |𝑤𝑤𝑤H𝐺𝐺𝐺diag (𝑠𝑠𝑠) 𝐻𝐻𝐻𝑞𝑞𝑞|2

𝜎2
𝑏

)
, in bits/s/Hz, (5.33)

where 𝑠𝑠𝑠 ∈ ℂ𝑁×1 is the the optimum IRS phase-shift vector, which is given in (5.30) for the
PARAFAC-IRS model and in (5.31) for the Tucker model.

In Fig. 5.7, we assume 𝑃 = 3 for the proposed IRS factorization models, with 𝑁1 = 64,
and 𝑁2 = 𝑁3 = 4. In Fig. 5.7 (a), we compare the models in an ideal scenario with continuous
phase-shift and continuous values for the weighting factors. As expected, when the number of
components 𝑅 or in 𝑅𝑅𝑅(3) increases, the achievable data rate also increases, and we can observe
that for the PARAFAC-IRS model with 𝑅 = 16 and for the Tucker-IRS model with 𝑅𝑅𝑅3 = [16,4,4],
the proposed models achieves the optimum performance of the benchmark method [116], i.e.,
the tensor models fits.

However, in practice, both the phase-shift and the weighting factors have to be
quantized. As illustrated in Fig. 5.7 (b), there is an optimal point for the PARAFAC (𝑅 = 4,
for this case) since when 𝑅 > 4 the performance degrades due to an overfitting. For the Tucker
model, when the number of components of 𝑅𝑅𝑅3 increases, the performance in the NLOS region
(𝐾 < −5 dB) also improves, but at the cost of a higher feedback overhead. Note that, for the
moderate/strong LOS scenario (𝐾 > 5 dB), the number of components for both models does not
give a noticeable performance enhancement. In this way, a proper model for a NLOS scenario
would be the Tucker one, while PARAFAC is preferable in moderate/strong LOS cases, since it
leads to the best performance with the lowest feedback cost.
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Figure 5.7 – Comparison between the state-of-the-art [116],
PARAFAC-IRS and Tucker-IRS models with differ-
ent numbers of components. 𝑁 = 1024, 𝑃 = 3, with
𝑁1 = 64, 𝑁2 = 4, and 𝑁3 = 4.

(a) Ideal scenario with no quantization.
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(b) Feedback payload (F.P.) in bits.
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In the following experiments, we consider the PARAFAC-IRS model, due its sim-
plicity and lower phase-shift and weight feedback cost. However, we have tested the results for
the cases with Tucker method and observed the same qualitative conclusions as those presented.

5.5.4 On the Effect of the Number of Factors 𝑃

In Fig. 5.8, we compare the achievable data rate of the PARAFAC-IRS model with
𝑅 = 1, by varying the number of factors. We can observe that, for the NLOS region (𝐾 < −5
dB), increasing 𝑃 leads to a degradation on the performance. This is due to the fact that, for a
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Figure 5.8 – For an IRS with 𝑁 = 1024, TX and RX with 𝑀𝑅 =𝑀𝑇 = 2
and 𝑏(𝑝)F = 𝑏F = 3 bits, for the IRS phase-shift quantization
resolution, for 𝑝 = {1, . . . , 𝑃}.
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Figure 5.9 – Feedback payload for the PARAFAC-IRS model with
𝑅 = 1, varying the number of IRS elements.
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larger 𝑃, we have less independents phase-shifts. For example, for 𝑃 = 10, the phase-shifts of
the IRS elements are given by the sum of 10 factorized phase-shifts. However, when the Rician
factor 𝐾 increases, the performance gap between our proposed model and the state-of-the-art
[116] reduces. This is explained by the fact that, the IRS phase-shift optimization is based on
the channel estimation, thus when 𝐾 increases, the LOS components becomes stronger, and we
have a better approximation of the PARAFAC-IRS model. In terms of feedback overhead, when



Chapter 5. Tensor-Based Method for Reducing the Control Signaling in IRS-assisted MIMO Systems 100

Figure 5.10 – Performance of the PARAFAC-IRS method by
varying the resolution 𝑏(𝑝)F per factor, for fixed
control link of 1024 bits.
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𝑃 = 2 and for the 𝐾 < −5 dB region, our proposed method has a data rate loss of approximately
1bps/Hz. However, the feedback overhead is 50% less than that of the benchmark solution [116].
On the other hand, when the scenario changes to 𝐾 > 5 dB, the proper parameter choice is 𝑃 = 10,
since this configuration has a negligible performance loss compared to the state-of-the-art one,
while having a lower feedback cost compared to the other proposed configurations (𝑃 = 2,3,4).

Physically, the results illustrated on Fig. 5.8 can be interpreted as a performance
adaptation in the NLOS case, i.e., the RX can properly choose the factorization parameters to
meet a required data rate performance or feedback saving. For instance, in this example, by
choosing 𝑃 = 10, the RX can afford more often feedback than configurations with smaller values
of 𝑃.

For a better understanding of the merits of the proposed method, Fig.5.9 shows the
feedback payload in bits by varying the number of IRS elements. As shown, for different methods
the payload increases linearly with the number of IRS elements. For a given 𝑃, we may have
different sets of factor sizes defined by 𝑁𝑁𝑁P = [𝑁1, . . . , 𝑁𝑃]T ∈ ℝ𝑃×1, where the values of 𝑃 are set
to 𝑃 = 2,3,4. We select the size configuration that leads to the better performance, which is the
one that has the maximum possible number of independent phase-shifts. For example, assuming
𝑁 = 1000, the size configuration is 𝑁𝑁𝑁2 = [500,2] when 𝑃 = 2, 𝑁𝑁𝑁3 = [250,2,2] for 𝑃 = 3, and
𝑁𝑁𝑁4 = [125,2,2,2] for 𝑃 = 4. Thus, it becomes clear that increasing 𝑃 drastically reduces the
feedback overhead.

5.5.5 On the Effect of the Factor Quantization

Here, we evaluate the performance of the proposed method in a limited feedback
channel, i.e., we assume that the feedback control link has a maximum capacity of 1024 bits. In
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Table 5.1 – Network parameters.
𝑃max/𝑃𝑐,0/𝑃𝑐,𝑛 𝐵max 𝑁0 𝛼𝐻 /𝛼𝐺 𝜇/𝜇F
45/45/10 dBm 100 MHz −174 dBm/Hz 110/110 dB 1/1

Source: Created by the author.

this case, traditional quantization applied to the unconstrained IRS phase shift vector (without
factorization) is limited to a one bit resolution. We assume this challenging scenario to observe
the performance impact of the proposed method when the resolution of the individual factors are
adapted. To this end, we assume 𝑁 · 𝑏F ≥ 𝑁𝑁𝑁T

P · 𝑏𝑏𝑏
(P)
F .

In Fig. 5.10, different sets of size configurations for 𝑃 = 2 are evaluated, with different
resolutions per factor. The configuration 𝑁𝑁𝑁2 = [512,2] has the worst performance since the first
factor (512 elements) can only be quantized with 1 bit. However, when the size of the factors
is reduced, the resolution per factor can be increased accordingly to meet the limited control
link capacity limit. For instance, when 𝑁𝑁𝑁2 = [256,4] and 𝑏𝑏𝑏(𝑝)F = [3,16], the total number of bits
is 256 · 3+ 4 · 16 = 832. We can observe that, by increasing the resolution of the factors, the
performance gets closer to that of the state-of-the-art phase-shift without quantization (solid
curve). In particular, note that for 𝐾 > −5 dB, our approach provides the best results. Thus,
the proposed method can not only reduce the feedback overhead, as illustrated in Figs. 5.8
and 5.9, but also it effectively provides higher data rates than traditional quantization over the
unconstrained IRS phase shifts, approaching the continuous phase-shift case.

5.5.6 Total System SE and EE Evaluation

In this section, we evaluate the performance, in terms of SE and EE, of the proposed
method by considering the total system rate, i.e., taking into account the channel estimation
procedure duration and the IRS phase-shift feedback duration. To this end, we make use of the
expressions given in (3.20) and (3.21). The channel estimation period, in (3.20), is given as
T𝐸 = (𝑀𝑇𝑁 +1)𝑇0, where 𝑇0 = 0.8𝜇 seconds denotes the duration of the pilot tones [116]. The
frame duration is given by 𝑇 = T𝑃𝐷 +TF, where T𝑃𝐷 = T𝐸 +T𝐷, is divided into 30% for pilot
transmissions (T𝐸) and 70% for data transmission T𝐷. Regarding the power parameters of (3.21),
we have 𝑃E = 𝑃0(1+𝑁𝑀𝑇 )𝑇0/𝑇 , where 𝑃0 = 0.8 mW is the pilot tone power. Other parameter
definitions can be found in Table 5.1. The feedback channel 𝑔F is generated from a circular
symmetric complex Gaussian distribution, normalized by

√︁
𝛽𝐹 =

√
𝛼𝐻 =

√
𝛼𝐺 to account for the

effects of pathloss and shadowing, as given in Table 5.1. In our next experiments, we assume
𝐾 = 10 dB, 𝑁 = 1024. For the proposed method, we consider the PARAFAC-IRS model with
𝑅 = 1. As for the number of factors, we study three configurations, with 𝑃 = 2, (𝑁𝑁𝑁2 = [512,2]),
𝑃 = 3 (𝑁𝑁𝑁3 = [256,2,2]) and 𝑃 = 10 (𝑁𝑁𝑁10 = [2, . . . ,2] ∈ ℝ10×1).

In Figs.5.11 and 5.12, we analyze the total SE and EE of the proposed method with
the state-of-the-art [116], by varying the feedback bandwidth 𝐵F = 𝐵max − 𝐵, where 𝐵max is the
total available bandwidth given in Table 5.1. As shown, in Figs. 5.11a and 5.11b, when the
number of factors increases the feedback duration reduction pays off in the total system SE and
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Figure 5.11 – SE and EE performance of the proposed method
varying the feedback bandwidth, with 𝑁 = 1024,
𝑀𝑅 = 𝑀𝑇 = 16, 𝑏(𝑝)F = 𝑏F = 3 bits, for 𝑝 = 2,3,10,
for a Rician factor 𝐾 = 10 dB.

(a) SE performance of the state-of-the-art and the proposed
method.
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(b) EE performance of the state-of-the-art and the proposed
method.
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EE. The proposed method achieves a gain in the SE of 32% for 𝑃 = 10, 20% for 𝑃 = 3, and 14%
for 𝑃 = 2, over the state-of-the-art, considering the 𝐵F = 200 kHz, with a similar gain in the EE.

In Figs. 5.12a and 5.12b we compare the proposed PARAFAC-IRS model under
𝑅 = 1 and 𝑃 = 10 with the state-of-the-art by varying the number of antennas. In Fig. 5.12a, we



Chapter 5. Tensor-Based Method for Reducing the Control Signaling in IRS-assisted MIMO Systems 103

Figure 5.12 – SE and EE performance of the proposed method
varying the feedback bandwidth, with 𝑁 = 1024,
𝑏
(𝑝)
F = 𝑏F = 4 bits, for 𝑝 = 2,3,10, for a Rician factor
𝐾 = 10 dB.

(a) SE performance of the state-of-the-art and the proposed
method.
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(b) EE performance of the state-of-the-art and the proposed
method.
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observe that, for a feedback bandwidth 𝐵F ≤ 200 kHz, the proposed PARAFAC-IRS model with
𝑀𝑅 = 𝑀𝑇 = 2 antennas achieves the same performance as the state-of-the-art model equipped
with 𝑀𝑅 = 𝑀𝑇 = 16 antennas. However, matching the number of antennas at the receiver and the
transmitter sides, the proposed PARAFAC-IRS model has a gain of 336% for 𝑀𝑅 = 𝑀𝑇 = 2, and
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Figure 5.13 – EE and SE performance of the proposed method
varying the feedback power, with 𝑁 = 1024, 𝑀𝑅 =

𝑀𝑇 = 2, 𝑏(𝑝)F = 𝑏F = 3 bits, for 𝑝 = 2,3,10, Rician
factor 𝐾 = 10 dB.

(a) SE performance of the state-of-the-art and the proposed
method.

P
F
 = 22.5dBm P

F
 = 13.5dBm P

F
 = 4.5dBm

Feedback Power P
F
 in dBm

12

14

16

18

20

22

24

R
a

te
 i

n
 b

p
s

/H
z

State-of-the-Art P=2 P=3 P=10

8%

12%

22%
12%

19% 37%

16%

27%

59%

(b) EE performance of the state-of-the-art and the proposed
method.
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32% when 𝑀𝑅 = 𝑀𝑇 = 16. Likewise, in terms of EE, in Fig. 5.12b, for a feedback bandwidth
𝐵F ≤ 200 kHz, the proposed PARAFAC-IRS model outperforms the state-of-the-art model in
all antennas configuration, having a gain of 221% assuming 𝑀𝑅 = 𝑀𝑇 = 4, and 8% for the
𝑀𝑅 = 𝑀𝑇 = 64 configuration. Finally, Figs. 5.13a and 5.13b show the SE and EE performances
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of the proposed method as a function of the feedback power 𝑝F, with 𝑝F = 𝑃max − 𝑝TX. We notice
that the proposed configurations provide the best results in all scenarios.

To summarize the results illustrated in Figs.5.11-5.13, we conclude that the proposed
tensor-based LRA IRS phase-shift factorization models allows to reduce the number of phase-
shifts to be conveyed to the IRS-controller, which significantly reduces the feedback overhead,
resulting in SE and EE performance enhancements. In addition, our approach reaches similar
performance to the non-factorized IRS, especially in moderate/strong LOS scenarios, as it can
be seen in Figs. 5.7-5.10. Also, we show that the proposed PARAFAC-IRS model outperforms
the state-of-the-art in SE and EE when takes into account the total system rate.

From a system-level viewpoint, the network can resort to the proposed overhead-
aware IRS model to increase the feedback periodicity, i.e., by providing more frequent feedback,
which is crucial in fast time-varying channels, where the IRS should be reconfigured more
frequently to follow the environment changes. Moreover, the proposed IRS factorization methods
allow the network to multiplex more IRS phase-shifts in the same feedback channel, which is
useful to accommodate multi-user IRS-assisted communications.

5.6 Summary

In this chapter, we proposed two IRS phase-shift overhead-aware feedback methods
based on tensor signal processing, namely, PARAFAC-IRS and Tucker-IRS. We showed that
the proposed methods significantly reduce the IRS phase-shift feedback overhead, compared
to the state-of-the-art approach, where the IRS phase-shifts are not factorized. The PARAFAC-
IRS method is preferable in the case of moderate/strong LOS scenarios, achieving a spectral
efficiency that is close to that of the state-of-the-art, while providing a feedback overhead
reduction. Moreover, in NLOS scenarios, the Tucker-IRS model achieves a higher data rate than
the PARAFAC-IRS model at the expense of a higher feedback overhead. By controlling the
factorization parameters, we showed how to trade off data rate for feedback-overhead, allowing
the network controller to adapt the IRS factorization parameters to meet a determined quality of
service.
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6 CONCLUSIONS AND PERSPECTIVES

This thesis has addressed the application of tensor-based signal processing in wireless
communication systems. We have shown that by properly exploiting the multidimensional
structure of the signals, efficient algorithms to improve the overall performance can be employed.
More specifically, our contributions are tensor-based methods applied to the following research
areas:

• Tensor algebra;
• MIMO-OFDM system operating under the presence of phase-noise impairments;
• Control signaling overhead reduction for MIMO IRS-assisted systems.

In tensor algebra, we have proposed a new tensor operator, namely selective Kro-
necker product (SKP). The SKP operator is a flexible Kronecker operator used to combine or
spread specific in tensor products. We have shown its application in Chapter 4, where its used to
derive the tensor-based received data signal model.

In MIMO-OFDM systems we have proposed a tensor-based receiver taking into
account phase-noise impairments causing ICI. In detail, we have proposed a two-stage tensor-
based receiver, where in the first stage, the received signal at the pilots subcarriers is modelled
as a PARAFAC tensor. This tensor-based approach, allowed us to develop two algorithms to
jointly estimate the channel and the phase-noise impairments. The proposed algorithms are based
on iterative (BALS) and closed-form (LSKRF) solutions, and they show that, by separating
the phase-noise impairments from the channel gains, the data estimation process is improved,
where the LSKRF algorithm being preferable than the BALS algorithm, when the number of
antennas at the received side increases. In the second stage, thanks to the proposed SKP operator,
a structure Tucker model is derived for the received data signal. Based on this modeling, we
proposed a ZF filter, namely ZFSKP, which is capable of estimating the transmitted symbols
at all-at-once, and compared to the competitors matrix-based schemes, the proposed receiver
efficiently estimates the transmitted symbols in the presence of a high ICI.

Finally, we have derived a tensor-based method to reduce the feedback overhead in
IRS-assisted systems. We show that thanks to the imposed tensor-based structure on the optimized
IRS phase-shift vector, the number of phase-shifts that are required to be conveyed to the IRS
controller are drastically reduced. More specifically, we proposed a low-rank approximation of
the tensorized version of the IRS phase-shift vector. This factorization depends on pre-determined
parameters, such as the number of factors, the number of components, the size of each factor,
and the quantization resolution. To this end, we proposed two tensor-based models, namely
PARAFAC-IRS and Tucker-IRS. We have shown that, due to the array separability, when the
Rician factor of the involved channels increases, the factorization achieves a close performance
of the state-of-the-art model, with an extraordinary reduction of the cost for the IRS phase-shifts
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feedback. In addition, based on the communication channels conditions, the Tucker-IRS model
is preferable in the NLOS scenarios, while the PARAFAC-IRS model is the best option for
scenarios with strong LOS components, in terms of SE and feedback overhead cost. Also, we
have investigated the physical implications of the factorization parameters, where we have shown
a trade-off between feedback cost and SE.

6.1 Perspectives

In the following, we list some perspectives from this thesis

• One perspective in the context of tensor algebra is a complete study of the proposed
SKP operator. The starting point would be a generalization of the properties of
the matrix-based Kronecker product to the tensor-based Kronecker product. For
example, its relationship with the tensor contraction operator.

• A new tensor operator based on the generalization of the matrix Khatri-Rao product.
Since the matrix Khatri-Rao product is the column-wise Kronecker product, one
possible definition for the tensor Khatri-Rao product would be the tensor slice-wise
(or mode-wise) Kronecker product. This operator can be applied in the design of
generalized tensor codes.

• Based on the system model in Chapter 4, one perspective is to add an IRS to
enhance the system performance. New strategies for the IRS passive beamforming
should be developed. One idea is to use the passive beamforming of the IRS to
mitigate the effects of phase-noise, CFO, and possible IRS hardware defects.

• Perspectives of Chapter 5 include a study of the impact of the proposed tensor-
based models for reducing the IRS phase-shift feedback in a multi-user and
multicell scenario. The idea is to identify use cases to implement the proposed
factorization in 5G and 6G networks. One possible study case is to have more
frequent user IRS phase-shift feedback, thanks to the proposed overhead-aware
tensor-based models.

• Different tensor-based models to model the IRS phase-shift. In this scenario,
tensor decompositions, such as the TT, can be used to perform the low-rank
approximation of the IRS phase-shifts.
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A TIME-TO-FREQUENCY SIGNAL DEVELOPMENT

Here, we show, step by step, how to derive equation (4.4) from (4.1), which is a key
property to the tensor model in equation (4.5). The time-domain transmitted symbols are modelled

as 𝑠(𝑡) = 1/𝐹
𝐹−1∑
𝑓=0

𝑆[ 𝑓 ]𝑒 𝑗2𝜋
𝑓
𝑇𝑠
𝑡, with 𝑇𝑠 = 1/𝑑F being the symbol period and 𝑑F the subcarrier spacing

in Hertz. For notation simplicity, let us consider a scalar (single-antenna) version of the received
signal, where 𝑀𝑅 = 𝑀𝑇 = 𝐾 = 𝐿𝑃 = 1 is assumed. The same derivation applies to the multiple-
antenna case by introducing the transmit and receive antenna indices, without changing the
developments. In order to simplify the notation, let us consider 𝑐(𝑡) = 𝑒 𝑗𝜙[t] (𝑡)𝑠(𝑡), where 𝜙[t] is
the phase-noise term at the transmitter side. Assuming 𝑡 =

(
𝑛𝑇𝑠
𝐹
−𝜏𝑙

)
, the discrete-time received

signal can be written as

𝑦 [𝑛] =
𝐿−1∑︁
𝑙=0

𝑒 𝑗𝜙
[r] [𝑛] ℎ̄[𝑙]𝑐

(
𝑛𝑇𝑠

𝐹
−𝜏𝑙

)
=

𝐿−1∑︁
𝑙=0

𝑒 𝑗𝜙
[r] [𝑛] ℎ̄[𝑙] 1

𝐹

𝐹−1∑︁
𝑝=0

𝐶 [𝑝]𝑒 𝑗2𝜋
𝑝
𝑇𝑠
( 𝑛𝑇𝑠
𝐹
−𝜏𝑙)

=
1
𝐹

𝐿−1∑︁
𝑙=0

𝐹−1∑︁
𝑝=0

𝑒 𝑗𝜙
[r] [𝑛] ℎ̄[𝑙]𝑒− 𝑗2𝜋𝑝𝑑F𝜏𝑙𝐶 [𝑝]𝑒 𝑗2𝜋𝑝𝑛/𝐹

=
1
𝐹

𝐹−1∑︁
𝑝=0

𝑒 𝑗𝜙
[r] [𝑛]𝐻 [𝑝]𝐶 [𝑝]𝑒 𝑗2𝜋𝑝𝑛/𝐹 . (A.1)

Applying the DFT, we have
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𝑌 [ 𝑓 ] =
𝐹−1∑︁
𝑛=0

𝑦 [𝑛]𝑒− 𝑗2𝜋 𝑓𝑛/𝐹 (A.2)

=

𝐹−1∑︁
𝑛=0

©«1
𝐹

𝐹−1∑︁
𝑝=0

𝑒 𝑗𝜙
[r] [𝑛]𝐻 [𝑝]𝐶 [𝑝]𝑒 𝑗2𝜋𝑝𝑛/𝐹ª®¬ 𝑒− 𝑗2𝜋 𝑓𝑛/𝐹 (A.3)

=

𝐹−1∑︁
𝑛=0

𝐹−1∑︁
𝑝=0

1
𝐹
𝑒 𝑗𝜙

[r] [𝑛]𝑒 𝑗2𝜋𝑝𝑛/𝐹𝑒− 𝑗2𝜋 𝑓𝑛/𝐹𝐻 [𝑝]
𝐹−1∑︁
𝑞=0

Φ[t] [𝑝−𝑞]𝑆[𝑞] (A.4)

=

𝐹−1∑︁
𝑛=0

𝐹−1∑︁
𝑝=0

1
𝐹
𝑒 𝑗𝜙

[r] [𝑛]𝑒− 𝑗2𝜋( 𝑓−𝑝)𝑛/𝐹𝐻 [𝑝]
𝐹−1∑︁
𝑞=0

Φ[t] [𝑝−𝑞]𝑆[𝑞] (A.5)

=

𝐹−1∑︁
𝑝=0

Φ[r] [ 𝑓 − 𝑝]𝐻 [𝑝]
𝐹−1∑︁
𝑞=0

Φ[t] [𝑝−𝑞]𝑆[𝑞] (A.6)

= Φ[r] [0]𝐻 [ 𝑓 ]Φ[t] [0]𝑆[ 𝑓 ] +
𝐹−1∑︁

𝑝=0,𝑝≠ 𝑓
Φ[r] [ 𝑓 − 𝑝]𝐻 [𝑝]

𝐹−1∑︁
𝑞=0,𝑞≠ 𝑓

Φ[𝑡] [𝑝−𝑞]𝑆[𝑞]

= Φ[r] [0]𝐻 [ 𝑓 ]Φ[t] [0]𝑆[ 𝑓 ] +𝐺[ 𝑓 ] (A.7)

where 𝐺[ 𝑓 ] is the ICI term. To derive equation (A.4) from (A.3), we note that

𝐶 [𝑝] =
𝐹−1∑︁
𝑛=0

𝑒 𝑗𝜙
[t] [𝑛] 𝑠[𝑛]𝑒− 𝑗2𝜋𝑝𝑛/𝐹

=

𝐹−1∑︁
𝑛=0

𝑒 𝑗𝜙
[t] [𝑛] 1

𝐹

𝐹−1∑︁
𝑞=0

𝑆[𝑞]𝑒− 𝑗2𝜋(𝑝−𝑞)𝑛/𝐹

=

𝐹−1∑︁
𝑞=0

𝐹−1∑︁
𝑛=0

1
𝐹
𝑒 𝑗𝜙

[t] [𝑛]𝑒− 𝑗2𝜋(𝑝−𝑞)𝑛/𝐹𝑆[𝑞]

=

𝐹−1∑︁
𝑞=0

Φ[t] [𝑝−𝑞]𝑆[𝑞].

Applying the combiner 𝑊𝑊𝑊 ∈ ℂ𝑀𝑅×𝑀𝑅 , and taking into account the AWGN tensor at
the receiver V, the received signal at the 𝑘-th block and 𝑓 -th subcarrier in matrix slice notation
can be written as

Y ..𝑘 𝑓 =𝑊𝑊𝑊diag𝑘
(
Φ[r] [0]

)
H .. 𝑓diag𝑘

(
Φ[t] [0]

)
ST
.. 𝑓 +𝑊𝑊𝑊G ..𝑘 𝑓 +𝑊𝑊𝑊V ..𝑘 𝑓 , (A.8)

where Φ[x] [0] ∈ ℂ𝐾×𝑀𝑋 , for x ∈ {r, t} , is given by

Φ[x] [0] =


Φ(x)

1,1 [0] . . . Φ(x)
1,𝑀𝑋

[0]
...

. . .
...

Φ(x)
𝐾,1 [0] . . . Φ(x)

𝐾,𝑀𝑋
[0]

 (A.9)
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B DERIVATION OF THE ICI POWER

As in many works [121, 129], the ICI can be approximated as a Gaussian random
variable with zero mean and variance 𝜎2

ICI, i.e., 𝐺[ 𝑓 ] ∼ CN(0, 𝜎2
ICI). Considering the ICI term in

equation (A.7), we have 𝜎2
ICI = 𝔼 [𝐺[ 𝑓 ]𝐺[ 𝑓 ]∗], which can be computed as

𝜎2
ICI = 𝔼


������ 𝐹−1∑︁
𝑝=0,𝑝≠ 𝑓

Φ[r] [ 𝑓 − 𝑝]𝐻 [𝑝]
𝐹−1∑︁

𝑞=0,𝑞≠ 𝑓
Φ[t] [𝑝−𝑞]𝑆[𝑞]

������
2 .

Assuming 𝔼 [𝑆[𝑞]𝑆[𝑞]∗] = 1 and 𝔼 [𝐻 [𝑝]𝐻 [𝑝]∗] = 1, we get

𝜎2
ICI = 𝔼


������ 𝐹−1∑︁
𝑝=0,𝑝≠ 𝑓

Φ[r] [ 𝑓 − 𝑝]
𝐹−1∑︁

𝑞=0,𝑞≠ 𝑓
Φ[t] [𝑝−𝑞]

������
2 . (B.1)

It is important to note that, when 𝑞 ≠ 𝑝, 𝔼
[��Φ[r] [ 𝑓 − 𝑝]Φ[t] [𝑝−𝑞]

��2] ≈ 0, since the
product between the non-DC terms (i.e., 𝑝 ≠ 𝑓 and 𝑞 ≠ 𝑓 ) of the phase-noise at the transmitter
and the receiver is very small, even for 𝜎2

𝜙[t] = 𝜎
2
𝜙[r] = 5 ·10−3. We can rewrite (B.1) as

𝜎2
ICI ≈ 𝔼


������ 𝐹−1∑︁
𝑝=0,𝑝≠ 𝑓

Φ[r] [ 𝑓 − 𝑝]Φ[t] [0]

������
2 (B.2)

≈
(
1−𝔼

[���Φ[r] [0]
���2] ) 𝔼 [���Φ[t] [0]

���2] . (B.3)

Adopting the same approach as in [126], in our model the ICI power can be calculated as

𝜎2
ICI ≈

(
trace{𝑅𝑅𝑅[r]

ΦΦ} − 𝑅𝑅𝑅
[r]
ΦΦ (0,0)

)
𝑅𝑅𝑅
[t]
ΦΦ (0,0), (B.4)

where 𝑅𝑅𝑅[x]
ΦΦ ∈ ℂ𝐹×𝐹 , x ∈ {r, t}, is given by

𝑅𝑅𝑅
[x]
ΦΦ (𝑖,𝑚) = 𝐸

[
Φ[x] [𝑖]Φ[x]∗ [𝑚]

]
=

1
𝐹2 𝐸

[
𝐹−1∑︁
𝑘=0

𝐹−1∑︁
𝑙=0

𝑒 𝑗(𝜙
[x] [𝑘]−𝜙[x] [𝑙])𝑒− 𝑗2𝜋(𝑖𝑘−𝑚𝑙)/𝐹

]
=

1
𝐹2

𝐹−1∑︁
𝑘=0

𝐹−1∑︁
𝑙=0

𝐸
[
𝑒 𝑗(Δ𝜙

[x] [𝑘,𝑙])
]
𝑒− 𝑗2𝜋(𝑖𝑘−𝑚𝑙)/𝐹 , (B.5)

with 𝑖,𝑚 = {0 . . . 𝐹−1}. Note that trace
(
𝑅𝑅𝑅
[x]
ΦΦ

)
= 1.
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