
UNIVERSIDADE FEDERAL DO CEARÁ

CENTRO DE TECNOLOGIA

DEPARTAMENTO DE ENGENHARIA DE TELEINFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TELEINFORMÁTICA

DOUTORADO EM ENGENHARIA DE TELEINFORMÁTICA

ANTONIO AUGUSTO TEIXEIRA PEIXOTO

THEORETICAL AND APPLIED CONTRIBUTIONS ON TENSOR LEARNING

FORTALEZA

2022

ANTONIO AUGUSTO TEIXEIRA PEIXOTO

THEORETICAL AND APPLIED CONTRIBUTIONS ON TENSOR LEARNING

Tese apresentada ao Programa de Pós-
Graduação em Engenharia de Teleinformática
do Centro de Tecnologia da Universidade
Federal do Ceará, como requisito parcial à
obtenção do título de doutor em Engenharia
de Teleinformática. Área de Concentração:
Engenharia de Teleinformática

Orientador: Prof. Dr. Carlos Alexandre
Rolim Fernandes

FORTALEZA

2022

Dados Internacionais de Catalogação na Publicação
Universidade Federal do Ceará

Sistema de Bibliotecas
Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

P43t Peixoto, Antonio Augusto Teixeira Peixoto.
 THEORETICAL AND APPLIED CONTRIBUTIONS ON TENSOR LEARNING / Antonio Augusto
Teixeira Peixoto Peixoto. – 2022.
 147 f. : il. color.

 Tese (doutorado) – Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-Graduação
em Engenharia de Teleinformática, Fortaleza, 2022.
 Orientação: Prof. Dr. Carlos Alexandre Rolim Fernandes.

 1. aprendizado tensorial. 2. aprendizado de máquina. 3. classificação de eventos sísmicos. 4. redução de
dimensionalidade. 5. amostragem multilinear. I. Título.
 CDD 621.38

ANTONIO AUGUSTO TEIXEIRA PEIXOTO

THEORETICAL AND APPLIED CONTRIBUTIONS ON TENSOR LEARNING

Tese apresentada ao Programa de Pós-
Graduação em Engenharia de Telein-
formática do Centro de Tecnologia da
Universidade Federal do Ceará, como
requisito parcial à obtenção do título de
doutor em Engenharia de Teleinformática.
Área de Concentração: Engenharia de
Teleinformática

Aprovada em:

BANCA EXAMINADORA

Prof. Dr. Carlos Alexandre Rolim
Fernandes (Orientador)

Universidade Federal do Ceará (UFC)

Prof. Dr. André Lima Férrer de Almeida
Universidade Federal do Ceará (UFC)

Prof. Dr. Walter da Cruz Freitas Júnior
Universidade Federal do Ceará (UFC)

Prof. Dr. Auzuir Ripardo de Alexandria
Instituto Federal do Ceará (IFCE)

Prof. Dr. João Paulo Javidi da Costa
Hochschule Hamm-Lippstadt

To my father Wagner, and to my mother Rosa,

for always believing and supporting me and my

education. To my girlfriend and best partner

ever, Alice. I also dedicate this thesis to Pro-

fessor Alexandre Moreira de Morais, who left

us in 2014, and was an example of teacher and

person.

ACKNOWLEDGEMENTS

I would like to thank my advisor, Prof. Dr. Carlos Alexandre, for the dedication,

patience and friendship he had with me during the 5 long years of my doctorate.

My girlfriend, Alice, I really want to thank you for your support. In the very difficult

times, when I was about to give up, or when I was down, you always supported and cheered me

up. That I will never forget.

My friends João Paulo, Allex, David, Gabriel, Batata and Paulo Henrique, you guys

helped me, even without knowing it, because in each moment of fraternization, I gained strength

to continue.

I also thank my co-workers at IFCE, Vitor, Navar, Isaac, Luis, Rodrigo and Jardel.

Each week at work became less tiring with your company and friendship.

My long time friend Bruno, in which we shared, years ago, dreams about becoming

doctoral students. Your help and support in these many years was very important, because you

followed my doctorate from the beginning until now, just as I followed yours.

Thanks to my graduate and undergraduate professors, Fatima Sombra, Michela,

Rafael Lima, Alexandre Moreira de Morais, George Thé, Sérgio Antenor, Yuri Carvalho, Jarbas

Nunes, Alexandre Coelho, João Batista, Alda Karine and others. Without your teachings and

help, I would not have come this far.

I am grateful for the support of my family, especially my father, Wagner, and my

mother, Rosa.

Thanks to Pablo Lara and Adolfo Inza, who helped me with their knowledge in

Volcanology. Also, thanks to IGP for providing the seismic database used in this thesis.

Thanks to professor Glendo, of IFCE, and to the Fotônica Laboratory personal, for

providing the photonic database used.

I thank everyone who was by my side, even when it became very difficult to support

me.

“What you leave behind is not what is engraved

in stone monuments, but what is woven into the

lives of others.”

(Pericles)

ABSTRACT

Tensor learning refers to a series of tools and techniques for modeling and understanding

complex multidimensional datasets, in order to build efficient learning models. It is a fairly

new area in machine learning, which blends, especially, with statistical learning and tensor

models. Indeed, tensor learning has proven to be an alternative to conventional vector-based

learning techniques that are well-known in the literature, such as the Support Tensor Machines

(STM), which is a multilinear extension of the Support Vector Machines (SVM). This work

proposes theoretical and applied contributions to tensor learning in the following way. First, a

fully tensorial framework for seismic event classification is proposed, which performs feature

extraction, dimensionality reduction and classification, with all these steps using tensor-based

techniques. Next, a new dimensionality reduction technique called Low-Correlation Multilinear

Dimensionality Reduction (LC-MDR), based on a new tensor decomposition, the Even-Order

Nested PARAFAC Decomposition (EONPD), is proposed and validated, successfully reducing

the correlation and dimensionality of seismic data, improving classification rates. And last, a

multilinear sampling approach for tensor learning and data structuring is proposed, which is

used in the modification of the SVM technique, joining the concept of multilinear sampling

and tensor decompositions, more specificaly, the PARAFAC and Tucker, then, the proposed

modifications, called Support Vector Machines with Multilinear PARAFAC Sampling (SVM-

MPS) and Support Vector Machines with Multilinear Tucker Sampling (SVM-MTS), are tested

for photonic data classification. These three new proposed contributions to tensor learning

showed better performance, in terms of accuracy, when compared to other techniques of the

literature.

Keywords: tensor learning. machine learning. seismic event classification. feature extraction.

dimensionality reduction. tensor decompositions. multilinear sampling. photonic classification.

RESUMO

O aprendizado tensorial refere-se a uma série de ferramentas e técnicas para modelagem e

compreensão de conjuntos de dados multidimensionais complexos, a fim de construir modelos

de aprendizado eficientes. É uma área relativamente nova em aprendizado de máquina, que se

mistura, principalmente, com aprendizado estatístico e modelos tensoriais. De fato, o apren-

dizado tensorial provou ser uma alternativa às técnicas convencionais de aprendizado baseado

em vetores que são bem conhecidas na literatura, como as Support Tensor Machines (STM),

que são uma extensão multilinear das Support Vector Machines (SVM). Este trabalho propõe

contribuições teóricas e aplicadas em aprendizado tensorial, da seguinte forma. Primeiramente, é

proposto um arcabouço totalmente tensorial para classificação de eventos sísmicos, que realiza

extração de características, redução de dimensionalidade e classificação, sendo todas estas etapas

realizadas com técnicas baseadas em tensores. Em seguida, uma nova técnica de redução de

dimensionalidade chamada Low-Correlation Multilinear Dimensionality Reduction (LC-MDR),

baseada em uma nova decomposição tensorial, a Even-Order Nested PARAFAC Decomposition

(EONPD), é proposta e validada, reduzindo com sucesso a correlação e dimensionalidade de

dados sísmicos, melhorando as taxas de classificação. E por último, é proposta uma abordagem

de amostragem multilinear para aprendizado tensorial e estruturação de dados, que é utilizada na

modificação da técnica SVM, juntando o conceito de amostragem multilinear e decomposição

tensorial, mais especificamente, as decomposições PARAFAC e Tucker, em seguida, as modifi-

cações propostas, denominadas Support Vector Machines with Multilinear PARAFAC Sampling

(SVM-MPS) e Support Vector Machines com Multilinear Tucker Sampling (SVM-MTS), são

testados para classificação de dados fotônicos. Essas três novas contribuições propostas na área

de aprendizado tensorial apresentaram melhor desempenho, em termos de acurácia, quando

comparadas a outras técnicas da literatura.

Palavras-chave: aprendizado tensorial, aprendizado de máquina, classificação de eventos

sísmicos. extração de características. redução de dimensionalidade. decomposições tensoriais.

amostragem multilinear. classificação de dados fotônicos.

LIST OF FIGURES

Figure 1 – Seismic data tensor arrangements. 27

Figure 2 – Links between the main topic, approaches, chapters and applications. 30

Figure 3 – A Vector, a matrix and a tensor . 33

Figure 4 – A rank-1 third order tensor . 34

Figure 5 – View of mode-1, mode-2 and mode-3 fibers of a third order tensor. 35

Figure 6 – View of mode-1, mode-2 and mode-3 slices of a third order tensor. 35

Figure 7 – PARAFAC decomposition of a third-order tensor. 39

Figure 8 – Block Diagram of the NPD. 40

Figure 9 – Tucker decomposition of a third-order tensor. 42

Figure 10 – Supervised Learning. 45

Figure 11 – SVM hyperplane illustration. 48

Figure 12 – Dataset after using PCA and before. 49

Figure 13 – Illustration of the MPCA approach. 57

Figure 14 – Steps of the classification system. 62

Figure 15 – Waveform of a LP signal before (upper) and after instrumental correction

(lower). 63

Figure 16 – Map of the Ubinas volcano with the UBN and UBW stations. 67

Figure 17 – Estimated PSD of samples of the five classes. 68

Figure 18 – Impact of the ranks Q and Q3 of the STM-based techniques in classification

rates, for the MPCA-FP case. 75

Figure 19 – Impact of the ranks Q and Q3 of the STM-based techniques in classification

rates, for the MPCA-DR case. 75

Figure 20 – Steps of the classification system in which the LC-MDR is tested. 90

Figure 21 – Accuracy obtained by different techniques varying R3. 97

Figure 22 – FLOPS of the transformation techniques when varying R3, for R1 = R2 = 2. . 101

Figure 23 – Iterations needed for convergence of the 3D LC-MDR when varying R3, with

R1 = R2 = 2. 102

Figure 24 – Mach-Zehnder interferometer block scheme. 119

Figure 25 – Accuracy of the proposed SVM-MPS and SVM-MTS when varying ranks Q

and Q4, with Q1 = Q2 = 2. 122

Figure 26 – Accuracy of the proposed SVM-MTS when varying ranks Q3 and Q4, for

fixed values of Q1 and Q2 = 2. 123

Figure 27 – Iterations of the proposed SVM-MPS and SVM-MTS when varying ranks Q

and Q4, for fixed values of Q1, Q2 and Q3. 125

LIST OF TABLES

Table 1 – Feature description. 64

Table 2 – Classification framework description. 65

Table 3 – Seismic database information. 68

Table 4 – Accuracy for the different system configurations - with PCA-FP and MPCA-FP. 70

Table 5 – Accuracy for the different system configurations - with PCA-DR and MPCA-DR. 72

Table 6 – Comparison between the proposed approach and the ones of (LARA et al.,

2020; CURILEM et al., 2018) in terms of Accuracy. 73

Table 7 – Confusion Matrix for the STuM with MPCA-DR. 73

Table 8 – Confusion Matrix for the STuM with MPCA-DR, without preprocessing. . . 73

Table 9 – Accuracy for different rank configurations - with MPCA-DR and STuM. . . . 74

Table 10 – Time-complexity of the framework techniques, in big-O notation. 76

Table 11 – Floating Point Operations per Second (FLOPS) counts for several classifiers. 77

Table 12 – Classification framework description. 91

Table 13 – TCR with full projection. 93

Table 14 – Accuracy obtained by different techniques with full projection. 94

Table 15 – TCR for the MPCA and the LC-MDR for several array dimensions. 96

Table 16 – Accuracy obtained by the dimensionality reduction techniques. 98

Table 17 – Confusion Matrix provided by the tridimensional LC-MDR with STuM. . . . 99

Table 18 – Time complexity of the LC-MDR, PCA and MPCA for N = 3 for dimension-

ality reduction. 100

Table 19 – FLOPS counts for the different techniques with dimensionality reduction. . . 101

Table 20 – MZI setup parameters . 120

Table 21 – Accuracy and execution time results for the proposed modifications and the

SVM for various rank values. 121

Table 22 – Accuracy and execution time results for the proposed modifications versus

other classifiers. 124

Table 23 – Time-complexity of the proposed and tested techniques, in big-O notation. . . 124

Table 24 – Floating Point Operations per Second (FLOPS) counts for the tested classifiers,

with two different rank configurations. 126

LIST OF ACRONYMS

ALS Alternating Least Squares

ANN Artificial Neural Network

CANDECOMP Canonical Decomposition

CCA Canonical Correlation Analysis

CNN Convolutional Neural Network

CP Canonical Polyadic

DATER Discriminant Analysis with Tensor Representation

DFT Discrete Fourier Transform

EMD Empirical Mode Decomposition

EONPD Even-Order Nested PARAFAC Decomposition

EX Explosion

GNPD Generalized Nested PARAFAC Decomposition

HB Hybrid

HONPD High-Order Nested PARAFAC Decomposition

HONTD High-Order Nested Tucker Decomposition

HOSVD High-Order Singular Value Decomposition

ICA Independent Component Analysis

IGP Geophysical Institute of Peru

KNN k-Nearest Neighbors

LC-MDR Low-Correlation Multilinear Dimensionality Reduction

LDA Linear Discriminant Analysis

LP Long Period

MDA Multilinear Discriminant Analysis

MDFT Multidimensional Discrete Fourier Transform

ML Machine Learning

MPCA Multilinear Principal Component Analysis

MPCA-DR Multilinear Principal Component Analysis - Dimensionality Reduction

MPCA-FP Multilinear Principal Component Analysis - Full Projection

MZI Mach-Zehnder Interferometer

NLP Natural Language Processing

NMF Non-negative Matrix Factorization

NPD Nested PARAFAC Decomposition

NTD Nested Tucker Decomposition

PARAFAC Parallel Factor Analysis

PCA Principal Component Analysis

PCA-DR Principal Component Analysis - Dimensionality Reduction

PCA-FP Principal Component Analysis - Full Projection

PSD Power Spectral Density

QP Quadratic Programming

R1-SPM Rank-1 Support PARAFAC Machines

SPM Support PARAFAC Machines

STL Supervised Tensor Learning

STM Support Tensor Machines

STTM Support Tensor-Train Machines

STuM Support Tucker Machines

SVD Singular Value Decomposition

SVM Support Vector Machines

SVM-MPS Support Vector Machines with Multilinear PARAFAC Sampling

SVM-MTS Support Vector Machines with Multilinear Tucker Sampling

SVR Support Vector Regression

TL Tensor Learning

TR Tremors

TSL Tensor Subspace Learning

TT Tensor-Train

VT Volcano-tectonic

LIST OF SYMBOLS

j Square root of −1

R Field of real numbers

C Field of complex numbers

(·)T Transpose operator

(·)+ Pseudo-inverse operator

(·)∗ Complex conjugate

Tr(·) Trace operator

vec(·) Vectorization operator

· ∗
k
· Contraction operator over index k

· ◦ · Outer product

⟨·, ·⟩ Inner product

|| · ||F Frobenius norm

·⊗ · Kronecker product

·⊙ · Khatri-Rao product

·×n · Mode-n product

A⊗ Short notation for the Kronecker product of N factor matrices

A(n)
⊗ Short notation for the Kronecker product of N−1 factor matrices

A⊙ Short notation for the Khatri-Rao product of N factor matrices

A(n)
⊙ Short notation for the Khatri-Rao product of N−1 factor matrices

CONTENTS

1 INTRODUCTION . 19

1.1 Motivation and Justification . 19

1.1.1 Introduction to Machine Learning . 19

1.1.2 Introduction to Tensor Learning . 20

1.1.3 Introduction to Support Tensor Machines (STM) 21

1.1.4 Feature Extraction and Dimensionality Reduction 22

1.2 Thesis Contributions . 24

1.3 Applications for the Proposed Tensor Learning Approaches 25

1.3.1 Seismic Event Classification . 26

1.3.2 Photonic Output Classification . 28

1.4 Scientific Outputs . 29

1.5 Organization . 30

2 THEORETICAL BACKGROUND . 32

2.1 Tensor Algebra . 32

2.2 Tensor Decompositions and other Multidimensional Techniques 37

2.2.1 Parallel Factor Analysis (PARAFAC) . 38

2.2.2 Nested-PARAFAC decomposition . 40

2.2.3 Tucker Decomposition . 41

2.2.4 High-Order Singular Value Decomposition (HOSVD) 42

2.2.5 Multidimensional Discrete Fourier Transform (MDFT) 43

2.3 Machine Learning Basics . 44

2.3.1 Formulations of the Support Vector Machines (SVM) 47

2.3.2 Principal Component Analysis (PCA) . 48

2.4 Tensor Learning Concepts and Techniques 49

2.4.1 Support Tensor Machines (STM) . 52

2.4.1.1 Support PARAFAC Machine (SPM) . 52

2.4.1.2 Support Tucker Machine (STuM) . 55

2.4.2 Multilinear Principal Component Analysis 57

3 FRAMEWORK FOR CLASSIFICATION OF SEISMIC EVENTS . . . 59

3.1 Motivation . 59

3.2 Proposed Classification System . 61

3.2.1 Preprocessing . 63

3.2.2 Feature Extraction . 63

3.2.3 MPCA Application . 65

3.2.4 Classification . 65

3.3 Database Description . 65

3.4 Results . 68

3.4.1 MPCA with Full Projection . 69

3.4.2 MPCA with Dimensionality Reduction . 71

3.4.3 Effects of the Preprocessing Steps and Tensor Ranks 73

3.4.4 Computational Cost Analysis of the Framework 75

3.5 Conclusions . 77

4 MULTILINEAR DIMENSIONALITY REDUCTION 78

4.1 Motivation . 78

4.2 Proposed Nested PARAFAC Decompositions for Higher-Order Tensors . 80

4.2.1 Even-Order Nested PARAFAC Decomposition (EONPD) 81

4.2.2 Higher-Order Nested PARAFAC Decomposition (HONPD) 83

4.3 Low-Correlation Multilinear Dimensionality Reduction (LC-MDR) . . . 84

4.3.1 EONPD Modeling of the Input Correlation Tensor 85

4.3.2 Estimation Algorithm . 87

4.4 Classification system . 90

4.5 Results and Discussion . 92

4.5.1 Correlation Reduction with Full Projection 93

4.5.2 Correlation and dimensionality reduction 96

4.5.3 Computational Cost Analysis . 100

4.6 Conclusions . 102

5 MULTILINEAR SAMPLING IN SUPPORT VECTOR MACHINES

FOR PHOTONIC DATA CLASSIFICATION 104

5.1 Motivation . 104

5.2 Multilinear Sampling in Support Vector Machines 105

5.2.1 Multilinear Sampling . 106

5.2.2 Primal Formulation of the SVM with Multilinear Sampling 107

5.3 SVM with Multilinear PARAFAC Sampling (SVM-MPS) 108

5.3.1 Problem Formulation . 108

5.3.2 Quadratic Programming (QP) Formulation 109

5.3.3 Estimation Algorithm . 111

5.4 SVM with Multilinear Tucker Sampling (SVM-MTS) 112

5.4.1 Problem Formulation . 112

5.4.2 Quadratic Programming Formulation . 114

5.4.3 Estimation Algorithm . 117

5.5 Photonic Database Description . 118

5.6 Results . 120

5.6.1 Rank Impact on Accuracy and Execution Time 121

5.6.2 Computational Cost Analysis . 124

5.7 Conclusions . 126

6 CONCLUSIONS . 127

BIBLIOGRAPHY . 130

APPENDICES . 140

APPENDIX A – Support Vector Regression with Multilinear Sampling For-

mulation . 140

A.1 Primal Formulation of Support Vector Regression (SVR) 140

A.2 Primal Formulation of SVR with multilinear sampling using PARAFAC

Decomposition . 140

APPENDIX B – Packet Classification using Support Tensor Machines . . 143

19

1 INTRODUCTION

This thesis presents theoretical and applied contributions on tensor learning, aiming

to promote and disseminate this important branch of machine learning. The original contributions

of the present thesis can be divided into three different branches, all of them focusing in proposing

tensor-based approaches with advantages over existing vector and tensor methods.

The rest of this chapter is divided as follows. First, the topics and state of the art are

presented alongside the motivations for this work. After that, the contributions of this thesis are

described. Then, the applications in which the proposed techniques were tested are outlined, and,

in the sequel, the scientific outputs of this work are presented, with the organization of this work

presented in the following.

1.1 Motivation and Justification

In this section, the motivation and justification of this thesis contributions are pre-

sented, covering the topics of machine learning, tensor learning, tensor-based classifiers, feature

extraction and dimensionality reduction.

1.1.1 Introduction to Machine Learning

The goal of building systems that can adapt to their environments and learn from their

experience has attracted researchers from many fields, including computer science, engineering,

mathematics, physics, neuroscience, and cognitive science. Out of this research topic has come

a wide variety of learning techniques that, to this day, are transforming many industrial and

scientific fields. These techniques can be summarized in a common topic: Machine Learning

(ML).

ML encompasses a broad range of algorithms and computational modeling tools, that

are used for a wide variety of data processing applications (JORDAN; MITCHELL, 2015). Such

field of research is one of today’s most rapidly growing technical ones, lying at the intersection of

computer science and data science, and at the core of artificial intelligence (CARLEO et al., 2019).

Many applications now employ ML techniques, such as image and speech recognition, language

processing, physics, biomedical engineering, telecommunications, health care, manufacturing,

education, financial modeling, policing and etc (JORDAN; MITCHELL, 2015; CARLEO et al.,

2019).

20

1.1.2 Introduction to Tensor Learning

Usually, in ML applications, vectors are used to represent the input data. When

these inputs are represented as matrices or higher-order arrays (tensors), a vectorization of these

arrays is commonly done. However, the process of vectorization breaks the structure of the data,

which may lead to performance issues (MA et al., 2017), and also leads to input vectors with

very large dimensions. Dealing with high-dimensional data have some drawbacks. Firstly, the

computational complexity of the techniques become higher, as there is a high number of features

to be processed. Another problem is the so-called curse of dimensionality (BELARBI et al.,

2017), which refers to several phenomena that arise when dealing with with high-dimensional

data. Indeed, when the number of features is bigger or closer to the sample size, the ML

techniques tend to perform poorly.

From this perspective, multidimensional arrays, known as tensors, can be used

instead of vectors to eliminate the necessity of vectorizing the data. Tensors have their use

already demonstrated in several areas, as seen in (KOLDA; BADER, 2009) and in (COMON,

2014). Moreover, many multidimensional data applications exploit tensor learning approaches,

such as recognition of: face (YAN et al., 2006), gait (TAO et al., 2007a), fingerprint (WANG

et al., 2009), images (GUO et al., 2014), etc. An advantage of using tensors in comparison

to matrices is due to the fact that tensors allows us the use of multidimensional data, which

contrasts with two dimensions data represented by matrices, thus allowing a better understanding

and processing for a multidimensional perspective.

While matrix methods form the cornerstone of ML and data analysis, tensor methods

have been gaining space. Also, tensor representation of data signals open us possibilities to

exploit tensor decompositions, which has gained attention in some signal processing applications,

as described in (ALMEIDA et al., 2016) and in ML (SIDIROPOULOS et al., 2017; JI et al., 2019).

Moreover, different tensor decompositions, such as the Parallel Factor Analysis (PARAFAC) and

Tucker decompositions (KOLDA; BADER, 2009; HARSHMAN, 1970; TUCKER, 1966) can be

used during the data analysis and processing steps of a machine learning framework, providing

more flexibility when dealing with tensor data.

An alternative to conventional linear and vectorial learning approaches for ML

applications are the Tensor Learning (TL) methods, where many conventional learning techniques

can be generalized to take n-order tensors as inputs (TAO et al., 2007b). This avoids data

vectorization and the consequent destruction of the data structure (HE et al., 2017). Surely, in

21

tensor learning methods, the multidimensional structural information of the data is preserved,

providing a better multidimensional modeling (HE et al., 2017; TAO et al., 2007b).

As a result, the use of multilinear algebra, such as tensor decompositions, combined

with the concepts of tensor learning, over the last years, provided the development of tensor-based

versions of classical vector-based ML methods (SIDIROPOULOS et al., 2017). Tensor-based

ML techniques also alleviate the curse of dimensionality and reduce the number of unknown

parameters. Also, multilinear representations may help reduce the overfitting in vector-based

learning applications and exploit the discriminating nonlinear relationships of tensor data,

improving the performance of learning tasks (HE et al., 2017; ZHOU et al., 2013). As a

consequence, TL-based approaches appears as an interesting alternative to conventional vectorial

methods when multidimensional inputs are used (TAO et al., 2007b).

1.1.3 Introduction to Support Tensor Machines (STM)

The Support Tensor Machines (STM) deserves special attention. The STM technique

is a tensor-based version of the Support Vector Machines (SVM), which is one of the most

well-known and popular machine learning techniques, widely used on various classification and

regression problems (BURGES, 1998; MATHUR; FOODY, 2008; FOODY; MATHUR, 2004).

The STM extends the SVM to tensor patterns by constructing multilinear models to the weight

tensor (TAO et al., 2007b; CAI et al., 2006).

Several STM algorithms have been proposed, assuming different models for the

weight tensor, generally providing significant performance gains with respect to the SVM. In

(CAI et al., 2006), a STM algorithm is proposed using the PARAFAC, also known as Canonical

Decomposition (CANDECOMP) or Canonical Polyadic (CP), by assuming a rank-one structure

for the weight tensor, with application to text categorization. In (KOTSIA et al., 2012), this

technique is generalized for a PARAFAC weight tensor of higher rank, called Support PARAFAC

Machines (SPM). Generalizations of these STM models have been proposed, as the Support

Tucker Machines (STuM) (KOTSIA; PATRAS, 2011) and Support Tensor-Train Machines

(STTM) (CHEN et al., 2019). Moreover, in (HE et al., 2017), a linear kernelized STM model

was proposed.

22

1.1.4 Feature Extraction and Dimensionality Reduction

Feature extraction refers to the process of transforming raw data into numerical

features that can be processed while preserving the information in the original data set. It

generally yields better results than applying machine learning directly to the raw data (ZHOU et

al., 2012).

Generally, features can be categorized as: relevant, irrelevant, or redundant. In

feature selection process a subset from available features data are selected for the process of

learning algorithm. The best subset is the one with least number of dimensions that most

contribute to learning accuracy (KHALID et al., 2014). Therefore, a properly optimized feature

extraction is the key to effective model construction.

The most popular and widely used feature extraction approach is the Principal

Component Analysis (PCA), which is a simple non-parametric method used to extract the most

relevant information from a set of redundant or noisy data (KHALID et al., 2014). Other

example of vector-based feature extraction technique is the Independent Component Analysis

(ICA) (CHOI et al., 2005).

In contrast to vector-based feature extraction techniques, multidimensional feature

extraction can extend feature extraction approaches to multilinear structures. A good example

is the Multidimensional Discrete Fourier Transform (MDFT), the extension of the Discrete

Fourier Transform (DFT) to multilinear arrays (TOLIMIERI et al., 2012), which can be used to

perform Fourier analysis on multidimensional arrays, yielding features that can be used later in

classification (KARMAKAR et al., 2021).

On the other hand, recently, many applications of ML are increasing the amount

of vectorial and multidimensional data being generated. This leads to an enormous demand

for learning algorithms to extract useful information from these massive data (LU et al., 2011).

These massive multidimensional data are, sometimes, highdimensional, with a large amount of

redundancy, and only occupying a subspace of the input space (LU et al., 2011). Thus, for feature

extraction, dimensionality reduction is frequently employed to map highdimensional data to a

low-dimensional space while retaining as much information as possible (SHAKHNAROVICH;

MOGHADDAM, 2005). However, this is a challenging problem due to the large variability and

complex pattern distribution of the input data, and, sometimes, the limited number of samples

available for training in practice (LU et al., 2011; LU et al., 2006).

Dimensionality reduction techniques can be applied to avoid these issues by trans-

23

forming the data from a high-dimensional space into a low-dimensional space without losing

significant information of the original data set. When the input samples are correlated, they

may be confined into a subspace, where an adequate low-dimensional space representation is

possible. Within this context, linear techniques such as the Non-negative Matrix Factorization

(NMF) (PAUCA et al., 2006), Linear Discriminant Analysis (LDA) (THARWAT et al., 2017),

Canonical Correlation Analysis (CCA) (HARDOON et al., 2004) and PCA (WOLD et al., 1987)

are popular solutions for dimensionality reduction. In particular, the PCA is the most commonly

used dimensionality reduction technique. Indeed, this method is also powerful tool that trans-

forms a set of correlated data into uncorrelated data using an orthonormal basis (RODARMEL;

SHAN, 2002). However, said linear techniques may not be the best solution for tensor-based

data, as already said earlier, the vectorization of the data would break the multilinear structure.

Linear subspace learning algorithms are traditional dimensionality reduction tech-

niques that represent input data as vectors and solve for an optimal linear mapping to a lower-

dimensional space. Unfortunately, they often become inadequate when dealing with multidi-

mensional data. They result in very high-dimensional vectors, lead to the estimation of a large

number of parameters, and also break the natural structure and correlation in the original data

(LU et al., 2008; TAO et al., 2007b). Based on this motivations, Tensor Subspace Learning (TSL)

approaches (HE et al., 2005) may be a solution to said problems, which can take advantages of

tensor analysis into subspace learning applications.

Therefore, tensor dimensionality reduction is a hot research topic in machine learning,

which learns data representations by preserving the original data structure while avoiding convert

samples into vectors and solving the problem of high dimensionality of tensor data (NIU; MA,

2021). In this scope, the Multilinear Principal Component Analysis (MPCA) (LU et al., 2008),

an extension of the PCA for tensor patterns, is a multilinear dimensionality reduction technique

that can be exploited by tensor learning applications. As well as the PCA, the MPCA also

reduces the correlation among the variables, making the MPCA very suitable for classification

problems with multidimensional data sets, generating low-dimensional matrix or tensor patterns

that can be fed into classifiers (PORGES; FAVIER, 2011).

Another tensor-based dimensionality reduction technique is the multilinear extension

of the LDA proposed in (YAN et al., 2005), called Discriminant Analysis with Tensor Represen-

tation (DATER). In (YAN et al., 2006), another extension of the LDA was proposed, denoted by

Multilinear Discriminant Analysis (MDA), where multiple lower-dimensional discriminative

24

subspaces are derived for feature selection.

In the next sections, we describe the contributions of this thesis and the applications

in which these tensor learning contributions were used.

1.2 Thesis Contributions

As already mentioned, the present thesis proposes contributions in applied and

theoretical tensor learning. As said earlier, the original contributions of this thesis can be divided

into three different branches, all of them focusing in tensor-based approaches with advantages

over existing vector and tensor methods, by proposing the following.

First, a fully tensorial framework, which performs feature extraction, dimensionality

and classification is proposed. The framework was employed in seismic event classification. In

addition, no previous work has used tensor learning for classifying seismic events. Second, a new

dimensionality reduction technique called Low-Correlation Multilinear Dimensionality Reduc-

tion (LC-MDR) is proposed. The LC-MDR was also employed in seismic event classification.

And third, a multilinear sampling approach for tensor learning and data structuring is proposed,

which is employed within the SVM technique, joining the concept of multilinear sampling and

tensor decompositions, generating two classifiers, denoted by Support Vector Machines with

Multilinear PARAFAC Sampling (SVM-MPS) and Support Vector Machines with Multilinear

Tucker Sampling (SVM-MTS), which were used in photonic output classification.

Therefore, we present the following original contributions:

• A tensor-based learning framework for classifying volcanic-seismic events.

• A scalable tensorial methodology to use data from multiple seismology stations and

multiple sensors, to measure the events of the volcano;

• The joint use of multilinear techniques for feature extraction (MDFT), dimensionality

reduction (MPCA) and classification (SPM, STuM).

• The use of a complete database obtained with 2 stations and 3 channel sensors, during a

period of great activity of the Ubinas Volcano.

Furthermore, in the context of the proposed dimensionality reduction technique LC-MDR, we

also highlight the following contributions:

• Formulation of two high-order extensions of the Nested PARAFAC Decomposition (NPD),

namely Even-Order Nested PARAFAC Decomposition (EONPD) and High-Order Nested

PARAFAC Decomposition (HONPD);

25

• Development of a tensor modeling for the problem of multilinear projection with dimen-

sionality reduction using the EONPD;

• A multilinear dimensionality reduction technique based on the EONPD;

• Application of the LC-MDR in a volcano-seismic database using a full tensor classification

framework.

Then, the original contributions regarding the proposed multilinear sampling ap-

proach and both SVM-MPS and SVM-MTS techniques, can be highlighted as such:

• The approach of multilinear sampling;

• PARAFAC-based and Tucker-based modifications of the SVM algorithm;

• A Quadratic Programming (QP) formulation of the proposed problems;

• Application of the proposed technique for the classification of logic levels at the output of

a Mach-Zehnder Interferometer (MZI).

In addition to the contributions of Chapter 5, in Appendix A, a multilinear sampling formulation

for the Support Vector Regression (SVR) technique is proposed. However, due to time issues,

this formulation could not be tested.

In the following sections, the applications in which these tensor learning contributions

were used are presented.

1.3 Applications for the Proposed Tensor Learning Approaches

In order to to validate the techniques proposed in this thesis, it is important to choose

applications that fit the characteristics of the presented approaches. As the techniques are all

tensor-based, the datasets to be chosen must be arrangeable in the considered multidimensional

structure. Therefore, the proposed tensor learning approaches of this thesis were tested with the

following applications:

• Seismic event classification;

• Photonic output classification.

The proposed tensorial framework uses seismic event data as inputs, and its classification results

are used as validation. Additionally, the proposed LC-MDR will is tested with the same seismic

event data, where dimensionality reduction and feature transformation will be performed. Later

on, photonic data classification will be used to validate the proposed SVM-MPS, SVM-MTS

methods that exploits the multilinear sampling.

26

1.3.1 Seismic Event Classification

There is significant importance in detecting and classifying seismic events and the

reason is simple: volcano-seismic events can be considered a threat to humans and cities located

in nearby volcano areas (RAHMAN et al., 2016). For instance, volcanic eruptions such as

the ones of the Volcan de Fuego (Guatemala, June 2018), the Stromboli volcano (Italy, July

2019) and more recently, the Semeru volcano (Indonesia, November 2019 and December 2021),

showed the catastrophic effects that volcanic eruptions can make. Combined, these eruptions

destroyed a large amount of infrastructure and made hundreds of victims.

Due to advances in volcano monitoring, a large amount of seismic data is observed

worldwide and the analysis of these time series can be used to predict or detect the eruptive state

of volcanoes. Unfortunately, seismic data are still classified manually in many places, which

can lead to catastrophic errors and delays in the detection process, reinforcing the importance of

developing automatic classification systems (LARA et al., 2020).

Many methods for classification of seismic patterns were proposed over the past

several years, as cited in (PEIXOTO et al., 2021) and in (MALFANTE et al., 2018). Surely,

supervised learning has impacted the area of seismology in a positive way. For instance,

(MALFANTE et al., 2018) focuses on integrated and operational tools dedicated to the automatic

analysis of volcano-seismic signals using ML techniques. Moreover, the work of (MALFANTE

et al., 2018) outlines many ML techniques and approaches for seismic event classification, which

are all vector-based. In (SHIMSHONI; INTRATOR, 1998; SCARPETTA et al., 2005), ML

techniques were applied for pattern recognition of volcanic waveforms, in conjunction with an

Artificial Neural Network (ANN). In (LARA et al., 2020), an automatic classification system for

volcano-seismic events is proposed using the Empirical Mode Decomposition (EMD). Recently,

in (CURILEM et al., 2018), deep learning, by means of a Convolutional Neural Network (CNN),

was used to classify spectrograms of seismic events from a South American volcano.

Some works have used multilinear algebraic techniques applied to seismic signals. In

(VRABIE et al., 2006), a tensor modeling is used for a three-mode system that uses polarization,

distance and temporal modes, in seismic event waves separation, by using the HOSVD and

unimodal ICA to split the recorded three-mode data into two orthogonal subspaces: the signal

and noise subspaces. This decomposition allows the separation and identification of polarized

waves. However, as said earlier, there is no work on the literature that is similar to the one

proposed in this thesis, which employs a complete tensor-based framework.

27

Figure 1 – Seismic data tensor arrangements.

Source: Author.

Both the proposed tensorial framework and the LC-MDR technique were tested

and validated using seismic data obtained from the Ubinas volcano, in Peru, during a period of

great activity in 2009. The reason of such choice is because the seismic data was capable of

being organized as a tensor, which could be exploited by tensor learning techniques. Moreover,

there is no similar tensor-based approach for seismic event classification, making the proposed

framework an alternative to the conventional vector-based approaches of the literature, such as

the works of (REYNEN; AUDET, 2017), (KORTSTRÖM et al., 2016), (CURILEM et al., 2009),

etc.

As for the used database itself, it was collected from two stations of the Ubinas

volcano, located 70 km northeast of the city of Arequipa, in Peru, during a period of great activity

in 2009. The data catalog was constructed by experts of the Volcanological Observatory of the

Geophysical Institute of Peru (IGP). The data tensors are constructed by exploiting the use of

multichannel triaxial sensors, whereas the standard approach of the literature is using only a

single channel sensor. Moreover, the database used in this thesis was recorded with sensors that

have 3 channels: vertical, east and north, which shown to offer a better representation of the

seismic signals in comparison to single-channel sensors (LARA et al., 2020).

In addition, more than one seismic station is used to build the tensor patterns. Hence,

the three dimensional feature arrays are constructed as follows stations × channels × features.

The tensor representation of the data is preserved in the proposed approach, avoiding the earlier

mentioned drawbacks of the vectorization process. Figure 1 illustrates the arrangement performed

of the seismic data into tensor format.

28

1.3.2 Photonic Output Classification

All-optical processing is especially essential in systems and networks that want to

avoid optoelectronic conversions and therefore need high-speed data reception and transmission.

The idea of designing logic gates based on optic devices, such as optical couplers, resonators

and interferometers is intendend to solve the problems of optoeletronic conversion.

One of the devices that has been exploited in photonic and optic applications is the

fiber-optic MZI (ZETIE et al., 2000). Basically, numerical studies have used the solution of

the nonlinear Schrodinger equation to design MZIs capable of obtaining several logic functions

(KUMAR et al., 2014; ARAÚJO et al., 2015; CORREIA et al., 2017). Furthermore, optical

devices such as the MZI have been used in many computer and engineering applications, such as

optical sensors, optical modulators and others (SOUZA et al., 2018; GAYEN et al., 2012).

On the other hand, optical logic gates are a very important part in the development

of all-optical communication and optical signal processing networks (ALIPOUR-BANAEI et

al., 2017). Indeed, they represent the basic building block of optical devices and networks,

where all-optical processing is, in general, essential in systems and networks that want to avoid

optoelectronic conversions and exploit high-speed data reception and transmission. Several

researches have been done for designing logic gates based on optic devices, such as optical

couplers, resonators, interferometers etc (KUMAR et al., 2014; ARAÚJO et al., 2015).

Due to the characteristics and efficiency of the ML techniques, they can be considered

as adequate tools to the problems involved in the design of all-optical devices or materials. Indeed,

in recent works, multiple ML-based approaches have been applied to the design of photonic

devices or structures (MA et al., 2021; LIU et al., 2021).

When ML methods are used to model dynamic systems, such as photonic devices,

it is usual to construct a training database in which a scan of the input variables is carried out,

i.e. the training database is constructed by varying each input in a certain range at each time.

This scan of input of variables usually follows a multilinear sampling structure. This multilinear

sampling approach means that the samples were originally obtained obeying a multidimensional

structure with multiple dimensions.

For instance, this multidimensional structure for the samples is common in the optics

and photonics fields. In (XIE et al., 2020), an arbitrary ratio optical power splitter is designed

with data structured in a similar way as described. Moreover, in (KUMAR et al., 2014) and in

(ARAÚJO et al., 2015; CORREIA et al., 2017; SOUSA et al., 2014), logic gates are implemented

29

through MZIs, with sets of parameters and inputs that could exploit the multlinear sampling

structures presented. In addition, the works of (MENGU et al., 2022) and (TAHERSIMA et al.,

2019) that exploit inverse logic design in ML, perform the input and parameters scan, from MZIs

and other optic devices, similar as the multidimensional sampling approach.

Therefore, photonic devices output classification poses as a great application in

which the multilinear sampling approach can be used and validated.

In the present work, a MZI is used to generate photonic data. Inherent to the MZI

structure, both input values and both phase deviation values are captured into a 4-th order tensor.

One of the outputs of the interferometer is chosen to represent the class tags, either a logic 1

or logic 0, then, the proposed algorithms are used to perform classification of the output of the

photonic device.

1.4 Scientific Outputs

Three papers were produced from the content of this thesis (1 published, 2 submitted)

and one is in the process of conclusion:

– Peixoto, A.A.T., Fernandes, C.A.R., Lara, P.E.E., Inza, A., Mars, J.I., Metaxian, J.P.,

Dalla Mura, M. and Malfante, M., 2021. Tensor-based learning framework for automatic

multichannel volcano-seismic classification. IEEE Journal of Selected Topics in Applied

Earth Observations and Remote Sensing, 14, pp.4517-4529. This paper refers to the

contents of Chapter 3.

– Peixoto, A.A.T., Fernandes, C.A.R., Lara, P.E.E., Inza, A., 2022. Low-Correlation Multi-

linear Dimensionality Reduction Applied to Volcano-Seismic Classification. Submitted to

Multidimensional Systems and Signal Processing, in May 2022. Currently under review.

This paper refers to the contents of Chapter 4.

– Peixoto, A.A.T., Fernandes, C.A.R., 2022. Multilinear Sampling in Support Vector

Machines for Photonic Data Classification. In review before submission to specialized

IEEE Journal. This paper refers to the contents of Chapter 5.

– Peixoto, A.A.T., Fernandes, C.A.R., 2022. Packet Classification using Support Tensor

Machines. Submitted to XL Simpósio Brasileiro de Telecomunicações e Processamento

de Sinais. This paper is a new application of STMs and its content is not included in this

thesis. It is attached in Appendix B.

30

Figure 2 – Links between the main topic, approaches, chapters
and applications.

Source: Author.

1.5 Organization

This thesis is organized as follows:

– Chapter 2 is devoted to the presentation of essential theoretical background concepts of

this thesis, where tensor algebra, tensor decompositions and other multilinear techniques

(High-Order Singular Value Decomposition (HOSVD) and MDFT) are outlined. Later,

machine learning concepts, PCA and SVM formulations, tensor learning concepts and

tensor-based learning techniques are detailed;

– Chapter 3 presents the proposed supervised tensor-based learning framework for classifying

volcano-seismic events. First, seismic event classification is motivated, then, each step of

the framework is detailed, and after, the semisc dataset is described. The results presented

in this chapter showed the performance of the proposed framework in comparison to other

techniques of the literature.

– Chapter 4 presents the proposed multilinear dimensionality reduction technique called LC-

MDR. The tensor decompositions EONPD and HONPD are proposed and the LC-MDR is

formulated using the EONPD. Results showing the performance of the proposed technique

against other dimensionality reduction techniques of the literature are presented at the end

31

of the chapter;

– Chapter 5 proposes a multilinear sampling approach and two modifications of the SVM

classifier (SVM-MPS and SVM-MTS), where two tensorial decompositions are considered

for the slack variables, the PARAFAC and Tucker. Then, the modified SVM algorithm

is used to classify the photonic outputs obtained from a Mach-Zehnder interferometer.

Results presented in the chapter showed better results for the proposed techniques in

comparison to other classifiers of the literature, also emphasizing the multilinear structure

adopted;

– Chapter 6 summarizes our conclusions and lists some research perspectives in this thesis

subject;

– A multilinear sampling formulation for the SVR technique is attached in Appendix A;

– The submitted paper mentioned in Section 1.4 is attached in Appendix B.

This thesis links the topic of tensor learning, proposing theoretical and applied contributions

with the adopted approaches, as Figure 2 illustrates.

32

2 THEORETICAL BACKGROUND

This chapter is devoted to the presentation of essential background concepts of this

thesis, where tensor algebra, tensor decompositions, machine learning and tensor learning are

detailed. First, it is introduced a background of tensor algebra. Afterwards, tensor representations

and basic operations are shown. Then, we outline some tensor decompositions, where we first

present the PARAFAC and the nested version of the PARAFAC, the Nested-PARAFAC. Next,

the Tucker decomposition is described and, further on, the HOSVD and the MDFT are shown. In

the sequence, machine learning concepts are introduced and detailed, where classical techniques,

such as the SVM and PCA are described. Finally, tensor learning basics and two important

techniques, the MPCA and the STMs, are detailed.

2.1 Tensor Algebra

Multilinear algebra is the algebra of arrays with order higher than two. These high

order arrays are called tensors. The theory of tensors is nowadays also known as tensor algebra.

The word “tensor” was first introduced in the XIX century (ALMEIDA, 2007) but its use as we

know nowadays was only introduced between the 60s and 70s by Kruskal (KRUSKAL, 1977),

Richard A. Harshman (HARSHMAN, 1970) and L. R. Tucker (TUCKER, 1966), who were the

pioneers on the development of tensor decompositions, analysis and factorizations for third order

tensors.

A N-th order tensor is a multilinear mapping. If the space basis associated to the

mapping are fixed, then a tensor can be represented by a finite array, or table, of N coordinates.

Hence, a N-th order tensor is interpreted by an array whose elements can be accessed by N

indices. A tensor can be also called multidimensional array or multi-way array. The notation

used in this thesis is presented now: scalars are denoted by lower-case letters (x,y,...), vectors

by lower-case boldface letters (x,y,...), matrices by upper-case boldface letters (X,Y,...) and

tensors by calligraphic letters (X ,Y ,...). To retrieve the i-th element of vector x, we use xi, the

element (i,j) of matrix X is denoted by [X]i, j or xi, j, and, the element (i1, ..., iN) of the N-th order

tensor X is denoted by [X]i1,...,iN or xi1,...,iN . The transpose of the matrix X is denoted by XT ,

its Moore-Penrose inverse (pseudoinverse) is denoted by X+, its complex conjugate is denoted

by X∗, the trace operation, which is defined to be the sum of elements on the main diagonal

(from the upper left to the lower right), is given by Tr[X] and X:,i represents the i-th column of

33

Figure 3 – A Vector, a matrix and a tensor

Source: Author.

the matrix X.

In Fig. 3 we can see a representation of a vector, a matrix and a third order tensor, for

illustrative purposes. As a tensor is a multilinear form and has its own associated linear vector

space, common linear operations that are valid for matrices can be extended and used for tensors.

For instance, we have:

Definition 2.1.1 (Inner product). Let X ∈ RI1×I2×I3×...×IN and Y ∈ RI1×I2×I3×...×IN be N-th

order tensors, the inner product between X and Y is given by:

⟨X ,Y ⟩=
I1

∑
i1=1

I2

∑
i2=1

...
IN

∑
iN=1

xi1,i2,...,iN yi1,i2,...,iN , (2.1)

where X and Y are said to be orthogonal if ⟨X ,Y ⟩ = 0.

Definition 2.1.2 (Outer product). Let X ∈ RI1×I2×I3×...×IN and Y ∈ RJ1×J2×J3×...×JM be N-th

and M-th order tensors, the outer product between X and Y is described as follows:

[X ◦Y]i1,i2,...,iN , j1, j2,..., jM = xi1,i2,...,iN y j1, j2,..., jM , (2.2)

where “◦” denotes the outer product. The result of [X ◦Y] is a tensor with order equal to the

sum of the orders of X and Y (a (N +M)-th order tensor).

The rank of a tensor is a concept inherited from matrix algebra. An intuitive way to

describe the rank of a tensor is as follows:

Definition 2.1.3 (Rank-1 tensor (KOLDA; BADER, 2009)). Let X ∈ CI1×I2×I3×...×IN be a N-th

order tensor. X is a rank-1 tensor if it can be represented as the outer product of N vectors u(1)

∈ CI1 , u(2) ∈ CI2 ,..., u(N) ∈ CIN , as follows:

34

Figure 4 – A rank-1 third order tensor

Source: (KOLDA; BADER, 2009).

xi1,i2,...,iN = u(1) ◦u(2) ◦ ...◦u(N). (2.3)

The vectors u(N) are so called the components of X . As an example, a rank-1 matrix is given by

the outer product of two vectors. Figure 4 illustrates a rank-1 third order tensor.

Definition 2.1.4 (Rank of a tensor (KOLDA; BADER, 2009)). The rank of a tensor X ∈
RI1×I2×I3×...×IN , denoted by R, is defined as the minimum number of rank-1 components that

gives X as a linear combination.

Definition 2.1.5 (Frobenius norm). The Frobenius norm of an N-th order tensor X ∈RI1×I2×I3×...×IN

is defined as:

||X ||F =

√√√√
I1

∑
i1=1

I2

∑
i2=1

. . .
IN

∑
iN=1
|xi1,i2,...,iN |2. (2.4)

The Frobenius norm can be also expressed in terms of the inner product ||X ||F =
√
⟨X ,X ⟩.

Definition 2.1.6 (Tensor fiber (KOLDA; BADER, 2009)). The mode-n tensor fiber of a N-th

order tensor X ∈ RI1×I2×I3×...×IN is defined as the vector formed by fixing every index but the

in-th.

Furthermore, considering a third order tensor Y ∈ RI1×I2×I3 , its mode-1, mode-2,

and mode-3 fibers are given, respectively, by y·i2i3 ∈ RI1 , yi1·i3 ∈ RI2 and yi1i2· ∈ RI3 , where “·”
denotes the varying index. In Fig. 5 we can see an illustration of tensor fibers in different modes

of a third order tensor.

We may also define the tensor slices, which are two-dimensional sections of a tensor,

defined by fixing all but two indices (KOLDA; BADER, 2009). As Figure 6 shows, from left to

35

Figure 5 – View of mode-1, mode-2 and mode-3 fibers of a third order
tensor.

Source: (KOLDA; BADER, 2009).

Figure 6 – View of mode-1, mode-2 and mode-3 slices of a third order
tensor.

Source: (KOLDA; BADER, 2009).

right we have the mode-1 (or first-mode) slices, mode-2 (or second-mode) slices and mode-3 (or

third-mode) slices, denoted respectively by Yi1.., Y.i2. and Y..i3 .

Definition 2.1.7 (Tensor unfolding (KOLDA; BADER, 2009)). The mode-n unfolding, also

known as matricization, of a N-th order tensor X ∈ RI1×I2×I3×...×IN yields a matrix X[n] ∈
RIn×I1I2...In−1In+1...IN whose elements are obtained from the tensor X in the following way:

[X[n]]in, j = [X]i1,...,iN , j = 1+
N

∑
u=1
u̸=n

(iu−1)
u−1

∏
v=1
v̸=n

Iv.

Hence, as an example, the unfoldings of an arbitrary third order tensor X ∈RI1×I2×I3

are given by X[1] ∈RI1×I2I3 , X[2] ∈RI2×I1I3 and X[3] ∈RI3×I1I2 . We may also note that the mode-n

matrix unfolding can be seen as the concatenation of the mode-n fibers along the matrix columns.

The mode-n unfolding matrices of a tensor can also be obtained by stacking the tensor slices.

Definition 2.1.8 (Vectorization). The operation vec() : RI1×I2×I3×...×IN → RI1I2I3...IN denote the

vectorization operator, which transforms a tensor X ∈ RI1×I2×I3×...×IN into a vector vec(X) ∈

36

RI1I2I3...IN with components defined as:

[vec(X)] j = [X]i1,i2,...,iN , j = i1 +
N

∑
n=2

(in−1)
n−1

∏
v=1

Iv. (2.5)

The inverse process (turning a vector into a tensor) is called "tensorization".

Definition 2.1.9 (Mode-n product (KOLDA; BADER, 2009)). The mode-n product between a

N-th order tensor X ∈ RI1×I2×I3×...×IN and a matrix U ∈ RJ×In is defined as:

[X ×n U]i1,...,in−1, j,in+1,...,iN =
In

∑
in=1

xi1,i2,...,iN u j,in, j ∈ 1, . . . ,J, (2.6)

with “×n” being the mode-n product operator. The mode-n product is a good way for representing

linear transformations involving tensors.

Definition 2.1.10 (Contraction). The contraction operation between two tensors X and Y ,

that share a common dimension (Ip = Jq = K, with 1 ≤ p ≤ N and 1 ≤ q ≤ M), is denoted by

Z = X ∗
k

Y and is defined as the following sum over the common mode (ip = jq = k):

zi1,...,ip−1,..., j1,..., jq−1,..., jM ,...,iN =
K

∑
k=1

xi1,...,ip−1,k,...,iN y j1,..., jq−1,k,..., jM . (2.7)

Next, some matrix operations that will be used further on in this thesis are presented,

beginning with an alternative equation for the inner product, in matrix notation, using the

vectorization definition:

⟨X ,X ⟩= Tr[X(n)(X(n))T] = vec(X(n))T vec(X(n)). (2.8)

Similarly:

⟨X ,Y ⟩= Tr[X(n)(Y(n))T] = vec(X(n))T vec(Y(n)). (2.9)

Now, two matrix products are presented, the Kronecker and the Khatri-Rao matrix product. Both

products are important in the next sections and chapters.

Definition 2.1.11 (Kronecker product). The Kronecker product between matrices A ∈ RI×J and

B ∈ RK×L is given by (SIDIROPOULOS et al., 2017):

A⊗B =

a1,1B ... a1,JB
...

aI,1B ... aI,JB

 ∈ RIK×JL. (2.10)

37

Definition 2.1.12 (Khatri-Rao product). The Khatri-Rao (column-wise Kronecker) product

between matrices with the same number of columns A ∈ RI×K and B ∈ RJ×K is given by

(SIDIROPOULOS et al., 2017):

A⊙B =
[
A:,1⊗B:,1 ... A:,K⊗B:,K

]
∈ RIJ×K. (2.11)

Finally, given N matrices A(1), ...,A(N), short notations for the Khatri-Rao and

Kronecker products are given by:

A⊙ = A(N)⊙ . . .⊙A(2)⊙A(1) (2.12)

and

A⊗ = A(N)⊗ . . .⊗A(2)⊗A(1). (2.13)

Additionally, for the Khatri-Rao and Kronecker products between N-1 of these matrices (all but

the n-th matrix), the short notations are respectively given by:

A(n)
⊙ = A(N)⊙ . . .⊙A(n+1)⊙A(n−1)⊙ . . .⊙A(1) (2.14)

and

A(n)
⊗ = A(N)⊗ . . .⊗A(n+1)⊗A(n−1)⊗ . . .⊗A(1). (2.15)

2.2 Tensor Decompositions and other Multidimensional Techniques

In the last section, it was presented an introduction to multilinear algebra. Based

on these concepts, we present now the tensor decompositions that will be used in the rest of

this thesis. These decompositions, also known as multi-way factor analysis, can be viewed,

depending on the approach and point of view, as generalizations of PCA or Singular Value

Decomposition (SVD) to higher order arrays. In general, the decompositions of high order arrays

can be viewed as generalizations of matrix decompositions.

A multidimensional variable can be interpreted as a tensor, so, the analysis of a

tensor in terms of its decomposed factors is useful in problems where a multilinear junction of

different factors must be identified or separated from the measured data. In this context, a tensor

decomposition of an observed variable, can separate the data originated from different sources,

allowing the development of powerful signal processing and learning tools.

38

In the following, the PARAFAC decomposition of third order and N-th order tensors

(or three-way and N-way arrays) is presented and, after, the Nested-PARAFAC is shown, since

both are important to the understanding of the applications and methods encountered in this

thesis. Furthermore, the Tucker decomposition and the HOSVD are described.

2.2.1 Parallel Factor Analysis (PARAFAC)

The PARAFAC decomposition was first presented by (HITCHCOCK, 1927) and

further developed by Harshman in (HARSHMAN, 1970) and Carroll & Chang in (CARROLL;

CHANG, 1970), in different works in 1970. It was referred in Carroll & Chang’s work as

Canonical Decomposition, abbreviated to CANDECOMP. The analysis that Harshamn showed

in (HARSHMAN, 1970) and in (HARSHMAN; LUNDY, 1984) is called PARAFAC decom-

position, which has been extensively studied in the literature and applied on several areas

(KOLDA; BADER, 2009). The PARAFAC decomposition can also be referred by the acronyms

CANDECOMP and CP.

The use of tensor models and decompositions, more precisely the PARAFAC, was

found to be useful in ICA applications (LATHAUWER et al., 2000a; CHOI et al., 2005). ICA

is a special case of blind source separation and is defined as a computational method used to

separate a multivariate signal into additive independent subcomponents, contrasting to the fact

that the PARAFAC decomposition can describe the basic structure of high order cumulants

of multivariate data (BRO, 1997), (HARSHMAN; LUNDY, 1984), thus, showing that tensor

decompositions can be an interesting way to deal with multidimensional data (LATTIN et al.,

2003).

The formulation of the PARAFAC decomposition of an arbitrary third order tensor

X ∈ CI1×I2×I3 can be expressed, in scalar notation, as:

xi1,i2,i3 =
Q

∑
q=1

a(1)i1,qa(2)i2,qa(3)i3,q, (2.16)

where Q is the rank of the PARAFAC decomposition and a(1)i1,q, a(2)i2,q and a(3)i3,q are the elements of

the three factor matrices A(1) ∈ RI1×Q, A(2) ∈ RI2×Q and A(3) ∈ RI3×Q.

The tensor X can also be expressed in the form of outer products between the factor

39

Figure 7 – PARAFAC decomposition of a third-order tensor.

Source: (PEIXOTO, 2017).

matrices, as such:

X =
Q

∑
q=1

A(1)
.q ◦A(2)

.q ◦A(3)
.q , (2.17)

It can be viewed from (2.17) that X is a sum of outer products known as “trilinear model” or

“trilinear decomposition”. Fig. 7 illustrates X as sum of Q outer products.

The mode-n unfolding of a third order PARAFAC decomposition can be expressed

as:

X[n] = A(n)[A(n)
⊙]T ∈ CIn×I1I2I3/In, (2.18)

for n= 1,2,3, where A(n)
⊙ ∈ CI1I2I3/In×Q is given by (2.14). For instance, X[1] = A(1)[A(3)⊙

A(2)]T ∈ CI1×I3I2 .

The generalization of the PARAFAC decomposition for N-th order tensors, such as

X ∈ RI1×I2×I3×...×IN , is given by:

xi1,i2,i3,...,in =
Q

∑
q=1

a(1)i1,qa(2)i2,q...a
(N)
iN ,q, (2.19)

where a(n)in,q is an element of the factor matrix A(n) ∈ RIn×Q, with n = 1,2,...,N and in = 1,2,...,IN .

Alongside the advantages of representing and analyzing multidimensional data,

another important feature of the PARAFAC is its uniqueness feature. The PARARAC de-

composition of tensors is unique up to permutation and scaling indeterminacy, under certain

circumstances (KRUSKAL, 1977; STEGEMAN; SIDIROPOULOS, 2007). An uniqueness

proof was made by Kruskal in (KRUSKAL, 1977). Also, a generalization of the uniqueness

results of (KRUSKAL, 1977) to tensors of any order was given in (SIDIROPOULOS; BRO,

2000) by N. Sidiropoulos and R. Bro, who also applied tensor models to telecommunications

and provided the uniqueness conditions to complex tensor models in (SIDIROPOULOS et al.,

40

Figure 8 – Block Diagram of the NPD.

Source: (PEIXOTO; FERNANDES, 2019).

2000). Furthermore, in (LATHAUWER, 2006), a great overview of the PARAFAC uniqueness

properties are outlined.

The PARAFAC decomposition of tensors with rank greater than 1 can be unique up

to scaling and permutation of factors, unlike matrix decompositions which are mostly not unique

for ranks less than 1.

2.2.2 Nested-PARAFAC decomposition

The Nested PARAFAC Decomposition (NPD) of a 4-th order tensor Y ∈RI1×I2×I3×I4

is defined as (ALMEIDA; FAVIER, 2013; PEIXOTO; FERNANDES, 2019):

yi1,i2,i3,i4 =
Q1

∑
q1=1

Q2

∑
q2=1

a(1)i1,q1
a(2)i2,q1

bq1,q2a(3)i3,q2
a(4)i4,q2

, (2.20)

where A(1) ∈ RI1×Q1 , A(2) ∈ RI2×Q1 , B ∈ CQ1×Q2 , A(3) ∈ RI3×Q2 and A(4) ∈ RI4×Q2 . Fig. 8

shows a block diagram of the NPD. By concatenating the indices i3 and i4 in the following way:

yi1,i2, j1 = yi1,i2,i3,i4 , where j1 = (i3−1)I4 + i4, for 1≤ j1 ≤ J1, with J1 = I3I4, eq. (2.20) can be

rewritten as:

yi1,i2, j1 =
Q1

∑
q1=1

a(1)i1,q1
a(2)i2,q1

w[1]
j1,q1

, (2.21)

where w[1]
j1,q1

is an element of matrix W[1] ∈ RJ1×Q1 , which is the mode-1 unfolded matrix of the

tensor W ∈ RQ1×I3×I4 , defined by:

w[1]
q1,i3,i4 =

Q2

∑
q2=1

bq1,q2a(3)i3,q2
a(4)i4,q2

. (2.22)

It can be concluded from (2.21) and (2.22) that Y ∈ RI1×I2×J1 can be viewed as the

nesting of two PARAFAC decompositions. Indeed, Y follows a PARAFAC model with factor

matrices A(1), A(2) and W[1], with W[1] being an unfolded matrix of a PARAFAC tensor with

factors B, A(3) and A(4). The mode-1 unfolding of Y can be obtained as follows:

41

Y[1] = A(1)[W[1]⊙A(2)]T ∈ CI1×J1I2. (2.23)

Other unfoldings of Y can be obtained similarly as in (2.23).

The nesting property can also be expressed differently. In a similar manner, Y

can be expressed as a PARAFAC decomposition with factor matrices U[2], A(3) and A(4), with

U[2] ∈ RJ2×Q2 being an unfolded matrix of a PARAFAC tensor with factors A(1), A(2) and B,

where J2 = I1I2.

Finally, the NPD can also be expressed using tensor notation, as a double contraction,

as follows:

Y = B ∗
q1

R(1) ∗
q2

R(2), (2.24)

where R(1) ∈ CI1×I2×Q1 and R(2) ∈ CI3×I4×Q2 are given by r(1)i1,i2,q1
= a(1)i1,q1

a(2)i2,q1
and r(2)i3,i4,q2

=

a(3)i3,q2
a(4)i4,q2

, respectively. Note that the factor matrix B interacts with the two PARAFAC tensors

R(1) and R(2) by means of the contraction operation.

2.2.3 Tucker Decomposition

The Tucker decomposition, proposed by L. Tucker in 1966 (TUCKER, 1966),

decomposes a tensor into a set of matrices that interact with a core tensor. It is a more general

and flexible model than the PARAFAC. Indeed, the PARAFAC decomposition is a particular

case of the Tucker model when the core tensor is superdiagonal, with all dimensions equal to the

rank Q.

Then, for a third order tensor X ∈ RI1×I2×I3 , the Tucker decomposition can be

expressed as:

X = G ×1 A(1)×2 A(2)×3 A(3), (2.25)

where A(1) ∈ RI1×Q1 , A(2) ∈ CI2×Q2 and A(3) ∈ RI3×Q3 are the three factor matrices of the

decomposition, whereas G ∈ RQ1×Q2×Q3 is the core tensor. Figure 9 illustrates the Tucker

decomposition of a third order tensor.

In scalar form, (2.25) is given as such:

xi1,i2,i3 =
Q1

∑
q1=1

Q2

∑
q2=1

Q3

∑
q3=1

gq1,q2,q3a(1)i1,q1
a(2)i2,q2

a(3)i3,q3
, (2.26)

42

Figure 9 – Tucker decomposition of a third-order tensor.

Source: (PEIXOTO; FERNANDES, 2019).

where a(1)i1,q1
, a(2)i2,q2

, and a(3)i3,q3
, are elements of the matrices A(1), A(2) and A(3), with gq1,q2,q3

being an element of the core tensor.

The mode-n unfolding of a third-order Tucker decomposition can be expressed as:

X[n] = A(n)G[n][A(n)
⊗]T ∈ CIn×I1I2I3/In , (2.27)

for n = 1,2,3, where A(n)
⊗ ∈ RI1I2I3/In×Q1Q2Q3/Qn is given by (2.15) and G[n] ∈ CQn×Q1Q2Q3/Qn is

the mode-n unfolding of G .

Initially described as a three-mode extension of the PARAFAC and SVD, the Tucker

decomposition may actually be generalized to higher mode analysis. The Tucker decomposition

for a N-th order array is given by:

xp1,p2,...,pN =
Q1

∑
q1=1

Q2

∑
q2=1

...
QN

∑
qN=1

gq1,q2,...,qN a(1)p1,q1a(2)p2,q2...a
(N)
pN ,qN , (2.28)

where a(1)p1,q1 , a(2)p2,q2 , ..., a(N)
pN ,qN , are elements of the matrix factors of the Tucker decomposition

A(1) ∈ RP1×Q1 , A(2) ∈ RP2×Q2 , ..., A(N) ∈ RPN×QN , and gq1,q2,...,qN forms the core tensor of the

Tucker decomposition G ∈ RP1×P2×...×PN . In tensor notation, we have (2.28) written as:

X = G ×1 A(1)×2 A(2)× ...×N A(N). (2.29)

2.2.4 High-Order Singular Value Decomposition (HOSVD)

The HOSVD, also known as Multinear SVD, is one of the most important tools

used in multidimensional data processing, commonly applied to the extraction of relevant

43

information from multi-way arrays (LATHAUWER et al., 2000b; LATHAUWER et al., 1994;

LATHAUWER; VANDEWALLE, 2004). For arrays with dimensions bigger than two, the SVD

cannot be used unless the matricization is applied on the data, thus, the HOSVD generalizes

the SVD for tensors and can be viewed as a special case of the Tucker decomposition with

orthogonal factor matrices.

Given a N-th order tensor X ∈ RI1×...×IN , the HOSVD is given by (LATHAUWER

et al., 2000b):

X = S ×1 U(1)×2 U(2) . . .×N U(N), (2.30)

where U(n) ∈ CIn×In , for n = 1, ...,N, is a unitary matrix and S ∈ CI1×...×IN is the core tensor.

The matrix U(n) is calculated as the left singular matrix of the transpose of the mode-n unfolded

matrix X(n) ∈ CI1..In−1In+1...IN×In of the tensor X . A compact HOSVD can also be defined with

dimensionality reduction being carried out by neglecting the smallest singular values. In this

case, we have U(n) ∈CIn×Rn and S ∈ CR1×...×RN , where Rn < In is the number of singular values

used in the nth mode, for n = 1, ...,N.

Contrarily to the SVD, whose singular value matrix is diagonal, the core tensor S of

the HOSVD is not diagonal. In fact, the tensor S is all-orthogonal and ordered (LATHAUWER

et al., 2000b). This difference between the SVD and HOSVD leads to a significant difference in

the orthogonality of the transformed data when dimensionality reduction is carried out by the

PCA and HOSVD-based methods.

2.2.5 Multidimensional Discrete Fourier Transform (MDFT)

In mathematical analysis and applications, multidimensional transforms are often

used to analyze the frequency content of signals in a domain of two or more dimensions. The

multidimensional DFT (MDFT) of a multilinear array X ∈ RN1×N2×...×NP is a function of

P discrete variables, and defined by complex array xk1,k2,...,kP (GUESSOUM; MERSEREAU,

1986):

xk1,k2,...,kP =
N1−1

∑
n1=0

(
e
− j2π

N1
k1n1

(
N2−1

∑
n2=0

e
− j2π

N2
k2n2...

(
NP−1

∑
nP=0

e
− j2π

N2
kPnPxn1,n2,...,nP

)))
, (2.31)

with n1 = 1,...,N1, n2 = 1,...,N2, ..., nP = 1,...,NP. Applications of the MDFT are vast, such as

in (TSUI et al., 2008) and in (KARMAKAR et al., 2021). Additionally, the MDFT can be

44

computed using Fast Fourier Transform (FFT) methods (TOLIMIERI et al., 2012; GUESSOUM;

MERSEREAU, 1986).

2.3 Machine Learning Basics

Machine learning may be defined as the programming of computers to optimize

a performance criterion, generally using data examples or past experience, in order to build

systems that can adapt to their environments and learn from their experience. Additionally, ML

is most useful in cases where it is not possible to directly write a computer program to solve a

given problem, needing example or experience. Indeed, one case where learning is necessary is

when human expertise does not exist, when humans are unable to explain their expertise, when

the problem to be solved changes in time or depends on the particular environment (ALPAYDIN,

2020). Hence, it is generally preferable to have general purpose systems that can adapt to their

circumstances, rather than explicitly writing a different program for each special circumstance.

Progress in ML has been driven over the years by the development of learning

algorithms, such as ANNs and its variations (MITCHELL, 1997; LIANG et al., 2018), Genetic

Algorithms (HOLLAND, 1992), discriminant and component analysis (THARWAT et al., 2017;

WOLD et al., 1987), etc. More recently, the development of approaches such as: glsGAN

(CRESWELL et al., 2018), Deep Learning (DENG; YU, 2014), Natural Language Processing

(NLP) (CHOWDHARY, 2020), Cognitive Computing (GUPTA et al., 2018), Tensorflow (PANG

et al., 2020), among others, have put ML into the spotlight of research topics.

In particular, ML is separated into several types regarding the learning processes,

which are: supervised, semi-supervised, un-supervised, and reinforcement learning. In this

thesis we will be focusing on the first type of learning, the supervised, but the other three are

very well documented in the literature (PARDO; SBERVEGLIERI, 2002), (ALPAYDIN, 2020),

(JORDAN; MITCHELL, 2015).

In fact, supervised learning is the task of learning a function that maps an input to an

output based on example input-output pairs (ZHU; GOLDBERG, 2009). A supervised learning

algorithm analyzes the training data and produces an inferred function, which can be used for

mapping new examples. Figure 10 illustrates the process of building a supervised model based

on labeled data.

Correspondingly, an important branch of machine learning and computational intelli-

gence is classification, which is the process of categorizing information, where ideas, objects or

45

Figure 10 – Supervised Learning.

Source: Author.

data are recognized, differentiated, understood and then, separated in different tags (PARDO;

SBERVEGLIERI, 2002), (ALPAYDIN, 2020). Data classification can be achieved with methods

aimed to determine whether or not the data contains specific information, feature, or behavior,

which permits the identification of the correct class (KULKARNI et al., 1998; HART et al.,

2000).

A well-known learning algorithm that has been widely used on various classification

problems is the SVM (VAPNIK, 2013), (VAPNIK, 1999), mostly employed to solve two-

class problems (MATHUR; FOODY, 2008), but also used on multi-class solutions (FOODY;

MATHUR, 2004). Therefore, it has been widely used for pattern classification and regression

problems (BURGES, 1998). For instance, in (JIA et al., 2007), the SVM was used in fingerprint

image matching, obtaining excellent results, whereas in (BEGG et al., 2005), gait recognition

was achieved by means of SVM. Another example is the work of (LI et al., 2006), which

employs SVM in image processing, thus highlighting the SVM as a versatile classifier, as said

earlier, being capable of handling a multitude of applications and data. Also, the work of

(STEINWART, 2005) showed very consistent classification results with the SVM method against

other techniques of the literature.

In this thesis, we focus on the SVM classifier because of its advantages over other

techniques. Among these advantages of the SVM, we highlight its versatility, where it can be

used for data such as images, text, audio etc (CERVANTES et al., 2020). Indeed, it can be

used for data that is not regularly distributed and have unknown distribution. In addition, The

SVM provides a very useful technique within it, known as kernel, and by the application of an

associated kernel function, complex problems can be solved.

Likewise, the SVM generally performs well when there is a clear indication of

separation between classes. Furthermore, the SVM can be used when total number of samples is

less than the number of dimensions and performs well in terms of memory. SVM has a nature of

46

convex optimization which is very helpful as we are assured of optimality in results. It is also

important to note that these SVM advantages are carried over to its multilinear extensions, such

as the STMs, which will be used in the next chapters of this thesis.

Still in the topic, the literature is rich in methods for data classification, apart from

the above mentioned SVM, we can cite: Logistic Regression, Naive-Bayes, k-Nearest Neighbors

(KNN) or k-NN, Decision Trees, ANNs and Genetic Algorithms. Starting with the Logistic

Regression method, this technique is capable of classifying data based on calculated scores to

predict the target class, like a linear classifier, bringing the relation between categorical dependent

variables and the independent variables (NICK; CAMPBELL, 2007). Next, the Naive-Bayes is a

classifier that uses the Bayes Theorem. It predicts membership probabilities for each class such

as the probability that given record or data point belongs to a particular class, where the class

with the highest probability is considered as the most likely class (YANG, 2018).

The k-NN, in turn, is a non-parametric, supervised learning classifier, which uses

proximity to make classifications or predictions about the grouping of an individual data point.

While it can be used for either regression or classification problems, it is typically used as a

classification algorithm, working off the assumption that similar points can be found near one

another (JIANG et al., 2007). The decision tree methods are non-parametric supervised learning

algorithms, which are utilized for both classification and regression tasks. It has a hierarchical,

tree structure, which consists of a root node, branches, internal nodes and leaf nodes, where the

leaf nodes represent all the possible outcomes within the dataset (MYLES et al., 2004).

The ANN, on the other hand, is a family of learning techniques, which are comprised

of node layers, containing an input layer, one or more hidden layers, and an output layer. Each

node, or artificial neuron, connects to another and has an associated weight and threshold. If

the output of any individual node is above the specified threshold value, that node is activated,

sending data to the next layer of the network. Otherwise, no data is passed along to the next

layer of the network (LIAO; WEN, 2007). Neural networks rely on training data to learn

and improve their accuracy over time. Lastly, the Genetic Algorithms are a new category

of evolutionary techniques that uses elements of evolutionary processes to solve search and

optimization problems, iteratively improving a large number of possible solutions and combining

them with each other (TANG et al., 1996).

Moving on from classification, the PCA is a standard tool in modern data analysis,

in diverse fields, from neuroscience (HAN et al., 2018) to computer graphics (YUNQI et al.,

47

2009) because it is a simple, non-parametric method for extracting relevant information from

confusing data sets. With minimal effort PCA provides a bridge for how to reduce a complex

data set to a lower dimension, revealing the sometimes hidden, simplified structures that often

underlie it (SHLENS, 2014).

The central idea of PCA is to reduce the dimensionality of a data set consisting of

a large number of interrelated variables, while retaining as much as possible of the variation

present in the data set. This is achieved by transforming correlated variables into a new set of

variables, the principal components (PCs), which are uncorrelated, and are ordered so that the

first few retain most of the variation present in all of the original variables.

In this thesis, the aforementioned central idea of the PCA is used to reduce the di-

mensionality of datasets, reducing the number of features while retaining maximum information.

Following are some reasons for performing dimensionality reduction: i) dimensionality reduction

helps in data compression, and hence reduced storage space, ii) it reduces computation time, iii)

it removes redundant features. Additionally, the PCA helps separating the data, allowing better

visualization.

Next, the formulations for both SVM and PCA are described and commented.

2.3.1 Formulations of the Support Vector Machines (SVM)

The SVM is a data classification technique developed in the 90’s at the AT&T

Bell Laboratories by (CORTES; VAPNIK, 1995). SVM algorithms are based on the idea of

structural risk minimization (SRM) and it gave rise to new ways of training polynomial, neural

networks and radial basis function (RBF) classifiers. SVM has proven to be effective for many

classification tasks (BURGES, 1998).

Let us consider the SVM in the binary classification setting. Assume that we have a

data set consisting of xp samples, for p = 1,...,P, of labels yp ∈ {-1, 1}, and we wish to select, the

hyperplane that leaves the maximum margin between the two classes. This is the reason why the

SVM is sometimes called maximum margin classifier. Figure 11 illustrates the SVM hyperplane.

The primal formulation of the SVM cost function is given by:

min
w

1
2
⟨w,w⟩+C

P

∑
p=1

ξp, (2.32)

48

Figure 11 – SVM hyperplane illustration.

Source: Author.

subject to

yp (⟨w,xp⟩+b)≥ 1−ξp, (2.33)

ξp ≥ 0, (2.34)

for p = 1, ...,P, where w ∈ CM is the weight vector, C is the relaxing constant, ξp is the slack

variable, yp is the output, xp is the input vector and b is the bias term.

In addition, the dual formulation of the SVM cost function is given by:

min
α

P

∑
p=1

αp−
1
2

P

∑
p1=1

P

∑
p2=1

αp1αp2yp1yp2K (xp1,xp2) (2.35)

subject to

P

∑
p=1

αpyp = 0, (2.36)

0≤ αp ≤C, (2.37)

for p = 1, ...,P, where αp is the Lagrange multipliers and K (·, ·) is the kernel function.

2.3.2 Principal Component Analysis (PCA)

This subsection presents the basic PCA formulation. The PCA can be solved by using

the eigenvalue decomposition or by the means of the SVD. Figure 12 illustrates the application

of the PCA in high correlated data. Next, the basic mathematics behind the PCA is outlined,

using the eigendecomposition method.

49

Figure 12 – Dataset after using PCA and before.

Source: Author.

Let us consider a data set consisting of a N samples, with M attributes per sample,

thus forming a matrix X ∈ RM×N , so, first we extract the mean of X:

X̂ =
1
N

N

∑
j=1

X:, j. (2.38)

X̃ = X− X̂. (2.39)

Then, we find the covariance matrix of X̃:

CX =
1
N

X̃X̃T
,∈ RM×M. (2.40)

After that, we calculate the eigendecomposition of CX and obtain the transform matrix PX ∈
RM×M. Matrix PX contains the eigenvectors of X̃. Thus, we put X̃ in a new basis, obtaining Y,

as follows:

Y = PX
T X̃ ∈ RM×N . (2.41)

An important remark is the fact that dimensionality reduction can be achieved by selecting

columns of matrix PX, for instance, by selecting K < M columns, when transformation is

performed in (2.41), Y has dimensions RK×N . An interesting remark about the PCA is that the

principal components are orthogonal.

2.4 Tensor Learning Concepts and Techniques

Tensor decomposition techniques have shown great successes in machine learning

and data science by extending classical algorithms based on matrix factorization to multi-

50

modal and multi-way data (HASHEMIZADEH et al., 2020). As examples in ML we may

cite clustering, dimensionality reduction, latent factor models, subspace learning, and well

beyond (SIDIROPOULOS et al., 2017). The concept of tensors in subspace learning was

already demonstrated in the mid 2000s in the works of (HE et al., 2005) and (YAN et al., 2005).

Moreover, the work of (LU et al., 2006) showed promising applications of a tensor learning

algorithm in classification of tensor objetcs.

As usual, in ML applications, vectors are the arrays used to represent the input

and output data. When these inputs and outputs are represented as matrices or higher-order

arrays (tensors), a vectorization of these arrays are almost always done. However, the process of

vectorization breaks the structure of the data, which may lead to performance issues (MA et al.,

2017), and also leads to input vectors with very large dimensions. However, when the training

data size is relatively small compared to the feature vector dimension, it may easily result in the

so called curse of dimensionality (CHEN et al., 2019; LI et al., 2006).

Hence, the concept of tensor learning was developed to extend the vector-based

learning algorithms to accept tensors as input (TAO et al., 2007b). TL avoids data vectorization

and the consequent destruction of the data structure (HE et al., 2017). In tensor learning

methods, the multidimensional structural information of the data is preserved, providing a

better multidimensional data modeling. Moreover, common tensor learning tasks may include

(HASHEMIZADEH et al., 2020):

• Tensor regression

• Tensor completion

• Tensor dimensionality reduction

• Tensor classification

These learning tasks form the bulk of tensor learning techniques and methods scope.

Tensor regression is the extension of linear regression to the multilinear setting (GUO

et al., 2011) whereas tensor completion is the process of inferring a tensor from a subset of

observed entries (LIU et al., 2012). Tensor dimensionality reduction is a hot research topic in

machine learning, which learns data representations by preserving the original data structure

while avoiding convert samples into vectors and solving the problem of high dimensionality

of tensor data (NIU; MA, 2021). If the entries of a tensor random variable are correlated, the

tensor samples may be confined into a subspace, where a low-dimension representation can be

achieved, which makes worthwhile the study of a specialized tensor-based feature extraction

51

technique (LU et al., 2008).

In this context, it is worth mentioning the MPCA (LU et al., 2008), an extension of

the PCA for tensor patterns. As well as the PCA, the MPCA reduces data dimensionality and the

correlation among the variables. The MPCA is very suitable for classification problems with

multidimensional data sets, generating low-dimensional matrix or tensor patterns that can be fed

into classifiers (PORGES; FAVIER, 2011).

Another tensor-based dimensionality reduction technique is the multilinear extension

of the LDA proposed in (YAN et al., 2005), called Discriminant Analysis with Tensor Represen-

tation (DATER). In (YAN et al., 2006), another extension of the LDA was proposed, denoted

by MDA, where multiple lower-dimensional discriminative subspaces are derived for feature

selection. In these works, iterative algorithms similar to the Alternating Least Squares (ALS)

algorithm are used to maximize tensor-based discriminant criteria.

And lastly, tensor classification is the exact process of classifying and categorizing

data that is in tensor format. The work of (TAO et al., 2005) proposed in 2005 a Supervised

Tensor Learning (STL) method, which uses a rank-one tensor to capture the data structure,

thereby alleviating the overfitting and curse of dimensionality problems in the conventional

SVM. The STL classifier proposed in (TAO et al., 2005) learns a series of projection vectors to

determine the class label of a measurement according to a multilinear decision function, all in an

iterative procedure. This work was extended in (TAO et al., 2007b) and it has been extensively

studied and expanded in recent years, which led to the development of multilinear models called

STMs.

Furthermore, in the context of STL, preserving the structural information and ex-

ploiting the discriminating nonlinear relationships of tensor data are crucial for improving the

performance of learning tasks (HE et al., 2017), then, the STM operates on high-order data

directly to facilitate the learning process.

In addition, there exist many tensor decomposition models (CP/PARAFAC, Tucker,

Tensor-Train, HOSVD, etc.) which can be used in modeling ML systems and such decomposi-

tions can generate different STL techniques and models. Several modifications of the STM were

proposed, such in (KOTSIA et al., 2012), where the SPM technique is modeled for a PARAFAC

weights tensor of high rank. In (KOTSIA; PATRAS, 2011), the STuM is proposed by considering

the Tucker decomposition and in (CHEN et al., 2019), the Support Tensor-Train Machine STTM

is presented, which employs a general and scalable tensor train as the parameter model.

52

In the next subsections we provide formulations for important tensor learning tech-

niques, the SPM and STuM classifiers, derived from the original STL framework (TAO et al.,

2007b), and, the MPCA.

2.4.1 Support Tensor Machines (STM)

A standard SVM model is based on vector inputs and cannot directly deal with

matrices or higher dimensional data structures, which are very common in real-life applications

(CHEN et al., 2019). The SVM realization on such high dimensional inputs is by reshaping

each sample into a vector. However, besides breaking down the data structure, when the training

data size is relatively small compared to the feature vector dimension, it may easily result in

poor classification performance, known as curse of dimensionality (CHEN et al., 2019; LI et al.,

2006).

The STM extends the SVM to tensor patterns by constructing multilinear models to

the weights tensor (TAO et al., 2007b). STM techniques have found application in many areas.

The work of (ZHOU et al., 2013) applies a regression STM-based model in neuroimaging and,

in (CALVI et al., 2019), STM is used in financial forecasting, while the work of (GUO et al.,

2014) exploits the tensor learning in hyperspectral image classification. The authors of (MA et

al., 2017) used a STM to detect bubble defects in Lithium-ion polymer cell sheets. A complete

STM overview with references and recent works can be found in (XIANG et al., 2018).

2.4.1.1 Support PARAFAC Machine (SPM)

The technique proposed in (TAO et al., 2007b) is a STM-type classifier based on

the assumption that the weight tensor follows a rank-one PARAFAC model. In (KOTSIA et

al., 2012), the higher-rank version of the STM is derived, under the assumption that the weight

tensor is expressed as a higher-rank PARAFAC decomposition, which is called SPM. This

allows multiple projections along each mode. These algorithms implement multiple SVM-type

problems iteratively, one for each mode of the tensor.

The main concept of the STM is the same as for the SVM, where the hyperplane

equation is given by:

f (Yp) = ⟨Yp,W ⟩+b, (2.42)

53

where Yp is the p-th sample tensor data and W is the weight tensor. Then, the generic STM

primal problem formulation for third-order tensors can be expressed as follows:

min
W

1
2
⟨W ,W ⟩+C

P

∑
p=1

ξp, (2.43)

subject to

yp (⟨W ,Yp⟩+b)≥ 1−ξp, (2.44)

ξp ≥ 0, n = 1, ...,P, (2.45)

where W ∈ CR1×R2×R3 , C is the relaxing constant, ξp is the p-th slack variable, yp ∈ {-1,1}

represents the class tag of the p-th sample, Yp ∈CR1×R2×R3 and b is the bias term. The multilinear

decision function that classifies the set of tensors patterns is given by f (Yp)= sign(⟨Yp,W ⟩+b),

where sign(·) is the sign function.

The trilinear SPM assumes that the weight tensor follows the PARAFAC decom-

position: W = ∑
Q
q=1 A(1)

.,q ◦A(2)
.,q ◦A(3)

.,q , where A(1) ∈ RR1×Q, A(2) ∈ RR2×Q and A(3) ∈ RR3×Q

are factor matrices and Q denotes the rank of the tensor. The problem (2.43)-(2.45) is solved

iteratively by estimating, in an alternating way, one of the factor matrices using the previous

estimations of the other factor matrices. Each iteration of the algorithm is composed of three

steps, each factor matrix U(n) being estimated in one step using the standard SVM, by fixing

the other factor matrices to their values obtained in the previous iterations. In what follows,

the optimization problem defined in (2.43)-(2.45) is expressed in such a way that it can be

solved using the standard (vector-based) SVM, assuming that all the factor matrices are known,

excepting for one of them.

By using (2.8), the problem (2.43)-(2.45) can be reformulated in terms of the mode-n

unfoldings of W and Yp, for some n ∈ [1,3], in the following way:

min
W[n]

1
2

Tr
[
W[n](W[n])T

]
+C

P

∑
p=1

ξp, (2.46)

subject to

yp

([
TrW[n](Y[n]

p)T
]
+b
)
≥ 1−ξp, (2.47)

ξp ≥ 0, p = 1, ...,P, (2.48)

where W[n],Y[n]
p ∈ CRn×R1R2R3/Rn . Moreover, using (2.18) and assuming that all the factor

matrices are known, excepting A(n), (2.46)-(2.48) is reexpressed as (KOLDA; BADER, 2009;

54

KOTSIA et al., 2012):

min
A(n)

1
2

Tr
[
A(n)(A(n)

⊙)T A(n)
⊙ (A(n))T

]
+C

P

∑
p=1

ξp, (2.49)

subject to

yp

(
Tr
[
A(n)(A(n)

⊙)T (Y[n]
p)T

]
+b
)
≥ 1−ξp, (2.50)

ξp ≥ 0, p = 1, ...,P, (2.51)

with A(n)
⊙ ∈ RR1R2R3/Rn×Q.

By defining B(n)=(A(n)
⊙)T A(n)

⊙ ∈RQ×Q, Ã(n)
=A(n)(B(n))1/2 ∈RRn×Q, with (B(n))1/2

being a square matrix with full row rank, and Ỹ(n)
p = Y[n]

p A(n)
⊙ (B(n))−1/2 ∈ RRn×Q, we get:

Tr
[
A(n)(A(n)

⊙)T A(n)
⊙ (A(n))T

]
= Tr

[
Ã(n)

(Ã(n)
)T
]
=

vec
(

Ã(n)
)T

vec
(

Ã(n)
)
.

(2.52)

Tr
[
A(n)(A(n)

⊙)T (Y(n)
p)T

]
= Tr

[
Ã(n)

(Ỹ(n)
p)T

]
=

vec
(

Ã(n)
)T

vec
(

Ỹ(n)
p

)
.

(2.53)

Eqs. (2.49)-(2.50) can be rewritten as:

min
Ã(n)

1
2

vec
(

Ã(n)
)T

vec
(

Ã(n)
)
+C

P

∑
p=1

ξp, (2.54)

subject to

yp

(
vec
(

Ã(n)
)T

vec
(

Ỹ(n)
p

)
+b
)
≥ 1−ξp, (2.55)

ξp ≥ 0, p = 1, ...,P, (2.56)

The problem formulated in (2.54)-(2.55) is the format of a standard vector-based SVM, with

input given by vec(Ỹ(n)
p) and weight vector vec(Ã(n)

). After finding Ã(n) using the SVM, the

original factor matrix can be computed as: A(n) = Ã(n)
(B(n))−1/2, for n = 1, ...,3,. The matrix

B(n) is assumed to be known as it depends on the other factor matrices, which are also assumed

known at this stage of the algorithm. It is important to reemphasize that (B(n))1/2 must be

invertible.

The algorithm continues by iteratively computing each factor matrix assuming that

the other factor matrices are fixed and it stops when the estimated classes do not change from

one iteration to another. Moreover, the factor matrices are initialized randomly. Uniqueness

55

properties of the PARAFAC decomposition were not considered in this algorithm, as the factor

matrices does not need to be unique in order perform classification. This assumption is validated

in Chapters 3 and 4, as uniqueness conditions were not imposed and yet classification results

achieved great performance. When Q = 1, the above presented technique will be denoted by

Rank-1 Support PARAFAC Machines (R1-SPM), otherwise, it will be denoted simply by SPM.

It is important to mention here that the initial values for the matrices U(l), are

randomly chosen. That means: at each iteration we solve for the parameters of the mode l while

keeping the parameters for all other modes fixed.

2.4.1.2 Support Tucker Machine (STuM)

Roughly, the main idea of the STuM is similar to that of the SPM, which aims at

finding a multilinear decision function that classifies a set of P tensors Xp ∈ RR1×R2×R3 , with p

= 1,...,P. However, instead of assuming a PARAFAC decomposition for the weight tensor, the

STuM assumes that W follows a Tucker decomposition, as such (KOTSIA; PATRAS, 2011):

W = G ×1 A(1)×2 A(2)×3 A(3), with G ∈ CQ1×Q2×Q3 being the core tensor, A(n) ∈ CRn×Qn , for

n = 1,2,3, the factor matrices and (Q1,Q2,Q3) the trilinear rank of W . In scalar form the tensor

W is given by wr1,r2,r3 = ∑
Q1
q1=1 ∑

Q2
q2=1 ∑

Q3
q3=1 gq1,q2,q3a(1)r1,q1a(2)r2,q2a(3)r3,q3 .

The optimization problem is the same as in (2.43)-(2.45), rewritten as (2.46)-(2.48).

Similarly as in the SPM, an iterative approach is adopted by the STuM, in which the factor

matrices associated with each of the modes are estimated keeping all the other factor matrices and

the core tensor fixed. However, the iterations of the STuM have an additional step for computing

the core tensor G , leading to a total of four steps per iteration.

Using (2.27), (2.46)-(2.48) can be expressed as:

min
A(n)

1
2

Tr
[
A(n)G(n)(A(n)

⊗)T A(n)
⊗ (G(n))T (A(n))T

]
+C

P

∑
p=1

ξp, (2.57)

subject to

yp

(
Tr[A(n)G(n)

(
A(n)
⊗
)T (

Y[n]
p

)T
]+b

)
≥ 1−ξp, (2.58)

ξp ≥ 0, p = 1, ...,P, (2.59)

with A(n)
⊗ ∈ CR1R2R3/Rn×Q1Q2Q3/Qn and G(n) ∈ CQn×Q1Q2Q3/Qn . Similarly as in the SPM case,

let us define C(n) = G(n)(A(n)
⊗)T A(n)

⊗ (G(n))T ∈ RQn×Qn , Ã(n)
= A(n)(C(n))1/2 ∈ RRn×Qn , with

56

(C(n))1/2 being full row rank, and Ỹ(n)
p = Y[n]

p A(n)
⊗ (G(n))T (C(n))−1/2 ∈ RRn×Qn . Using these

definitions, the problem formulated in (2.57) and (2.59) can then be rewritten as (2.54)-(2.55).

As earlier mentioned, the cost function in (2.54)-(2.55) follows the standard SVM

format, with input vec(Ỹ(n)
p) and weight vector vec(Ã(n)

). Similarly as for the SPM, the STuM

computes each factor matrix assuming that the other factor matrices and the core tensor are

known and equal to their previous estimations. The estimation of the core tensor is obtained using

the following vectorization of tensor W (KOTSIA; PATRAS, 2011): vec(W[1]) = A⊗vec
(

G[1]
)
,

where A⊗ = A(3)⊗A(2)⊗A(1) ∈ CR1R2R3×Q1Q2Q3 . Indeed, using this equation and (2.46)-(2.48)

can be rewritten for n = 1 as:

min
G[1]

1
2

vec
(

G[1]
)T

AT
⊗A⊗vec

(
G[1]

)
+C

P

∑
p=1

ξp (2.60)

subject to

yp

(
vec
(

G[1]
)T

(A⊗)T vec
(

Y[1]
p

)
+b
)
≥ 1−ξp, (2.61)

ξp ≥ 0, p = 1, ...,P. (2.62)

Finally, by defining D=(A⊗)T A⊗ ∈RQ1Q2Q3×Q1Q2Q3 , g̃(1)=D1/2vec(G[1])∈RQ1Q2Q3 ,

where D1/2 is a square matrix, and ỹ(1)p = D−1/2AT
⊗vec(Y[1]

p) ∈ RQ1Q2Q3 , we get:

min
G[1]

1
2

(
g̃(1)
)T

g̃(1)+C
P

∑
p=1

ξp (2.63)

subject to

yp

((
g̃(1)
)T

ỹ(1)p +b
)
≥ 1−ξp, (2.64)

ξp ≥ 0, p = 1, ...,P. (2.65)

The final step of each STuM iteration consists in finding g(1) through the standard SVM procedure

in (2.63)-(2.65), and then, estimating the core tensor as: G[1] = D−1/2g̃(1). Moreover, the factor

matrices and the core tensor are randomly initialized, and the stop criterion is achieved when the

estimated classes do not change from one iteration to another. Also, matrices C(n))1/2 and D1/2

must be invertible.

Similarly as for the SPM algorithm, no uniqueness condition is imposed for the

STuM, and yet the technique achieved high classification rates in Chapters 3 and 4.

The theoretical benefit of the STuM lies in the use of the Tucker decomposition, a

generic decomposition with a high number of free parameters. In (PEIXOTO et al., 2021), the

57

Figure 13 – Illustration of the MPCA approach.

Source: Adapted from (SWIFT et al., 2021).

StuM has shown a great ability to perform classification of volcano-seismic classification events,

outperforming other classifiers.

As it can be viewed, the STuM has more parameters to be estimated in comparison

to the SPM and one extra step for estimating the core tensor. On the other hand, the STuM has a

greater degree of freedom for fitting the weight tensor than the PARAFAC decomposition, which

is a great advantage for performing classification.

2.4.2 Multilinear Principal Component Analysis

A typical tensor object in pattern recognition or machine vision applications is com-

monly in a high-dimensional tensor space. Recognition methods operating on this space suffer

from the curse of dimensionality, where handling high-dimensional samples is computationally

expensive and many classifiers perform poorly in high-dimensional spaces if the number of

training samples is small. Therefore, dimensionality reduction in high-dimensional spaces is

sometimes mandatory, which can be achieved by techniques such as the MPCA.

The MPCA is an extension of the PCA for tensors and a powerful method for

dimensionality reduction and feature extraction in tensor patterns, often used in classification

tasks (LU et al., 2011). The MPCA carries out a multilinear projection with dimensionality

reduction using orthonormal transformation matrices, capturing most of the data variance (LU

et al., 2008; LU et al., 2006). However, contrarily to the standard PCA that generates fully

uncorrelated data, the MPCA is not able to create perfectly uncorrelated variables. The MPCA

has a wide range of applications, such as gait, face, fingerprint, age, and fault recognition (LU et

al., 2008; LU et al., 2006; PORGES; FAVIER, 2011).

Considering a set of P samples of a Nth-order tensor random variable, denoted by

Xp ∈ CI1×...×IN , for 1≤ p≤ P, the MPCA can be summarized as follows:

58

1. Subtract the average: X̂p =Xp−X̄ ∈CI1×...×In , for 1≤ p≤P, where X̄ = 1
P ∑

P
p=1 Xp ∈

CI1×...×IN .

2. Calculate the HOSVD of the (N +1)-th order tensor X̂ ∈ CI1×...×IN×P that contains all

the tensor samples X̂p, denoting by U(n) ∈CIn×Rn the factor matrices of the first N modes,

with Rn ≤ In and 1≤ n≤ N.

3. Calculate the projected data tensor Y ∈ CR1×...×RN×P:

Y = X̂ ×1 U(1)T ×2 U(2)T
. . .×N U(N)T

. (2.66)

The MPCA follows the above steps iteratively until convergence is achieved. If Rn = In, for

n = 1, ...,N, no dimensionality reduction is carried out, therefore, throughout the next chapters,

this method will be denoted by Multilinear Principal Component Analysis - Full Projection

(MPCA-FP). On the other hand, if Rn < In for some n, dimensionality reduction is performed.

This late approach will be denoted by Multilinear Principal Component Analysis - Dimensionality

Reduction (MPCA-DR) throughout the rest of this work. A similar abbreviation will be used

for the PCA, i.e., Principal Component Analysis - Full Projection (PCA-FP) and Principal

Component Analysis - Dimensionality Reduction (PCA-DR). Figure 13 illustrates the projection

process of the MPCA.

It is important to note that, contrarily to the standard PCA that generates fully

uncorrelated output data, the MPCA is not able to create perfectly uncorrelated variables.

59

3 FRAMEWORK FOR CLASSIFICATION OF SEISMIC EVENTS

This chapter begins the presentation of the original contributions of this thesis,

presenting a supervised tensor-based learning framework for classifying volcano-seismic events

from signals recorded at the Ubinas volcano, in Peru, during a period of great activity in 2009.

The proposed method presented in this chapter is fully tensorial, as it integrates the three main

steps of the automatic classification system (feature extraction, dimensionality reduction and

classifier) in a general multidimensional framework for tensor data, joining tensor learning

techniques such as the MPCA and the STuM. To the best of the authors’ knowledge, no previous

work in the literature has used tensor learning techniques for the classification of seismic events.

By exploiting the use of multiple multichannel triaxial sensors, operating simulta-

neously in two seismic stations, the tensor patterns are constructed as: stations × channels ×
features. The multidimensional structure of the data is then preserved, avoiding the tensor vec-

torization that often leads to a feature vector with a large dimension, which increases the number

of parameters and may cause the “curse of dimensionality”. Moreover, the array vectorization

breaks down the multidimensional structure of the data, which usually leads to performance

degradation.

The results showed a good performance of the proposed multilinear classification

system, significantly outperforming its vectorial counterparts. The best result was obtained with

the STuM classifier alongside with the MPCA.

This chapter is divided as follows. First, we present the motivations for developing

the said framework. Next, the proposed framework and classification system are outlined. Further

on, the adopted database is described and the results discussed.

3.1 Motivation

Volcanic eruptions such as the ones of the Volcan de Fuego (Guatemala, June 2018),

the Stromboli volcano (Italy, July 2019) and more recently, the Semeru volcano (Indonesia,

November 2019 and December 2021), showed the catastrophic effects of volcanic eruptions

and their impact on nearby infrastructure. Combined, these eruptions destroyed a large amount

of buildings and, unfortunately, made hundreds of victims. Volcano-seismic events can be

considered a threat to humans and cities located in nearby volcano areas (RAHMAN et al.,

2016).

60

The automatic detection of volcano-seismic events is of great importance to society

due to the violent effects of volcanic eruptions. Indeed, even small volcanic eruptions can be

catastrophic to people and small towns surrounding volcanoes, such as the cities next to the

valleys of the volcanic chain in southern Peru, which have to deal with this threat constantly. In

fact, volcanic activities have been a latent threat to humans since the existence of humanity.

Fortunately, the seismic activity of a volcano can be observed by seismic sensors.

When the seismicity of the volcanic increases, the probability of eruption gets high. However, it

is necessary to determine whether or not the activity will result in an eruption or in any other

harmful event. The volcano-seismic events can be categorized into five main classes (MCNUTT,

2005): Long Period (LP), Tremors (TR), Explosion (EX), Volcano-tectonic (VT), and Hybrid

(HB). The problem of detecting these events can be elucidated by analyzing the time series of the

signals, in order to predict or detect the eruptive state of a volcano. However, in many places, the

volcanic-seismic data series are still analyzed manually, which may lead to errors or big delays

in the detection of the events.

The classification of seismic patterns has shown great improvement over the past

years, with many methods being developed (MALFANTE et al., 2018). Indeed, supervised

learning has drawn a great attention of the scientific community in the area of seismology. For

instance, in (SHIMSHONI; INTRATOR, 1998), machine learning techniques are applied for the

recognition of volcanic waveforms, with a hierarchy of ANNs being used. In (MALFANTE et al.,

2018), the authors try to distinguish natural seismic waveforms of earthquakes from waveforms

of man-made explosions.

In (SCARPETTA et al., 2005), automatic classification of local seismic signals and

volcano-tectonic earthquakes are proposed with a method based on a supervised neural networks.

The work (CURILEM et al., 2009) aimed to construct a system able to classify seismic signals

for the Villarrica volcano, one of the most active volcanoes in South America, with an ANN and a

genetic algorithm. New techniques for classifying seismic signals can be found in (ZHOU et al.,

2012), using of the cepstral domain with the SVM classifier. In addition, the work (MALFANTE

et al., 2018) uses attributes in the temporal, spectral, and cepstral domains for the extraction

of features, along with the SVM method. In (LARA et al., 2020), an automatic classification

system for volcano events is presented using the EMD. More recently, the work (CURILEM

et al., 2018) explored deep learning by using CNNs to classify spectrograms of seismic events

from a South American volcano.

61

A few works have used multilinear techniques applied to seismic signals. In (VRA-

BIE et al., 2006), a three-mode model, using polarization, distance and temporal modes, is used

for seismic event waves separation, taking into account the specific structure of signals that

are recorded with these arrays, providing a data-structure-preserving processing. In (PAULUS;

MARS, 2006), the authors used multilinear techniques such as Multicomponent Wideband

Spectral-Matrix Filtering (MC-WBSMF) on geophysical data to separate interfering wavefields

or to compute the direction of arrival (DOA) on a vector-sensor array. However, to the best of

the authors’ knowledge, no previous work in the literature has used tensor learning techniques

for the classification of seismic events.

In this thesis, supervised tensor learning is used for classifying volcanic-seismic

events. In particular, a tensor-based learning framework is proposed to classify the five main

events of a volcano from seismic signals recorded at the Ubinas volcano, in Peru. The data

tensors are constructed by exploiting the use of multichannel triaxial sensors. Indeed, contrary to

the standard approach of the literature of using only a single channel sensor, the database used in

this thesis was recorded with sensors that have 3 channels: vertical, east and north. The use of

triaxial sensors has shown to offer a better representation of the seismic signals in comparison to

single-channel sensors (LARA et al., 2020).

The use of multiple sensors, operating simultaneously in more than one seismic

station, is also exploited to build the tensor patterns. The three dimensional feature arrays

are constructed as follows stations × channels × features. The tensor representation of the

data is preserved in the proposed approach, avoiding the earlier mentioned drawbacks of the

vectorization process.

The present framework can be viewed as a multilinear alternative of the conventional

linear ML approaches in seismic classification. The novelty of the proposed method is a frame-

work for processing seismic signals as tensors and classifying them using tensorial classifiers,

which provided superior accuracy in comparison to the conventional SVM, as shown in the

results section.

3.2 Proposed Classification System

In this section, the proposed classification system based on a tensorial framework

is presented. Fig. 14 illustrates the main steps of the tensor-based framework for classifying

the volcano-seismic events. Firstly, a preprocessing step, consisting in signal conditioning and

62

Figure 14 – Steps of the classification system.

Source: (PEIXOTO et al., 2021).

instrumental correction, is performed. Then, the features are extracted from time, frequency,

Power Spectral Density (PSD) and Hilbert domains, with a total of 56 attributes being calculated

for each one of the 5136 signals. This number of attributes was determined after running

preliminary tests in order to find the value that presents the best results. It is assumed that the

seismic stations record the same event.

After that, the multilinear dimensionality reduction technique MPCA is applied and,

finally, the classifiers are trained and validated, using three versions of the STM: the low-rank

R1-SPM, the higher-order SPM and the STuM. The STM preserves the structural information

of data tensor and alleviate the small sample size problem, in addition to reduce the number of

parameters. Moreover, as earlier mentioned, the PARAFAC and Tucker decomposition were

chosen due to their characteristics that are well-suited to the problem considered in the present

work.

The learning framework of the classification system is fully tensorial. Indeed,

excepting the instrumental correction, all the steps involved use tensor-based techniques. The

multidimensional structure of the data is then preserved and the number of parameters to be

estimated is diminished. To the best of the authors’ knowledge, no previous work in the literature

has used tensor-based machine learning algorithms to classify volcano-seismic events.

One of the advantages of the proposed framework is due to the fact that a tensor

representation of the data allows the use of tensorial methods in its processing, exploring its

diversity. With the MPCA it is possible to extract characteristics from the data set and also

project the input tensor into a new multidimensional basis, thus eliminating correlation and

retaining only useful information to be used on the classification process. If the data input is not

in tensor form, a tensorization step is performed. In the following, the steps of the proposed

63

Figure 15 – Waveform of a LP signal before (upper) and after instrumental correc-
tion (lower).

Source: (PEIXOTO et al., 2021).

system are detailed.

It is also possible to skip the dimensionality reduction step if necessary, meaning that

the MPCA output will only project the data into a new basis, maintaining the same dimensions

as the input. The final output of the proposed framework is the correct classification of the data.

3.2.1 Preprocessing

The first step of the preprocessing stage is the subtraction of the time-average mean

of the signals. After that, the instrumental correction is done by computing the deconvolution

associated with the transfer function of the sensor, expressing the seismic signals in their

original unity, similarly as in (LARA et al., 2020). The goal is to standardize the velocity

waveforms obtained by the sensors, originally measured in Seismic Counts, to the unit meter

per second (m/s), making the classifier independent on the type of sensor used. More details

about the instrumental correction are given in (HAVSKOV; ALGUACIL, 2016). Next, the

signal is smoothed by a Savitzky-Golay filter (SAVITZKY; GOLAY, 1964) and then, a bandpass

Butterworth filter from 0.8 to 45 Hz is applied. Fig. 15 illustrates an LP signal before and after

the preprocessing.

3.2.2 Feature Extraction

The next step of the classification system is feature extraction. The samples were

arranged in 2×3×3000 third-order tensors, where the first mode represents the station (UBW

and UBN), the second mode the channels (HHE, HHN and HHZ) and the third mode the number

of time samples. After the feature extraction, the tensor patterns are organized as 2× 3× 56

64

Table 1 – Feature description.
Fourier PSD Hilbert Time

Windowed average 10 10 10 10
Total average 1 1 1 1
Kurtosis 1 1 1 1
Standard deviation 1 1 1 1
Skewness 1 1 1 1
Total 14 14 14 14

Source: (PEIXOTO et al., 2021).

third-order tensors, with the third mode representing 56 attributes calculated for each signal. The

complete database of patterns can be arranged in a single fourth-order tensor (2 × 3 × 56 ×
856), where the fourth mode represents the samples. In other words, there are 856 third-order

tensors, with each one corresponding to a specific seismic event registered.

The 56 attributes used in this work are shown in Table 1, using frequency and time

domains. The frequency domain features are calculated from the estimated PSD, as well as

using a multilinear approach, by means of the MDFT (TOLIMIERI et al., 2012; TSUI et al.,

2008), while the time domain attributes are calculated from the preprocessed time series and their

Hilbert transforms, resulting in four types of features, as shown in Table 1: MDFT, PSD, Hilbert

and time. The following 14 attributes are calculated for each of these four domains: 10 windowed

averages, total average, kurtosis, skewness and standard deviation. The PSD is calculated using

the Welch’s method with overlapping of 75%. The windowed average is obtained by dividing

the time and frequency series into 10 non-overlapping windows and calculating the average of

each window, leading to 10 attributes. These attributes have shown to be efficient for describing

volcano-seismic events, e.g. (LARA et al., 2020; PEIXOTO et al., 2021).

The use of attributes calculated from both the MDFT and PSD may seem to be

redundant, however, preliminary results have shown that the combined use of these two kind of

features provides better performances than using only one of them. This is due to the fact that

the Fourier transform is obtained by using its multidimensional form, while the standard PSD is

used. Moreover, the MDFT provides better frequency resolution, whereas the PSD has a better

amplitude accuracy.

Moreover, after extensive tests and evaluations, the proposed classification system

achieved its better results when using this combination of attributes.

65

3.2.3 MPCA Application

After the feature extraction step, the MPCA is applied for dimensionality and data

correlation reduction. As the available volcano-seismic database is a set of P = 856 third-order

tensors Xp ∈ RI1×I2×I3 , for 1≤ p≤ P, where I1 = 2, I2 = 3 and I3 = 56, the MPCA technique

described in Chapter 2 is applied, outputting a tensor Zp ∈ RR1×R2×R3 . Both MPCA-FP, if

Rn = In for n = 1,2,3, and MPCA-DR, if Rn < In for n = 1,2,3, are tested in the results section.

3.2.4 Classification

The last step of the tensor-based system is the classification algorithm itself. Three

multilinear classification methods can be selected in the framework: the R1-SPM, the SPM

(KOTSIA et al., 2012) and the STuM (KOTSIA; PATRAS, 2011). The objective of these

classifiers is to estimate the classes of the P = 856 tensor samples, with inputs given by the

components of the MPCA.

In this chapter, the three tensorial classifiers were tested, alongside the SVM, for

comparison purposes. We must note that the tensor-based framework can be coupled with

the vector-based SVM, however, the tensorial input data must be vectorized first, breaking the

multidimensional structure. Table 2 resumes the classification system adopted techniques and

classifiers.

Table 2 – Classification framework description.
Preprocessed Data 856 third-order 2×3×3000 tensors
Feature Extraction MDFT, PSD, Hilbert
Feature Transformation MPCA-FP, MPCA-DR, PCA-FP, PCA-DR
Classification SVM (optional), R1-SPM, SPM, STuM

Source: Author.

3.3 Database Description

The Ubinas volcano is an active andesitic stratovolcano, located 60 km east of the city

of Arequipa, with an average occurrence of 6-7 eruptions per century and persistent fumarolic

and phreatic activity. The recent episodes are characterized by volcanic eruptions and by the

extrusion of a lava dome. The CENVUL (Centro Vulcanológico Nacional) is a service of the

IGP (Instituto Geofísico del Peru) in charge to keeping in alert the volcano monitoring in Peru.

Recently, three eruptive events were identified by the IGP, into the periods 2006-2009, 2014-2017

66

and 2019, with persistent seismicity and observed fumarole, such as the occurrences between

2006 and 2009 (ZANDOMENEGHI et al., 2012; MACEDO et al., 2009).

To monitor the volcanic activity, the IGP built up a seismic telemetry network

composed of 6 stations around the volcano (LARA et al., 2020). From May to July 2009, a field

seismic experiment was carried out on the Ubinas volcano, where three-component seismometers

were deployed in the north and west flanks. The 2009 Ubinas experiment was carried out with

international participation of the EU-VOLUME project (MACEDO et al., 2009), in a cooperation

between the IGP and the Institut de Recherche pour le Développement (IRD). More details can

be found in (INZA et al., 2011).

A catalog of Ubinas seismicity was made by the National Volcanological Center

(CENVUL) of the IGP, in the period of 2006 - 2011. This catalog can be found in the IGP

website https://repositorio.igp.gob.pe/. According to the catalog, the Ubinas exhibited a diversity

of seismic waveform classes, each one associated with a physical process of the volcano. These

types of signals were also reported in other volcanoes. The following events have been identified

and labeled by the Volcanology experts (CHOUET, 1996; MCNUTT, 2005):

1. Long-period (LP): These events correspond to fluid processes caused by pressure excita-

tion mechanisms, associated with the response of the plumbing system caused by fluid

movements (CHOUET, 1996). These fluid movements at the volcano intern cavities result

in signals with low frequency components.

2. Tremors (TR): They are characterized by sound waves resonating through the volcano

rocks, resulting in rupture. The signals show sustained amplitude that can last from tens

of seconds to days. The event is associated with degassing after an eruption (CHOUET,

1996; MCNUTT, 2005).

3. Explosions (EX): Events associated to sudden decompression and the magma fragmen-

tation process (INZA et al., 2011; INZA et al., 2014), which consists in gas exploding

from inside to outside the volcano, showing high amplitude signals in time domain. For

the Ubinas Volcano, explosions are related to the destruction of the magmatic plug. In

(TRAVERSA et al., 2011), it was shown that an overall acceleration of the number of LP

leads to eminent explosion.

4. Volcano-tectonic (VT): The VT events are caused by high pressure inside the volcano,

resulting in signals with high frequency components. They are associated with stress

changes in rocks, induced by magma movement, similar to earthquake events (CHOUET,

67

Figure 16 – Map of the Ubinas volcano with the UBN and UBW stations.

Source: (PEIXOTO et al., 2021).

1996; MCNUTT, 2005).

5. Hybrid (HB): They have characteristics of both LP and VT events, where the signal’s

spectral response corresponds to both high-frequency and low-frequency values (CHOUET,

1996; MCNUTT, 2005).

The database used in this thesis was taken from the IGP catalog, whose seismic

events happened during a period of great activity of the Ubinas volcano, in 2009. The signals

considered in this work were registered from two seismic stations deployed on the north (3.7 km

from the crater) and west (2.7 km from the crater) of the volcano, as shown in Fig. 16, where

UBN represents the north station and UBW the west station. Each station is equipped with

3-components (north, east and vertical) broadband seismometers, with a 100 Hz sampling rate

and high resolution digitizers Guralp 6TD. As earlier mentioned, it is considered that the signals

recorded by different stations, in the same time interval, belong to the same class.

A summary of the main information about the seismic database considered in this

68

Figure 17 – Estimated PSD of samples of the five classes.

Source: (PEIXOTO et al., 2021).

Table 3 – Seismic database information.
Stations UBW, UBN
Channels HHE (east), HHN (north), HHZ (vertical)
Classes TR (383), LP (397), EX (16), HB (48), VT (12)
N. of Samples 856 third-order 2×3×3000 tensors

Source: (PEIXOTO et al., 2021).

work is shown in Table 3, with the number of class samples being detailed in parenthesis in the

third row. A total of 856 tensor samples are used, each one being organized as 2× 3× 3000

third-order tensor, with the first dimension corresponding to the number of sensors, the second

dimension the number of channels per sensor and the third dimension corresponds to the number

of time-samples per signal. The duration of the signals is set to 30 seconds. As the sampling

frequency is equal to 100 Hz, each signal has 3000 time samples. The seismic signals whose

duration is less than 30 seconds are completed with zeroes. The total number of signals is then

equal to 5136. As it can be viewed, the classes with more samples are the LP and TR, whereas

the one with less samples is VT. This is due to the fact that LP and TR events are much more

common than the VT and EX events.

The goal of the classification system is to correctly classify the seismic signals into

one of the 5 existing classes (TR, LP, EX, HB and VT). Fig. 17 shows the estimated PSD of one

sample of the waveforms for each class. As it can be viewed, the classes have different frequency

behaviors, which is exploited in the classification process.

3.4 Results

In this section, the results obtained with the database of volcano-seismic events

described in Section 3.3 are presented, with the K-fold cross-validation method being used.

Some preliminary simulations, whose results are omitted, were carried out in order to find the

69

best values for the constant C, the number of folds K and the ranks of the SPM and STuM, with

C = 100, K = 10, Q = 3 and Q1 = 2, Q2 = 3 and Q3 = 5 providing the best results. When not

stated otherwise, these values were used in the rest of the results.

For comparison purposes, the R1-SPM was also tested, as well as the standard PCA

and SVM techniques using the vectorization of the tensor samples, which yielded pattern vectors

of dimension 336. The proposed approach is also compared with a CNN inspired by the work

(CURILEM et al., 2018) and with the method presented in (LARA et al., 2020), where the

EMD is performed before attribute extraction, but using the same attributes of the present work.

Multiclass SVM and STM were implemented using the one vs. all approach.

The results are presented in the form of accuracy, which is defined as the number of

correctly classified samples over the total number of samples, execution time, in seconds, of the

feature technique plus classifier, and, confusion tables. Later on, the floating point operations per

second (FLOPS) count is shown as a metric of computational cost.

The processing times were obtained with an 9th generation Intel Core i3 processor,

running MATLAB version 2017b. The SVM functions used to model the classifiers are fitcsvm

and predict, respectively.

3.4.1 MPCA with Full Projection

In this subsection, results using the PCA and MPCA with full projection are presented

(PCA-FP and MPCA-FP). Table 4 shows the Accuracy provided by different configurations

of classifiers and PCA. It can viewed from this table that the best result was obtained by the

MPCA-FP with STuM, which provided an accuracy of 84.5%. This is due to the fact that

these techniques are tensorial, which do not break the multidimensional structure of the data.

Moreover, among the tensor-based classifiers, the STuM is the one that has the highest number

of free parameters. In other words, the Tucker decomposition has a degree of freedom to fit the

weight tensor higher than the PARAFAC decomposition.

The better performance of the STuM with respect to the other classifiers is confirmed

by comparing the accuracy of the three tensor-based classifiers when using the same type of PCA.

Indeed, for the three tested kinds of PCA (MPCA, standard PCA and no PCA), the STuM always

provides the best classification rates, in other words, the best accuracy, while the R1-SPM has

the worst performance among the tensorial classifiers. The low-rank constraint of the R1-SPM

diminishes the computational complexity, however, it does not have the same capacity to fit the

70

Table 4 – Accuracy for the different system configura-
tions - with PCA-FP and MPCA-FP.

PCA Type Classifier Accuracy Execution Time (s)
SVM 75.5% 2107.2

None R1-SPM 77.1% 2513.2
(2×3×56) SPM 77.9% 2699.1

STuM 78.6% 3122.3
SVM 79.7% 2654.1

PCA-FP R1-SPM 80.6% 3043.7
(336) SPM 81.1% 3123.5

STuM 81.8% 3577.9
SVM 81.6% 8214.8

MPCA-FP R1-SPM 82.4% 9842.2
(2×3×56) SPM 83.8% 11329.8

STuM 84.5% 13287.0
Source: Author.

weight tensor. Nevertheless, the accuracy of the R1-SPM is significantly higher than the ones

of the standard SVM in all the tested cases, with the same type of PCA. The better accuracy

provided by the tensor-based classifiers suggest that they have a higher capacity for separating

the 5 classes than the conventional SVM.

By comparing the performance of the two types of PCA, it can be viewed that the

STuM with MPCA provided a better accuracy than with PCA. In addition, the PCA with STuM

showed a slightly better success rate than the case with no PCA. The same conclusion can be

drawn for the other two tensor-based classifiers: the best accuracy is achieved with MPCA

while the worst is obtained with no PCA. This behavior shows that the MPCA is more efficient

in transforming the tensor attributes than the standard PCA, although the vector-based PCA

provides a small gain in classification rate with respect to the case with no PCA.

Without using PCA, all algorithms performed worse, thus showing the importance

of the PCA and MPCA techniques, even if it does not reduce the dimensionality of the data. The

reason for this results is due to the fact the PCA and MPCA techniques project the data into a

new basis, extracting useful information and eliminating correlation, enhancing the classification

process. Moreover, the tensorial classifiers also perform better than the SVM because they

provide better subspace representation, alleviating the overfitting and curse of dimensionality.

Regarding the execution times, in seconds, presented in Table 4, it is shown that

the fastest of the presented scenarios was without PCA, whereas the slowest was with MPCA

plus the STuM classifier. This clearly shows that better accuracy are achieved at the cost of

processing speeds. It is also evident that the tensorial classifiers demand more execution times in

comparison to the SVM technique.

71

3.4.2 MPCA with Dimensionality Reduction

In this subsection, results using the PCA and MPCA with dimensionality reduction

are presented (PCA-DR and MPCA-DR). Many tests were carried out in order to find the

number of the MPCA components that provides the highest success rate, the best results being

obtained with R1 = 2, R2 = 2 and R3 = 15, i.e. Yp ∈ R2×2×15. Given that the original data

have dimensions 2×3×56, one can see that no dimensionality reduction was made at the first

dimension, which is associated with the station number. This is due to the fact that the two

eigenvalues of the first mode, equal to 1.95× 1017 and 0.90× 1017, have significant values.

Hence, ignoring one of the eigenvalues would result in significant loss of information. This

means that both the stations provide relevant information for the system.

Regarding the second dimension, associated with the sensor channel, using only the

first 2 components provided a better accuracy than using 3 components in preliminary tests. This

is due to the fact that the eigenvalues associated with the second mode are equal to 3.03×1017,

0.86×1017 and 0.01×1017, which allows ignoring the last eigenvalue. Moreover, a significant

reduction in the dimensionality of the third mode, associated with the features, was also possible,

without significant performance losses. Indeed, reducing the number of eigenvalues from 56 to

15 corresponds to maintain 92% of the data variance. For the standard PCA, the best results were

obtained with the first 60 components.

Table 5 shows the accuracy provided by different configurations of classifiers, PCA-

DR and MPCA-DR, with the table organized exactly as Table 4. However, in Table 5, the results

with no PCA are not shown, to avoid redundancy. Comparing the results of Tables 4 and 5, it can

be viewed that the MPCA-DR provided higher accuracy than the MPCA-FP, for all the tested

classifiers. Similarly, PCA-DR provided higher success rates than the PCA-FP also for all tested

classifiers. This result shows that the dimensionality reduction, in addition to decreasing the

number of parameters, improves the classification rates, especially in the tensor-based case.

Moreover, we can draw from 5 the same conclusions that were drawn for Table 4.

Indeed, the best result was obtained by the MPCA-DR with STuM, which provided an accuracy

of 89.5%. In addition, the tensor-based classifiers performed better than the SVM, with the STuM

providing the best classification rate and the R1-SPM giving the lowest success rate among the

tensorial classifiers. Besides, the MPCA-DR outperformed the PCA-DR for all the classifiers.

Also, the SVM showed a slight increase in accuracy when coupled with the MPCA-DR and

tensorial parameters extraction, in comparison to the results of Table 4, again showing the better

72

Table 5 – Accuracy for the different system configura-
tions - with PCA-DR and MPCA-DR.

PCA Type Classifier Accuracy Execution Time (s)
SVM 81.9% 824.1

PCA-DR R1-SPM 82.9% 1213.1
(60) SPM 83.0% 1422.8

STuM 83.2% 1798.9
SVM 84.7% 3664.4

MPCA-DR R1-SPM 86.0% 3998.2
(2×2×15) SPM 86.7% 4359.9

STuM 89.5% 4881.2
Source: Author.

effectiveness of the MPCA-DR in comparison to the PCA-DR.

The execution times shown in Table 5 show that both PCA-DR and MPCA-DR

achieved faster processing speeds in comparison to the results of the PCA-FP and MPCA-FP

showed in Table 4. This is due the fact that the reduced dimensionality of the data demands less

processing, facilitating the classification process, thus, the framework runs faster. We can see

clearly a trade-off between processing time and accuracy.

Furthermore, in Table 6, the accuracy and processing times of the proposed approach,

with the StuM classifier, is compared with the one provided by the method presented in (LARA

et al., 2020), where the EMD is performed before the attribute extraction step, combined with

the standard SVM. This method is denoted by EMD + SVM. Table 6 also compares the proposed

method with a deep learning approach, using a CNN with design inspired by (CURILEM et al.,

2018). These two techniques are implemented using the same attributes of the present work, but

vectorized, in the following cases: no PCA, PCA-DR and MPCA-DR.

It can be observed from Table 6 that the proposed approach using the STuM provided

the best classification rates for the three cases (no PCA, PCA-DR and MPCA-DR) and, once

again, the MPCA-DR combined with the STuM reached the best accuracy. This is due to the

fact that the techniques of (LARA et al., 2020) and (CURILEM et al., 2018) break the tensor

structure of the data. The MPCA-DR has also improved the performance of the EMD + SVM

and CNN methods, with the worst accuracy being achieved by the CNN technique.

Tab. 6 also showed interesting results regarding the execution times. As can be seen,

the proposed framework presented faster execution times, in comparison to the ones of (LARA

et al., 2020) and (CURILEM et al., 2018). This clearly shows the overall better performance of

the proposed framework on all scenarios, where it achieves higher accuracy and faster processing

times.

Next, Table 7 shows the confusion matrix for the best configuration: MPCA-DR

73

Table 6 – Comparison between the proposed approach and the ones of
(LARA et al., 2020; CURILEM et al., 2018) in terms of Accuracy.

PCA Type Classifier Accuracy Execution Time (s)
EMD + SVM (LARA et al., 2020) 78.1% 3404.2

None CNN (CURILEM et al., 2018) 51.5% 7099.7
STuM 78.6% 3122.3
EMD + SVM (LARA et al., 2020) 82.9% 2433.1

PCA-DR CNN (CURILEM et al., 2018) 56.8% 4194.2
STuM 83.2% 1798.9
EMD + SVM (LARA et al., 2020) 85.5% 4511.3

MPCA-DR CNN (CURILEM et al., 2018) 62.35% 5355.6
STuM 89.5% 4881.2

Source: Author.

Table 7 – Confusion Matrix for the STuM with MPCA-
DR.

True class
EX HB LP TR VT Overall

Predicted
class

EX 11 0 2 0 0
HB 0 10 11 0 5
LP 0 36 377 22 0
TR 0 0 0 361 0
VT 5 2 7 0 7

Accuracy(%) 68.7 20.8 94.9 94.2 58.3 89.5
Source: Author.

Table 8 – Confusion Matrix for the STuM with MPCA-DR,
without preprocessing.

True class
EX HB LP TR VT Overall

Predicted
class

EX 10 0 1 0 0
HB 0 0 0 0 7
LP 1 46 384 117 0
TR 0 0 3 260 0
VT 5 2 9 6 5

Accuracy(%) 62.5 0 96.7 67.8 41.6 76.9
Source: (PEIXOTO et al., 2021).

with STuM. It can be viewed from this table that the classes TR and LP provided the highest

accuracy, while the HB showed the worst success rate. This is due to the fact that the classes

TR and LP are very distinct from the EX and VT classes, making it easier to the classifier to

separate them. Also, these two classes have the biggest sample size in comparison to the EX and

VT classes. The HB class, as described in Section 3.3, has characteristics of both the LP and VT

classes, which explains the misclassification of its samples to one of these classes.

3.4.3 Effects of the Preprocessing Steps and Tensor Ranks

In this subsection, the effects of the preprocessing steps and the choice of the tensor

ranks are evaluated. Table 8 shows the confusion matrix obtained by the MPCA-DR with STuM

74

Table 9 – Accuracy for different
rank configurations - with
MPCA-DR and STuM.

Rank Configuration Accuracy
Q1 = 1, Q2 = 2, Q3 = 3 50.7%
Q1 = 2, Q2 = 1, Q3 = 3 51.8%
Q1 = 2, Q2 = 2, Q3 = 2 55.6%
Q1 = 2, Q2 = 2, Q3 = 3 67.5%
Q1 = 2, Q2 = 3, Q3 = 3 78.4%
Q1 = 2, Q2 = 2, Q3 = 4 61.0%
Q1 = 2, Q2 = 3, Q3 = 4 85.5%
Q1 = 2, Q2 = 2, Q3 = 5 69.3%
Q1 = 2, Q2 = 3, Q3 = 5 89.5%

Source: Author.

without preprocessing the data. The goal is to illustrate the effect of the preprocessing steps,

including the instrumental correction. Comparing the results of Tables 7 and 8, it can be viewed

that this preprocessing has a deep impact on the success rate. Indeed, without these steps, a

significant reduction in the success rate is observed for all the classes. The main reason to this

result is the fact that valuable information related to the physical energy of the signals is lost

when the instrumental correction is not applied. This step gives the energy of the signals a

physical sense, providing valuable information to the classifiers.

In order to show the impact of the trilinear rank on the system performance, Table

9 shows the accuracy provided by the STuM with MPCA-DR for some configurations of

(Q1,Q2,Q3). Other configurations were tested, however, to improve the presentation, this table

shows only some of the obtained results, with Figures 19 exploring further in these values.

It can be viewed from these results that the ranks of the Tucker decomposition have a very

significant impact on the accuracy. The worst result was obtained with Q1 = 1,Q2 = 2,Q3 = 3,

which indicates that using small values for the tensor ranks may limit the ability of the Tucker

decomposition fit the weight tensor.

The last results of this subsection are presented in Figures 18 and 19, which shows

the impact of the rank Q of the SPM and rank Q3 of the STuM, for the MPCA-FP and MPCA-DR

cases, respectively, which aims to analyze the impact of the ranks on the accuracy of said

classifiers.

As Figures 18 and 19 showed, higher values of Q and Q3 resulted, in general, worse

classification performance, for both SPM and STuM, with Q = 3 and Q3 = 5 providing the best

results. The STuM, however, showed more variation in accuracy, with rank Q2 improving the

success rate by more than 20% when changed from 2 to 3, thus validating the choice made of

75

Figure 18 – Impact of the ranks Q and Q3 of the STM-based techniques in classifi-
cation rates, for the MPCA-FP case.

2 4 6 8 10 12 14 16

Rank Q and Q
3

65

70

75

80

85

A
c
c
u
ra

c
y
 (

%
)

STuM, Q
1
 = 2, Q

2
 = 3

SPM

R1-SPM (Q = 1)

STuM, Q
1
 = 2, Q

2
 = 2

Source: Author.

Figure 19 – Impact of the ranks Q and Q3 of the STM-based techniques in classifi-
cation rates, for the MPCA-DR case.

2 4 6 8 10 12 14 16

Rank Q and Q
3

65

70

75

80

85

90

A
c
c
u
ra

c
y
 (

%
)

STuM, Q
1
 = 2, Q

2
 = 3

SPM

STuM, Q
1
 = Q

2
 = 2

R1-SPM (Q = 1)

Source: Author.

ranks Q1 = 2, Q2 = 3 and Q3 = 5 for the previous results. From Figs. 18 and 19, its possible to

see that values of Q and Q3 approximately higher than 8 may cause overfitting, as the accuracy

drops. Comparing both figures 18 and 19, it is clear that the impact of the ranks is similar in

both cases, providing lower accuracy as the rank values increase.

3.4.4 Computational Cost Analysis of the Framework

Now, the computational cost of the framework techniques is analyzed in terms of

time complexity, which is considered as a function of the input parameters, using the big-O

notation. The time complexity is estimated by counting the number of elementary operations

performed by the algorithm, considering the worst-case time complexity, which is the maximum

amount of elementary operations required for inputs of a given size.

76

Table 10 – Time-complexity of the framework techniques, in big-O
notation.

MDFT O(DlogD)

PCA-FP O(2PI2
1 I2

2 I2
3 + I3

1 I3
2 I3

3)

PCA-DR O(PI2
1 I2

2 I2
3 + I3

1 I3
2 I3

3 +PI1I2I3R1R2R3)

MPCA-FP O(2PI1I2I3[I1 + I2 + I3]+ I3
1 + I3

2 + I3
3)

MPCA-DR O(PI1I2I3[I1 + I2 + I3]+ I3
1 + I3

2 + I3
3 +PI1I2I3[R1 +R2 +R3])

SVM O(DP2)

R1-SPM O(P2[R1 +R2 +R3]Nit)

SPM O(QP2[R1 +R2 +R3]Nit)

STuM O(P2[R1Q1 +R2Q2 +R3Q3 +Q1Q2Q3]Nit)

Source: Author.

Then first, to illustrate the time-complexity demand of the used techniques, they

are organized in Table 10, in big-O notation. Then, Table 10 shows the time-complexity for

the MDFT, PCA, trilinear MPCA, or TPCA, R1-SPM, SPM and STuM, with P being the total

number of samples, I1, I2 and I3 the original dimensions of the input tensors (full projection

scenario), R1, R2 and R3 the dimensions after dimensionality reduction and D the total vectorized

dimension excluding samples (I1I2I3 or R1R2R3). The number of iterations of the tensor-based

classifiers algorithms is given by Nit , which variate, in average, between 5 and 30 iterations.

The expressions exhibited in Table 10 confirms the execution times shown in Tables

4-5, in which techniques with increased time-complexity demand tend to run slower, whereas

the techniques with smaller time-complexity generally run faster. Also, it is important to note

the increased complexity of the PCA-FP and MPCA-FP in comparison to the PCA-DR and

MPCA-DR, which is reflected in higher execution times.

In Table 11, the FLOPS, which is a measure of computer performance, of several

algorithms are presented, including the ones of the proposed framework. From Table 11, it can

be viewed that the linear SVM is the less demanding in terms of FLOPS, whereas the STuM

is the most complex method, due to the fact that the STuM has more parameters to estimate.

Moreover, the deep learning CNN provided a computational cost roughly close to the SPM and

STuM. This result pictures a trade-off between accuracy performance and computational cost of

these techniques, for instance, the R1-SPM versus the SPM, in which the first runs faster and

demands less computational cost, whereas the SPM achieves higher classification rates. The

same analysis can be applied to the SPM versus STuM.

In the next chapter, some of the framework techniques are further explored with

a novel approach proposed in this thesis, generating more results that validate tensor learning

algorithms.

77

Table 11 – Floating Point Operations per
Second (FLOPS) counts for
several classifiers.

Classifier FLOPS
SVM 1.1 × 108

R1-SPM 1.4 × 108

CNN (CURILEM et al., 2018) 1.5 × 109

SPM 2.1 × 109

STuM 2.9 × 109

Source: (PEIXOTO et al., 2021).

3.5 Conclusions

In this chapter, a tensorial framework was proposed for classifying volcano-seismic

signals into five different classes using tensor learning techniques such as the MPCA and STMs.

The proposed method integrates feature extraction, dimensionality reduction and classification

into a framework that can be fed with multidimensional data. The database used in this work

consists in three-dimensional data samples recorded during a period of great activity of the

Ubinas volcano, Peru, in 2009. The tensor structure of the patterns, organized as stations ×
channels × features, is built by exploring the use of multiple multichannel triaxial sensors,

operating simultaneously in two seismic stations.

The results showed the very significant gains in performance provided by the tensorial

framework, when compared with their vector-based counterparts. The best result was obtained

with the STuM classifier along with the MPCA-DR. The best accuracy provided by the tensor-

based configurations is due to the fact they preserve the multidimensional structure of the data,

avoiding the drawbacks of tensor vectorization. The best performance of the STuM with respect

to the SPM is due to the fact that it has a greater degree of freedom for fitting the weight

tensor. The tensor learning approach also surpassed, in terms of accuracy, a deep learning

CNN method and the technique of (LARA et al., 2020). The obtained results also showed that

the preprocessing, which includes the instrumental correction, has a great impact on the data

classification, as it gives to the energy of the signals a physical sense.

78

4 MULTILINEAR DIMENSIONALITY REDUCTION

In this chapter, a technique for reduction of dimensionality of tensor data denoted

by LC-MDR is proposed. The method optimizes a cost function that takes into account the

data correlation, generating variables with low correlation. The LC-MDR fits the input data

correlation into a new tensor decomposition called EONPD, a proposed extension of the NPD

for higher-order tensors.

The presented EONPD holds for even-order tensors and it has a core tensor that

interacts with all the factor matrices. A complete description of the EONPD is given, with both

analytical and recursive expressions being derived, using scalar and tensor notations. Moreover,

a generalization of the EONPD, denoted by HONPD, is also presented, assuming the nesting of

PARAFAC tensors of generic orders.

Contrarily to existing approaches that use orthogonal transformation matrices, the

LC-MDR does not have impose this constraint on the transformation matrices in order to

minimize the output correlation. The LC-MDR method aims to overcome this drawback of

the MPCA by optimizing a cost function that takes into account the correlation of the data.

The LC-MDR tries to fit the input data correlation into a new tensor decomposition denoted

by EONPD, presented in the next section, which is an extension of the NPD for higher-order

tensors.

The proposed technique was evaluated in a classification system of volcano-seismic

events, using a the same data as in Chapter 3, which was obtained from the Ubinas volcano, in

2009, using a full tensorial classification framework. The results showed significant gains of the

LC-MDR when compared with concurrent techniques, in terms of accuracy, data correlation and

processing time.

The contents of this chapter are presented as follows. First, we outline the motivations

for dimensionality reduction and the development of the LC-MDR technique. Next, the proposed

EONPD and HONPD decompositions are presented. Further on, the LC-MDR formulation and

its algorithm is presented and the obtained validation results are discussed.

4.1 Motivation

In many ML and signal processing problems, it is common to have datasets with a

large numbers of variables. However, dealing with high-dimensional data have some drawbacks.

79

Firstly, the computational complexity of the techniques become higher, as there is a high number

of features to be processed. Another problem is the so-called curse of dimensionality (BELARBI

et al., 2017), which refers to several phenomena that arise when dealing with high-dimensional

data. Indeed, when the number of features is bigger or closer to the sample size, the ML

techniques tend to perform poorly.

Dimensionality reduction techniques can be applied to avoid these issues by trans-

forming the data from a high-dimensional space into a low-dimensional space without losing

significant information of the original dataset. When the input samples are correlated, they

may be confined into a subspace, where an adequate low-dimensional space representation is

possible. Within this context, linear techniques such as the NMF (PAUCA et al., 2006), LDA

(THARWAT et al., 2017), CCA (HARDOON et al., 2004) and PCA (WOLD et al., 1987) are

popular solutions for dimensionality reduction. In particular, the PCA is the most commonly

used dimensionality reduction technique. Indeed, this method is a powerful tool that transforms

a set of correlated data into uncorrelated data using an orthonormal basis (RODARMEL; SHAN,

2002).

Within the context of tensor learning, dimensionality reduction for tensor patterns

is of great interest, with the MPCA (LU et al., 2008; LU et al., 2006) being the most popular

alternative. The MPCA is an extension of the PCA for tensor patterns that uses the HOSVD, also

known as multilinear SVD, for performing orthonormal multilinear transformation. The MPCA

is a powerful method for dimensionality reduction and feature extraction in tensor patterns, often

used in classification tasks (LU et al., 2011). The MPCA has a wide range of applications, such

as gait, face, fingerprint, age, and fault recognition (LU et al., 2008; LU et al., 2006).

On the other hand, contrarily to the standard PCA that generates fully uncorrelated

output data, the MPCA is not able to create perfectly uncorrelated variables. Having uncorrelated

data may be beneficial in several kinds of problems, as, for instance, in the ML tasks of classifi-

cation, regression and clustering (LU et al., 2011). Some works of the literature highlights the

importance of correlation reduction in classification tasks, such as in (FU; WANG, 2003), where

a separability-correlation measure approach, to rank the importance of attributes, was proposed,

improving classification performance. Again in (EL-HASNONY et al., 2015), correlation-based

feature selection is performed, eliminating features that do not provide contribution to class dif-

ferentiation. Also, in (FU; HUANG, 2008), tensor correlation analysis is performed, improving

the classification performance.

80

In order to avoid this correlation problem of the MPCA, this thesis proposes a multi-

linear dimensionality reduction technique called LC-MDR. The proposed technique optimizes

a cost function that takes into account the correlation of the input and output data, generating

variables with much less correlation than the MPCA. In particular, the LC-MDR tries to fit

the input data correlation into a new tensor decomposition called EONPD, which is itself an

extension of the NPD for higher-order tensors.

The LC-MDR generates output tensor samples with low correlation and low dimen-

sions, which can be used for dimensionality reduction and feature extraction in tensor patterns.

As well as the MCPA, the LC-MDR carries out a multilinear projection with dimensionality

reduction, capturing most of the data information. However, while the MPCA is based on the

HOSVD and it uses orthogonal transformation matrices, in contrast, the LC-MDR is based on

the EONPD and the orthogonality constraint on the transformation matrices is removed, in order

to minimize the output correlation.

Ultimately, the motivation to apply and validate the proposed LC-MDR technique

with the volcano-seismic database of Chapter 3 is the following. Although the MPCA provided

interesting results and good dimensionality reduction, data correlation is still high, as shown later

on. This high correlation of the data, if reduced, could provided higher accuracy by the classifiers.

Also, the MPCA technique demands high computational cost and high execution times. Within

this scope, the LC-MDR was proposed to solve this issues, reducing data correlation, achieving

greater classification rates and speeding up the execution times by requiring less computational

power.

4.2 Proposed Nested PARAFAC Decompositions for Higher-Order Tensors

There are several ways of extending the NPD for higher-order tensors. Indeed,

when multiple nested PARAFAC tensors are considered, different decompositions are obtained

depending on which factors nest the PARAFAC tensors and on how the extra indices of the

higher-order tensor are concatenated to form the nested PARAFAC tensors.

In this section, an extension of the NPD for higher-order tensors, denoted by EONPD,

is presented. The described decomposition holds for even-order tensors, and it assumes that

the indices associated with the tensor rankings are always concatenated in a same dimension,

forming a new tensor that will nest the next PARAFAC tensor. That leads to a core tensor that

interacts with all the factor matrices, as it will be detailed in the sequel.

81

An extension of the NPD for higher-order tensors, denoted Generalized Nested

PARAFAC Decomposition (GNPD), was used in (FREITAS et al., 2017) to model a communica-

tion system with multiple relays. However, the nesting structure used by the GNPD is different

from the one of the EONPD, leading to a completely different tensor decomposition. Moreover,

in (FREITAS et al., 2017), only a recursive description of the EONPD is given, with no analytic

formulas being provided. Besides, only the matrix formulation is given in (FREITAS et al.,

2017), with no scalar and tensor descriptions being presented. On the other hand, in the sequel,

a complete description of the EONPD is given, with both analytical and recursive expressions

being derived, using scalar and tensor notations.

In addition, at Subection 4.2.2, we present a generalization of the EONPD, denoted

by HONPD, assuming the nesting of PARAFAC tensors of generic orders. The HONPD is more

generic than the GNPD and EONPD, as these two decompositions are restricted to the nesting of

third-order PARAFAC tensors.

4.2.1 Even-Order Nested PARAFAC Decomposition (EONPD)

The EONPD of a Nth-order tensor Y ∈ CI1×I2×...×IN , for N even, is defined by:

yi1,i2,i3,...,iN =
Q1

∑
q1=1

. . .

QN/2

∑
qN/2=1

bq1,...,qN/2a(1)i1,q1
a(2)i2,q1

a(3)i3,q2
a(4)i4,q2

. . .a(N−1)
iN−1,qN/2

a(N)
iN ,qN/2

, (4.1)

where B ∈ CQ1×...×QN/2 is the core tensor, Q1,...,QN/2 are the ranks of the decomposition

and A(n) ∈ CIn×Qk , for n = 1, ...,N/2− 1, is a factor matrix, with k = n/2 for n even and

k = (n+1)/2 for n odd. Concatenating the indices i3, i4, . . . iN into one index, in the following

way: yi1,i2, j1 = yi1,i2,i3,...,iN , with j1 = (i3−1)I4 . . . IN + . . .+(iN−1−1)IN + iN , eq. (4.1) can be

written as a tridimensional PARAFAC model:

yi1,i2, j1 =
Q1

∑
q1=1

a(1)i1,q1
a(2)i2,q1

w(1)
j1,q1

, (4.2)

where the matrix W(1) ∈ CJ1×Q1 , for J1 = I3...IN , is the mode-1 unfolded matrix of the tensor

W (1) ∈ CQ1×I3×...×IN , given by:

w(1)
q1,i3,i4,...,iN =

Q2

∑
q2=1

. . .

QN/2

∑
qN/2=1

bq1,...,qN/2a(3)i3,q2
a(4)i4,q2

. . .a(N−1)
iN−1,qN/2

a(N)
iN ,qN/2

. (4.3)

The tensor W (1) can also be unfolded into a tridimensional PARAFAC tensor, with

factor matrices A(3) ∈ CI3×Q2 , A(4) ∈ CI4×Q2 and W(2) ∈ CJ2×Q2 , with J2 = Q1I5...IN . This

82

process goes on, each time forming a different third-order PARAFAC model by unfolding a

tensor denoted by W (n) ∈ CQ1×...×Qn×I2n+1×...×IN , for n = 0, ...,N/2−1, defined as:

w(n)
q1,...,qn,i2n+1,...,iN =

Qn+1

∑
qn+1=1

...

QN/2

∑
qN/2=1

bq1,...,qN/2a(2n+1)
i2n+1,qn+1

a(2n+2)
i2n+2,qn+1

. . .a(N−1)
iN−1,qN/2

a(N)
iN ,qN/2

, (4.4)

which can be re-expressed recursively as:

w(n)
q1,...,qn,i2n+1,...,iN =

Qn+1

∑
qn+1=1

a(2n+1)
i2n+1,qn+1

a(2n+2)
i2n+2,qn+1

w(n+1)
q1,...,qn+1,i2n+3,...,iN , (4.5)

where w(0)
i1,...,iN = yi1,i2,i3,...,iN and w(N/2)

q1,...,qN/2 = bq1,...,qN/2 .

Indeed, by concatenating the indices qn, . . . ,q1, i2n+3, . . . , iN into one index, in the

following way: w(n)
i2n+1,i2n+2, jn+1

= w(n)
q1,...,qn,i2n+1,...,iN , with jn+1 = (qn − 1) Qn−1 . . . Q1 I2n+3

. . . IN + . . . + (q1− 1) I2n+3 . . . IN + (i2n+3− 1) I2n+4 . . . IN + . . . + (iN−1− 1)IN + iN , for

n = 1, ...,N/2− 1, eq. (4.5) can be re-expressed as the following tridimensional PARAFAC

model:

w(n)
i2n+1,i2n+2, jn+1

=
Qn+1

∑
qn+1=1

a(2n+1)
i2n+1,qn+1

a(2n+2)
i2n+2,qn+1

w(n+1)
jn+1,qn+1

. (4.6)

Note that the EONPD assumes that the indices q1, ...,qN associated with the tensor rankings, as

well as the indices i2n+3, ..., iN , are always concatenated in the same dimension, forming a new

tensor that will nest the next PARAFAC tensor.

It can be viewed from (4.6) that, for each value of n in [0 N/2−1], a third-order

PARAFAC tensor W (n) ∈ CI2n+1×I2n+2×Jn+1 , for Jn+1 = Qn . . .Q1I2n+3 . . . IN , is obtained, with

factor matrices given by A(2n+1) ∈CI2n+1×Qn+1 , A(2n+2) ∈CI2n+2×Qn+1 and W(n+1) ∈CJn+1×Qn+1 ,

where W(n+1) is the mode-(n + 1) unfolded matrix of W (n+1). In the last tridimensional

PARAFAC model, that is, for n = N/2− 1, we have W(N/2) = B(N/2) ∈ CJN/2×QN/2 , where

B(N/2) is the mode-(N/2) unfolded matrix of B, with JN/2 = QN/2−1 . . .Q1.

The above recursive formulation of the EONPD shows that the tensor Y can be

viewed as the PARAFAC nesting of the following N/2 third-order tensors: Y = W (0), W (1),

. . ., W (N/2−1) and B = W (N/2).

The EONPD can also be expressed in a tensor notation, using the contraction

operation. Indeed, the tensor Y can be written as the multiple contractions over the modes q1,

q2, q3, . . ., qN , as follows:

Y = B ∗
q1

R(1) ∗
q2

R(2) . . . ∗
qN/2

R(N/2), (4.7)

83

where R(n) ∈ CI2n−1×I2n×Qn , for n = 1, ...,N/2, is defined as:

r(n)i2n−1,i2n,qn
= a(2n−1)

i2n−1,qn
a(2n)

i2n,qn
. (4.8)

The mode-3 unfolded matrix of the tensor R(n) is given by A(2n−1)⊙A(2n).

Similarly to the NPD, where B is a factor that interacts with the two PARAFAC

tensors R(1) and R(2), in the EONPD, the tensor B interacts with all the tensors R(1),. . .,R(N)

by means of the contraction operation in the indices q1, q2, . . ., qN . Note also that, contrarily

to other nested decompositions, such as the NPD, the Nested Tucker Decomposition (NTD)

(FAVIER et al., 2016) and the High-Order Nested Tucker Decomposition (HONTD) (ROCHA

et al., 2019), the EONPD does not follow the Tensor-Train (TT) structure (OSELEDETS;

TYRTYSHNIKOV, 2010; OSELEDETS, 2011). In order to follow the TT structure, the tensor

B would have to verify the following structure: bq1,...,qN/2 = bq1,q2bq2,q3 . . .bqN/2−1,qN/2 .

4.2.2 Higher-Order Nested PARAFAC Decomposition (HONPD)

The EONPD can be generalized to the case of a nesting of M PARAFAC tensors

of generic orders. This decomposition will be denoted by HONPD. The HONPD of the tensor

Y ∈ CI1×...×ISN is defined by:

yi1,...,iSM
=

Q1

∑
q1=1

...
QM

∑
qM=1

bq1,...,qM a(1)i1,q1
...a(N1)

iN1 ,q1
a(N1+1)

iN1+1,q2
...a(N1+N2)

iN1+N2 ,q2
...a(SM−1+1)

iSM−1+1,qM
...a(SM)

iSM ,qM
, (4.9)

where Sm = N1 + . . .+Nm, for m = 1, ...,M, which can be re-expressed recursively as:

w(m)
q1,...,qm,iSm+1,...,iSM

=
Qm+1

∑
qm+1=1

a(Sm+1)
iSm+1,qm+1

. . .a(Sm+1)
iSm+1 ,qm+1

w(m+1)
q1,...,qm+1,iSm+1+1,...,iSM

, (4.10)

for m = 0, ...,M, where w(0)
i1,...,iSM

= yi1,...,iSM
and w(M)

q1,...,qM = bq1,...,qM .

By concatenating the indices qm, . . . ,q1, iSm+1+1, . . . , iSM into one index in the fol-

lowing way: w(m)
iSm+1,...,iSm+1 , jm+1

= w(m)
q1,...,qm,iSm+1,...,iSM

, with jm+1 = (qm−1) Qm−1 ... Q1 ISm+1+2

... ISM + ... + (q1−1) ISm+1+1 ... ISM + (iSm+1+1−1)ISm+1+2 ... ISM + ... + (iSM−1−1)ISM + iSM ,

for m = 0, ...,M− 1. Hence, eq. (4.11) can be rewritten as the following (Nm+1 + 1)th-order

PARAFAC model:

w(m)
iSm+1,...,iSm+1 , jm+1

=
Qm+1

∑
qm+1=1

a(Sm+1)
iSm+1,qm+1

. . .a(Sm+1)
iSm+1 ,qm+1

w(m+1)
jm+1,qm+1

(4.11)

84

The recursive formulation (4.11) shows that the original tensor Y can be viewed as the PARAFAC

nesting of the M+1 tensors W (m), for m = 0, ...,M, with W (0) = Y and W (M) = B.

The HONPD can also be expressed using a tensor notation, similarly as the EONPD,

as follows:

Y = B ∗
q1

R(1) ∗
q2

R(2) . . . ∗
qM

R(M), (4.12)

where R(m) ∈ CISm−1+1×ISm×Qm , for m = 1, ...,M, is defined as

r(m)
iSm−1+1,...,iSm ,qm

= a(Sm−1+1)
iSm−1+1,qm

. . .a(Sm)
iSm ,qm

. (4.13)

That shows that the core tensor B interacts with all the PARAFAC tensors R(1) . . . R(M) by

means of the contraction operation.

4.3 Low-Correlation Multilinear Dimensionality Reduction (LC-MDR)

In many pattern recognizing and signal processing applications, it is common to work

with a large numbers of variables. However, high-dimensional data have two main drawbacks:

a high computational complexity and the so-called curse of dimensionality (BELARBI et al.,

2017; LU et al., 2008; YAN et al., 2006). Dimensionality reduction techniques can be applied to

solve this issue by decreasing the data dimensionality. Indeed, if the entries of input samples are

correlated, they may be confined into a subspace, where a low-dimension representation can be

possible.

For vector data, the PCA is the most commonly used dimensionality reduction

technique. For the case of tensor patterns, the MPCA is the most popular alternative. However,

as earlier mentioned, the MPCA does note generate uncorrelated variables. Having uncorrelated

data may be beneficial in several kinds of problems, as, for instance, in the machine learning

tasks (LU et al., 2008; YAN et al., 2006).

In this section, a proposed technique for dimensionality reduction in tensor patterns,

denoted by LC-MDR, is presented. The method tries to minimize the correlation of the output

tensor by fitting the input correlation tensor into an EONPD, as detailed in the sequel. The

LC-MDR generates output tensor samples with low correlation and low dimensions, which can

be used for dimensionality reduction and feature extraction in tensor patterns. In the sequel, the

modeling of the input correlation tensor as a EONPD is presented. After, the algorithm of the

LC-MDR is detailed.

85

4.3.1 EONPD Modeling of the Input Correlation Tensor

Let X ∈CI1×...×IN be a N-th order tensor random variable. The problem considered

in the present work is to perform a multilinear transformation in X such that the output (trans-

formed) tensor has smaller dimensions than X , with most of the information being preserved

in the output data. However, contrarily to the MPCA, which uses orthogonal transformation

matrices, this orthogonality constraint is not used by the LC-MDR, in order to minimize the

output correlation.

The N-th order output tensor Y ∈ CR1×...×RN is obtained by means of the following

multilinear transformation:

Y = X ×1 A(1)×2 A(2) . . .×N A(N), (4.14)

where A(n) ∈CRn×In , for n = 1, ...,N, is a transformation matrix, with Rn ≤ In. Eq. (4.14) can be

written in scalar form as follows:

yr1,...,rN =
I1

∑
i1=1

. . .
IN

∑
iN=1

xi1,...,iN a(1)r1,i1 . . .a
(N)
rN ,iN . (4.15)

Assuming that the transformation matrices A(n) are full row rank, the tensor X can

be obtained from Y in the following way:

X = Y ×1 A(1)+ . . .×N A(N)+, (4.16)

or, in scalar form

xi1,...,iN =
R1

∑
r1=1

. . .
RN

∑
rN=1

yr1,...,rN a(1)
+
i1,r1

. . .a(N)+
iN ,rN

, (4.17)

where a(n)
+
iN ,rn

is a typical element of A(n)+, for n = 1, ...,N.

Let us form a (2N)th-order tensor, denoted by R(x) ∈ CI1×I1×I2×I2...IN×IN , with the

all correlations of the input data, given by:

r(x)i1,i′1,i2,i
′
2,...,iN ,i

′
N
= E[xi1,i2,...,iN x∗i′1,i′2,...,i′N]. (4.18)

Without loss of generality, it is considered that the input data xr1,...,rN have zero average. If that is

not the case, their averages must be subtracted. Substituting (4.17) into (4.18) leads to:

r(x)i1,i′1,...,iN ,i
′
N
=

R1

∑
r1=1

R′1

∑
r′1=1

. . .
RN

∑
rN=1

R′N

∑
r′N=1

r(y)r1,r′1,...,rN ,r′N
a(1)

+
i1,r1

a(1)
+∗
i′1,r
′
1
. . .a(N)+

iN ,rN
a(N)+∗

i′N ,r
′
N
, (4.19)

86

where r(y)r1,r′1,r2,r′2,...,rN ,r′N
= E[yr1,r2,...,rN y∗r′1,r′2,...,r′N

]. Note that the output correlations may also form

a (2N)th-order tensor, denoted by R(y) ∈ CR1×R1×R2×R2...RN×RN .

The objective of the proposed technique is to minimize the correlation between the

elements of the output tensor Y . In the ideal case, the output data is fully uncorrelated, as

follows:

r(y)r1,r′1,...,rN ,r′N
= E[yr1,...,rN y∗r′1,...,r′N] =

σ2
yr1,...,rN

, if r1 = r′1, . . . ,rN = r′N ,

0, otherwise
(4.20)

where σ2
yr1,...,rN

̸= 0 is the variance of yr1,...,rN . Substituting (4.20) into (4.19), we get:

r(x)i1,i′1,...,iN ,i
′
N
=

R1

∑
r1=1

. . .
RN

∑
rN=1

r̃(y)r1,...,rN a(1)
+
i1,r1

a(1)
+∗
i′1,r1

. . .a(N)+
iN ,rN

a(N)+∗
i′N ,rN

, (4.21)

where r̃(y)r1,...,rN = r(y)r1,r1,...,rN ,rN . The variances r̃(y)r1,...,rN form a Nth-order tensor R̃(y) ∈CR1×R2×...×RN .

Note that (4.21) corresponds to the EONPD in (4.1), with the following correspon-

dences:

(
R(x),R̃(y),A(n)+

)
⇔
(
Y ,B,A(n)

)
, (4.22)

(2N, I1, I1, . . . , IN , IN ,R1, . . . ,RN)⇔
(
N, I1, I2, . . . , IN−1, IN ,Q1, . . . ,QN/2

)
. (4.23)

In other words, in (4.21), the core tensor is given by R̃(y), the factor matrices are A(n)+ and

the ranks are R1, ...RN . Moreover, the constraint that the order of the EONPD must be even is

naturally verified by the tensor R(x).

The successive nests in R(x) can be viewed explicitly by rewriting (4.21) recursively,

as follows:

u(n)r1,r2,...,rn+1,in+1,i′n+1,...,iN ,i
′
N
=

Rn+1

∑
rn+1=1

a(n+1)+
in+1,rn+1

a(n+1)+∗
i′n+1,rn+1

×

×u(n+1)
r1,r2,...,rn+1,in+2,i′n+2,...,iN ,i

′
N
,

(4.24)

for n = 0, ...,N, where

u(n)r1,r2,...,rn,in+1,i′n+1,...,iN ,i
′
N
=

Rn+1

∑
rn+1=1

. . .
RN

∑
rN=1

r̃(y)r1,r2,...,rN×

× a(n+2)+
in+1,rn+1

a(n+1)+∗
i′n+1,rn+1

. . .a(N)+
iN ,rN

a(N)+∗
i′N ,rN

.

(4.25)

87

with u(0)i1,i′1,...,iN ,i
′
N
= r(x)i1,i′1,...,iN ,i

′
N

and u(N)
r1,...,rN = r̃(y)r1,...,rN .

Similarly as in Subsection 4.3.1, by concatenating the indices rn, . . ., r1, in+2, i′n+2,

. . ., iN , i′N into one index jn+1, with 1≤ jn+1 ≤ Jn+1 and Jn+1 = Rn . . . R1I2
n+2. . . I2

N , eq. (4.24)

can be expressed as the following third-order PARAFAC model:

u(n)in+1,i′n+1, jn+1
=

Rn+1

∑
rn+1=1

a(n+1)+
in+1,rn+1

a(n+1)+∗
i′n+1,rn+1

u(n+1)
jn+1,rn+1

. (4.26)

The above presented modeling of the input correlation tensor R(x) shows that, if the output

signals are uncorrelated, the tensor R(x) must follow an EONPD model. This result is exploited

in the next subsection to derive the estimation algorithm of the LC-MDR technique.

Note that, when N = 2, i.e. if the inputs are matrices, eq. (4.21) becomes:

r(x)i1,i′1,i2,i
′
2
=

R1

∑
r1=1

R2

∑
r2=2

r̃(y)r1,r2a(1)
+
i1,r1

a(1)
+∗
i′1,r
′
1
a(2)

+
i2,r2

a(2)
+∗
i′2,r
′
2
, (4.27)

which corresponds to the standard NPD in (2.20).

4.3.2 Estimation Algorithm

The main idea of the LC-MDR is to estimate the matrices A(n)+ by fitting the tensor

R(x) into a (2N)th-order EONPD model. The transformation matrix A(n), for n = 1, ...,N, is

then estimated by calculating the pseudoinverse of A(n)+. In other words, the transformation

matrices are estimated so that the output correlations approach the ideal case described by (4.20),

where the output data are uncorrelated.

The LC-MDR estimates successively the factors of the PARAFAC decompositions

by means of the ALS algorithm (COMON et al., 2009). The ALS is an iterative algorithm with

multiple alternated steps that is widely used for estimating the factors of a PARAFAC tensor. At

each step of each iteration, the ALS algorithm estimates one of the factor matrices using the LS

method by assuming that the other factor matrices are known, using the previous estimates of

these factor matrices.

The cost function of the LC-MDR is an LS-type function that fits the tensor R(x)

into an EONPD model, using unfolded matrix expressions. Eq. (4.26) can be rewritten by means

of unfolded matrices, as follows:

U(n)
[n+1] =

(
A(n+1)+∗⊙U(n+1)

[n+1]

)
A(n+1)+T

,

U(n)
[n+1,n+2] =

(
A(n+1)+⊙A(n+1)+∗

)
U(n+1)
[n+1]

T
,

(4.28)

88

where U(n+1)
[n+1] ∈CJn+1×Rn+1 is the mode-(n+1) unfolded matrix of U (n+1), U(n)

[n+1] ∈CIn+1Jn+1×In+1

is the mode-(n+1) unfolded matrix of U (n) and U(n)
[n+1,n+2] ∈ CI2

n+1×Jn+1 is a unfolded matrix of

U (n) the combines the modes (n+1) and (n+2) in the first dimension, with U (0) = R(x) and

U (N) = R(y). Note that U(n)
[n+1,n+2] is a unfolded matrix that is not in the standard format defined

in Chapter 2.

It is important to note that, for the identifiability of the LC-MDR, both products(
A(n+1)+∗⊙U(n+1)

[n+1]

)
and

(
A(n+1)+⊙A(n+1)+∗

)
need to be full column rank. As such, we need

that In+1 ≥ Rn+1 and Jn+1 ≥ Rn+1.

At the nth stage, the cost function of the LC-MDR is given by the following LS

function:

J
(

C(n+1),U(n+1)
[n+1]

)
=
∥∥∥U(n)

[n+1]−
(

C(n+1)∗⊙U(n+1)
[n+1]

)
C(n+1)T

∥∥∥
2

=

∥∥∥∥U(n)
[n+1,n+2]−

(
C(n+1)⊙C(n+1)∗

)
U(n+1)
[n+1]

T
∥∥∥∥

2

,

(4.29)

where, for simplifying the notation, we defined C(n+1) = A(n+1)+ ∈ CIn+1×Rn+1 .

The proposed LC-MDR is presented in Algorithm 1, being composed of N stages,

each stage having two iterative steps. At the ith iteration of the nth stage, there are two steps

for estimating, in an alternated way, the matrices C(n+1) and U(n+1)
[n+1] from the estimation of the

tensor U (n) obtained at the end of previous stage, using the LS method based on (4.28). The

estimates of C(n+1) and U(n+1)
[n+1] at the ith iteration are denoted respectively by Ĉ(n+1)

i and Û(n+1)
[n+1],i.

There is no step for estimating Ĉ(n+1)∗

i , as it is obtained simply as the conjugate of Ĉ(n+1)
i .

In Algorithm 1, Λi,n ∈ CRn+1×Rn+1 corresponds to a diagonal matrix with the norms

of the columns of Ĉ(n+1)
i in its diagonal elements. At the end of each iteration, the columns of

Ĉ(n+1)
i are normalized and, in order to maintain the consistency of the model, the columns of

Û(n+1)
[n+1],i are multiplied by squared norms of the columns of Ĉ(n)

i . Indeed, in (4.28), U(n)
[n+1] and

U(n)
[n+1,n+2] remain unchanged if Ĉ(n+1)

i and Ĉ(n+1)∗

i are post multiplied by Λ
−1
i,n , and Û(n+1)

[n+1],i is

post multiplied by Λ2
i,n. Although these normalization steps are not mandatory, some preliminary

simulations showed that they improve the performance of the LC-MDR in the classification of

seismic events, as considered in Section 4.5.

Each ALS stage stops when |e(i)− e(i−1)| < ε1 and |e(i)| < ε2, where ε1 and ε2

are small scalar constants and e(i) is the normalized squared error of the reconstructed tensor, at

89

Algorithm 1: LC-MDR estimation

Input: Û (0) = R(x)

Outputs: Â(1)
i , ..., Â(N)

i

Initialize Ĉ(1)
0 , ..., Ĉ(N)

0 and Û(1)
0 , ..., Û(N)

0 randomly
for n = 0 : N do

β = 0
i = 0
while β = 0 do

i = i+1;

Ĉ(n+1)
i =

[(
Ĉ(n+1)

i−1

∗
⊙ Û(n+1)

[n+1],i−1

)
Û(n)
[n+1]

]T

Û(n+1)
[n+1],i =

[(
Ĉ(n+1)

i ⊙ Ĉ(n+1)∗

i

)
Û(n)
[n+1,n+2]

]T

Ĉ(n+1)
i ← Ĉ(n+1)

i Λ
−1
i,n

Û(n+1)
[n+1],i← Û(n+1)

[n+1],iΛ
2
i,n

if |e(i)− e(i−1)| < ε1 and |e(i)| < ε2 then
β = 1

end
end

Â(n)
i = Ĉ(n)+

i
end

the ith iteration, given by:

e(i) =

∥∥∥∥Û(n)
[n+1,n+2]−

(
Ĉ(n+1)

i ⊙ Ĉ(n+1)∗

i

)
Û(n+1)T

[n+1],i

∥∥∥∥
2

F∥∥∥Û(n)
[n+1,n+2]

∥∥∥
2

F

, (4.30)

where ∥.∥F denotes the Frobenius norm. The constraint |e(i)−e(i−1)|< ε1 tests the convergence

of the algorithm, while |e(i)| < ε2 assures that it have converged to an acceptable point. The

latter constraint assures that no relevant information is lost by the multilinear transformation,

ensuring that the tensor may be reconstructed.

The fact that the columns of the factor matrices Â(n)
are not orthogonal could

generate redundancy in the transformed data. However, this problem is avoided due the criterion

of the LC-MDR that decreases the correlation of the output data, making it unnecessary for the

factor matrices to be orthogonal. Note that the LC-MDR may also be applied to the case where

the inputs are matrices, simply by using N = 2.

It’s also worth mentioning that the LC-MDR does not impose uniqueness constraints

on the EONPD, as ambiguity of the factor matrices does not need to be removed, since the

LC-MDR manages to decrease the correlation of the data and reduce its dimensionality nev-

90

ertheless. The PARAFAC decompositions computed by the LC-MDR at each stage may be

essentially unique if some constraints are verified (BERGE; SIDIROPOULOS, 2002; STEGE-

MAN; SIDIROPOULOS, 2007; SIDIROPOULOS; BRO, 2000), but the global EONPD is

not unique. Imposing some constraints on the EONPD could lead to a unique decomposition,

however, it is uncertain if this uniqueness would lead to a more efficient dimensionality and

correlation reduction. This topics falls outside the scope of this paper.

4.4 Classification system

Figure 20 – Steps of the classification system in which the LC-MDR is tested.

Source: Author.

The LC-MDR technique proposed in this thesis is applied in the classification of

the volcano-seismic events presented in Chapter 3. The technique is used before the classifier

itself, in order to reduce the number of attributes and decrease the correlation between them.

The classification system follows the tensor-based learning framework for multichannel volcano-

seismic classification presented in (PEIXOTO et al., 2021). The steps of the classification

system are shown in Fig. 20, where the LC-MDR method corresponds to the block “Feature

Transformation”.

The first step of the volcano-seismic classification system is a series of preprocessing

operations, starting with the subtraction of the time-average mean of the signals, followed by an

instrumental correction that is carried out by computing the deconvolution associated with the

transfer function of the sensors, expressing the seismic signals in their original unity, similarly as

in (LARA et al., 2020).

In the second step, the feature extraction is performed, with the attributes being

calculated from four different domains: (i) directly from the prepossessed signals (time domain);

91

(ii) from the Hilbert transform of the prepossessed signals; (iii) from the estimated PSD; (iv)

from the MDFT (TOLIMIERI et al., 2012).

The following 14 attributes are calculated for each of these four domains: 10 win-

dowed averages, total average, kurtosis, skewness and standard deviation. The PSD is calculated

using the Welch’s method with overlapping of 75%. The windowed average is obtained by

dividing the time and frequency series into 10 non-overlapping windows and calculating the

average of each window, leading to 10 attributes. That leads to a total of 56 features per signal.

These attributes are the same used in (PEIXOTO et al., 2021), where they have proved to be very

efficient for classifying volcano-seismic events.

After the feature extraction step, feature transformation is applied on the data, by

means of the LC-MDR. Comparing Figure 20 with Figure 14, the framework used in Chapter 3

is very similar to the one in which the LC-MDR is employed. In fact, for comparison purposes,

the MPCA (tensor-based) and PCA (vector-based) are also tested, as well as the case where no

technique is used for feature transformation, similarly as in Chapter 3.

For instance, by using the LC-MDR technique, the correlation of the output tensor is

minimized by fitting the input correlation tensor into an EONPD, as detailed earlier, providing

data easier to classify. Also, the LC-MDR generates output tensor samples with low correlation

and low dimensions, which can be used for dimensionality reduction of the input data. Addition-

ally, dimensionality reduction and correlation reduction can also be achieved using the MPCA or

the PCA techniques. However, contrarily to the standard PCA that generates fully uncorrelated

data, the MPCA is not able to create perfectly uncorrelated variables. The performance of the

used feature transformation techniques is discussed later.

In the sequel, the multidimensional data is used to feed the tensor-based classifier. In

this chapter, the following classifiers were selected: SVM, R1-SPM, SPM and STuM. Table 12

resumes the classification system adopted techniques and classifiers.

Table 12 – Classification framework description.
Preprocessed Data 856 third-order 2×3×3000 tensors
Feature Extraction MFT, PSD, Hilbert
Feature Transformation LC-MDR (2D), LC-MDR (3D), MPCA, PCA
Classification SVM, R1-SPM, SPM, STuM

Source: Author.

92

4.5 Results and Discussion

In this section, results that evaluate the proposed LC-MDR as a tool used in statistical

classification are presented and discussed. In particular, the LC-MDR is used for reduction of

feature dimensionality and correlation, using the database and framework described in Section

4.4. Although the results presented in Chapter 3 focused in highlighting the classification

accuracy of the framework techniques (MPCA, SPM, STuM, etc), in this chapter the goal is

to highlight the performance of the LC-MDR in reducing correlation, dimensionality and also

improving classification.

As earlier mentioned, the tensor-based classifiers R1-SPM, SPM and STuM are

used for performing the classification, with K-fold cross-validation using K = 10. The con-

ventional (vector-based) SVM classifier is also tested for comparison purposes, as well as the

dimensionality reduction techniques MPCA (tensor-based) and PCA (vector-based).

Several figures of merit are used to evaluate the impact of the dimensionality reduc-

tion techniques on the the classification system. The accuracy and confusion table are used to

measure the number of errors of the classifier, where the accuracy is defined as the number of

correctly classified samples over the total number of samples. The correlation of the output data

is also used as a figure of merit for the techniques.

Moreover, to measure computer performance, the floating point operations per

second (FLOPS) and the average execution time, of the feature technique plus classifier, are

considered. The processing times were obtained with an 9th generation Intel Core i3 processor,

running MATLAB version 2017b. The SVM functions used to model the classifiers are fitcsvm

and predict, respectively.

Some preliminary tests, whose results are omitted, were carried out in order to find

the best hyperparameters of the classifiers. The best results were obtained with the relaxing

constant C = 100 and the ranks of the STuM Q1 = 2, Q2 = 3 and Q3 = 5. When not stated

otherwise, these values are used. The parameters of ε1 and ε2 of the EONPD are set to 10−6 and

10−3 respectively.

Regarding the dimensionality of the input data, two cases are considered: bidimen-

sional (2D) inputs (N = 2) and tridimensional (3D) inputs (N = 3). In the 3D case, the data fed

into the dimensionality reduction techniques are 2×3×56 tensors. In the 2D case, the first two

modes are concatenated, and the resulting data are 6×56 matrices. The vector-based techniques

(PCA and SVM) perform the vectorization of the tensor samples, yielding pattern vectors of

93

Table 13 – TCR with full projection.
Feature Dimensions TCR
Transformation
LC-MDR (2D) 6 × 56 0.7121
MPCA 2 × 3 × 56 0.8001
LC-MDR (3D) 2 × 3 × 56 0.7042
None 2 × 3 × 56 0.8569

Source: Author.

dimension 336. Moreover, when the PCA is used in conjunction with the tensor-based STuM,

the data is re-tensorized before entering the classifier.

4.5.1 Correlation Reduction with Full Projection

In this subsection, results with full projection of the data, i.e. with no dimensionality

reduction, are presented and discussed. The objective of these results is to evaluate the impact of

the correlation reduction on the accuracy of the classifiers.

To measure the correlation in the transformed data tensor Y (the input to the

classifier), the following tensor correlation ratio (TCR) is used:

rY =
r(y)C

r(y)C + r(y)V

, (4.31)

where r(y)V stands for the sum of the elements of R(y) that corresponds to variances, i.e. when the

indices verify r1 = r′1, . . . ,rN = r′N , that is:

r(y)V =
R1

∑
r1=1
· · ·

RN

∑
rN=1

r(y)r1,r1,...,rN ,rN

=
R1

∑
r1=1
· · ·

RN

∑
rN=1

σ
2
yr1,...,rN

. (4.32)

Moreover, r(y)C stands for the sum of the absolute values of the elements of R(y) that corresponds

to correlations, i.e. when r1 = r′1, . . . ,rN = r′N is not verified, that is: r(y)C = r(y)T − r(y)V , where r(y)T

is the sum of the absolute values of all the elements of R(y). The TCR is used in the sequel

to measure the decorrelation of the data after being processed by the MPCA and LC-MDR

techniques.

Table 13 shows TCR, defined in (4.31), obtained by the MPCA and LC-MDR

methods, including the bidimensional LC-MDR, with full projection. The TCR of original data,

i.e. without any correlation reduction technique being applied, is also shown for comparison

purposes. It can be seen from Table 13 that the LC-MDR has significantly reduced the TCR, in

94

Table 14 – Accuracy obtained by different techniques with
full projection.

Feature Classifier Accuracy Execution time (s)
Transformation
(Dimensions)

SVM 79.4% 2663.8
PCA R1-SPM 80.5% 2911.3
(336) SPM 81.2% 3133.2

STuM 81.7% 3517.4

SVM 80.8% 2245.2
LC-MDR (2D) R1-SPM 82.6% 2664.1
(6 × 56) SPM 83.9% 3201.4

STuM 85.1% 3721.7

SVM 81.6% 8335.4
MPCA R1-SPM 82.2% 11454.3
(2 × 3 × 56) SPM 82.6% 1292.2

STuM 84.3% 13239.0

SVM 80.2% 2723.7
LC-MDR (3D) R1-SPM 84.9% 3154.1
(2 × 3 × 56) SPM 85.8% 3877.9

STuM 86.2% 4779.4

SVM 75.2% 2117.5
None R1-SPM 76.8% 2455.6
(2 × 3 × 56) SPM 77.2% 2598.0

STuM 78.8% 3002.1

Source: Author.

comparison to the original data, even when dimensionality reduction is not performed. Besides,

the reduction of correlation carried out by the LC-MDR, for both the 2D and 3D versions, is

much more significant than the one provided by the MPCA. This is due to the fact that the

LC-MDR is explicitly designed for reducing the output correlation, contrarily to the MCPA. In

other words, the LC-MDR reduces the TCR even if the original dimensions are maintained.

Regarding the classification of the volcano-seismic events, Table 14 presents the

accuracy provided using the the PCA, the MPCA and the LC-MDR methods with full projection

of the data, along with both the SVM and the STM-based classifiers. Table 14 also shows the

accuracy obtained in the case where no technique is used for feature transformation, i.e. the

preprocessed data is feed to the classifiers. The execution times (feature transformation plus

classification) are also shown in this table.

95

As it can be viewed in Table 14, the best accuracy is obtained by the LC-MDR

(3D) with the STuM, achieving an accuracy of 86.2% (this accuracy is highlighted in bold).

The second best accuracy was obtained by the LC-MDR (2D) with STuM, showing that the

stronger reduction of correlation achieved by the proposed technique facilitates the classification.

Moreover, the third better accuracy was obtained by the MPCA with STuM, which also uses 3D

data, showing that the preservation of the tensor structure of data is beneficial for the classification

system.

In addition, the accuracy provided by the STuM are higher than the ones of the other

tensor-based classifiers and the SVM, for all the tested methods. Also, all tensor-based classifiers

provided higher accuracy in comparison to the SVM, corroborating with the fact that breaking

the tensor structure of the data induces a worse classification. Moreover, the SPM always showed

better success rates when comparing to the simpler R1-SPM, with Q = 1. As can be seen, the

rank value impacts on the classification, which corroborates the results of Figure 18 of Chapter 3.

Using no technique at all delivered the worst accuracy of the table, showing the

efficacy of the MPCA and LC-MDR with full projection of the data, although the vector-based

PCA provides a small gain in CCR with respect to the case with no PCA. The case with no

feature transformation showed the lowest accuracy, behind the vector-based PCA.

It can also be viewed in Table 14 that the execution time of the STM-based classifiers

is higher than the one of the SVM for all the tested cases. This is due to the fact that the STMs

executes several standard vector-based SVMs (with smaller input dimensions) for each input

sample. Regarding the execution time of the techniques for dimensionality and correlation

reduction, the smaller execution time were provided by case with no technique, as expected.

The LC-MDR (2D) has the lowest execution time among the transformation tech-

niques, when used with the SVM. The bidimensional LC-MDR is modeled as a standard NPD

(4.27), requiring only one nesting, whereas the tridimensional case, which is modeled by the

EONPD, requires two nestings, thus demanding more running time. Moreover, the proposed

LC-MDR was executed much faster than the MPCA, which is by far the most time-expending

algorithm. These results show that the LC-MDR is much faster than the other tensor-based

technique (MPCA) and it has an execution time comparable with the vector-based method (PCA).

Comparing the LC-MDR with no use of transformation on the data, it is clear that the use of the

LC-MDR technique is a trade-off between execution time and accuracy.

96

Table 15 – TCR for the MPCA and the
LC-MDR for several array di-
mensions.

Technique Dimensions TCR (rY)
6 × 15 0.3923
4 × 15 0.3415
6 × 10 0.2894

LC-MDR (2D) 4 × 10 0.1930
6 × 5 0.2007
4 × 5 0.1445

2 × 3 × 15 0.6517
2 × 2 × 15 0.6153
2 × 3 × 10 0.5678

MPCA 2 × 2 × 10 0.4926
2 × 3 × 5 0.3020
2 × 2 × 5 0.2634
2 × 3 × 15 0.3896
2 × 2 × 15 0.3328
2 × 3 × 10 0.2851

LC-MDR (3D) 2 × 2 × 10 0.1844
2 × 3 × 5 0.2157
2 × 2 × 5 0.1394

None 2 × 3 × 56 0.8569

Source: Author.

4.5.2 Correlation and dimensionality reduction

In this subsection, results with dimensionality reduction are presented and discussed.

The objective is to assess the impact of a simultaneous reduction on the correlation and dimen-

sionality on the classification.

Table 15 shows the TCR, defined by (4.31), obtained by the MPCA and LC-MDR

methods, for several configurations of the dimensions of Y . Table 15 also shows the TCR in the

case where no technique is applied. It can be viewed from this table that, for all the tested array

dimensions, the LC-MDR provided much smaller correlations than the MPCA, confirming that

the proposed technique has a much higher ability to the reduce the correlations than the MPCA

technique. As already explained, this is due to the fact that the cost function of the LC-MDR that

explicitly takes the output correlation into account. In comparison to the 2D LC-MDR, the 3D

LC-MDR showed slightly lower TCRs.

It can also be noted from Table 15 that the smaller values of TCR were obtained when

the tensor dimensions are small. In particular, the lowest TCR is obtained when the dimensions

of Y are 2 × 2 × 5. As expected, this results shows that it is easier to remove the correlation

when there are less data to process.

For the next result, which show the accuracy, many tests were carried out in order to

97

Figure 21 – Accuracy obtained by different techniques varying R3.

0 10 20 30 40 50 60

R
3

60

65

70

75

80

85

90

95

A
c
c
u

ra
c
y
 (

%
)

LC-MDR, R
1
 = 2, R

2
 = 2

MPCA, R
1
 = 2, R

2
 = 2

PCA, R
1
 = 2, R

2
 = 2

LC-MDR, R
1
 = 2, R

2
 = 3

MPCA, R
1
 = 2, R

2
 = 3

PCA, R
1
 = 2, R

2
 = 3

Source: Author.

find the ranks R1, R2 and R3 that provide the highest rates. Some of these results are shown in

Fig. 21, which presents the classification accuracy versus R3 (number of attributes), obtained

with the techniques PCA, MPCA and the LC-MDR. The methods MPCA and the LC-MDR were

used with the STuM classifier while the PCA was used with the SVM. Regarding the values of

R1 and R2, this figure considers two cases: (i) R1 = R2 = 2 and (ii) R1 = 2, R2 = 3. For the PCA,

the number of used components is equal to R = R1R2R3, with R1 and R2 fixed as mentioned.

It can be observed in this figure that the LC-MDR provided the highest accuracy,

outclassing the MPCA and PCA for the two configurations of R1 and R2. Other simulations

similar to the ones of Fig. 21 have been carried out, where the best result was obtained with

R1 = 2, R2 = 2 and R3 = 10 for the LC-MDR, with R1 = 2, R2 = 2 and R3 = 15 for the MPCA

and R = 60 components for the PCA (R1 = 2,R2 = 2 and R3 = 15). The remaining results of

this chapter were obtained using these parameters.

Furthermore, Figure 21 showed a decrease in accuracy of the LC-MDR and MPCA

algorithms as the rank R3 went higher than 30. This can be explained as follows.

Table 16 shows the accuracy obtained by the PCA, MPCA and LC-MDR methods,

with dimensionality reduction, using both the SVM and STM-based classifiers. To have a better

comparison, the MPCA and 3D LC-MDR were tested with both configurations R1 = 2, R2 = 2,

R3 = 10 and R1 = 2, R2 = 2, R3 = 15, which were the best results obtained. The execution times

of the techniques are also shown in this table. As in Table 14, the best accuracy (90.3%) was

obtained with the tridimensional LC-MDR and the STuM (with dimensions 2 × 2 × 10), which

confirms that the the stronger reduction of correlation achieved by the LC-MDR improves the

classification.

98

Table 16 – Accuracy obtained by the dimensionality re-
duction techniques.

Technique Classifier Accuracy Execution time (s)
(Dimensions)

SVM 82.6% 1132.3
PCA R1-SPM 82.9% 1883.7
(60) SPM 83.1% 2011.1

STuM 83.4% 2233.1

SVM 83.9% 601.3
LC-MDR (2D) R1-SPM 86.2% 899.2
(4 × 10) SPM 87.5% 1004.7

STuM 88.9% 1235.8

SVM 84.0% 3665.4
MPCA R1-SPM 87.2% 3989.8
(2 × 2 × 15) SPM 88.1% 4314.9

STuM 89.6% 4889.6

SVM 83.8% 3288.2
MPCA R1-SPM 84.9% 3774.1
(2 × 2 × 10) SPM 85.2% 4107.8

STuM 85.5% 4325.7

SVM 84.0% 702.5
LC-MDR (3D) R1-SPM 86.9% 1001.7
(2 × 2 × 15) SPM 88.3% 1224.8

STuM 89.5% 1411.9

SVM 84.1% 655.1
LC-MDR (3D) R1-SPM 88.6% 947.6
(2 × 2 × 10) SPM 89.3% 1105.5

STuM 90.3% 1371.3

Source: Author.

The second best accuracy was obtained by the MPCA with the STuM (with dimen-

sions 2 × 2 × 15). In addition, the accuracy provided by the STuM, SPM and R1-SPM are

higher than the ones of the SVM, for all the tested methods, which corroborates the fact that the

preservation of the tensor structure of data helps the classification. Using the dimensions 2 ×
2 × 15, the difference in accuracy between the MPCA and the 3D LC-MDR is only 0.1, with

the LC-MDR running almost 3 times faster. It should also be noted that the matrix-based 2D

LC-MDR with dimensions 4 × 10 provided an accuracy higher than the one of the vector-based

PCA and even the MPCA with dimensions 2 × 2 × 10.

Moreover, comparing the results of Tables 14 and 16, it can be viewed that the better

99

Table 17 – Confusion Matrix provided by the tridimen-
sional LC-MDR with STuM.

True class
EX HB LP TR VT Overall

Predicted
class

EX 11 0 3 2 0
HB 0 10 0 0 0
LP 0 36 378 11 5
TR 0 0 5 367 0
VT 5 2 11 3 7

Accuracy(%) 68.7 20.8 95.2 95.6 58.3 90.3
Source: Author.

accuracy are obtained when dimensionality reduction is carried out, compared with the full

projection case, for the two tested classifiers. The dimensionality reduction also led to faster

execution times than the full projection cases, for both the classifiers. However, in Table 16, the

smaller execution time was obtained with the proposed LC-MDR, showing that this technique

may benefit from a significant gain in execution time when it is implemented with dimensionality

reduction.

Still in the execution time metric of Table 16, the tridimensional LC-MDR showed

running times very close for the two dimensionality reduction cases (2 × 2 × 15 and 2 × 2 ×
10), which highlights the ability of the LC-MDR to enhance running times in the classification

framework while reducing the dimensionality, with small execution time differences regarding

the dimension size. Also, the 2D LC-MDR performs faster in comparison to the 3D case, which

was explained earlier.

Finally, Table 17 presents the confusion matrix for the classification of the data

processed by the proposed technique (LC-MDR) coupled with the STuM classifier, for R1 = 2,

R2 = 2 and R3 = 10, which is the highest accuracy result obtained. It can be viewed from this

table that the classes TR and LP provided the highest accuracy, while the HB showed the worst

accuracy. The HB class, as described in Chapter 3, has characteristics of both the LP and VT

classes, which explains the misclassification of its samples to one of these classes.

The above results showcase the technique advantages, in comparison to the MPCA

and the PCA, as an approach that achieves higher classification rates and speeds. This is due to

the fact that the LC-MDR does not impose orthogonality on the transformation matrices, in order

to guarantee the correlation tensor as diagonal, thus, making the transformed data uncorrelated

and more likely to be classified.

100

Table 18 – Time complexity of the LC-MDR, PCA and
MPCA for N = 3 for dimensionality reduc-
tion.

Technique Time Complexity
PCA O(PI2

1 I2
2 I2

3 + I3
1 I3

2 I3
3 +PI1I2I3R1R2R3)

MPCA O(PI1I2I3[I1 + I2 + I3]+ I3
1 + I3

2 + I3
3 +PI1I2I3[R1 +R2 +R3])

LC-MDR O
(
PNit [I3

1 R2
1J2

1 + I3
2 R2

2J2
2 + I3

3 R2
3J2

3]
)

Source: Author.

4.5.3 Computational Cost Analysis

In the sequel, a brief computational complexity analysis of the estimation algorithm

of the LC-MDR. The time complexity is considered as a function of the input parameters, using

the big-O notation. The time complexity is estimated by counting the number of elementary

operations performed by the algorithm, considering the worst-case time complexity, which is the

maximum amount of elementary operations required for inputs of a given size. Moreover, the

big-O notation corresponds to the asymptotic behavior of the complexity when the input size

increases.

The complexity analysis of the used techniques is of great importance because it

shows how much computer power it is needed to run the applications and the original proposition

(LC-MDR) of this paper.

Table 18 shows the time complexity of the LC-MDR, as well as those of the con-

current PCA and MPCA techniques, for N = 3, i.e. for third-order input tensors, where Nit the

number of iterations. The computational complexity of the LC-MDR depends on the dimensions

of the input tensor, the ranks of the PARAFAC decomposition, the number of iterations of each

ALS loop and the number of samples.

Although the time-complexity of the tridimensional LC-MDR seems higher than

the one of the MPCA, the results of Tables 14 and 16 showed smaller execution times for the

LC-MDR in comparison to the MPCA. This is due the fact that the expressions in Table 18 are

for the worst case scenario, however, the application of this chapter may not be this case, thus

executing faster than the MPCA.

To have a better evaluation of the computational cost of the techniques, Table 19

shows the FLOPS of the techniques with dimensionality reduction and output dimensions R1 =

2, R2 = 2 and R3 = 10 for the MPCA and 3D LC-MDR, R1R2 = 4, R3 = 10 for the 2D LC-MDR

and R1R2R3 = 40 for the PCA. From Table 19, it can be viewed that the 2D LC-MDR is the

less demanding algorithm in terms of FLOPS, whereas the 3D LC-MDR is the technique that

101

Table 19 – FLOPS counts for the different techniques
with dimensionality reduction.

Technique FLOPS
PCA 5.0 × 108

MPCA 1.4 × 1011

LC-MDR (2D) 1.9 × 108

LC-MDR (3D) 2.2 × 108

Source: Author.

Figure 22 – FLOPS of the transformation techniques when varying R3, for R1 = R2
= 2.

5 10 15 20 25 30 35 40 45 50 55

R
3

0

1

2

3

4

5

6

7

F
L
O

P
s

10
11

LC-MDR

MPCA

PCA

Source: Author.

provided the second lowest FLOPS and the MPCA is the most time-complex method.

Moreover, both versions of the LC-MDR provided a FLOP count roughly 2.3 times

less than the standard PCA. This result pictures a clear trade-off between accuracy performance

and computational cost of the two LC-MDR techniques, where the 2D runs faster, but it achieves

lower accuracy values in comparison to the 3D case.

In Figure 22, the FLOP count versus the number of attributes R3 is shown, for the 3D

LC-MDR, the PCA and the MPCA, with R1 = R2 = 2. As it can be viewed, the MPCA demands

high computational cost, in terms of FLOPS, when compared to the LC-MDR. In Tab. 19 only

one scenario was shown, which was for dimensions 2 × 2 × 10, however, in Figure 22 we can

see a better picture of the FLOPS for various attribute sizes. It is clear that when the attribute size

R3 augments, the FLOP count increases dramatically for the MPCA, showing that this technique

is very computational demanding. The vector-based PCA performed closely to the tensor-based

LC-MDR, thus further demonstrating the lower computational complexity of the LC-MDR, even

it being a tensor-based technique.

Next, in Figure 23, we have the analysis of the number of iterations necessary to

achieve convergence of the LC-MDR algorithm, in function of the parameter R3, which is the

102

Figure 23 – Iterations needed for convergence of the 3D LC-MDR when varying
R3, with R1 = R2 = 2.

5 10 15 20 25 30 35 40 45 50 55

R
3

5

6

7

8

9

10

11

12

13

14

N
u
m

b
e
r

o
f
It
e
ra

ti
o
n
s

LC-MDR (3D)

LC-MDR (2D)

Source: Author.

number of attributes and with R1 = R2 = 2. As Fig. 23 shows, the increase in R3 demands more

iterations, however, not by a large margin, thus explaining the small difference in execution times

of Table 16 for the dimensions 2 × 2 × 10 and 2 × 2 × 15.

4.6 Conclusions

In this chapter, a dimensionality reduction technique for tensor data is proposed.

The presented method optimizes a cost function that takes into account the data correlation,

generating variables with much less correlation than the MPCA. In particular, the LC-MDR fits

the input data correlation into a new tensor decomposition denoted by EONPD, which is an

extension of the NPD for higher-order tensors. Moreover, the LC-MDR is based on the ALS

for estimating the factor matrices. A complete description of the EONPD is given, with both

analytical and recursive expressions being derived. In addition, a generalization of the EONPD,

denoted by HONPD, is also presented, assuming the nesting of PARAFAC tensors of generic

orders.

The proposed technique is used for the classification of five different volcano-seismic

events using a database of 3D samples recorded from the Ubinas volcano, Peru, in 2009, with

the tensor samples being organized as stations × channels × features.

The results showed very significant gains in accuracy of the LC-MDR over the

concurrent PCA and MPCA. The better performance of the proposed method is observed with

and without dimensionality reduction. The best accuracy (90.3%) was achieved with the 3D

LC-MDR coupled with the STuM classifier, using dimensionality reduction. In addition, the

103

results showed the LC-MDR provides output data with much less correlation than the MPCA,

which explains the better accuracy of the LC-MDR. Moreover, the LC-MDR showed a faster

execution time in comparison with the MPCA. Besides, the proposed technique also provides

smaller execution times than the PCA if dimensionality reduction is carried out.

104

5 MULTILINEAR SAMPLING IN SUPPORT VECTOR MACHINES FOR PHO-

TONIC DATA CLASSIFICATION

In this chapter, the concept of multilinear sampling is proposed, with the objective

of presenting classification algorithms that exploit a multidimensional structure of the samples.

The multilinear sampling is used to perform a modification on the SVM classifier, where it is

considered two tensorial decompositions for the slack variables. The proposed classification

methods exploit the multidimensional modeling of both PARAFAC and Tucker decompositions,

therefore, the modifications are called SVM-MPS and SVM-MTS, respectively. Then, the

modified SVM algorithms are used to classify the binary outputs obtained from a MZI. Usually,

the the output data obtained from interferometers depend on many parameters, which can

be arranged in a multilinear sample structure. The multilinear sampling approach is then

used by storing the input samples into a four-way array, whose modes corresponds to the two

interferometer inputs and two phase shifts.

Results showed better accuracy of the proposed SVM modifications in classifying

the logic levels of the MZI output, comparing to the standard SVM and other classic classifers.

The proposed multidimensional sampling structure proved to be effective in classification when

compared to the conventional vectorization processes. Also computational cost and running

times were taken as parameters to validate the proposed approach.

This chapter is organized as follows. First, the motivations of the proposed technique

are outlined, then, the modeling of the multilinear sampling structure is described, with the

proposed modifications for the SVM, with its Quadratic Programming (QP) and algorithms

formulated in the following. Next, the used photonic database is described and detailed. For last,

the obtained results are discussed and commented.

5.1 Motivation

An alternative to conventional approaches for ML are the tensor learning frameworks,

where many conventional learning machines can be generalized to take n-order tensors as

inputs (TAO et al., 2007b). As earlier highlighted, this avoids data vectorization and the

consequent destruction of the data structure (HE et al., 2017). In tensor learning methods, the

multidimensional structural information of the data is preserved.

In classical tensor learning, the multidimensional structure lies in the attributes,

which are considered to be tensors. On the other, hand, in the multilinear approach proposed in

105

this chapter, the multidimensional structure lies in the sampling. In other words, all but one of the

dimensions of the tensor correspond to the sampling modes, which can be exploited during the

processing and classification process. The main idea behind the multilinear sampling approach

is to exploit the multidimensional structure of the samples.

Moreover, multilinear sampling can be combined with conventional linear techniques

to generate algorithms that support multidimensional data, without the need for vectorization of

the sampling modes.

The multidimensional structure of the multilinear sampling approach relies in the

way samples were obtained and not in the structure of the input vector, as each input sample

is considered to be a vector, as in standard ML techniques. In a traditional ML approach,

all the samples would be concatenated into a single sampling index, however, this will break

the sampling structure of the data. This would cause loss of information and, hence, loss of

performance, in accuracy terms.

There is no work in the literature that exploits a similar multilinear sampling structure

for ML tasks, as in this thesis. In fact, the proposed multilinear sampling approach is original in

the context of ML and TL, as it joins both topics.

Hence, the focus of this chapter is to present an extension of the SVM algorithm

that can make use of multidimensional sampling. The main original contributions of the present

chapter are summarized as follows. (i) The concept of multilinear sampling approach, (ii)

PARAFAC-based and Tucker-based modifications of the SVM algorithm, (iii) a QP formulation

of the proposed problems and (iv) application of the proposed technique for the classification of

logic levels at the output of a MZI.

5.2 Multilinear Sampling in Support Vector Machines

In this section, the multilinear sampling approach is presented in the context of a

SVM for binary data classification. Firstly, the multilinear sampling approach is presented and,

then, an adaptation of the primal formulation of the SVM to the multilinear sampling is presented.

After that, in the next section, two solutions for the proposed formulation are presented, based on

the modeling of the slacks variables as PARAFAC and Tucker decompositions. These solutions

give rise to two new classifier’s that exploit the multilinear sampling approach.

106

5.2.1 Multilinear Sampling

Let us consider a training data set consisting of P input vectors denoted by xp ∈ CN ,

for p = 1, ...,P, where N is the dimension of the input vector. The basic assumption of the

multilinear sampling approach is that the P samples were originally obtained obeying a mul-

tidimensional structure with N dimensions, i.e. the P samples were obtained as a (P+ 1)th

order tensor X ∈ CN×P1×...×PN , with the last N dimensions corresponding to sampling dimen-

sions denoted by P1, ...,PN , where P = P1, ...,PN . The indices associated with the N sampling

dimensions are denoted by p1, ..., pN , where p = pN +(pN−1− 1)PN + ...+(p1− 1)PN ...P2,

for 1≥ pn ≥ Pn and n = 1, ...,N. In other words, index p corresponds to the concatenation of

the indices p1, ..., pN , as well as the the dimension P corresponds to the concatenation of the

dimensions P1, ...,PN .

When ML methods are used to model dynamic systems, it is usual to construct a

training database in which a scan of the input variables is carried out, i.e. the training database is

constructed by varying each input in a certain range at each time. This scan of input of variables

usually follows the above mentioned multilinear sampling structure.

Indeed, let us consider that the training database is constructed by making the nth

element of the input vector assume the values {β (n)
1 ...β

(n)
Pn
}, for n = 1, ...,N, where Pn is number

of tested values of the nth input. In this case, the whole database is composed of P = P1, ...,PN

samples, given by:

xp = xp1,...,pN =

β
(1)
p1
...

β
(N)
pN

 ∈ CN×1, (5.1)

for p1 = 1, ...,P1,..., pN = 1, ...,PN . Notice that the database contains all combinations of β
(n)
pn , for

1≤ pn ≤ Pn and n = 1, ...,N. The database can then be organized in a tensor X ∈ CN×P1×...×PN ,

whose elements are denoted by xn,p1,...,pN .

Therefore, the main idea behind the multilinear sampling is to exploit the multidi-

mensional structure of the samples. Note that the refereed multidimensional structure relies in

the way the samples were obtained and not in the structure of the input vector, as each input

sample is a vector. In a traditional ML approach, all the samples will be concatenated into a

single sampling index p, however, this will break the sampling structure of the data. This could

cause loss of information and, hence, loss of performance.

107

The above multidimensional structure for the samples is common in the literature,

specially when ML techniques are used to model dynamic systems, as, for instance, in optics

and photonics fields. In (XIE et al., 2020), an arbitrary ratio optical power splitter is designed

with data structured in a similar way as in this chapter. Moreover, in (KUMAR et al., 2014)

and in (ARAÚJO et al., 2015; CORREIA et al., 2017; SOUSA et al., 2014), logic gates are

implemented through MZIs, with sets of parameters and inputs similar to the ones used in this

thesis, which could exploit the multlinear sampling structures presented here. Additionally, the

works of (MENGU et al., 2022) and (TAHERSIMA et al., 2019) that exploit inverse logic design

in ML, utilizes similar arrangements as the ones used here, for parameters and data obtained

from MZIs and other optic devices.

In the sequel, the multilinear sampling is applied in the task of statistical classification

using the SVM, which is one of the most popular classifiers in the literature, used in a wide

variety of applications (BURGES, 1998; MATHUR; FOODY, 2008; CERVANTES et al., 2020).

In particular, the primal cost function of the SVM is modified to cope with the

multiple indices of the multilinear sampling approach, aiming to exploit the multilinear structure

of the sampling. This gives rise to two different modifications on the SVM algorithm. The first

one based on the PARAFAC decomposition, while the second one uses the Tucker decomposition.

5.2.2 Primal Formulation of the SVM with Multilinear Sampling

Considering the data samples follows the earlier described multilinear sampling, the

SVM problem given by (2.32)-(2.34) can be stated as:

min
w,b,E

1
2
⟨w,w⟩+C

P1

∑
p1=1

...
PN

∑
pN=1

ξp1,...,pN , (5.2)

subject to

yp1,...,pN (⟨w,xp1,...,pN ⟩+b)≥ 1−ξp1,...,pN , (5.3)

ξp1,...,pN ≥ 0, (5.4)

for p1 = 1, ...,P1,..., pN = 1, ...,PN , where E ∈ CP1×...×PN is a Nth order tensor that contains the

slack variables ξ . Comparing the above formulation with the one of Chapter 2, we have that the

index p in (2.32)-(2.34) was replaced by the multiple sampling indices p1, ..., pN in (5.2)-(5.4).

In the next two sections, two methods for solving the formulation (5.2)-(5.4) are proposed, using

the PARAFAC and Tucker decompositions of the slack tensor E .

108

5.3 SVM with Multilinear PARAFAC Sampling (SVM-MPS)

In this section, the problem formulated in (5.2)-(5.4) is modified by using the

PARAFAC decomposition of the tensor E , which contains the slack variables ξ . After that,

the problem is expressed as a QP problem and, then, the algorithm of the SVM classifier with

multilinear PARAFAC sampling (SVM-MPS) is presented.

5.3.1 Problem Formulation

A solution to (5.2)-(5.4) can be obtained by exploiting the PARAFAC decompositions

of the slack tensor E and using multiple convectional SVMs. The PARAFAC decomposition of

slack tensor E can expressed as:

ξp1,...,pN =
Q

∑
q=1

a(1)p1,q...a
(N)
pN ,q, (5.5)

where Q is the tensor rank and a(1)p1,q,..., a(N)
pN ,q are the factors of the PARAFAC decomposition,

which can be organized in the factor matrices A(n) ∈ RPn×Q, for n = 1, ...,N.

Using (5.5), eqs. (5.2)-(5.4) can be rewritten as:

min
w,b,A(1),...,A(N)

1
2
⟨w,w⟩+C

(
P1

∑
p1=1

...
PN

∑
pN=1

Q

∑
q=1

a(1)p1,q...a
(N)
pN ,q

)
, (5.6)

subject to

yp1,,...,pN (⟨w,xp1,...,pN ⟩+b)≥ 1−
Q

∑
q=1

a(1)p1,q...a
(N)
pN ,q, (5.7)

Q

∑
q=1

a(1)p1,q...a
(N)
pN ,q ≥ 0, (5.8)

for p1 = 1,...,P1, ..., pN = 1,...,PN .

The proposed classifier is an iterative algorithm with multiple alternated steps at

each iteration, similarly to the ALS algorithm (COMON et al., 2009). At each step of each

iteration, one of the factor matrices of the slack tensor E is estimated assuming that the other

factor matrices are known, using the previous estimates of these factor matrices. The process

goes on until convergence, estimating a different factor matrix at each step. The weight vector w

is estimated in each step of each iteration, being refined with each new step.

109

Assuming that all the factor matrices are known, except for A(n), eqs. (5.6)-(5.8) can

be rewritten as follows:

min
w,b,A(n)

1
2
⟨w,w⟩+C

(
Q

∑
q=1

C[n]
q

Pn

∑
pn=1

a(n)pn,q

)
, (5.9)

subject to

yp1,...,pN (⟨w,xp1,...,pN ⟩+b)≥ 1−
Q

∑
q=1

a(n)pn,qu[n]p1,...,pn−1,pn+1,...,pN ,q, (5.10)

Q

∑
q=1

a(n)pn,qu[n]p1,...,pn−1,pn+1,...,pN ,q ≥ 0, (5.11)

for p1 = 1,...,P1, ..., pN = 1,...,PN , where

C[n]
q =

Pn

∑
p1=1

...
Pn−1

∑
pn−1=1

Pn+1

∑
pn+1=1

...
PN

∑
pN=1

a(1)p1,q...a
(n−1)
pn−1,qa(n+1)

pn+1,q...a
(N)
pN ,q (5.12)

and

u[n]p1,...,pn−1,pn+1,...,pN ,q = a(1)p1,q...a
(n−1)
pn−1,qa(n+1)

pn+1,q...a
(N)
pN ,q (5.13)

are assumed to be known. Despite being different from the standard SVM formulation (2.32)-

(2.34), the optimization problem in (5.9)-(5.11) can also be expressed as QP, as it will be shown

in the next subsection.

5.3.2 Quadratic Programming (QP) Formulation

QP is a type of nonlinear programming for solving optimization problems involving

quadratic functions subject to linear constraints. There are a great variety of well-established

method for QP, including interior point, active set, augmented Lagrangian, conjugate gradient

etc (NOCEDAL; WRIGHT, 2006). A general formulation for a QP is given by:

min
x

1
2

xT Px+xT q (5.14)

subject to

Rx≤ s, (5.15)

The cost function (5.9) can be expressed as in the general form (5.14) with the following

correspondences:

x =
[
w b a(n)1,1...a

(n)
1,Q · · ·a

(n)
Pn,1...a

(n)
Pn,Q

]T

∈ R(N+PnQ+1)×1, (5.16)

110

P =

 IN,N 0N,(PnQ+1)

0(PnQ+1),N 0(PnQ+1),(PnQ+1)

∈ R(N+PnQ+1)×(N+PnQ+1), (5.17)

q =

0(N+1),1

1Pn,1⊗ c[n]

 ∈ R(N+PnQ+1)×1, (5.18)

where c[n] = [C[n]
1 ...C[n]

Q] ∈ RQ×1.

Moreover, the constraints (5.10) and (5.11) can be expressed as in the general form

(5.15) with the following correspondences:

R =

R(1)

R(2)

 ∈ R2P×(2+PnQ+1), s =

s(1)

s(2)

 ∈ R2P×1, (5.19)

where s(1) = −1P,1 ∈ RP×1 and the pth row of R(1) ∈ RP×(N+PnQ+1), for p = 1, ...,P and P =

P1...PN , is given by:

[R(1)]p,: =−

yp1,...,pN x1,p1,...,pN
...

yp1,...,pN xN,p1,...,pN

yp1,...,pN

0Q(pn−1),1

−u[n]p1,...,pn−1,pn+1,...,pN ,1
...

−u[n]p1,...,pn−1,pn+1,...,pN ,Q

0Q(Pn−pn),1

T

∈ RP×(N+PnQ+1), (5.20)

with p corresponding to the concatenation of the indices p1, ..., pN in the following way p =

pN +(pN−1−1)PN + ...+(p1−1)PN ...P2, for 1≥ pn ≥ Pn and n = 1, ...,N.

Furthermore, s(2) = 0P,1 ∈ RP×1 and the pth row of R(2) ∈ RP×(N+PnQ+1), for p =

111

Algorithm 2: SVM-MPS Estimation Algorithm
Input: ε , C, xn,p1,p2,...,pN and yp1,p2,...,pN , for pn = 1, ...,Pn and n = 1, ...,N.

Outputs: ŵ, b̂, Ê
Initialization: β = 0, i = 0, Â(2)

0 , . . . , Â(N)
0 are random matrices

while β = 0 do
i = i+1
for n = 1 : N do

Construct P, q, R and s from (5.17)-(5.21) using Â(1)
i ,..., Â(n−1)

i , Â(n+1)
i−1 , ...,Â(N)

i−1.

Using any QP method, find ŵi, b̂i, Â
(n)
i

end

Build Êi using Â(1)
i , . . . , Â(N)

i using (5.5)

Unfold Êi into Ê[1]
i using (2.18)

if |ei| < ε then
β = 1
ŵ = ŵi, b̂ = b̂i, Ê = Êi

end
end

1, ...,P and P = P1, ...,PN , is given by:

[R(2)]p,: =

0N+1+Q(pn−1),1

−u[n]p1,...,pn−1,pn+1,...,pN ,1
...

−u[n]p1,...,pn−1,pn+1,...,pN ,Q

0Q(Pn−p1),1

T

, (5.21)

where p corresponds to the concatenation of the indices p1, ..., pN , as in (5.20). Once the problem

shown in (5.9)-(5.11) of the SVM-MPS is expressed as QP, it can be solved by any of the earlier

mentioned QP methods.

5.3.3 Estimation Algorithm

The estimation algorithm of the SVM-MPS is shown in Algorithm 2. Given a

variable z, the estimation of z at the ith iteration is denoted by ẑi. Each iteration of the algorithm

is composed of N stages, in each stage, one factor matrix of the PARAFAC decomposition

of the slack tensor E is estimated using the previous estimation of the other factor matrices.

This estimation is carried out using any QP method with the formulation presented given by

(5.17)-(5.21). In each stage of each iteration, the weight vector w and the bias scalar b are also

estimated.

112

At the end of the N stages, the tensor Êi is constructed, unfolded and a test for

convergence is performed using the binary flag variable β and:

ei =
∥Ê[1]

i − Ê[1]
i−1∥2

F

∥Ê[1]
i−1∥2

F

, (5.22)

where ε is a small scalar constants. When the algorithm stops, the last values obtained for w and

b are saved to be used during the test phase of the classification.

5.4 SVM with Multilinear Tucker Sampling (SVM-MTS)

In this section, the problem formulated in (5.2)-(5.4) is modified by using the Tucker

decomposition of the tensor E . Then, the problem is expressed as a QP problem and the algorithm

of the SVM classifier with multilinear Tucker sampling (SVM-MTS) is presented.

5.4.1 Problem Formulation

Let E ∈ RP1×P2×...×PN be the n-th order tensor, with n = 1,...,N, formed from

ξp1,p2,...,pN . Let us assume that the slack tensor E follows a Tucker decomposition:

ξp1,p2,...,pN =
Q1

∑
q1=1

Q2

∑
q2=1

...
QN

∑
qN=1

gq1,q2,...,qN a(1)p1,q1a(2)p2,q2...a
(N)
pN ,qN , (5.23)

where a(1)p1,q1 , a(2)p2,q2 , ..., a(N)
pN ,qN , form the matrix factors of the Tucker decomposition A(1) ∈

RP1×Q1 , A(2) ∈ RP2×Q2 , ..., A(N) ∈ RPN×QN , and gq1,q2,...,qN forms the core tensor of the Tucker

decomposition G ∈ RP1×P2×...×PN .

Hence, the optimization problem of (5.2)-(5.4) may be stated as follows:

min
w,b,A(1),...,A(N)

1
2
⟨w,w⟩+C

(
P1

∑
p1=1

P2

∑
p2=1

...
PN

∑
pN=1

Q1

∑
q1=1

Q2

∑
q2=1

...
QN

∑
qN=1

gq1,q2,...,qN a(1)p1,q1a(2)p2,q2...a
(N)
pN ,qN

)
,

(5.24)

subject to

yp1,p2,...,pN − (⟨w,xp1,p2,p3,p4⟩+b)≤ 1−
Q1

∑
q1=1

Q2

∑
q2=1

...
QN

∑
qN=1

gq1,q2,...,qN a(1)p1,q1a(2)p2,q2...a
(N)
pN ,qN , (5.25)

Q1

∑
q1=1

Q2

∑
q2=1

...
QN

∑
qN=1

gq1,q2,...,qN a(1)p1,q1a(2)p2,q2a(N)
pN ,qN ≥ 0, (5.26)

for p1 = 1,...,P1, p2 = 1,...,P2, ..., pN = 1,...,PN .

113

In order to find a(1)p1,q1 , a(2)p2,q2 , ..., a(N)
pN ,qN and gq1,q2,...,qN , we estimate them iteratively.

Similar to the SVM-MPS estimation, the proposed SVM-MTS is an iterative algorithm with

multiple alternated stages. In the first N stages, at each iteration, one of the factor matrices of the

slack tensor E is estimated assuming that the other factor matrices and the core tensor are known,

using the previous estimates of them. The process goes on, estimating a different factor matrix

at each stage. After all factor matrices are estimated, the core tensor obtained in the following

stage, with the estimated factor matrices used to estimate the core tensor. This process repeats

until convergence, where the weight vector w is estimated in each step of each iteration, being

refined with each new step.

Assuming that the core tensor and all the factor matrices are known, except for A(n),

eqs. (5.24)-(5.26) are rewritten as follows:

min
w,b,A(n)

1
2
⟨w,w⟩+C

(
Qn

∑
qn=1

C[n]
qn

Pn

∑
pn=1

a(n)pn,qn

)
, (5.27)

subject to

yp1,p2,...,pN − (⟨w,xp1,p2,...,pN ⟩+b)≤ 1−
Qn

∑
qn=n

a(n)pn,qnu[n]p1,...,pn−1,pn+1,...,pN ,qn , (5.28)

Qn

∑
qn=1

a(n)pn,qnu[n]p1,...,pn−1,pn+1,...,pN ,qn ≥ 0. (5.29)

for p1 = 1,...,P1, p2 = 1,...,P2, ..., pN = 1,...,PN , where C[n]
qn and u[n]p1,...,pn−1,pn+1,...,pN ,qn are given by:

C[n]
qn =

P1

∑
p1=1

...
Pn−1

∑
pn−1=1

Pn+1

∑
pn+1=1

...
PN

∑
pN=1

Q1

∑
q1=1

...
Qn−1

∑
qn−1=1

Qn+1

∑
qn+1=1

...
QN

∑
qN=1

gq1,q2,...,qn×

× a(1)p1,q1...a
(n−1)
pn−1,qn−1a(n+1)

pn+1,qn+1...a
(N)
pN ,qN ,

(5.30)

u[n]p1,...,pn−1,pn+1,...,pN ,qn =
Q1

∑
q1=1

...
Qn−1

∑
qn−1=1

Qn+1

∑
qn+1=1

...
QN

∑
qN=1

gq1,q2,...,qN a(1)p1,q1...a
(n−1)
pn−1,qn−1a(n+1)

pn+1,qn+1...a
(N)
pN ,qN .

(5.31)

Both C[n]
qn and u[n]p1,...,pn−1,pn+1,...,pN ,qn are assumed to be known. After the estimations

of A(1)
p1,q1 , A(2)

p2,q2 , ..., A(N)
pN ,qN , the core tensor gq1,q2,...,qN is estimated. Hence, eqs. (5.24)-(5.26)

are rewritten in the following way:

114

min
w,b,gq1,q2,...,qN

1
2
⟨w,w⟩+C

(
Q1

∑
q1=1

Q2

∑
q2=1

...
QN

∑
qN=1

C[g]
q1,q2,...,qN gq1,q2,...,qN

)
, (5.32)

subject to

yp1,p2,...,pN − (⟨w,xp1,p2,...,pN ⟩+b)≤ 1−
Q1

∑
q1=1

Q2

∑
q2=1

...
QN

∑
qN=1

gq1,q2,...,qN u[g]p1,p2,...,pN , (5.33)

Q1

∑
q1=1

Q2

∑
q2=1

...
QN

∑
qN=1

gq1,q2,...,qN u[g]p1,p2,...,pN ≥ 0, (5.34)

with p1 = 1,...,P1, p2 = 1,...,P2, ..., pN = 1,...,PN , where C[g]
q1,q2,...,qN and u[g]p1,p2,...,pN ,q1 are given by:

C[g]
q1,q2,...,qN =

P1

∑
p1=1

P2

∑
p2=1

...
PN

∑
pN=1

a(1)p1,q1a(2)p2,q2...a
(N)
pN ,qN , (5.35)

u[g]p1,p2,...,pN = a(1)p1,q1a(2)p2,q2 ...a
(N)
pN ,qN . (5.36)

Both C[g]
q1,q2,...,qN and u[g]p1,p2,...,pN are assumed to be known. The optimization problems in (5.27)-

(5.29) and (5.32)-(5.34) can also be expressed as QP, which is shown in the next subsection.

5.4.2 Quadratic Programming Formulation

The QP formulation for the Tucker representation of the slack variables is very

similar to the PARAFAC one. In fact, (5.16)-(5.18), can be reused by just substituting Q by QN ,

with c[n] ∈ RQn×1 containing all C[n]
qn values, in the following way:

x =
[
w b a(n)1,1...a

(n)
1,Qn
· · ·a(n)Pn,1...a

(n)
Pn,Qn

]T

∈ R(N+PnQn+1)×1, (5.37)

P =

 IN,N 0N,(PnQn+1)

0(PnQn+1),N 0(PnQn+1),(PnQn+1)

∈ R(N+PnQn+1)×(N+PnQn+1), (5.38)

q =

0(N+1),1

1Pn,1⊗ c[n]

 ∈ R(N+PnQn+1)×1, (5.39)

115

where c[n] = [C[n]
1 ...C[n]

Qn
] ∈ RQn×1. Next, (5.19) stays the same but with dimensions related to

rank Qn instead of Q, and s is not changed at all, thus:

R =

R(1)

R(2)

 ∈ R2P×(2+PnQn+1), (5.40)

with R(1) given by (5.20) but with dimensions RP×(N+PnQn+1) and R(2) is given by (5.21), with

dimensions RP×(N+PnQn+1). After these QP procedures, one extra step is performed in order to

estimate the core tensor G , which is described in the following. We have that the cost function

(5.32) can be expressed as in the general form (5.14) with the following correspondences:

x[g] =
[
w b g1,1,...,1 · · ·gQ1,1,...,1 · · ·gQ1,Q2,...,1 · · ·gQ1,Q2,...,QN

]T

∈ R(N+Q1...QN+1)×1, (5.41)

P[g] =

 IN,N 0N,(Q1...QN+1)

0(Q1...QN+1),N 0(Q1...QN+1),(Q1...QN+1)

∈ R(N+Q1...QN+1)×(N+Q1...QN+1), (5.42)

q[g] =

0(N+1),1

1Q1...QN ,1⊗ c[g]

 ∈ R(N+Q1...QN+1)×1, (5.43)

where c[g] = [C[g]
1,...,1...C

[g]
Q1,...,QN

] ∈RQ1...QN×1, with q1 = 1, ...,Q1, ..., qN = 1, ...,QN . Moving on,

R[g] and s[g] are obtained the same way as in (5.40), hence:

R[g] =

R[g](1)

R[g](2)

 ∈ R2Q1...QN×(N+Q1...QN+1), s[g] =

s[g](1)

s[g](2)

 ∈ R2Q1...QN×1, (5.44)

where s[g](1) =−1Q1...QN ,1, s[g](2) = 0Q1...QN ,1 and a single row of R[g](1) ∈RQ1...QN×(N+Q1...QN+1),

is given by:

116

[R[g](1)]q1,...,qN ,: =−

yp1,...,pN x1,p1,...,pN
...

yp1,...,pN xN,p1,...,pN

yp1,...,pN

0Q2...QN(q1−1),1

−u[g]p1,...,pN

0Q2...QN(Q1−q1),1

−u[g]p1,...,pN

0Q1Q3...QN(q2−1),1

−u[g]p1,...,pN

0Q1Q3...QN(Q2−q2),1
...

−u[g]p1,...,pN

...

0Q1Q2...QN−1(QN−qN),1

T

∈ RQ1...QN×(N+Q1...QN+1), (5.45)

for q1 = 1, ...,Q1, ..., qN = 1, ...,QN . Then, a single row of R[g](2) is given by:

[R[g](2)]q1,...,qN ,: =

0N+1,1

0Q2...QN(q1−1),1

−u[n]p1,...,pN

0Q2...QN(Q1−q1),1

−u[n]p1,...,pN

0Q1Q3...QN(q2−1),1

−u[n]p1,...,pN

0Q1Q3...QN(Q2−q2),1
...

−u[n]p1,...,pN

...

0Q1Q2...QN−1(QN−qN),1

T

∈ RQ1...QN×(N+Q1...QN+1), (5.46)

for q1 = 1, ...,Q1, ..., qN = 1, ...,QN .

117

Algorithm 3: SVM-MTS Estimation Algorithm
Input: ε , C, xn,p1,p2,...,pN and yp1,p2,...,pN , for pn = 1, ...,Pn and n = 1, ...,N.

Outputs: ŵ, b̂, Ê
Initialization: β = 0, i = 0, Â(1)

0 , Â(2)
0 , . . . , Â(N)

0 and Ĝ0 are random
while β = 0 do

i = i+1
for n = 1 : N do

Construct P, q, R and s from (5.38)-(5.40) using Â(1)
i ,..., Â(n−1)

i , Â(n+1)
i−1 , ...,Â(N)

i−1
and Ĝi−1.

Using any QP method, find ŵi, b̂i, Â
(n)
i

end

Construct P[g], q[g], R[g] and s[g] from (5.42)-(5.40) using Â(1)
i ,...,Â(N)

i .
Using any QP method, find ŵi, b̂i, Ĝi

Build Êi using Â(1)
i , . . . , Â(N)

i and Ĝi using (5.5)

Unfold Êi into Ê[1]
i using (2.18)

if |ei| < ε then
β = 1
ŵ = ŵi, b̂ = b̂i, Ê = Êi

end
end

After expressing the problems (5.27)-(5.29) and (5.32)-(5.34) as QP, it can be solved

using any QP method.

5.4.3 Estimation Algorithm

The estimation algorithm of the SVM-MTS is shown in Algorithm 3. The algorithm

is composed of N+1 stages. First the estimation of the factor matrices is done, and then, after,

the estimation of the core tensor is performed. Each iteration is composed of N+1 stages, in each

stage, one factor matrix of the Tucker decomposition of the slack tensor E is estimated using

the previous estimation of the other factor matrices. When the N stages end, the (N+1)-th stage

begins, where the core tensor is estimated. After that, the process starts over and these steps

repeat runs until convergence.

These estimations are carried out using any QP method with the formulation pre-

sented given by (5.38)-(5.21). In each stage of each iteration, the weight vector w and the bias

scalar b are also estimated.

As Algorithm 3 shows, the matrices P, q, R and s are used to estimate the factor

matrices Â(1)
i , . . . , Â(N)

i similarly as in Algorithm 2, however, one more step is needed, hence

118

P(g), q(g), R(g) and s(g) are used to estimate the core tensor Ĝi. Next, Algorithm 3 proceeds

similar as in Algorithm 2, with tensor ξ̂ being mounted and unfolded at the end of each iteration.

Convergence is obtained when ei < ε . The error ei of the reconstructed tensor ξ̂i

at the i− th iteration is given by (5.22), where ε is a small scalar constant. If the error ei is

smaller than the threshold ε , the binary flag variable β finish the estimations procedures. After

the algorithm ends, the last obtained values of ŵ and b̂ are saved to be used as final parameters

to build the SVM model with the discriminant hyperplane:

f (x(p1, p2..., pN)) = ŵT x(p1, p2, ..., pN)+ b̂. (5.47)

The same is done for the SVM-MPS case. Also, a formulation for the SVR with multidimensional

sampling is presented in Appendix A. Unfortunately, due to the short time, this approach is not

tested in chis Chapter.

5.5 Photonic Database Description

All-optical processing is essential in systems and networks that avoid optoelectronic

conversions and need high-speed data rates. The idea of designing logic gates based on optic

devices, such as optical couplers, resonators and interferometers is intendend to solve this

problem.

One of the devices that has been exploited for this application is a fiber-optic inter-

ferometer known as MZI. Numerical studies have used the solution of the nonlinear Schrodinger

equation to design MZIs capable of obtaining logic functions (KUMAR et al., 2014; ARAÚJO

et al., 2015). Hence, optical devices such as the MZI have been used in many computer and

engineering applications, such as optical sensors, optical modulators and others (SOUZA et al.,

2018; GAYEN et al., 2012).

Optical logic gates are a very important part in the development of all-optical

communication and optical signal processing networks (ALIPOUR-BANAEI et al., 2017).

Indeed, they represent the basic building block of optical devices and networks, where all-optical

processing is, in general, essential in systems and networks that want to avoid optoelectronic

conversions and exploit high-speed data reception and transmission. Several researches have

been done for designing logic gates based on optic devices, such as optical couplers, resonators,

interferometers etc.

119

Figure 24 – Mach-Zehnder interferometer block scheme.

Source: Author.

The database used to test and validate the SVM-MPS and SVM-MTS was obtained

from a Mach-Zehnder interferometer, which works performing power switching by associating

two cascaded optical couplers, as illustrated in Fig 24. The first coupler splits the input optical

signal into two parts, which are recombined when passing through the second coupler. The

signals obtained at the MZI outputs are the result of the interference of the propagating signals

in both arms of the interferometer. In this way, the output powers depend on the relative phase

shifts suffered by the signals before each coupling procedure.

The phase shift is a very important step and may be implemented through several

ways. Once the signals are guided physically separated in a MZI, a phase shift circuit can be

implemented by means of fibers with different doping or simply with a difference between the

lengths of the fibers. In the scheme of Fig. 24, two phase shifters are considered along one

of the arms, implementing the relative phase shifts φ1 and φ2 in order to control the levels of

interference in the respective couplers.

Hence, by considering a pulse amplitude modulation (PAM) of the signals at the

input of the MZI, all the input combinations (00, 01, 10 and 11) were tested. The phase deviations

of the MZI, φ1 and φ2, are altered in order to produce two outputs. In Table 20, parameters of the

used MZI are shown. The number of tested values of φ1 and φ2, in the range 0 to 2π , is set to

M = 40 and the number of tested values N for each input is set to 2 (0 and 1). Thus, for each

pair (φ1,φ2), the MZI output associated with each input combination is obtained.

Therefore, the optic database corresponding to the inputs and phase deviation of the

MZI has 6400 samples (2 × 2 × 40 × 40), resulting in a matrix with dimensions 4 × 6400. The

four columns of the matrix denote, in order, to the following attributes: I1, I2, φ1 and φ2, where

I1 and I2 are the inputs of the interferometer, with values of 0 and 1 and φ1 and φ2 the phase

deviations.

Moreover, we have y1 and y2, which are the two different outputs of the MZI, where

these outputs are used as logic levels (high or low), to train a SVM model for classification of

120

Table 20 – MZI setup parameters
Description Value
Modulation PAM
Input power 4.56 kW
Wavelength 1.55 µm

Coupler length 1.8 cm
Attenuation 0

Input I1 0,1
Input I2 0,1

Output y1 ranged form -51.07 to 79.52
Output y2 ranged form -99.01 to 132.16

φ1, φ2 ranged from 0 to 2π

Number M of tested values of φ1, φ2 40
Number N of tested values of I1, I2 2

Source: Author.

optic data. However, these outputs shows values ranging from -99 to 132, therefore, these output

values must undergo a binarization process before the classification step. The binarization sets

the output as a logic 1 if the intensity value of the output is higher than zero, whereas the logic

zero is set if the intensity values are lower than zero.

To summarize, the used data set consists in I1, I2, φ1 and φ2 as attributes and the

binarization of y2 as the output class tag, which were the output values chosen to be used in the

classification model and provided the best results. After the binarization of y2, the class tags

were arranged as 3200 ones (Class 1) and 3200 zeroes (Class 0). Hence, for this application, it is

considered a tensor sampling approach for the samples, where a fourth order tensor is constructed

with the samples for attributes I1, I2, φ1 and φ2. Therefore, the constructed tensor has dimensions

2 × 2 × 40 × 40. The next step is to train the proposed modified SVM model with y2 as class

tag.

5.6 Results

This section presents the obtained results of this chapter. To validate the model,

the K-fold cross-validation method was used, with K = 10. The constant C values were fixed

at C = 100. Also, the results were averaged 100 times in order to mitigate fluctuation and the

convergence parameter was set as ε = 10−6.

It was considered the sampling modes as p1 = 1, ...,P1, p2 = 1, ...,P2, p3 = 1, ...,P3

and p4 = 1, ...,P4, with these indexes corresponding to I1, I2, φ1 and φ2 values. Hence, P1 = 2, P2

= 2, P3 = 40 and P4 = 40. In addition, the core tensor of the SVM-MTS has four rank values,

Q1, Q2, Q3 and Q4. Data is structured as a tensor of dimensions 2 × 2 × 40 × 40 and fed into

121

Table 21 – Accuracy and execution time results for the proposed
modifications and the SVM for various rank values.

Ranks Classifier Accuracy Execution Time (s)
Q=5 SVM-MPS 79.2% 271.2
Q=10 SVM-MPS 80.1% 301.1
Q=15 SVM-MPS 83.2% 344.6
Q=20 SVM-MPS 82.9% 369.7
Q1=Q2=2, Q3=Q4=5 SVM-MTS 78.5% 299.4
Q1=Q2=2, Q3=Q4=10 SVM-MTS 81.1% 322.7
Q1=Q2=2, Q3=Q4=15 SVM-MTS 85.3% 366.0
Q1=Q2=2, Q3=Q4=20 SVM-MTS 85.6% 417.5
- SVM 71.7% 155.1

Source: Author.

both SVM-MPS and SVM-MTS, whereas for the conventional SVM with linear kernel, the data

is matricized with dimensions 4 × 6400, breaking the multilinear sampling structure proposed.

The performance of the proposed techniques is initially tested against the simple SVM technique

and later with other classifiers of the literature.

The results are presented in the form of accuracy in %, which is defined as the number

of correctly classified samples over the total number of samples. Also, the execution time, in

seconds, of the classifiers, is shown in order to measure computational cost. The processing times

were obtained with an 9th generation Intel Core i3 processor, running MATLAB version 2017b.

The functions used to model the SVM classifier are fitcsvm, predict, and quadrprog was used

for the SVM-MPS and SVM-MTS. The quadrprog uses three possible algorithms: the Goldfarb

and Idnani dual algorithm, which is a numerically stable dual method for solving strictly convex

quadratic programs (GOLDFARB; IDNANI, 1983), the Newton method of (COLEMAN; LI,

1996) and a projection method, similar to the one described in (GILL et al., 2019).

In the sequel, the impact of ranks Q, Q1, Q2, Q3 and Q4 on the accuracy is analyzed.

Later, the FLOPS and the number of iterations needed for convergence of the proposed techniques

are analyzed.

5.6.1 Rank Impact on Accuracy and Execution Time

The first accuracy results are depicted in Table 21, which shows the impact of the

rank values on classification rates, where the rank of the PARAFAC decomposition is tested for

the following values, Q = 5, Q = 10, Q = 15 and Q = 20, whereas the Tucker ranks were chosen

as Q1 = Q2 = 2, Q3 = Q4 = 5, Q3 = Q4 = 10, Q3 = Q4 = 15 and Q3 = Q4 = 20, which were the

values that provided good accuracy on preliminary tests. The execution time, in seconds, of each

scenario is also shown.

122

Figure 25 – Accuracy of the proposed SVM-MPS and SVM-MTS when varying
ranks Q and Q4, with Q1 = Q2 = 2.

0 5 10 15 20 25 30

Ranks Q and Q
4

77

78

79

80

81

82

83

84

85

86

A
c
c
u
ra

c
y
 (

%
)

SVM-MPS

SVM-MTS, Q
3
 = 5

SVM-MTS, Q
3
 = 10

SVM-MTS, Q
3
 = 15

SVM-MTS, Q
3
 = 20

SVM-MTS, Q
3
 = 25

SVM-MTS, Q
3
 = 30

Source: Author.

As Table 21 shows, both the proposed classifiers achieved the highest accuracy in

comparison with the conventional SVM, which corroborates the fact that multilinear sampling

structures can bring advantages in classification. In terms of rank, the PARAFAC modification

performed better when its rank was increased, with the same behavior for the Tucker case.

This is due the fact that with a higher rank, better tensor subspace representation is achieved,

which facilitates the classification problem. However, when the rank Q value goes above 15, the

accuracy of the SVM-MPS diminished, whereas for the SVM-MTS ranks Q3 = Q4 = 20 achieved

the best accuracy value of 85.6%.

The higher accuracy was achieved by the proposed modifications, however, at the

expense of longer execution times, which is explained by the fact that both SVM-MPS and

SVM-MTS approaches need more steps to estimate all the factor matrices and the core tensor for

the Tucker case. These extra steps add more time, making the proposed modifications to run

slower in comparison to the conventional SVM, which runs almost two times faster.

In Figure 25, the accuracy of the proposed modifications versus the ranks Q (for

the SVM-MPS) and Q1, Q2, Q3 and Q4 (for the SVM-MTS) variations is depicted. This result

shows a better picture of the rank impact on accuracy than Table 21. As can be seen in Fig.

25, the accuracy of both SVM-MPS and SVM-MTS increases as the ranks Q and Q4 increase,

however, for values of Q higher than 15, the accuracy of the SVM-MPS starts to drop, which is

the same behavior exhibited in Table 21. As for the SVM-MTS, the best case scenario is when

Q3 = Q4 = 20, which achieves the higher accuracy, such as in Table 21.

Moreover, Fig. 25 shows that, with the rank Q3 fixed, the accuracy of the SVM-MTS

123

Figure 26 – Accuracy of the proposed SVM-MTS when varying ranks Q3 and Q4,
for fixed values of Q1 and Q2 = 2.

2 4 6 8 10 12 14 16

Ranks Q
3
 and Q

4

68

70

72

74

76

78

80

82

84

86

A
c
c
u
ra

c
y
 (

%
)

Q
1
 = Q

2
 = 1

Q
1
 = 1, Q

2
 = 2

Q
1
 = 2, Q

2
 = 1

Q
1
 = Q

2
 = 2

Q
1
 = Q

2
 = 3

Q
1
 = Q

2
 = 4

Source: Author.

tends to increase with Q4 until a certain threshold, then begins to drop. For instance, when Q3 =

20, the accuracy of the SVM-MTS starts to decrease when Q4 = 25, then drops again when Q4 =

30. This behavior of the algorithms in Figure 25 can be explained as follows. As the rank value

start to rise, it start capturing most of the input data variation until a certain threshold, which

is Q = 15 for the SVM-MPS and Q3 = Q4 = 20. When the rank value surpass these thresholds,

redundancy is added, making the classification more difficult, with lower accuracy.

In addition, in Figure. 26 the impact of ranks Q1 and Q2 on the accuracy of the

SVM-MTS is shown. It can be seen that the best accuracy is obtained when Q1 = Q2 = 2, whereas

the other combinations achieved less success rates, with the worst case being with Q1 = Q2 =

1. When Q1 = Q2 = 3, the accuracy is higher than the one obtained with Q1 = Q2 = 2, but only

for lower values of Q3 and Q4. The result obtained with Q1 = Q2 = 4 is the second worse, with

accuracy only higher than when Q1 = Q2 = 1.

The final result of this subsection, presented in Table 22, depicts accuracy and

execution times for the best case scenario of both SVM-MPS (Q = 15) and SVM-MTS (Q1 =

Q2 = 2, Q3 = Q4 = 20) against other classifiers of the literature: Naive-Bayes (YANG, 2018),

Logistic Regression (NICK; CAMPBELL, 2007), k-NN (JIANG et al., 2007) and ANN (LIAO;

WEN, 2007). The k-NN was performed with k = 3 and the tested ANN implements forward

propagation with two fully connected layers, Rectified linear unit (ReLU) activation functions

and a softmax function to the final fully connected layer.

As Table 22 shows, the proposed techniques surpassed, in terms of accuracy, well-

known classifiers, such as the Naive-Bayes and ANN, thus showing the efficacy of the SVM-MPS

124

Table 22 – Accuracy and execution time results for
the proposed modifications versus other
classifiers.

Classifier Accuracy Execution Time (s)
SVM-MPS 83.2% 344.6
SVM-MTS 85.6% 417.5
SVM 71.7% 155.1
Naive-Bayes 70.2% 144.3
Logistic Regression 68.1% 132.7
k-NN 65.3% 111.9
ANN 77.6% 296.6

Source: Author.

Table 23 – Time-complexity of the proposed and tested techniques,
in big-O notation.

SVM-MPS O(QP2[P1 +P2 +P3 +P4]Nit)

SVM-MTS O(P2[P1Q1 +P2Q2 +P3Q3 +P4Q4 +Q1Q2Q3Q4]Nit)

SVM O(DP2)
Naive-Bayes O(DP)
Logistic Regression O(2NDP)
k-NN O(kDP)
ANN O(D4P)

Source: Author.

and SVM-MTS and also the adopted multilinear sampling structure. As already explained, the

multilinear sampling approach permits the SVM-MPS and SVM-MTS to take advantage of

the structure of the data, thus allowing a multidimensional perspective, clearly improving the

accuracy, as Tables 21 and 22 showed.

Furthermore, Table 22 shows that although the proposed techniques demand more

running times in comparison to the literature alternatives, they also achieve higher success rates

in classification, which is a clear trade-off between execution time and accuracy. Also, the only

technique that achieved a classification rate close to the proposed algorithms was the ANN,

which also has high execution time in comparison to the other classifiers.

5.6.2 Computational Cost Analysis

The computational cost of the proposed SVM modifications is analyzed, in terms

of time-complexity, FLOP count and number of iterations required for convergence. Then

first, Table 23 shows the time-complexity for tested techniques in this chapter: SVM-MPS,

SVM-MTS, conventional linear SVM, Naive-Bayes, Logistic Regression, k-NN and the ANN,

where D denotes the total dimension of the array used with the technique, as defined in Chapter

3.

It can be seen from Table 23 that the proposed SVM-MPS and SVM-MTS have high

125

Figure 27 – Iterations of the proposed SVM-MPS and SVM-MTS when varying
ranks Q and Q4, for fixed values of Q1, Q2 and Q3.

0 5 10 15 20 25 30

Ranks Q and Q
4

0

5

10

15

20

25

30

35

N
u
m

b
e
r

o
f
It
e
ra

ti
o
n
s

SVM-MPS

SVM-MTS, Q
3
 = 5

SVM-MTS, Q
3
 = 10

SVM-MTS, Q
3
 = 15

SVM-MTS, Q
3
 = 20

Source: Author.

time-complexity in comparison to techniques such as the conventional SVM, Naive-Bayes, Logis-

tic Regression and k-NN, which explain the higher execution times shown in Table 22. Moreover,

the ANN technique showed high time-complexity, which corroborates with its execution time

being closer to the SVM-MPS and SVM-MTS ones.

Next, in Figure 27 we have the number iterations needed for convergence, of the

SVM-MPS and SVM-MTS estimations, described in Algorithms 2 and 3, in function of the

ranks Q and Q4. As Fig. 27 shows, the increase in Q and Q4 demands more iterations for the

estimations to be completed, which is expected since the the ranks Q, Q3 and Q4 impact directly

on array sizes and in the time-complexity of the algorithms.

In addition, the best case scenario of accuracy for the SVM-MPS, with Q = 15,

achieved convergence with around 10 iterations, therefore, the SVM-MPS needed a small

number of iterations, resulting in lower execution times, to get its best accuracy result. On the

other hand, the SVM-MTS best accuracy scenario was achieved with Q1 = Q2 = 2 and Q3 =

Q4 = 20, which results in less than 20 iterations, therefore, the best case of the SVM-MPS was

obtained with around 10 iterations whereas the SVM-MTS achieved it with double this number.

Hence, from Table 27 it can be concluded that the SVM-MTS achieves higher accuracy than the

SVM-MPS at the cost of more iterations, when estimating the factor matrices and core tensor,

and thus, higher execution times, corroborating even more to the results obtained in Table 22.

The last result, depicted in Table 24, shows the FLOPS of the tested classification

techniques, with two rank configurations for the SVM-MPS (Q = 10 and Q = 15) and SVM-MTS

(Q1 = Q2 = 2, Q3 = Q4 = 15 and Q1 = Q2 = 2, Q3 = Q4 = 20). As can be seen, both SVM-MPS and

126

Table 24 – Floating Point Operations per Second
(FLOPS) counts for the tested classi-
fiers, with two different rank configura-
tions.

Classifier FLOPS
SVM-MPS (Q = 10) 3.3 ×107

SVM-MTS (Q1 = Q2 = 2, Q3 = Q4 = 15) 4.2 ×107

SVM-MPS (Q = 15) 4.7 ×107

SVM-MTS (Q1 = Q2 = 2, Q3 = Q4 = 20) 7.5 ×107

SVM 2.5 ×106

Naive-Bayes 1.2 ×104

Logistic Regression 1.7 ×105

k-NN 1.9 ×104

ANN 1.3 ×107

Source: Author.

SVM-MTS demanded similar FLOPS, in the 107 range, whereas the other classifiers demanded

much less FLOPS, in the 104−106 range, with the conventional SVM requiring 2.5 ×106. Such

high FLOP count of the proposed techniques when comparing to the others is explained by the

high time-complexity of the techniques, which were shown earlier in Table 23. Also, depicted

in Table 24, an increase in the rank values also increases the FLOPS of both SVM-MPS and

SVM-MTS.

5.7 Conclusions

In this chapter, the concept of multilinear sampling was proposed, aiming the propo-

sition of classification algorithms that exploit a multidimensional structure of the samples. Such

approach is based on tensor decompositions PARAFAC and Tucker, where the goal is to adapt

the primal solution of the SVM to accommodate a multilinear sampling structure of the input

data.

The proposed modifications of the SVM are used to classify the binary outputs

obtained from a MZI. To accomplish that, a four-way array is considered to store four input

sample sets, corresponding to the two interferometer inputs and two phase deviation variables.

The results showed better performance of the proposed classifiers in comparison

to other techniques of the literature, which is expected as these techniques does not use the

multilinear sampling approach, losing accuracy. In addition, computational cost and execution

time tests were carried out, showing that the proposed SVM-MPS and SVM-MTS showed slight

higher complexity in comparison to the other tested techniques. Moreover, convergence testes

showed the proposed algorithms achieve convergence and finish estimations with ow iterations.

127

6 CONCLUSIONS

In this thesis, theoretical and applied contributions on tensor learning methods were

presented. Our contributions have addressed the following main research axes:

• Tensor learning;

• Tensor decompositions;

• Multilinear dimensionality reduction;

• Feature transformation;

• Seismic event calssification;

• Multilinear sampling;

• Photonic data classification.

More specifically, by chapter order, a fully tensorial framework for seismic event classification

was proposed in Chapter 3, which jointly performs feature extraction using the MDFT, dimension-

ality reduction using the MPCA, and classification with the SPM and the STuM. In this chapter,

the tensorial framework, which can be fed with multidimensional data, was used for classifying

volcano-seismic signals into five different classes. The database used in this work consists in

three-dimensional data samples recorded during a period of great activity of the Ubinas volcano,

Peru, in 2009. The tensor structure of the patterns, organized as stations × channels × features,

is built by exploring the use of multiple multichannel triaxial sensors, operating simultaneously

in two seismic stations. The framework itself, is an original contribution, as no other work in the

literature has proposed similar approach for seismic event classification.

The results showed the very significant gain in performance provided by the tensorial

classifiers, as well as by the MPCA, when compared with their vector-based counterparts. The

best result was obtained with the STuM classifier along with the MPCA-DR. The best accuracy

provided by the tensor-based configurations is due to the fact they preserve the multidimensional

structure of the data, avoiding the drawbacks of tensor vectorization.

Then, in Chapter 4, a new dimensionality reduction technique called LC-MDR

was proposed, based on a new tensor decomposition, the EONPD, which successfully reduced

the correlation and dimensionality of seismic data, improving classification rates. Also, a

generalization of the EONPD, that assumes the nesting of PARAFAC tensors of generic orders,

called HONPD is formulated.

In this chapter, the presented method optimizes a cost function that takes into account

the data correlation, generating variables with much less correlation than the MPCA. In particular,

128

the LC-MDR fits the input data correlation into the EONPD. Moreover, the LC-MDR is based on

the ALS for estimating the factor matrices. A complete description of the EONPD is given, with

both analytical and recursive expressions being derived. In addition, the HONPD formulation is

also presented.

The results showed very significant gains in accuracy of the LC-MDR over the

concurrent PCA and MPCA, in seismic event classification. The best accuracy (90.3%) was

achieved with the 3D LC-MDR coupled with the STuM classifier, using dimensionality reduction.

In addition, the results showed the LC-MDR provides output data with much less

correlation than the MPCA, which explains the better accuracy of the LC-MDR. Moreover, the

LC-MDR showed a faster execution time in comparison with the MPCA. Besides, the proposed

technique also provides smaller execution times than the PCA if dimensionality reduction is

carried out.

And finally, in Chapter 5, a multilinear sampling approach for tensor learning and

data structuring is proposed, which is employed within the SVM technique, joining the concept

of multilinear sampling structures and tensor decompositions. This yielded two modifications

for the SVM, denoted by SVM-MPS and SVM-MTS, which were both used in photonic data

classification.

The proposed modification of the SVM is used to classify the photonic output

obtained from a MZI. To accomplish that, a four-way array is considered to store four input

sample sets, corresponding to the two interferometer inputs and two phase deviation variables,

with each mode of the tensor storing a sample set.

Moreover, results showed better accuracy of the proposed SVM modifications in

classifying the MZI output, comparing to the standard SVM. The proposed multidimensional

sampling structure proved being effective in classification when compared to the conventional

vectorization processes. Also computational cost and running times were taken as parameters to

validate the proposed approach.

This thesis contributions may be extended by considering the following. The fully

tensorial framework of Chapter 3 can be expanded by using other multidimensional feature

extraction techniques, such as the multidimensional EMD, multidimensional ICA, and, other

multilinear dimensionality reduction techniques, such as the MDA. Other tensor-based classifiers

could be tested, such as the STTM, or kernelized versions of the STMs.

Regarding the contents of Chapter 4, the LC-MDR can be tested, instead of seismic

129

events, with other kinds of multidimensional data and other applications. The seismic data

was arranged in 3D tensors, however, the LC-MDR is capable of performing dimensionality

reduction and feature transformation even in N-th order arrays, thus any multidimensional data

can be processed by the LC-MDR.

As for the contributions of Chapter 5, the multilinear sampling approach can be

adopted for other kinds of data besides photonic. For instance, gait data, which comprises of

multiple movement frames, can be arranged in multidimensional arrays and therefore exploit

the proposed multilinear sampling approach. Regarding the proposed SVM modifications, the

SVM-MPS and SVM-MTS, they can be used with multiple multidimensional dataset, thus being

very versatile classifiers.

Additionally, the Dual formulation of the SVM and SVR can be explored in the

context of multilinear sampling and tested against the primal solution presented in this thesis.

Finally, the multilinear sampling SVR formulation presented Appendix A may be tested in

regression applications, exploiting the multilinear sampling approach.

130

BIBLIOGRAPHY

ALIPOUR-BANAEI, H.; SERAJMOHAMMADI, S.; MEHDIZADEH, F. All optical nand gate
based on nonlinear photonic crystal ring resonators. Optik, Elsevier, v. 130, p. 1214–1221, 2017.

ALMEIDA, A. D. Tensor modeling and signal processing for wireless communication
systems. Tese (Doutorado) — Université de Nice Sophia Antipolis, 2007.

ALMEIDA, A. L. F. de; FAVIER, G. Double khatri–rao space-time-frequency coding using
semi-blind parafac based receiver. IEEE Signal Processing Letters, IEEE, v. 20, n. 5, p.
471–474, 2013.

ALMEIDA, A. L. F. de; FAVIER, G.; COSTA, J. da; MOTA, J. C. M. Overview of tensor
decompositions with applications to communications. Signals and images: advances and
results in speech, estimation, compression, recognition, filtering, and processing, CRC Press
Boca Raton, FL, USA, p. 325–356, 2016.

ALPAYDIN, E. Introduction to machine learning. [S.l.]: MIT press, 2020.

ARAÚJO, A.; OLIVEIRA, A.; MARTINS, F.; COELHO, A.; FRAGA, W.; NASCIMENTO,
J. Two all-optical logic gates in a single photonic interferometer. Optics Communications,
Elsevier, v. 355, p. 485–491, 2015.

BEGG, R. K.; PALANISWAMI, M.; OWEN, B. Support vector machines for automated gait
classification. IEEE transactions on Biomedical Engineering, IEEE, v. 52, n. 5, p. 828–838,
2005.

BELARBI, M. A.; MAHMOUDI, S.; BELALEM, G. Pca as dimensionality reduction for
large-scale image retrieval systems. International Journal of Ambient Computing and
Intelligence (IJACI), IGI Global, v. 8, n. 4, p. 45–58, 2017.

BERGE, J. M. F. T.; SIDIROPOULOS, N. D. On uniqueness in candecomp/parafac.
Psychometrika, Springer, v. 67, n. 3, p. 399–409, 2002.

BRO, R. Parafac. tutorial and applications. Chemometrics and intelligent laboratory systems,
Elsevier, v. 38, n. 2, p. 149–171, 1997.

BURGES, C. J. A tutorial on support vector machines for pattern recognition. Data mining and
knowledge discovery, Springer, v. 2, n. 2, p. 121–167, 1998.

CAI, D.; HE, X.; WEN, J.-R.; HAN, J.; MA, W.-Y. Support tensor machines for text
categorization. [S.l.], 2006.

CALVI, G. G.; LUCIC, V.; MANDIC, D. P. Support tensor machine for financial forecasting. In:
IEEE. ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). [S.l.], 2019. p. 8152–8156.

CARLEO, G.; CIRAC, I.; CRANMER, K.; DAUDET, L.; SCHULD, M.; TISHBY, N.;
VOGT-MARANTO, L.; ZDEBOROVÁ, L. Machine learning and the physical sciences.
Reviews of Modern Physics, APS, v. 91, n. 4, p. 045002, 2019.

CARROLL, J. D.; CHANG, J.-J. Analysis of individual differences in multidimensional scaling
via an n-way generalization of “eckart-young” decomposition. Psychometrika, Springer, v. 35,
n. 3, p. 283–319, 1970.

131

CERVANTES, J.; GARCIA-LAMONT, F.; RODRÍGUEZ-MAZAHUA, L.; LOPEZ, A. A
comprehensive survey on support vector machine classification: Applications, challenges and
trends. Neurocomputing, Elsevier, v. 408, p. 189–215, 2020.

CHEN, C.; BATSELIER, K.; KO, C.-Y.; WONG, N. A support tensor train machine. In: IEEE.
2019 International Joint Conference on Neural Networks (IJCNN). [S.l.], 2019. p. 1–8.

CHOI, S.; CICHOCKI, A.; PARK, H.-M.; LEE, S.-Y. Blind source separation and independent
component analysis: A review. Neural Information Processing-Letters and Reviews, v. 6,
n. 1, p. 1–57, 2005.

CHOUET, B. A. Long-period volcano seismicity: its source and use in eruption forecasting.
Nature, Nature Publishing Group, v. 380, n. 6572, p. 309–316, 1996.

CHOWDHARY, K. Natural language processing. Fundamentals of artificial intelligence,
Springer, p. 603–649, 2020.

COLEMAN, T. F.; LI, Y. A reflective newton method for minimizing a quadratic function
subject to bounds on some of the variables. SIAM Journal on Optimization, SIAM, v. 6, n. 4,
p. 1040–1058, 1996.

COMON, P. Tensors: a brief introduction. IEEE Signal Processing Magazine, v. 31, n. 3, p.
44–53, 2014.

COMON, P.; LUCIANI, X.; ALMEIDA, A. L. F. D. Tensor decompositions, alternating least
squares and other tales. Journal of Chemometrics: A Journal of the Chemometrics Society,
Wiley Online Library, v. 23, n. 7-8, p. 393–405, 2009.

CORREIA, D.; FRAGA, W. de; GUIMARÃES, G. et al. Obtaining optical logic gates–or, xor,
and and logic functions using asymmetric mach-zehnder interferometer based on photonic
crystal fiber. Optics & Laser Technology, Elsevier, v. 97, p. 370–378, 2017.

CORTES, C.; VAPNIK, V. Support-vector networks. Machine learning, Springer, v. 20, n. 3, p.
273–297, 1995.

CRESWELL, A.; WHITE, T.; DUMOULIN, V.; ARULKUMARAN, K.; SENGUPTA, B.;
BHARATH, A. A. Generative adversarial networks: An overview. IEEE Signal Processing
Magazine, IEEE, v. 35, n. 1, p. 53–65, 2018.

CURILEM, G.; VERGARA, J.; FUENTEALBA, G.; ACUÑA, G.; CHACÓN, M. Classification
of seismic signals at villarrica volcano (chile) using neural networks and genetic algorithms.
Journal of volcanology and geothermal research, Elsevier, v. 180, n. 1, p. 1–8, 2009.

CURILEM, M.; CANÁRIO, J. P.; FRANCO, L.; RIOS, R. A. Using cnn to classify spectrograms
of seismic events from llaima volcano (chile). In: IEEE. 2018 International Joint Conference
on Neural Networks (IJCNN). [S.l.], 2018. p. 1–8.

DENG, L.; YU, D. Deep learning: methods and applications. Foundations and trends in signal
processing, Now Publishers Inc. Hanover, MA, USA, v. 7, n. 3–4, p. 197–387, 2014.

EL-HASNONY, I. M.; BAKRY, H. M. E.; SALEH, A. A. Comparative study among data
reduction techniques over classification accuracy. International Journal of Computer
Applications, Foundation of Computer Science, v. 122, n. 2, 2015.

132

FAVIER, G.; FERNANDES, C. A. R.; ALMEIDA, A. L. F. de. Nested tucker tensor
decomposition with application to mimo relay systems using tensor space–time coding (tstc).
Signal Processing, Elsevier, v. 128, p. 318–331, 2016.

FOODY, G. M.; MATHUR, A. A relative evaluation of multiclass image classification by
support vector machines. IEEE Transactions on geoscience and remote sensing, IEEE, v. 42,
n. 6, p. 1335–1343, 2004.

FREITAS, W. d. C.; FAVIER, G.; ALMEIDA, A. L. F. de. Sequential closed-form semiblind
receiver for space-time coded multihop relaying systems. IEEE Signal Processing Letters,
IEEE, v. 24, n. 12, p. 1773–1777, 2017.

FU, X.; WANG, L. Data dimensionality reduction with application to simplifying rbf network
structure and improving classification performance. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), IEEE, v. 33, n. 3, p. 399–409, 2003.

FU, Y.; HUANG, T. S. Image classification using correlation tensor analysis. IEEE Transactions
on Image Processing, IEEE, v. 17, n. 2, p. 226–234, 2008.

GAYEN, D. K.; BHATTACHRYYA, A.; CHATTOPADHYAY, T.; ROY, J. N. Ultrafast
all-optical half adder using quantum-dot semiconductor optical amplifier-based mach-zehnder
interferometer. Journal of Lightwave technology, IEEE, v. 30, n. 21, p. 3387–3393, 2012.

GILL, P. E.; MURRAY, W.; WRIGHT, M. H. Practical optimization. [S.l.]: SIAM, 2019.

GOLDFARB, D.; IDNANI, A. A numerically stable dual method for solving strictly convex
quadratic programs. Mathematical programming, Springer, v. 27, n. 1, p. 1–33, 1983.

GUESSOUM, A.; MERSEREAU, R. Fast algorithms for the multidimensional discrete fourier
transform. IEEE transactions on acoustics, speech, and signal processing, IEEE, v. 34, n. 4, p.
937–943, 1986.

GUO, W.; KOTSIA, I.; PATRAS, I. Tensor learning for regression. IEEE Transactions on
Image Processing, IEEE, v. 21, n. 2, p. 816–827, 2011.

GUO, X.; HUANG, X.; ZHANG, L.; ZHANG, L. Support tensor machine with local pixel
neighborhood for hyperspectral image classification. In: IEEE. 2014 6th Workshop on
Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS).
[S.l.], 2014. p. 1–4.

GUPTA, S.; KAR, A. K.; BAABDULLAH, A.; AL-KHOWAITER, W. A. Big data with
cognitive computing: A review for the future. International Journal of Information
Management, Elsevier, v. 42, p. 78–89, 2018.

HAN, X.; KWITT, R.; AYLWARD, S.; BAKAS, S.; MENZE, B.; ASTURIAS, A.; VESPA, P.;
HORN, J. V.; NIETHAMMER, M. Brain extraction from normal and pathological images: A
joint pca/image-reconstruction approach. NeuroImage, Elsevier, v. 176, p. 431–445, 2018.

HARDOON, D. R.; SZEDMAK, S.; SHAWE-TAYLOR, J. Canonical correlation analysis: An
overview with application to learning methods. Neural computation, MIT Press, v. 16, n. 12, p.
2639–2664, 2004.

133

HARSHMAN, R. A. Foundations of the parafac procedure: Models and conditions for an"
explanatory" multi-modal factor analysis. UCLA Working Papers in Phonetics, University of
California at Los Angeles Los Angeles, CA, v. 16, p. 1–84, 1970.

HARSHMAN, R. A.; LUNDY, M. E. The parafac model for three-way factor analysis and
multidimensional scaling. Research methods for multimode data analysis, New York: Praeger,
v. 46, p. 122–215, 1984.

HART, P. E.; STORK, D. G.; DUDA, R. O. Pattern classification. [S.l.]: Wiley Hoboken, 2000.

HASHEMIZADEH, M.; LIU, M.; MILLER, J.; RABUSSEAU, G. Adaptive tensor learning
with tensor networks. arXiv preprint arXiv:2008.05437, 2020.

HAVSKOV, J.; ALGUACIL, G. Correction for instrument response. In: Instrumentation in
Earthquake Seismology. [S.l.]: Springer, 2016. p. 197–230.

HE, L.; LU, C.-T.; MA, G.; WANG, S.; SHEN, L.; PHILIP, S. Y.; RAGIN, A. B. Kernelized
support tensor machines. In: PMLR. International Conference on Machine Learning. [S.l.],
2017. p. 1442–1451.

HE, X.; CAI, D.; NIYOGI, P. Tensor subspace analysis. Advances in neural information
processing systems, v. 18, 2005.

HITCHCOCK, F. L. The expression of a tensor or a polyadic as a sum of products. Journal of
Mathematics and Physics, Wiley Online Library, v. 6, n. 1-4, p. 164–189, 1927.

HOLLAND, J. H. Genetic algorithms. Scientific american, JSTOR, v. 267, n. 1, p. 66–73, 1992.

INZA, L. A.; MARS, J. I.; MÉTAXIAN, J.-P.; O’BRIEN, G. S.; MACEDO, O. Seismo-volcano
source localization with triaxial broad-band seismic array. Geophysical Journal International,
Blackwell Publishing Ltd Oxford, UK, v. 187, n. 1, p. 371–384, 2011.

INZA, L. A.; MÉTAXIAN, J.-P.; MARS, J. I.; BEAN, C. J.; O’BRIEN, G. S.; MACEDO,
O.; ZANDOMENEGHI, D. Analysis of dynamics of vulcanian activity of ubinas volcano,
using multicomponent seismic antennas. Journal of Volcanology and Geothermal Research,
Elsevier, v. 270, p. 35–52, 2014.

JI, Y.; WANG, Q.; LI, X.; LIU, J. A survey on tensor techniques and applications in machine
learning. IEEE Access, IEEE, v. 7, p. 162950–162990, 2019.

JIA, J.; CAI, L.; LU, P.; LIU, X. Fingerprint matching based on weighting method and the svm.
Neurocomputing, Elsevier, v. 70, n. 4-6, p. 849–858, 2007.

JIANG, L.; CAI, Z.; WANG, D.; JIANG, S. Survey of improving k-nearest-neighbor for
classification. In: IEEE. Fourth international conference on fuzzy systems and knowledge
discovery (FSKD 2007). [S.l.], 2007. v. 1, p. 679–683.

JORDAN, M. I.; MITCHELL, T. M. Machine learning: Trends, perspectives, and prospects.
Science, American Association for the Advancement of Science, v. 349, n. 6245, p. 255–260,
2015.

KARMAKAR, D.; SARKAR, R.; DATTA, M. Spoofed replay attack detection by
multidimensional fourier transform on facial micro-expression regions. Signal Processing:
Image Communication, Elsevier, v. 93, p. 116164, 2021.

134

KHALID, S.; KHALIL, T.; NASREEN, S. A survey of feature selection and feature extraction
techniques in machine learning. In: IEEE. 2014 science and information conference. [S.l.],
2014. p. 372–378.

KOLDA, T. G.; BADER, B. W. Tensor decompositions and applications. SIAM review, SIAM,
v. 51, n. 3, p. 455–500, 2009.

KORTSTRÖM, J.; USKI, M.; TIIRA, T. Automatic classification of seismic events within a
regional seismograph network. Computers & Geosciences, Elsevier, v. 87, p. 22–30, 2016.

KOTSIA, I.; GUO, W.; PATRAS, I. Higher rank support tensor machines for visual recognition.
Pattern Recognition, Elsevier, v. 45, n. 12, p. 4192–4203, 2012.

KOTSIA, I.; PATRAS, I. Support tucker machines. In: IEEE. CVPR 2011. [S.l.], 2011. p.
633–640.

KRUSKAL, J. B. Three-way arrays: rank and uniqueness of trilinear decompositions, with
application to arithmetic complexity and statistics. Linear algebra and its applications,
Elsevier, v. 18, n. 2, p. 95–138, 1977.

KULKARNI, S. R.; LUGOSI, G.; VENKATESH, S. S. Learning pattern classification-a survey.
IEEE Transactions on Information Theory, IEEE, v. 44, n. 6, p. 2178–2206, 1998.

KUMAR, A.; KUMAR, S.; RAGHUWANSHI, S. K. Implementation of xor/xnor and and logic
gates by using mach–zehnder interferometers. Optik, Elsevier, v. 125, n. 19, p. 5764–5767,
2014.

LARA, P. E. E.; FERNANDES, C. A. R.; INZA, A.; MARS, J. I.; MÉTAXIAN, J.-P.; MURA,
M. D.; MALFANTE, M. Automatic multichannel volcano-seismic classification using machine
learning and emd. IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, IEEE, v. 13, p. 1322–1331, 2020.

LATHAUWER, L. D. A link between the canonical decomposition in multilinear algebra and
simultaneous matrix diagonalization. SIAM journal on Matrix Analysis and Applications,
SIAM, v. 28, n. 3, p. 642–666, 2006.

LATHAUWER, L. D.; MOOR, B. D.; VANDEWALLE, J. Blind source separation by
higher-order singular value decomposition. In: Proc. EUSIPCO. [S.l.: s.n.], 1994. v. 1, p.
175–178.

LATHAUWER, L. D.; MOOR, B. D.; VANDEWALLE, J. An introduction to independent
component analysis. Journal of chemometrics, v. 14, n. 3, p. 123–149, 2000.

LATHAUWER, L. D.; MOOR, B. D.; VANDEWALLE, J. A multilinear singular value
decomposition. SIAM journal on Matrix Analysis and Applications, SIAM, v. 21, n. 4, p.
1253–1278, 2000.

LATHAUWER, L. D.; VANDEWALLE, J. Dimensionality reduction in higher-order signal
processing and rank-(r1, r2,..., rn) reduction in multilinear algebra. Linear Algebra and its
Applications, Elsevier, v. 391, p. 31–55, 2004.

LATTIN, J. M.; CARROLL, J. D.; GREEN, P. E. Analyzing multivariate data. [S.l.]: Thomson
Brooks/Cole Pacific Grove, CA, 2003.

135

LI, J.; ALLINSON, N.; TAO, D.; LI, X. Multitraining support vector machine for image retrieval.
IEEE Transactions on Image Processing, IEEE, v. 15, n. 11, p. 3597–3601, 2006.

LIANG, G.; HONG, H.; XIE, W.; ZHENG, L. Combining convolutional neural network with
recursive neural network for blood cell image classification. IEEE access, IEEE, v. 6, p.
36188–36197, 2018.

LIAO, S.-H.; WEN, C.-H. Artificial neural networks classification and clustering of
methodologies and applications–literature analysis from 1995 to 2005. Expert Systems with
applications, Elsevier, v. 32, n. 1, p. 1–11, 2007.

LIU, J.; MUSIALSKI, P.; WONKA, P.; YE, J. Tensor completion for estimating missing values
in visual data. IEEE transactions on pattern analysis and machine intelligence, IEEE, v. 35,
n. 1, p. 208–220, 2012.

LIU, Z.; ZHU, D.; RAJU, L.; CAI, W. Tackling photonic inverse design with machine learning.
Advanced Science, Wiley Online Library, v. 8, n. 5, p. 2002923, 2021.

LU, H.; PLATANIOTIS, K. N.; VENETSANOPOULOS, A. N. Multilinear principal component
analysis of tensor objects for recognition. In: IEEE. 18th International Conference on Pattern
Recognition (ICPR’06). [S.l.], 2006. v. 2, p. 776–779.

LU, H.; PLATANIOTIS, K. N.; VENETSANOPOULOS, A. N. Mpca: Multilinear principal
component analysis of tensor objects. IEEE transactions on Neural Networks, IEEE, v. 19,
n. 1, p. 18–39, 2008.

LU, H.; PLATANIOTIS, K. N.; VENETSANOPOULOS, A. N. A survey of multilinear subspace
learning for tensor data. Pattern Recognition, Elsevier, v. 44, n. 7, p. 1540–1551, 2011.

MA, L.; HU, Y.; ZHANG, Y. Support tucker machines based bubble defect detection of
lithium-ion polymer cell sheets. Engineering Letters, v. 25, n. 1, 2017.

MA, W.; LIU, Z.; KUDYSHEV, Z. A.; BOLTASSEVA, A.; CAI, W.; LIU, Y. Deep learning for
the design of photonic structures. Nature Photonics, Nature Publishing Group, v. 15, n. 2, p.
77–90, 2021.

MACEDO, O.; MÉTAXIAN, J.; TAIPE, E.; RAMOS, D.; INZA, L. Seismicity associated
with the 2006–2008 eruption, ubinas volcano. The VOLUME Project, edited by: Bean, CJ,
Braiden, AK, Lokmer, I., Martini, F., O’Brien, GS, v. 1, p. 262–270, 2009.

MALFANTE, M.; MURA, M. D.; MÉTAXIAN, J.-P.; MARS, J. I.; MACEDO, O.; INZA, A.
Machine learning for volcano-seismic signals: Challenges and perspectives. IEEE Signal
Processing Magazine, IEEE, v. 35, n. 2, p. 20–30, 2018.

MATHUR, A.; FOODY, G. M. Multiclass and binary svm classification: Implications for
training and classification users. IEEE Geoscience and remote sensing letters, IEEE, v. 5, n. 2,
p. 241–245, 2008.

MCNUTT, S. R. Volcanic seismology. Annu. Rev. Earth Planet. Sci., Annual Reviews, v. 32, p.
461–491, 2005.

MENGU, D.; RAHMAN, M. S. S.; LUO, Y.; LI, J.; KULCE, O.; OZCAN, A. At the intersection
of optics and deep learning: statistical inference, computing, and inverse design. Advances in
Optics and Photonics, Optica Publishing Group, v. 14, n. 2, p. 209–290, 2022.

136

MITCHELL, T. M. Artificial neural networks. Machine learning, McGraw-Hill New York,
v. 45, p. 81–127, 1997.

MYLES, A. J.; FEUDALE, R. N.; LIU, Y.; WOODY, N. A.; BROWN, S. D. An introduction to
decision tree modeling. Journal of Chemometrics: A Journal of the Chemometrics Society,
Wiley Online Library, v. 18, n. 6, p. 275–285, 2004.

NICK, T. G.; CAMPBELL, K. M. Logistic regression. Topics in biostatistics, Springer, p.
273–301, 2007.

NIU, G.; MA, Z. Tensor dimensionality reduction via mode product and hsic. IET Image
Processing, Wiley Online Library, v. 15, n. 12, p. 2986–3002, 2021.

NOCEDAL, J.; WRIGHT, S. J. Quadratic programming. Numerical optimization, Springer, p.
448–492, 2006.

OSELEDETS, I.; TYRTYSHNIKOV, E. Tt-cross approximation for multidimensional arrays.
Linear Algebra and its Applications, Elsevier, v. 432, n. 1, p. 70–88, 2010.

OSELEDETS, I. V. Tensor-train decomposition. SIAM Journal on Scientific Computing,
SIAM, v. 33, n. 5, p. 2295–2317, 2011.

PANG, B.; NIJKAMP, E.; WU, Y. N. Deep learning with tensorflow: A review. Journal of
Educational and Behavioral Statistics, SAGE Publications Sage CA: Los Angeles, CA, v. 45,
n. 2, p. 227–248, 2020.

PARDO, M.; SBERVEGLIERI, G. Learning from data: A tutorial with emphasis on modern
pattern recognition methods. IEEE Sensors Journal, IEEE, v. 2, n. 3, p. 203–217, 2002.

PAUCA, P.; PIPER, J.; PLEMMONS, R. J. Nonnegative matrix factorization for spectral data
analysis. Linear algebra and its applications, Elsevier, v. 416, n. 1, p. 29–47, 2006.

PAULUS, C.; MARS, J. I. New multicomponent filters for geophysical data processing. IEEE
transactions on geoscience and remote sensing, IEEE, v. 44, n. 8, p. 2260–2270, 2006.

PEIXOTO, A. A. T. Detecção multiusuário baseada em tensores para sistemas de
comunicação sem fio cooperativos. Dissertação — Universidade Federal do Ceará, 2017.

PEIXOTO, A. A. T.; FERNANDES, C. A. R. Tensor-based multiuser detection in cooperative
multirelay uplink. Journal of Communication and Information Systems, v. 34, n. 1, p. 36–49,
2019.

PEIXOTO, A. A. T.; FERNANDES, C. A. R.; LARA, P. E. E.; INZA, A.; MARS, J. I.;
METAXIAN, J.-P.; MURA, M. D.; MALFANTE, M. Tensor-based learning framework for
automatic multichannel volcano-seismic classification. IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, IEEE, v. 14, p. 4517–4529, 2021.

PORGES, T.; FAVIER, G. Automatic target classification in sar images using mpca. In: IEEE.
2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[S.l.], 2011. p. 1225–1228.

RAHMAN, M. B.; NURHASANAH, I. S.; NUGROHO, S. P. Community resilience: learning
from mt merapi eruption 2010. Procedia-Social and Behavioral Sciences, Elsevier, v. 227, p.
387–394, 2016.

137

REYNEN, A.; AUDET, P. Supervised machine learning on a network scale: Application
to seismic event classification and detection. Geophysical Journal International, Oxford
University Press, v. 210, n. 3, p. 1394–1409, 2017.

ROCHA, D. S.; FAVIER, G.; FERNANDES, C. A. R. Closed-form receiver for multi-hop mimo
relay systems with tensor space-time coding. Journal of Communication and Information
Systems, v. 34, n. 1, p. 50–54, 2019.

RODARMEL, C.; SHAN, J. Principal component analysis for hyperspectral image classification.
Surveying and Land Information Science, American Congress on Surveying and Mapping,
v. 62, n. 2, p. 115–122, 2002.

SAVITZKY, A.; GOLAY, M. J. Smoothing and differentiation of data by simplified least squares
procedures. Analytical chemistry, ACS Publications, v. 36, n. 8, p. 1627–1639, 1964.

SCARPETTA, S.; GIUDICEPIETRO, F.; EZIN, E. C.; PETROSINO, S.; PEZZO, E. D.;
MARTINI, M.; MARINARO, M. Automatic classification of seismic signals at mt. vesuvius
volcano, italy, using neural networks. Bulletin of the Seismological Society of America,
Seismological Society of America, v. 95, n. 1, p. 185–196, 2005.

SHAKHNAROVICH, G.; MOGHADDAM, B. Face recognition in subspaces. In: Handbook of
face recognition. [S.l.]: Springer, 2005. p. 141–168.

SHIMSHONI, Y.; INTRATOR, N. Classification of seismic signals by integrating ensembles of
neural networks. IEEE transactions on signal processing, IEEE, v. 46, n. 5, p. 1194–1201,
1998.

SHLENS, J. A tutorial on principal component analysis. arXiv preprint arXiv:1404.1100,
2014.

SIDIROPOULOS, N. D.; BRO, R. On the uniqueness of multilinear decomposition of n-way
arrays. Journal of chemometrics, v. 14, n. 3, p. 229–239, 2000.

SIDIROPOULOS, N. D.; GIANNAKIS, G. B.; BRO, R. Blind parafac receivers for ds-cdma
systems. IEEE Transactions on Signal Processing, IEEE, v. 48, n. 3, p. 810–823, 2000.

SIDIROPOULOS, N. D.; LATHAUWER, L. D.; FU, X.; HUANG, K.; PAPALEXAKIS, E. E.;
FALOUTSOS, C. Tensor decomposition for signal processing and machine learning. IEEE
Transactions on Signal Processing, IEEE, v. 65, n. 13, p. 3551–3582, 2017.

SOUSA, J.; FERREIRA, A.; BATISTA, G.; SOBRINHO, C.; BASTOS, A.; LYRA, M.;
SOMBRA, A. et al. Generation of logic gates based on a photonic crystal fiber michelson
interferometer. Optics Communications, Elsevier, v. 322, p. 143–149, 2014.

SOUZA, F. C. d. N. de; MAIA, L. S. P.; MEDEIROS, G. M. de; MIRANDA, M. A. R.; SASAKI,
J. M.; GUIMARAES, G. F. Optical current and magnetic field sensor using mach-zehnder
interferometer with nanoparticles. IEEE Sensors Journal, IEEE, v. 18, n. 19, p. 7998–8004,
2018.

STEGEMAN, A.; SIDIROPOULOS, N. D. On kruskal’s uniqueness condition for the
candecomp/parafac decomposition. Linear Algebra and its applications, Elsevier, v. 420,
n. 2-3, p. 540–552, 2007.

138

STEINWART, I. Consistency of support vector machines and other regularized kernel classifiers.
IEEE transactions on information theory, IEEE, v. 51, n. 1, p. 128–142, 2005.

SWIFT, A. J.; LU, H.; UTHOFF, J.; GARG, P.; COGLIANO, M.; TAYLOR, J.; METHERALL,
P.; ZHOU, S.; JOHNS, C. S.; ALABED, S. et al. A machine learning cardiac magnetic
resonance approach to extract disease features and automate pulmonary arterial hypertension
diagnosis. European Heart Journal-Cardiovascular Imaging, Oxford University Press, v. 22,
n. 2, p. 236–245, 2021.

TAHERSIMA, M. H.; KOJIMA, K.; KOIKE-AKINO, T.; JHA, D.; WANG, B.; LIN, C.;
PARSONS, K. Deep neural network inverse design of integrated photonic power splitters.
Scientific reports, Nature Publishing Group, v. 9, n. 1, p. 1–9, 2019.

TANG, K.-S.; MAN, K.-F.; KWONG, S.; HE, Q. Genetic algorithms and their applications.
IEEE signal processing magazine, IEEE, v. 13, n. 6, p. 22–37, 1996.

TAO, D.; LI, X.; HU, W.; MAYBANK, S.; WU, X. Supervised tensor learning. In: IEEE. Fifth
IEEE International Conference on Data Mining (ICDM’05). [S.l.], 2005. p. 8–pp.

TAO, D.; LI, X.; WU, X.; MAYBANK, S. J. General tensor discriminant analysis and gabor
features for gait recognition. IEEE transactions on pattern analysis and machine intelligence,
IEEE, v. 29, n. 10, p. 1700–1715, 2007.

TAO, D.; LI, X.; WU, X.; HU, W.; MAYBANK, S. J. Supervised tensor learning. Knowledge
and Information Systems, v. 1, n. 13, p. 1–42, 2007.

THARWAT, A.; GABER, T.; IBRAHIM, A.; HASSANIEN, A. E. Linear discriminant analysis:
A detailed tutorial. AI communications, IOS Press, v. 30, n. 2, p. 169–190, 2017.

TOLIMIERI, R.; AN, M.; LU, C. Mathematics of multidimensional Fourier transform
algorithms. [S.l.]: Springer Science & Business Media, 2012.

TRAVERSA, P.; LENGLINÉ, O.; MACEDO, O.; MÉTAXIAN, J.-P.; GRASSO, J.-R.; INZA,
A.; TAIPE, E. Short term forecasting of explosions at ubinas volcano, perú. Journal of
Geophysical Research: Solid Earth, Wiley Online Library, v. 116, n. B11, 2011.

TSUI, T. K.; ZHANG, X.-P.; ANDROUTSOS, D. Color image watermarking using
multidimensional fourier transforms. IEEE Transactions on Information Forensics and
security, IEEE, v. 3, n. 1, p. 16–28, 2008.

TUCKER, L. R. Some mathematical notes on three-mode factor analysis. Psychometrika,
Springer, v. 31, n. 3, p. 279–311, 1966.

VAPNIK, V. The Nature of Statistical Learning Theory. [S.l.]: Springer Science & Business
Media, 2013.

VAPNIK, V. N. An overview of statistical learning theory. IEEE transactions on neural
networks, IEEE, v. 10, n. 5, p. 988–999, 1999.

VRABIE, V. D.; BIHAN, N. L.; MARS, J. I. Multicomponent wave separation using
hosvd/unimodal-ica subspace method. Geophysics, Society of Exploration Geophysicists, v. 71,
n. 5, p. V133–V143, 2006.

139

WANG, X.; JING, X.; ZHU, X.; SUN, S.; HONG, L. A novel approach of fingerprint
recognition based on multilinear ica. In: IEEE. 2009 IEEE International Conference on
Network Infrastructure and Digital Content. [S.l.], 2009. p. 740–744.

WOLD, S.; ESBENSEN, K.; GELADI, P. Principal component analysis. Chemometrics and
intelligent laboratory systems, Elsevier, v. 2, n. 1-3, p. 37–52, 1987.

XIANG, Y.; JIANG, Q.; HE, J.; JIN, X.; WU, L.; YAO, S. The advance of support tensor
machine. In: IEEE. 2018 IEEE 16th International Conference on Software Engineering
Research, Management and Applications (SERA). [S.l.], 2018. p. 121–128.

XIE, Y.; HUANG, T.; JI, Q.; YANG, M.; WANG, J.; TU, X.; CHENG, Z.; XU, G.; WEI, Q.;
WU, Y. et al. Design of an arbitrary ratio optical power splitter based on a discrete differential
multiobjective evolutionary algorithm. Applied Optics, Optica Publishing Group, v. 59, n. 6, p.
1780–1785, 2020.

YAN, S.; XU, D.; YANG, Q.; ZHANG, L.; TANG, X.; ZHANG, H.-J. Discriminant analysis
with tensor representation. In: IEEE. 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05). [S.l.], 2005. v. 1, p. 526–532.

YAN, S.; XU, D.; YANG, Q.; ZHANG, L.; TANG, X.; ZHANG, H.-J. Multilinear discriminant
analysis for face recognition. IEEE Transactions on image processing, IEEE, v. 16, n. 1, p.
212–220, 2006.

YANG, F.-J. An implementation of naive bayes classifier. In: IEEE. 2018 International
conference on computational science and computational intelligence (CSCI). [S.l.], 2018. p.
301–306.

YUNQI, L.; DONGJIE, C.; MEILING, Y.; QINGMIN, L.; ZHENXIANG, S. 3d face recognition
by surface classification image and pca. In: IEEE. 2009 Second International Conference on
Machine Vision. [S.l.], 2009. p. 145–149.

ZANDOMENEGHI, D.; INZA, A.; METAXIAN, J.-P.; MACEDO, O. Long-period seismic
events at ubinas volcano (peru): their implications and potentiality as monitoring tool. In: EGU
General Assembly Conference Abstracts. [S.l.: s.n.], 2012. p. 9359.

ZETIE, K.; ADAMS, S.; TOCKNELL, R. How does a mach-zehnder interferometer work?
Physics Education, IOP Publishing, v. 35, n. 1, p. 46, 2000.

ZHOU, H.; LI, L.; ZHU, H. Tensor regression with applications in neuroimaging data analysis.
Journal of the American Statistical Association, Taylor & Francis, v. 108, n. 502, p. 540–552,
2013.

ZHOU, Q.; TONG, G.; XIE, D.; LI, B.; YUAN, X. A seismic-based feature extraction algorithm
for robust ground target classification. IEEE Signal Processing Letters, IEEE, v. 19, n. 10, p.
639–642, 2012.

ZHU, X.; GOLDBERG, A. B. Introduction to semi-supervised learning. Synthesis lectures on
artificial intelligence and machine learning, Morgan & Claypool Publishers, v. 3, n. 1, p.
1–130, 2009.

140

APPENDIX A – SUPPORT VECTOR REGRESSION WITH MULTILINEAR SAMPLING

FORMULATION

A.1 Primal Formulation of Support Vector Regression (SVR)

The SVM concepts presented in the previous subsection can be generalized to

become applicable to regression problems. As in classification, support vector regression (SVR)

is characterized by the use of kernels, sparse solution, control of the margin and the number of

support vectors.

The primal formulation of the SVR cost function is given by:

min
w

1
2
⟨w,w⟩+C

P

∑
p=1

(
ξp + ξ̃p

)
, (A.1)

subject to

yp− (⟨w,xp⟩+b)≤ ε +ξp, (A.2)

(⟨w,xp⟩+b)− yp ≤ ε + ξ̃p, (A.3)

ξp ≥ 0, ξ̃p ≥ 0, (A.4)

for p = 1, ...,P, where ξp and ξ̃p are the slack variables, and ε is the scalar margin.

A.2 Primal Formulation of SVR with multilinear sampling using PARAFAC Decomposi-

tion

The primal formulation of the SVR cost function with multilinear sampling is given

by

min
w

1
2
⟨w,w⟩+C

P1

∑
p1=1

P2

∑
p2=1

P3

∑
p3=1

P4

∑
p4=1

(
ξp1,p2,p3,p4 + ξ̃p1,p2,p3,p4

)
, (A.5)

subject to

yp1,p2,p3,p4− (⟨w,xp1,p2,p3,p4⟩+b)≤ ε +ξp1,p2,p3,p4, (A.6)

(⟨w,xp1,p2,p3,p4⟩+b)− yp1,p2,p3,p4 ≤ ε + ξ̃p1,p2,p3,p4, (A.7)

ξp1,p2,p3,p4 ≥ 0, ξ̃p1,p2,p3,p4 ≥ 0, (A.8)

for p1 = 1,...,P1, p2 = 1,...,P2, p3 = 1,...,P3 and p4 = 1,...,P4.

141

Let E ∈ RP1×P2×P3×P4 and Ẽ ∈ RP1×P2×P3×P4 be two fourth order tensors formed

from ξp1,p2,p3,p4 and ξ̃p1,p2,p3,p4 , respectively. Let us assume that the slack tensors E and Ẽ

follow a PARAFAC decomposition:

ξp1,p2,p3,p4 =
Q

∑
q=1

a(1)p1,qa(2)p2,qa(3)p3,qa(4)p4,q, (A.9)

ξ̃p1,p2,p3,p4 =
Q̃

∑
q̃=1

ã(1)p1,q̃ã(2)p2,q̃ã(3)p3,q̃ã(4)p4,q̃, (A.10)

where Q and Q̃ are the tensor ranks, a(1)p1,q, a(2)p2,q, a(3)p3,q, a(4)p4,q, ã(1)p1,q̃, ã(2)p2,q̃, ã(3)p3,q̃ and ã(4)p4,q̃ form the

matrix factors of the PARAFAC decompositions A(1) ∈ RP1×Q, A(2) ∈ RP2×Q, A(3) ∈ RP3×Q,

A(4) ∈ RP4×Q, Ã(1) ∈ RP1×Q̃, Ã(2) ∈ RP2×Q̃, Ã(3) ∈ RP3×Q̃ and Ã(4) ∈ RP4×Q̃.

The optimization problem of the SVR may be stated as follows:

min
w

1
2
⟨w,w⟩+C

P1

∑
p1=1

P2

∑
p2=1

P3

∑
p3=1

P4

∑
p4=1

(
Q

∑
q=1

a(1)p1,qa(2)p2,qa(3)p3,qa(4)p4,q +
Q̃

∑
q̃=1

ã(1)p1,q̃ã(2)p2,q̃ã(3)p3,q̃ã(4)p4,q̃

)
,

(A.11)

subject to

yp1,p2,p3,p4− (⟨w,xp1,p2,p3,p4⟩+b)≤ ε +
Q

∑
q=1

a(1)p1,qa(2)p2,qa(3)p3,qa(4)p4,q, (A.12)

(⟨w,xp1,p2,p3,p4⟩+b)− yp1,p2,p3,p4 ≤ ε +
Q̃

∑
q̃=1

ã(1)p1,q̃ã(2)p2,q̃ã(3)p3,q̃ã(4)p4,q̃, (A.13)

Q

∑
q=1

a(1)p1,qa(2)p2,qa(3)p3,qa(4)p4,q ≥ 0, (A.14)

Q̃

∑
q̃=1

ã(1)p1,q̃ã(2)p2,q̃ã(3)p3,q̃ã(4)p4,q̃ ≥ 0, (A.15)

for p1 = 1,...,P1, p2 = 1,...,P2, p3 = 1,...,P3 and p4 = 1,...,P4.

In order to find a(1)p1,q, a(2)p2,q, a(3)p3,q, a(4)p4,q, ã(1)p1,q̃, ã(2)p2,q̃, ã(3)p3,q̃ and ã(4)p4,q̃, we must estimate

them iteratively. Assuming that the terms C[1]
q and C̃[1]

q are known and given by:

C[1]
q =

P2

∑
p2=1

P3

∑
p3=1

P4

∑
p4=1

a(2)p2,qa(3)p3,qa(4)p4,q (A.16)

and

C̃[1]
q̃ =

P2

∑
p2=1

P3

∑
p3=1

P4

∑
p4=1

ã(2)p2,q̃ã(3)p3,q̃ã(4)p4,q̃, (A.17)

142

Then, we can rewrite (A.11) as follows:

min
w

1
2
⟨w,w⟩+C

(
Q

∑
q=1

C[1]
q

P1

∑
p1=1

a(1)p1,q +
Q̃

∑
q̃=1

C̃[1]
q

P1

∑
p1=1

ã(1)p1,q̃

)
(A.18)

subject to

yp1,p2,p3,p4− (⟨w,xp1,p2,p3,p4⟩+b)≤ ε +
Q

∑
q=1

a(1)p1,qu[1]p2,p3,p4,q
, (A.19)

(⟨w,xp1,p2,p3,p4⟩+b)− yp1,p2,p3,p4 ≤ ε +
Q̃

∑
q̃=1

ã(1)p1,q̃ũ[1]p2,p3,p4,q̃
, (A.20)

Q

∑
q=1

a(1)p1,qu[1]p2,p3,p4,q
≥ 0, (A.21)

Q̃

∑
q̃=1

ã(1)p1,q̃ũ[1]p2,p3,p4,q̃
≥ 0, (A.22)

for p1 = 1,...,P1, p2 = 1,...,P2, p3 = 1,...,P3 and p4 = 1,...,P4, u[1]p2,p3,p4,q
= a(2)p2,qa(3)p3,qa(4)p4,q and

ũ[1]p2,p3,p4,q̃
= ã(2)p2,q̃ã(3)p3,q̃ã(4)p4,q̃.

143

APPENDIX B – PACKET CLASSIFICATION USING SUPPORT TENSOR MACHINES

Submitted to XL Simpósio Brasileiro de Telecomunicações e Processamento de

Sinais, Santa Rita do Sapucaí, Minas Gerais, 2022.

XL SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2022, 25–28 DE SETEMBRO DE 2022, STA. RITA DO SAPUCAÍ, MG

Packet Classification using Support Tensor
Machines

Antonio Augusto Teixeira Peixoto, Laise Santos e Carlos Alexandre Rolim Fernandes

Abstract— A wide variety of packet classification algorithms
exist in the research literature and commercial market. The
existing solutions exploit various design tradeoffs, providing high
search rates, power and space efficiency and the ability to scale
to large numbers of filters. However, still remains a need for
techniques that achieve a favorable balance among these tradeoffs
and scale to support classification. Based on this motivations,
this paper presents a tensor approach for the classification of
TCP and UDP packets. By using a multidimensional structure,
more specifically a 4-th order tensor, to store the packet data, a
tensorial algorithm known as Support Tensor Machines (STM) is
used to perform classification. Results showed good performance
of the approach in comparison to other classifiers such as the
Support Vector Machines and Naive-Bayes.

Keywords— packet classification, tensor, support tensor ma-
chines.

I. INTRODUCTION

The process of classifying information is directly related to
categorization, where ideas, objects or data are recognized,
differentiated, understood and then, separated in different
tags [1]. Moreover, data classification can be achieved with
methods aimed to determine whether or not the data con-
tains some specific information, feature, or behavior, then,
identifying the correct class of the data [2]. This method is
an important branch of computer vision, machine learning
and computational intelligence, being used in many fields
such as geophysics (seismic recognition, seismic swarms) [3],
recognition of fingerprint images [4], face [5], handwritten
digits [6], gait [7], electrocardiogram signals [8], and even
identification of specific vehicles [9].

The most common methods of classification are based on
supervised learning, which is the task of learning a function
that maps an input to an output based on example input-
output pairs [10]. In supervised learning, each example is a
pair consisting of an input object, typically a vector, and a
desired output value, also called the supervisory signal. A
supervised learning algorithm analyzes the training data and
produces an inferred function, which can be used for mapping
new examples. A common learning algorithm that has been
reported used on various classification applications such as the
mentioned earlier, is the the support vector machine (SVM)
[11], mostly employed to solve two-class problems, but also
used on multi-class solutions [12].

Augusto Peixoto, Redes de Computadores, IFCE, Jaguaribe-CE, e-mail:
antonio.peixoto@ifce.edu.br; Laise Santos, Redes de Computadores, IFCE,
Jaguaribe-CE, e-mail: layse0877@gmail.com; Carlos Alexandre R. Fernan-
des, Engenharia da Computação, UFC, Sobral-CE, e-mail: alexandrefernan-
des@ufc.br

More specifically, a standard SVM model is based on
vector inputs and cannot directly deal with matrices or higher
dimensional data structures, namely, tensors, which are very
common in real-life applications [15]. The SVM realization
on such high dimensional inputs is by reshaping each sample
into a vector. However, when the training data sample size is
relatively small compared to the feature vector dimension, it
may easily result in poor classification performance, known as
curse of dimensionality [15], [16].

In order to avoid the data destruction by converting tensors
into vectors, the supervised tensor learning method is proposed
[17]. This technique has been extensively studied in recent
years, and, proposes a supervised tensor learning framework,
which extends the standard linear SVM framework to tensor
patterns by constructing multilinear models, hence, called
Support Tensor Machines (STM). Also, the technique utilizes
a rank-one tensor to capture the data structure, thereby allevi-
ating the overfitting and curse of dimensionality problems in
the conventional SVM [17], [18]. Moreover, in the context of
supervised tensor learning, preserving the structural informa-
tion and exploiting the discriminating nonlinear relationships
of tensor data are crucial for improving the performance of
learning tasks [19].

On the other hand, classification of data packets in computer
networks is a very demanding task [20]. Packet classifica-
tion is important for applications such as firewalls, intrusion
detection, and differentiated services. Existing algorithms for
packet classification reported in the literature scale poorly in
either time or space as filter databases grow in size [21]. Also,
existing solutions may require high computational cost. In the
work of [22], an overview of packet classification algorithms
is presented. As explained [22], researchers have proposed
a variety of algorithms which, broadly speaking, can be
categorized as basic search algorithms, geometric algorithms,
heuristic algorithms, or hardware-specific search algorithms.

Moreover, the use of tensors and tensor-based classifiers
in packet classification is not common in the literature, with
few works addressing the topic. We may cite [23], which
utilizes a multidimensional approach for multi-scale feature
attention approach to network traffic classification, by using
convolutional neural networks (CNN) as the building block
of the deep packet analysis model. With so few tensor-based
works in covering this topic, it is desirable the development
of multilinear algorithms that could be used in packet classi-
fication.

In this paper, a tensor-based approach for the classification
of TCP and UDP packets is presented. By using a multidimen-
sional structure, to store the packet data, a tensorial algorithm

XL SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2022, 25–28 DE SETEMBRO DE 2022, STA. RITA DO SAPUCAÍ, MG

known as STM is used to perform classification. The first
step is a creation of a 4-th order tensor from two packet
databases, with information from TCP and UDP segments
obtained through a packet capture software. After obtaining
the tensor, the data is classified using the STM algorithm,
achieving interesting results. For comparison purposes, both
linear SVM and Naive-Bayes were tested.

A. Organization

The rest of this paper is organized as follows. Section II
presents methods used, while Section III describes the Support
Tensor Machine formulation. Section IV introduces the STM
algorithm, Section V presents the results and, finally, Section
VI ends this paper with the conclusions.

B. Notation

Scalars are denoted by Roman lower-case letters (a,b,...),
vectors as lower-case boldface letters (a,b,...), matrices as
upper-case boldface letters (A,B,...) and tensors as calligraphic
letters (A,B,...). To retrieve the element (i, j) of an arbitrary
matrix A ∈ CI×R, we use ai,j (the same for tensors). AT

stands for the transpose. Also, ⊗ denotes the Kronecker
product between A ∈ RI×K and B ∈ RJ×L, resulting in
A⊗ B ∈ CIJ×KL. A matrix unfold of a 4-th order tensor X
∈ RK×M×N×P is given by X[n], i.e. X[1] ∈ RKMN×N .

II. METHODS

The methodology of this work was developed as follows.
Initially, TCP and UDP segment data were collected using
the Wireshark software. This software is a network protocol
analyzer, allowing the visualization of data from a given
network, allowing the user to interact by browsing through the
captured data and seeing the details of each packet [24]. Two
networks were analyzed for packets, one wired and the other
one wireless, where packets were obtained during conventional
web browsing, video calls and streaming services.

The data collected from the TCP and UDP packets were as
follows:

• Source port;
• Destination port;
• Header length;
• Window size;
• Payload (in bytes);
• Flag;
The attributes described above were chosen because they

facilitate the distinction between TCP and UDP segments, thus
facilitating the classification of these later on. After collecting
100 samples of TCP and UDP segments from the wired
network, another 100 samples were obtained from the wireless
network. Once the samples were properly tabulated, a 3rd
order tensor containing the database was assembled, with the
tensor dimensions being 2 × 3 × 6 × 100, with a total of 600
packets. The first mode of the tensor denotes the two types
of network: wired and wireless, the second mode refers to
how the packets were obtained (web browsing, video call or
streaming), the third mode refers to the number of attributes

Fig. 1. Flowchart of the presented classification method.

whereas the fourth mode indicates the number of samples. The
class tags are two: a packet of the dataset is either TCP or UDP.
In Figure 1 we can see the flowchart of the methodology.

TABLE I
DATABASE DESCRIPTION.

Size: 2 × 3 × 6 × 100 Number of Packets
Wired Network 100 (60 TCP, 40 UDP)

Wireless Network 100 (60 TCP, 40 UDP)

Table I shows the dataset description, with tensor dimen-
sions, number of TCP and UDP packets per type of network.
In the following, the adopted classifier is presented.

III. SUPPORT TENSOR MACHINES (STM) FORMULATION

Considered an extension to the conventional SVM, the STM
works in the following way. Let X ∈ RK×M×N×P be the
training data set tensor split into P third order tensors and
a vector y consisting of the class tags associated to each of
the P tensors, with y ∈ {-1,1}, thus, we need to find a tensor
classifier such the two classes can be separated with maximum
margin as the decision function:

f(Xp) = Xp(v(1), v(2), v(3)) + b, (1)

where Xp ∈ RK×M×N , v(1) ∈ R1×K , v(2) ∈ R1×M and v(3)
∈ R1×N are vectors orthogonal to the hyperplane. We can also
define:

Xp(v(1), v(2), v(3)) =
K∑

k=1

M∑

m=1

N∑

n=1

xk,m,nv(1)k v(2)m v(3)
n . (2)

Then, (1) can be rewritten as follows:

f(Xp) = Xp ×1 v(1) ×2 v(2) ×3 v(3) + b. (3)

In matricial notation, we have:

f(Xp) = (v(2) ⊗ v(3))X(1)
p (v(1))T + b, (4)

where X[1] ∈ RMN×K is an unfolding of the tensor Xp.
As stated earlier, the LR-STM method is an generalization

of the SVM for higher order arrays. In order to use (3), it

XL SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2022, 25–28 DE SETEMBRO DE 2022, STA. RITA DO SAPUCAÍ, MG

is necessary to compute v(1), v(2) and v(3). The algorithm is
described as follows:

• Initialize v(2) = {1,...,1} ∈ R1×M and v(3) = {1,...,1} ∈
R1×N ;

• Let xp = (X[1]
p)T (v(2) ⊗ v(3))T ;

• Compute v(1) by solving the following optimization prob-
lem:

min
v(1)

1

2
〈v(1),v(1)〉+ C

P∑

p=1

ξp (5)

subject to

yp(〈v(1), xp〉+ b) ≥ 1− ξp, (6)

where
ξp ≥ 0.

• With v(1) obtained, let xp = (X[2]
p)T (v(3) ⊗ v(1))T , then

compute v(2) with:

min
v(2)

1

2
〈v(2),v(2)〉+ C

P∑

p=1

ξp (7)

subject to

yp(〈v(2), xp〉+ b) ≥ 1− ξp, (8)

where
ξp ≥ 0.

• With v(1) and v(2) obtained, let xp = (X[3]
p)T (v(1) ⊗

v(2))T , then compute v(3) with:

min
v(3)

1

2
〈v(3),v(3)〉+ C

P∑

p=1

ξp (9)

subject to

yp(〈v(3), xp〉+ b) ≥ 1− ξp, (10)

where
ξp ≥ 0.

• After the steps above, we can iteratively compute v(1),
v(2) and v(3) until they converge.

Now, with v(1), v(2) and v(3) obtained, we can classify the test
data Zs ∈ RK×M×N , with s = 1,...,S and J = P + S, where
P and S denotes the training and test samples, respectively.
Thus we have:

g(Zs) = sign(Zs ×1 v(1) ×2 v(2) ×3 v(3) + b). (11)

IV. STM ESTIMATION ALGORITHM

The algorithm of the STM method, in pseudo-code format,
is shown in Algorithm 1. The basic process of classification
is illustrated in Figure 2, where, with the training samples, we
build the LR-STM model by estimating v(1), v(2) and v(3).
Then, we use the model to classify the test samples with (11).

Convergence is achieved as follows. As we shown, the
optimizations problems in (5,7,9) are the same as in the
standard SVM algorithm, then we can use the computational

Fig. 2. Flowchart of the presented classification method.

Algorithm 1 STM Algorithm
For p = 1,...,P :
1)Initialization: Set i = 0; Initialize v(2)

i and v(3)i ;
2)With xp = (X[1]

p)T (v(2)
i ⊗ v(3)

i)T , estimate v(1)
i using (5);

3)i = i + 1;
4)With xp = (X[2]

p)T (v(3)
i−1⊗v(1)

i−1)
T , estimate v(2)i using (7);

5)With xp = (X[3]
p)T (v(1)

i−1⊗v(2)i)T , estimate v(3)
i using (9);

6)Repeat steps 2-5 until convergence;

methods for SVM to solve (5,7,9). As for the convergence of
the algorithm, the iterative procedure to solve the optimization
problems (5,7,9) will monotonically decreases the objective
function values in (6,8,10), and hence the STM algorithm
converges.

Let v(2)0 and v(3)0 be the initial values. Fixing v(2)0 and v(3)
0 ,

we get v(1)0 by solving the optimization problem (5). Likewise,
fixing v(1)

0 and v(3)0 , we get v(2)
1 by solving the optimization

problem (7) and so on. Notice that the optimization problem of
SVM is convex, so the solution of SVM is globally optimum
[25]. Thus, we have:

f(v(1)0 , v(2)0 , v(3)0) ≥ f(v(1)
0 , v(2)1 , v(3)0). (12)

And finally we get:

f(v(1)
0 , v(2)

0 , v(3)0) ≥ . . . ≥ f(v(1)1 , v(2)1 , v(3)1) ≥ (13)

V. RESULTS

In this section, the obtained classification results are pre-
sented. The STM algorithm was implemented using MATLAB
2017b, in a 9-th generation core i3 processor. For comparison
purposes, the conventional SVM with linear kernel and the
Naive-bayes classifiers were tested, using a vectorized version
of the data, in order to better evaluate the STM performance.
Also, an Artificial Neural Network (ANN) implementing for-
ward propagation with two fully connected layers, Rectified
linear unit (ReLU) activation functions and a softmax function
to the final fully connected layer, using vectorized data, was
tested against the STM.

The data was classified using K-fold cross validation, with
K = 10 and the relaxing constant was set C = 100. The results
are presented in the form of accuracy, which is defined as the
number of correctly classified samples over the total number of
samples, execution time, in seconds, of the feature technique
plus classifier, and, confusion tables. The results were averaged
100 times to eliminate fluctuation.

The first result, presented in Table II shows the accuracy
and execution times of the tested methods. As can be seen,

XL SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2022, 25–28 DE SETEMBRO DE 2022, STA. RITA DO SAPUCAÍ, MG

the STM showed the highest accuracy, thus showing its
good performance in packet classification. The second best
classification rate was achieved by the ANN, however, at a
cost of more execution time. The worst accuracy was obtained
by the Naive-Bayes classifies. Moreover, although the STM
demanded more running time than the SVM and Naive-Bayes
techniques, it achieved higher accuracy, showing a trade-off
between performance of classification and computational cost.

TABLE II
ACCURACY AND EXECUTION TIME RESULTS FOR THE TESTED

TECHNIQUES

Classifier Accuracy Time (s)
STM 88.3% 201.11
SVM 80.3% 171.2
Naive-Bayes 75.4% 126.8
ANN 83.2% 244.67

Furthermore, in Table III, the obtained confusion matrix is
shown, illustrating the performance of STM in the TCP and
UDP packet classification process. As we can see, an accuracy
of 88.3% was achieved in the classification of the data.

TABLE III
CONFUSION TABLE - ACCURACY OF THE STM.

88.3% Accuracy TCP UDP
TCP 330 40
UDP 30 200

VI. CONCLUSIONS

In this work, a tensor-based approach for packet classifica-
tion was presented. By using a multidimensional structure, to
store the TCP and UDP packets, a tensorial algorithm known
as STM is used to perform classification. Results showed good
performance of the proposed approach in comparison to other
classifiers such as the SVM and Naive-Bayes techniques.

REFERENCES

[1] M. Pardo and G. Sberveglieri, “Learning from data: A tutorial with em-
phasis on modern pattern recognition methods," IEEE Sensors Journal,
vol. 2, no. 3, pp. 203-217, 2009.

[2] S. R. Kulkarni, G. Lugosi and S. S. Venkatesh, “Learning pattern
classification-a survey," IEEE Transactions on Information Theory, vol.
44, no. 6, pp. 2178-2206, 1998.

[3] Rouet-Leduc, B., Hulbert, C., Lubbers, N., Barros, K., Humphreys,
C. J., & Johnson, P. A. (2017). Machine learning predicts laboratory
earthquakes. Geophysical Research Letters, 44(18), 9276-9282.

[4] Jia, J., Cai, L., Lu, P., & Liu, X. (2007). Fingerprint matching based on
weighting method and the SVM. Neurocomputing, 70(4-6), 849-858.

[5] M. J. Lyons, J. Budynek, and S. Akamatsu, “Automatic classification
of single facial images," IEEE transactions on pattern analysis and
machine intelligence, vol. 21, no. 12, pp. 1357-1362, 1999.

[6] B. Savas, and L. Eldén, “Handwritten digit classification using higher
order singular value decomposition," Pattern recognition, vol. 40, no. 3,
pp. 993-1003, Elsevier, 2007.

[7] R. K. Begg, M. Palaniswami and B. Owen, “Support vector machines
for automated gait classificatio," IEEE transactions on Biomedical
Engineering, vol. 52, no. 5, pp. 828-838, 2005.

[8] F. Melgani & Y. Bazi, “Classification of electrocardiogram signals
with support vector machines and particle swarm optimization," IEEE
transactions on information technology in biomedicine, vol. 12, vol. 5,
pp. 667-677, 2008.

[9] S. Gupte, O. Masoud, R. F. Martin and N. P. Papanikolopoulos,
Detection and classification of vehicles. IEEE Transactions on intelligent
transportation systems, vol. 3, no. 1, pp. 37-47, 2002.

[10] Zhu, X., & Goldberg, A. B. (2009). Introduction to semi-supervised
learning. Synthesis lectures on artificial intelligence and machine learn-
ing, 3(1), 1-130.

[11] Vapnik, V. (2013). The nature of statistical learning theory. Springer
science & business media.

[12] Mathur, A., & Foody, G. M. (2008). Multiclass and binary SVM
classification: Implications for training and classification users. IEEE
Geoscience and remote sensing letters, 5(2), 241-245.

[13] Burges, C. J. (1998). A tutorial on support vector machines for pattern
recognition. Data mining and knowledge discovery, 2(2), 121-167.

[14] Ma, L., Hu, Y., & Zhang, Y. (2017). Support Tucker Machines Based
Bubble Defect Detection of Lithium-ion Polymer Cell Sheets. Engineer-
ing Letters, 25(1).

[15] Chen, C., Batselier, K., Ko, C. Y., & Wong, N. (2019, July). A support
tensor train machine. In 2019 International Joint Conference on Neural
Networks (IJCNN) (pp. 1-8). IEEE.

[16] Li, J., Allinson, N., Tao, D., & Li, X. (2006). Multitraining support vec-
tor machine for image retrieval. IEEE Transactions on Image Processing,
15(11), 3597-3601.

[17] D. Tao, X. Li, X. Wu, W. Hu, and S. J. Maybank. Supervised tensor
learning. Knowledge and Information Systems, 13(1):1?42, 2007.

[18] Cai, D., He, X., Wen, J. R., Han, J., & Ma, W. Y. (2006). Support tensor
machines for text categorization.

[19] He, L., Lu, C. T., Ma, G., Wang, S., Shen, L., Yu, P. S., & Ragin, A.
B. (2017, August). Kernelized support tensor machines. In Proceedings
of the 34th International Conference on Machine Learning-Volume 70
(pp. 1442-1451). JMLR. org.

[20] Taylor, David E., and Jonathan S. Turner. "Scalable packet classification
using distributed crossproducing of field labels." In Proceedings IEEE
24th Annual Joint Conference of the IEEE Computer and Communica-
tions Societies., vol. 1, pp. 269-280. IEEE, 2005.

[21] Baboescu, Florin, and George Varghese. "Scalable packet classification."
IEEE/ACM transactions on networking 13, no. 1 (2005): 2-14.

[22] Gupta, Pankaj, and Nick McKeown. "Algorithms for packet classifica-
tion." IEEE Network 15, no. 2 (2001): 24-32.

[23] Wang, Yipeng, Xiaochun Yun, Yongzheng Zhang, Chen Zhao, and Xin
Liu. "A Multi-scale Feature Attention Approach to Network Traffic Clas-
sification and Its Model Explanation." IEEE Transactions on Network
and Service Management (2022).

[24] Lamping, Ulf, and Ed Warnicke. "Wireshark user’s guide." Interface 4,
no. 6 (2004): 1.

[25] Cortes, Corinna, and Vladimir Vapnik. "Support-vector networks." Ma-
chine learning 20, no. 3 (1995): 273-297.

	Title page
	Acknowledgements
	Abstract
	Resumo
	List of symbols
	Sumário
	Introduction
	Motivation and Justification
	Introduction to Machine Learning
	Introduction to Tensor Learning
	Introduction to Support Tensor Machines (STM)
	Feature Extraction and Dimensionality Reduction

	Thesis Contributions
	Applications for the Proposed Tensor Learning Approaches
	Seismic Event Classification
	Photonic Output Classification

	Scientific Outputs
	Organization

	Theoretical Background
	Tensor Algebra
	Tensor Decompositions and other Multidimensional Techniques
	Parallel Factor Analysis (PARAFAC)
	Nested-PARAFAC decomposition
	Tucker Decomposition
	High-Order Singular Value Decomposition (HOSVD)
	Multidimensional Discrete Fourier Transform (MDFT)

	Machine Learning Basics
	Formulations of the Support Vector Machines (SVM)
	Principal Component Analysis (PCA)

	Tensor Learning Concepts and Techniques
	Support Tensor Machines (STM)
	Support PARAFAC Machine (SPM)
	Support Tucker Machine (STuM)

	Multilinear Principal Component Analysis

	Framework for Classification of Seismic Events
	Motivation
	Proposed Classification System
	Preprocessing
	Feature Extraction
	MPCA Application
	Classification

	Database Description
	Results
	MPCA with Full Projection
	MPCA with Dimensionality Reduction
	Effects of the Preprocessing Steps and Tensor Ranks
	Computational Cost Analysis of the Framework

	Conclusions

	Multilinear Dimensionality Reduction
	Motivation
	Proposed Nested PARAFAC Decompositions for Higher-Order Tensors
	Even-Order Nested PARAFAC Decomposition (EONPD)
	Higher-Order Nested PARAFAC Decomposition (HONPD)

	Low-Correlation Multilinear Dimensionality Reduction (LC-MDR)
	EONPD Modeling of the Input Correlation Tensor
	Estimation Algorithm

	Classification system
	Results and Discussion
	Correlation Reduction with Full Projection
	Correlation and dimensionality reduction
	Computational Cost Analysis

	Conclusions

	Multilinear Sampling in Support Vector Machines for Photonic Data Classification
	Motivation
	Multilinear Sampling in Support Vector Machines
	Multilinear Sampling
	Primal Formulation of the SVM with Multilinear Sampling

	SVM with Multilinear PARAFAC Sampling (SVM-MPS)
	Problem Formulation
	Quadratic Programming (QP) Formulation
	Estimation Algorithm

	SVM with Multilinear Tucker Sampling (SVM-MTS)
	Problem Formulation
	Quadratic Programming Formulation
	Estimation Algorithm

	Photonic Database Description
	Results
	Rank Impact on Accuracy and Execution Time
	Computational Cost Analysis

	Conclusions

	Conclusions
	Bibliography
	APPENDICES
	Support Vector Regression with Multilinear Sampling Formulation
	Primal Formulation of Support Vector Regression (SVR)
	Primal Formulation of SVR with multilinear sampling using PARAFAC Decomposition

	Packet Classification using Support Tensor Machines

