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Abstract— This work proposes an anti-windup dead-time
compensator (DTC) based on a generalized predictive controller
(GPC). At first, it is analysed the dead-time compensation
properties of the GPC by its formulation in a DTC structure.
Secondly, a saturation model is added in order to overcome
windup problems. The proposed control structure does not use
any extra tuning parameter due to the anti-windup charac-
teristic. Simulation results are used to compare the proposed
controller with others anti-windup DTCs proposed in literature.

I. INTRODUCTION

Many industrial processes are characterized by the pres-
ence of dead-time. The dead-time occurs, for example, in
the time required to transport mass, energy or information.
The dead-time can also be caused by processing time or
by accumulation of time lags in dynamic systems in series.
Therefore, many control methods used in industry consider
dead-time as an integral part of process dynamics models [4].
The DTC is a special type of controller that incorporates
a prediction of the process output. The first DTC was the
Smith predictor (SP), proposed in [9] at 1957 and, since
then, diverse problems of dead-time compensation have been
tackled by researchers.
For instance, as important works at the last few years, we can
mention the following. In Normey-Rico and Camacho [5], a
modified SP (MSP) allows to decouple the disturbance re-
jection and the set-point tracking and can deal with unstable
plants. In Ono et al. [7], [6], a discrete MSP based on Linear-
Quadratic-Integral (LQI) control method is proposed and
applied to integrative and unstable processes. In Mataušek
and Ribić [2], a MSP is proposed and proven to be a PID
controller in series with a second order filter that can deal
with stable, integrative and unstable processes; the tuning is
made by means of constrained optimization. In Ribić and
Mataušek [8], a DTC proportional-integral-derivative (DTC-
PID) controller with anti-windup action is proposed and
tuned by constrained optimization; it can deal with stable,
integrative and unstable processes.
Model predictive control (MPC) is based on predictions and,
over the years, this technique has been widely used to deal
with dead-time problems. Therefore, this work proposes a
GPC based DTC with anti-windup action. In Section II,
the DTC is formulated and are presented the predictions
and optimal control input computations. In Section III, a
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O. Pereira and Fabrı́cio G. Nogueira are with the Grupo
de Pesquisa em Automação e Robótica, Departamento de
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simplification of the control structure is proposed and the
tunings for set-point tracking and for disturbance rejection
are presented. In Section IV, are presented simulation re-
sults for stable, integrative and unstable processes. In the
conclusions, important observations and comments about the
proposed DTC are made.

II. GENERALIZED PREDICTIVE CONTROL
The GPC strategy for dead-time processes can be repre-

sented as the control sequence that minimizes the following
cost function:

J =

d+N∑
k=d+1

(y(t+k|t)−ω(t+k))2+

Nu∑
j=1

λ(j)(∆u(t−1+j|t))2,

(1)
where y(t+k|t) is the k-step ahead prediction of the process
output on data up to time t, ∆u(t − 1 + j|t) is the future
control increment, ω(t+ k) is the future reference, λj is the
control weight, d is the input dead-time, N is the prediction
horizon window and Nu is the control horizon window. Eq.
(1) can be written in a compact form as:

J = (Y −W)T (Y −W) + ∆UTQ∆U, (2)

where

Y =


y(t+ d+ 1|t)
y(t+ d+ 2|t)

...
y(t+N |t)

, ∆U =


∆u(t|t)

∆u(t+ 1|t)
...

∆u(t+Nu − 1|t)

,

W =


ω(t+ d+ 1)
ω(t+ d+ 2)

...
ω(t+ d+N)

, Q =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λNu

.

In the proposed approach the control input is used as a
decision variable, instead of the control increment. Therefore,
(2) can be written as:

J = (Y−W)T (Y−W)+(MU−Ū)TQ(MU−Ū), (3)

where U = [u(t|t), u(t+1|t), . . . , u(t+Nu−1|t)] and M and
Ū are matrices with size Nu×Nu and Nu×1, respectively.
They are given by:

M =


1 0 . . . 0 0
−1 1 . . . 0 0

...
...

. . .
...

...
0 0 . . . −1 1

 , Ū =


u(t− 1)

0
...
0

 .
(4)
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Note that, in order to minimize the cost function (3), first,
the output prediction must be computed.

A. Computing the Predictions

The GPC strategy uses the CARIMA model to compute
the predictions. In case of dead-time processes, the following
CARIMA model with dead-time d can be used:

A(q)y(t) = B(q)u(t− 1− d) +
C(q)

∆
e(t), (5)

which can be written as follows:

y(t) = x(t) + n(t), (6)

x(t) =
B(q)u(t− 1− d)

A(q)
, (7)

n(t) =
C(q)

Ã(q)
e(t) (8)

where Ã(q) = ∆A(q), ∆ = 1− q−1,

A(q) = 1 + a1q
−1 + . . .+ anaq

−na ,
B(q) = b0 + b1q

−1 + . . .+ bnb
q−nb ,

C(q) = 1 + c1q
−1 + . . .+ anc

q−nc .
(9)

Without loss of generality it is assumed that nc = na + 1
(however, in practice, it can be used nc ≤ na + 1).
Two Diophantine equations are defined as follows:

1 = A(q)Ej(q) + q−jFj(q), (10)

C(q) = Ã(q)Ẽk(q) + q−kF̃k(q), (11)

where:

Fj(q) = fj,0 + fj,1q
−1 + . . .+ fj,naq

−na ,

F̃k(q) = f̃k,0 + f̃k,1q
−1 + . . .+ f̃k,na

q−na ,
Ej(q) = e0 + e1q

−1 + . . .+ ej−1q
−j+1,

Ẽk(q) = ẽ0 + ẽ1q
−1 + . . .+ ẽk−1q

−k+1.

(12)

Eq. (7) at the time t+ k can be written as:

x(t+ k|t) =
B(q)u(t− 1− d+ k|t)

A(q)
. (13)

Making k = d+ j, (13) becomes:

x(t+ d+ j|t) =
B(q)u(t− 1 + j|t)

A(q)
. (14)

Using (10), (14) can be written as:

x(t+ d+ j|t) = B(q)Ej(q)u(t− 1 + j|t) + Fj(q)x(t+ d).
(15)

In addition, making B(q)Ej(q) = G(q)+G̃(q)q−j , (15) can
be written as:

x(t+ d+ j|t) = G(q)u(t− 1 + j|t) + G̃(q)u(t− 1) + Fj(q)x(t+ d),

(16)
where:

Gj(q) = h1 + h2 q
−1 + . . .+ hj q

−j+1,

G̃j(q) = g̃j,0 + g̃j,1 q
−1 + . . .+ g̃j,nb−1 q

−nb+1.
(17)

On the other hand, considering (11), (8) can be written as:

n(t+ k) =
F̃k(q)n(t)

C(q)
+ Ẽk(q)e(t+ k). (18)

Making k = d+ j, (18) becomes:

n(t+ d+ j) =
F̃d+j(q)n(t)

C(q)
+ Ẽd+j(q)e(t+ d+ j). (19)

Since all terms of Ẽd+j(q)e(t+ d+ j) are in the future, its
expected value is zero. Therefore, the disturbance prediction
is given by:

n(t+ d+ j|t) =
F̃d+j(q)n(t)

C(q)
. (20)

Using (16) and (20), the output prediction can be written as:

y(t+ d+ j|t) = Gj(q)u(t− 1 + j|t) + fj , (21)

where fj (also called free response) is given by

fj = G̃j(q)u(t− 1) + Fj(q)x(t+ d) +
F̃d+j(q)n(t)

C(q)
. (22)

For j = 1, ..., N , the predicted output can be represented in
the matrix form:

Y = GU + f , (23)

where:

G =



h1 0 . . . 0
h2 h1 . . . 0
...

...
. . . 0

hNu
hNu−1 . . . g1

...
...

. . .
...

hN hN−1 . . . gN−Nu+1


,

gi = h1 + ...+ hi, (24)

f = G̃(q)u(t− 1) + F(q)x(t+ d) +
F̃(q)n(t)

C(q)
, (25)

G̃(q) =


G̃1(q)

G̃2(q)
...

G̃N (q)

, F(q) =


F1(q)
F2(q)

...
FN (q)

 and

F̃(q) =


F̃d+1(q)

F̃d+2(q)
...

F̃d+N (q)

.

B. Computing the Optimal Control Input

In order to compute the optimal control input, the cost
function (3) is written as:

J =
1

2
UTHU + bTU + K0, (26)

where
H = 2(GTG + MTQM),
bT = 2

[
(f −W)TG− ŪTQM

] (27)
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and K0 is a constant.
The unconstrained optimal control can be found making the
gradient of J equal to zero. Therefore,

U = −H−1b = (GTG + MTQM)−1(GT (W − f) + MTQŪ).

(28)
Due to the receding control strategy, only the first element
of U will be applied to the process, which is:

u(t) = krr(t)− k1f + k0u(t− 1), (29)

where r(t) is the set-point, k1 is the first row of (GTG +
MTQM)−1GT , kr is the sum of the elements of k1 and
k0 the element of the first row and first column of (GTG+
MTQM)−1MTQ. Using (25), the term k1f can be written
as:

k1f = P0(q)u(t− 1) + P1(q)x(t+ d) +
P2(q)n(t)

C(q)
, (30)

where P0(q) = k1G̃(q), P1(q) = k1F(q) and P2(q) =
k1F̃(q). Using (30), the control input from (29) can be
written as:

u(t) = krr(t)−P1(q)x(t+d)− P2(q)n(t)

C(q)
−P3(q)u(t−1),

(31)
where P3(q) = P0(q)−k0. The control structure is illustrated
in Fig. 1, where T(z) = P2(z)/C(z).

+
+

+
++

-
+

-

+

+
+

+

R(z) Y (z)U(z)

V (z)

T(z)

Q(z)

P1(z)

process

P3(z)z
−1

z−d

P(z)

G(z)

kr

Fig. 1. Block-diagram of the proposed GPC.

It is important to note that the order of the polynomials
P1(q), P2(q), and P3(q) are na − 1, na and nb − 1, respec-
tively. This simplicity is important from practical implemen-
tation point of view. In order to show some properties of this
controller, some input-output relationships in the nominal
case (which is the process Z-transfer function P(z) =
G(z)z−d, where G(z) = B(z)z−1/A(z)) are computed:

Y (z)

R(z)
= Hyr(z) =

krP(z)

1 + P3(z)z−1 + P1(z)G(z)
, (32)

Y (z)

Q(z)
= Hyq(z) = P(z)

(
1− P2(z)

C(z)

Hyr(z)

kr

)
and (33)

U(z)

V (z)
= Huv(z) = −P2(q)

C(q)

Hyr(z)

kr P(z)
. (34)

In addition, a condition of robustness is given by [3]

∆P (z) ≤ Ir(z) =
|C(z)|
|P2(z)|

|kr|
|Hyr(z)|

, (35)

where z = ejω, 0 < ω < π, and Ir is defined as a robustness
index.
It is important to note that the controller parameters N , Nu,
and λ(j) affect the polynomials P1(q) and P3(q). On the
other hand, the disturbance polynomial C(q) affects only
the polynomial P2(q). Therefore, it can be stated that:

• The set-point tracking can be tuned using N , Nu,
and λ(j), since (32) depends on P1(q) and P3(q). In
practice, it is common to fix N and Nu and use only
λ(j) as a tuning parameter;

• The polynomial C(q) affects the disturbance rejection,
acts as a low pass filter in the noise attenuation and
appears in the numerator of the robustness index. There-
fore, C(q) can be tuned with a trade off between the
disturbance rejection and both robustness index and
noise attenuation.

III. PROPOSED CONTROL STRUCTURE
The control structure shown in Fig. 1 is internally unstable

in case of open-loop unstable processes and the windup
problem was not addressed. In order to overcome these
problems, this work proposes the use of an equivalent control
structure that includes the saturation model (as illustrated in
Fig. 2), where:

S(q) =
B(q)

A(q)
q−1

(
P1(q)− P2(q)

C(q)
q−d

)
. (36)

Note that S(q) from (36) can present internal stability
problems if the roots of A(q) are outside the unit circle.
Futhermore, it is common in real processes the control action
to attain the lower umin or the upper umax limits of the
process. In which case, if the controller was not properly
designed, windup problems can arise. Meaning that some
unstable modes can appear, making the system oscillatory or
even unstable. Therefore, in the proposed control structure
illustrated in Fig. 2, it was included the saturation model,
which constraints the control action u(t) to umin or umax

when the computed control action is less or greater than
these limits, respectively. The anti-windup characteristic of
the proposed DTC will be widely explored in another work.

G zd

P1

+

+

+

+

_
+

+
+

+
+R(z) Y (z)U(z)

V (z)

T(z)

Q(z)

S(z)

process

P3(z)z
−1

P(z)kr

Fig. 2. Block-diagram of the proposed anti-windup GPC.
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The next two lemmas show how S(q) can be implemented
in order to guarantee internal stability and why there is not
unstable modes when the process is under saturation.

Lemma 1: In GPC strategy, the polynomial A(q) can be
explicitly eliminated from the denominator of S(q) (see
(36)), so that the controller becomes internally stable in case
of unstable open-loop models. As a result of this cancellation,
S(q) can be written as:

S(q) =
q−1P4(q)

C(q)
, (37)

where P4(q) is a d+ nb order polynomial. Observe that the
only term in the denominator of S(q) is C(q). Since C(q) is
designed so that all its roots are inside the unit circle, S(q)
will be internally stable.

Proof: Eq. (36) can be written as:

S(q) =
B(q)P5(q)q−1

A(q)C(q)
, (38)

where P5 = C(q)P1(q) − P2(q)q−d. Then, using (10) and
(11), P5(q) can be written as:

P5(q) = k1


A(q)

(
∆Ẽd+1 − E1(q)C(q)

)
q

A(q)
(

∆Ẽd+2 − E2(q)C(q)
)
q2

...

A(q)
(

∆Ẽd+N − EN (q)C(q)
)
qN

 . (39)

Using (10) and (11), the terms in brackets of (39) can be
written as:

A(q)
(

∆Ẽd+j − Ej(q)C(q)
)
qj = (F̃d+j(q)q

−d − Fj(q)),

(40)
that is, (40) is a polynomial in the backward shift operator
q−1 of order na + d. Eq. (39) can also be written as:

P5(q) = A(q)P6(q), (41)

where P6(q) is a d-order polynomial given by:

P6(q) = k1



(
∆Ẽd+1 − E1(q)C(q)

)
q(

∆Ẽd+2 − E2(q)C(q)
)
q2

...(
∆Ẽd+N − EN (q)C(q)

)
qN

 . (42)

Using (41), (38) can be written as:

S(q) =
B(q)P6(q)q−1

C(q)
=
q−1P4(q)

C(q)
, (43)

where P4(q) = B(q)P6(q). As can be seen in (43), A(q) has
been eliminated from the denominator of S(q), completing
the proof.

Lemma 2: If the proposed controller is under saturation,
therefore there is no cumulative effect, being that desired to
avoid windup problems.

Proof: Note that, in case the control signal is saturated
(usat), therefore the computed control is given by:

U(z) = (z−1P3(z) + S(z))Usat(z) + T (z)Y (z), (44)

where P3(z) is a FIR filter and the poles of S(z) and
T (z) are the roots of C(z), which are inside the unit circle.
Consequently the controller does not present an integrative
mode, completing the proof.

A. Tuning of the Set-Point Tracking

The set-point tracking can be tuned using the parameters
N , Nu and λj . In practice it is common to use the following
two approaches. At first, N and Nu are fixed as larger
as the transient region, and then, λj is used to obtain the
desired set-point response. Lower and bigger values of λj
causes faster and slower responses, respectively. The second
approach intends to reduce the computational cost and, for
this reason, Nu = 1 and λj = 0 are fixed so that the only
tuning parameter is N . Lower values of N are used to obtain
faster responses and bigger values of N to obtain slower
responses (see [1]). Additionally, if Nu > 1, to obtain a
more aggressive response, the element λ1 of the diagonal
matrix Q can be made equal to zero.

B. Tuning of C(q)

First, lets define the following filter:

T(z) =
P2(z)

C(z)
, (45)

where P2(z) is the only polynomial of the control action
(see (31)) that depends on C(z). Furthermore, as shown in
previous sections, the order of P2(z) and C(z) are na and
na + 1, respectively. Therefore, T(z) is a low pass filter.
Using (45), Eqs. (33), (34) and (35) can be written as:

Hyq(z) = P(z)

(
1− T(z)

Hyr(z)

kr

)
, (46)

Huv(z) = −T(z)
Hyr(z)

kr P(z)
, (47)

Ir(z) =
|kr|

|T(z) Hyr(z)|
. (48)

From (46), (47) and (48), it is possible to see that T(z) can be
used to improve the noise attenuation Huv(z) and robustness
Ir(z). However, there is a trade off between the disturbance
rejection Ir(z), Hyq(z) and Huv(z).
Notwithstanding there are other options, this work makes use
of only a C-polynomial for stable, integrative, and open-loop
processes. For general cases of process, where the priority is
more the disturbance rejection than the noise attenuation, the
C-polynomial can be a Low-Pass filter with nc real stable
poles. Therefore, its discrete form results as:

C(z) =
(
1− αz−1

)nc
, (49)

where 1 ≤ nc ≤ na + 1. Therefore, the order of the filter nc
and the parameter α can be tuned to improve the disturbance
rejection and the noise attenuation.
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IV. SIMULATION CASES
The chosen cases are stable, integrative and unstable

processes present in [8]. The simulations compare the perfor-
mance of the proposed DTC based on GPC (DTC-GPC) with
the DTC-PID proposed in [8] (with the same controller pa-
rameters as in that work). They were performed considering
a unit step set-point and a -0.5 step disturbance. At each part
of the simulation, the integral of absolute error (IAE) was
computed. For the unstable process case, also was performed
a simulation with the addition of uncertainties.
The tuning of DTC-GPC was performed considering the
following procedure. First, the DTC-PID was simulated
adding uncertainties in the nominal plant until the system
reached a response near the instability. Then, the DTC-
GPC was tuned until its response looked alike the DTC-PID
response near the instability. For all cases, the DTC-GPC
tuning was performed with N = Nu and λ1 = 0.

A. Stable Process
The model of a thermal plant [8] is given below.

P (s) =

=
1.507(3.42s+ 1)(1− 0.816s)

(577s+ 1)(18.1s+ 1)(0.273s+ 1)(104.6s2 + 15s+ 1)
.

(50)
The parameters of the DTC-GPC were N = Nu = 100, λj =
200, nc = 1 and α = 0.925. It can be seen the responses of
the two controllers in Fig. 3 and the performance indices in
Table I.
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-5

0

5

10

15
Control signals

Fig. 3. The DTC-PID and the proposed DTC-GPC responses for a stable
process.

TABLE I
PERFORMANCE INDICES OF THE DTC-PID AND THE PROPOSED

DTC-GPC RESPONSES FOR A STABLE PROCESS.

Controller IAE1 IAE2

DTC-PID 65.42 0.98
DTC-GPC 72.21 0.7

What can be observed from Fig. 3 and Table I is that the
DTC-GPC has a more smooth and robust response, with the
tuning priority in the input disturbance rejection.

B. Integrative Process

The integrative process is the model of fluid level in a
chain of evaporators [5].

P (s) =
−0.1

s(2s+ 1)5
. (51)

For the DTC-GPC the parameters were N = Nu = 40,
λj = 100, nc = 1 and α = 0.704. The responses and the
performance indices of the two controllers can be seen in
Fig. 4 and Table II, respectively.

time
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Fig. 4. The DTC-PID and the proposed DTC-GPC responses for an
integrative process.

TABLE II
PERFORMANCE INDICES OF THE DTC-PID AND THE PROPOSED

DTC-GPC RESPONSES FOR AN INTEGRATIVE PROCESS.

Controller IAE1 IAE2

DTC-PID 19.46 4.81
DTC-GPC 23.71 4.38

The responses of the DTC-GPC were more robust and
conservative, while the responses of the DTC-PID presented
bigger overshoots and the control signal had oscillations.

C. Unstable Process

The unstable process [2] is presented in (52).

P (s) =
2e−5s

(10s− 1)(2s+ 1)
. (52)

The DTC-GPC parameters were N = Nu = 20, λj = 5,
nc = 2 and α = 0.631. Fig. 5 and Table III and Fig. 6
and Table IV present the responses and the performance
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indices for the nominal case and for the case with addition
of uncertainties, respectively.
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Fig. 5. The DTC-PID and the proposed DTC-GPC responses for an
unstable process.

TABLE III
PERFORMANCE INDICES OF THE DTC-PID AND THE PROPOSED

DTC-GPC RESPONSES FOR AN UNSTABLE PROCESS.

Controller IAE1 IAE2

DTC-PID 16.38 13.24
DTC-GPC 12.4 13.72
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Fig. 6. The DTC-PID and the proposed DTC-GPC responses for an
unstable process with uncertainties.

TABLE IV
PERFORMANCE INDICES OF THE DTC-PID AND THE PROPOSED

DTC-GPC RESPONSES FOR AN UNSTABLE PROCESS WITH

UNCERTAINTIES.

Controller IAE1 IAE2

DTC-PID 23.24 27.9
DTC-GPC 22.32 35.53

For this case, the proposed DTC-GPC had much faster
responses, but was less robust than the DTC-PID.

V. CONCLUSIONS

An anti-windup GPC-based DTC that can cope with
stable, integrative and unstable plants was presented. The
proposed controller addresses the problems of open-loop
unstable processes control and windup, that are important
questions concerning DTCs. Also, solutions for the tuning
of the set-point tracking and the disturbance rejection and
noise attenuation characteristics were presented.
Simulation results showed better performance of the pro-
posed GPC-based DTC compared to another proposed in lit-
erature called DTC-PID. In addition, the proposed controller
presented satisfactory behaviour for dead-time uncertainties.
The authors believe that the proposed controller have great
potential in industrial applications because of its simplicity
and optimal criteria. As future works, the proposed GPC-
based DTC will be extended to the MIMO case and applied
to a neonatal incubator for temperature and humidity control.
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