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ABSTRACT The visual analysis of cardiotocographic examinations is a very subjective process. The
accurate detection and segmentation of the fetal heart rate (FHR) features and their correlation with the
uterine contractions in time allow a better diagnostic and the possibility of anticipation of many problems
related to fetal distress. This paper presents a computerized diagnostic aid system based on digital signal
processing techniques to detect and segment changes in the FHR and the uterine tone signals automatically.
After a pre-processing phase, the FHR baseline detection is calculated. An auxiliary signal called detection
line is proposed to support the detection and segmentation processes. Then, the Hilbert transform is used with
an adaptive threshold for identifying fiducial points on the fetal and maternal signals. For an antepartum
(before labor) database, the positive predictivity value (PPV) is 96.80% for the FHR decelerations, and
96.18% for the FHR accelerations. For an intrapartum (during labor) database, the PPV found was 91.31%
for the uterine contractions, 94.01% for the FHR decelerations, and 100% for the FHR accelerations. For
the whole set of exams, PPV and SE were both 100% for the identification of FHR DIP II and prolonged
decelerations.

INDEX TERMS Cardiotocography (CTG), fetal heart rate (FHR), Hilbert transform, uterine
contractions (UC).

I. INTRODUCTION
Fetal Medicine aims to monitor and determine actions to
provide fetus wellbeing. Cardiotocography (CTG) is an exam
applied before or during labor to monitor simultaneously
FHR and UC based on Doppler ultrasound and toco sensors,
making it possible to identify fetal cardiovascular or neuro-
logical risky situations or pathologies [1].

The heart rate is a relevant signal for the analysis of not
only the cardiovascular system but also the influence of the
autonomous nervous system for the body circadian rhythms.
Because of that, the development of different approaches for
computerized diagnostic systems are constantly present in the
literature [2]–[4].

According to the American Congress of Obstetricians and
Gynecologists (ACOG), common problems found during the
analysis of Electronic Fetal Monitoring (EFM) are the poor
inter observer and intra observer diagnostics reliability and
the high rates of false-positives in visual interpretation [5].

The FHR can be monitored in many different ways,
each one with advantages and drawbacks [6]. For example,
the fetal scalp ECG is precise and consistent but an invasive
technique (and it is available only after ‘crowning’). More
recently, the Phonocardiography (PCG) has been used as a
simple and reliable FHR detector based on the recording of
the heart beat sounds and the Hilbert Transform (HT) can
be used for instantaneous frequency detection and effective
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noise reduction [7]. ECG instantaneous energy using HT has
also been considered for heart sound segmentation [8].

Nevertheless, the CTG can be considered a gold standard
examination for the FHR detection [9]. Doppler sensors have
similar accuracy to that of fetal abdominal ECG and can also
be used in many different clinical situations [10].

This work presents a complete computerized CTG anal-
ysis system based on a group of innovative approaches and
techniques, which includes pre-processing, the Hilbert Trans-
form application with an adaptive threshold as a detector of
changes of the time series.

The most important characteristics of the FHR and UC
signals are automatically detected, such as the FHR baseline,
detection and segmentation of FHR accelerations and decel-
erations, detection and segmentation of UC and the relation-
ship in time between UC and FHR decelerations. In case of
the detection of abnormal or suspicious CTG traces a set of
alarms and warnings is proposed.

II. RELATED WORKS
The computerized analysis of Cardiotocographies is a
relevant clinical application for fetal distress detection.

In this scenario, different digital signal processing tech-
niques have been used to extract information from these
signals, such as the application of wavelets for the signal
filtering and processing [11].

For the fetal distress classification, many different
approaches have been proposed, such as fuzzy inference
systems [12]; artificial neural networks (ANN) [13], [14],
and also the application of combined techniques of ANN
with other signal processing tools, such as multi resolution
Principal Component Analysis (PCA) [15].

In a more different approach, nonlinear analysis are rele-
vant, since the fetal and maternal signals present components
of nonlinear dynamics [16]. Some recent works consider
entropies measures, such as Approximate Entropy and/or
Sample Entropy using a windowed analysis to detect signifi-
cant changes in real time during a CTG examination [16].

The Detrended Fluctuation Analysis (DFA) has been also
considered as a tool to help the medical teams to evaluate the
FHR signal in a long term basis, since the CTG examination
lasts 20 minutes the minimum and medical teams are not able
to constantly check the monitoring [17].

On the analysis of time based changes and behavior of
CTG signals, partially or fully computerized systems are
proposed in the literature and two relevant solutions are
described.

Dawes et al. [18] developed an algorithm for the FHR anal-
ysis based on low-pass frequency filters to obtain the baseline
and identify accelerations and decelerations. This algorithm
was used in the System 8000, a commercial software which is
now discontinued. Mantel et al. [19] improved some aspects
of Dawes’ algorithm, for example in the beginning of the
recording and the detection of changes of the baseline.

Daumer and Neiss [20] presented the Delayed Moving
Window (DMW), a patented algorithm commercially used

in CTGOnline system [21]. It intends to be a general tool to
detect drifts, jumps and outliers in time series, and it can be
used as an online alarm system.

The methodology with innovative approaches and
techniques is presented in the next section.

III. MATERIALS AND METHODS
A. DEVELOPMENT ENVIRONMENT AND DATA
ACQUISITION
The system was developed using Matlab scripting language.
Data were acquired using a GE Corometrics 250CX Series
Cardiotocography system, based on pulsed Doppler with a
pulse repetition frequency of 4 kHz in single ultrasound
mode and uses autocorrelation technique. The equipment pre-
processes and sends two 4 Hz time series (FHR and UC) to
the diagnostic aid system. The equipment itself has a set of
threshold alarms to indicate loss of detection and persistent
bradycardia (that could be the detection of maternal heart
rate) and can optionally monitor 3-lead maternal ECG and
maternal pulse oximetry [22].

B. DATABASE
Two databases from Trium Analysis Online GmBH were
evaluated. The characteristics are presented in Table 1.

TABLE 1. CTG-I and CTG-A database characteristics.

The pre-classification procedure was performed by 3 expe-
rienced Obstetricians from MEAC-UFC and divided in two
steps. First, they marked each CTG trace individually. After
that, they compared their results and defined by consensus
the presence of each UC occurrence and FHR change and
classification.

Fetal outcome information, such as umbilical cord blood
acid-base analysis and Apgar score were not available for
both databases. Therefore, the system was validated only
according to the medical staff pre-classification.

C. CTG FEATURE EXTRACTION
The diagram presented in Fig. 1 shows the sequence of steps
necessary to obtain the full computerized CTG analysis sys-
tem. In this example, the CTG trace contains 1000 seconds
(4.000 samples) andwas extracted from theCTG examination
number 0227251. In Fig. 1-a is presented the CTG trace (FHR
and UC signals). The first task is to evaluate the signal basal
behavior for both monitored signals.

The baseline determination is then presented in Fig. 1-b.
The baseline must keep the same level even in the presence
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FIGURE 1. Computerized CTG System step-by-step block diagram. The CTG trace interval was extracted from the CTG examination number 0227251: (a) the
original FHR and UC signals after the preprocessing phase; (b) Baseline signal determination; (c) Detection line signal following the original signal
behavior; (d) Hilbert Transform. The same approach is used to detect FHR deceleration and uterine contractions (UC signal). In (e) is presented the system
output for FHR and UC.

of FHR accelerations and decelerations andmust change only
after a long term change. After that, in Fig. 1-c the detection
line is calculated, which is an auxiliary signal following
the FHR behavior used for detection and segmentation of
significant changes in time. The Hilbert Transform output is
shown in Fig 1-d, where the minimum and maximum peaks
correspond to the beginning and ending of FHR accelerations.
The same approach is used for the detection and segmentation
of FHR deceleration and uterine contractions (UC signal).
Finally, in Fig. 1-e the complete analysis of FHR and UC is
presented and the existence of simultaneous occurrences can
be evaluated.

For a better representation, let us consider X (t) as the FHR
time series containing N samples {X (1),X (2), . . . ,X (N )}.
The baseline is named as Y (t) and the detection line is Z (t).
For the uterine contractions, let us consider X ′(t) as the
original time series, the baseline as Y ′(t) and the detection
line Z ′(t).

D. PRE PROCESSING MODULE
Because of the external sensors, both FHR andUC signals can
present noise and may contain zeroes when there is a loss of
detection. In normal exams, zeroes are sporadic and can be
discarded from the original signals during a pre-processing
phase.

In case of ectopic values, such as abrupt changes in
the signal, must be treated as noise and corrected. This is
implemented comparing each sample X (i) with the next one
X (i + 1). If the difference between them is higher than a
threshold α = 20 bpm, then the X (i + 1) sample is replaced
with an average from X (i) and X (i+ 2).
If the loss of signal is more than 5 seconds (20 samples),

the trace analysis is suspended and the software displays this
information to the medical staff as a warning.

For uterine contractions signal X ′(t), a similar approach is
performed, considering that CTG equipment has two different
external sensors, zeroes or ectopic samples detection are not
related to the ones found for FHR monitoring.

After this first phase, we must calculate two new signals:
the baseline and the detection line.

E. BASELINE DETERMINATION
FHR baseline level is an important parameter for clinical
analysis and its determination is a field of study in itself. It is
considered in order to detect fetal bradycardia or tachycardia.

This work presents a new automatic method to determine
the FHR baseline, following the international guidelines for
CTG interpretation and the medical staff orientation. The
FHR baseline is defined in the literature as the average
of the FHR trace considering a 5 to 10 minutes intervals.
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This process must exclude decelerations, accelerations and
periods of high long term variability [5].

The proposed technique to automatically determine the
baseline signal Y (t) is presented in details in the following
steps I to VI:

I Firstly, the average µ is calculated for each k-samples
windows of the original signal X(t) (k is equivalent to
1ts = 10 minutes [2]). The windowed signal W (t) is
generated, as presented in Eq. (1) and (2):

µ =

p+k−1∑
i=p

X (i)

k
(1)

W (i)p+k−1i=p = µ (2)

where p is the loop reference index, starting on
p = 0.5 ∗ k (considering a tolerance interval of
5 minutes in the beginning of the original signal) with
increments of k samples (p = p+ k) for each loop.

II A first baseline reference is then determined as the first
sample of W (t). This reference will be considered in
the next steps to detect baseline changes.

III After determiningW (t) for the whole FHR trace, a new
loop is executed with a k-samples window comparing
the baseline reference with each of the W (t) samples.
The variable p′ is considered as the loop reference
index starting on p’ = 0.5∗ k with unitary increments
(p’ = p’+1).

IV Two conditions must be satisfied to consider a baseline
change:
• Condition 1: the system checks if the absolute
difference between the baseline reference value
and each of W (t) sample is greater than β1 =
5 bpm [5].

• Condition 2: if condition 1 is satisfied, then the
system must analyze if this difference remains
greater than β1 for more than 1tc = 6 minutes
(1440 samples).

V If condition 2 is satisfied, then a new baseline reference
value is determined equals to the last sample of the
W (t) window.

VI Finally, for each p′, a baseline sample Y (p′) is deter-
mined as the average of thek-samples window of the
original signal X (t) as presented in Eq. 3:

Y (p′) =

p′+k−1∑
i=p′

X (i)

k
(3)

The parameter 1tc was determined during the training
phase and a discussion about its value is presented in the
Discussion Section.

In each baseline reference determination, the system
records the new value in the database and monitors it in case
of occurrence of tachycardia or bradycardia [5]. In this second
case, the system warns the medical staff about the possibility
of thematernal heart rate is being detected instead of the FHR.

In Fig. 2, a baseline change is presented during the CTG
examination number 0208432. The duration of the FHR
change was longer than 1tc (6 minutes), the Condition 2
stated in step IV for the baseline determination.

FIGURE 2. Change of baseline level through the CTG examination number
0208432. The duration of the change lasts more than the defined
threshold.

It is also important to determine the uterine tonus baseline
because this signal has no absolute basal value and may
change with maternal position adjustments. This is the main
cause of false positives and false negatives of the UC detec-
tion.

A particular reference must be established for every single
examination. The proposed technique is based on the ampli-
tude threshold β2 = 10mmHg and it is not necessary to verify
the duration of the change.

F. DETECTION LINE DETERMINATION
The second signal to be determined is the Detection Line,
Z(t), which can be considered as a low pass filter of the
original signal based on the previously calculated baseline.

In the beginning, Z(t) is equal to the baseline Y(t) until
there is a significant change in the original signal X(t) higher
than the trigger γ 1. When this happens, the Z(t) is calculated
as the moving average of X(t) with window length 1tmm1.
For the proposed system these parameter values are γ 1 =
10 bpm and1tmm1= 60 seconds. For theUC signal, the con-
sidered values are γ 2= 10mmHg and1tmm2= 60 seconds.
The proposed values were determined according to the

medical staff evaluation and the results obtained for the train-
ing datasets.

When the difference between the averaged value and the
baseline is lower than the trigger levels, Z(t) is equal to Y(t)
again. This process is performed for the complete CTG traces.

Fig. 1-c presents an example of detection line for the FHR
signal, calculated after the baseline determination and Fig. 3
presents the UC detection line trace.
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FIGURE 3. Uterine contractions segmentation during the examination
number 2232241. The Hilbert transform helps detect the beginning,
ending and maximum points. The segmentation bars are traced slightly
before and after the detection.

G. FILTER AND DETECTION
After determining the detection line, its Hilbert Transform
is calculated. The application of this filter on the signal f(t)
results in one analytic signal, which is, by definition, a sig-
nal without negative frequency components in its spectrum.
Because of this, the complex to real convergence process can
be done only considering the real part of this signal [23].
This signal processing technique has been successfully used
because of its mathematical properties for different applica-
tions, such as signal and image processing [24].

Other important properties that must be considered to ana-
lyze its performance as a good detector of the fiducial points
in the original time series are the orthogonality property and
the energy analysis [25].

The Hilbert Transform f̂ (t) of one function f (t) can be
expressed as

f̂ (t) =
1
π
P

+∞∫
−∞

(
f (τ )
t − τ

)
dτ (4)

when the integral exists. Because of the pole in τ = t ,
it may not be possible to calculate the integral equation. The
P term in front of the integral represents the use of the Cauchy
principal value technique, which increases the number of
functions for which the integral in the equation exists [18].

H. CTG SIGNALS SEGMENTATION
The signal is segmented to determine the begin and the end
of the changes and also their maximum and minimum values.

In Fig. 3 an example of uterine contraction detection and
segmentation is presented. Each contraction is associated
with a pair of fiducial points. Firstly, a negative amplitude
peak followed by a positive amplitude peak are found. These
peaks correspond to the beginning and ending of the con-
traction, while the zero cross on the Hilbert transform signal
represents the maximum value in the original signal. For the
FHR signal, a similar analysis can be performed.

Negative changes, FHR decelerations, for example, will
result in a positive peak followed by a negative peak on the
Hilbert transform signal and the minimum is the zero cross.

Tominimize the probability of false positives, the proposed
system uses also an adaptive threshold technique originally
designed to detect QRS complexes in ECG exams described
in [26] and [27]. Three different thresholds are proposed:
ξac and ξdec for the FHR accelerations and decelerations,
respectively, and ξcont for the uterine contractions, which
initial values are presented in Table 2. These parameters are
adjusted using the general expression

ξ [k] =
τ1 Re[k]+ τ2 R[k − 1]

τ1 + τ2
ψ, (5)

where τ1 and τ2 are relative weights, Re[k] is an amplitude
(absolute value) estimation based on the kth occurrence of the
change, which also depends on the value of ξ [k - 1]; R[k - 1] is
the magnitude (absolute value) of the (k-1)th change, and ψ ,
0 < ψ < 1, is a percentage factor chosen empirically [26].

TABLE 2. Set of Adaptive parameters and respective initial values.

The detection of the change in the time series is only
considered if the filtered signal’s peaks are greater than the
respective adaptive threshold value.

A FHR trace with two decelerations, two accelerations
and their respective detection and segmentation based on the
Hilbert Transform can be seen in Fig. 4.

FIGURE 4. Example of a detection and segmentation of FHR signal during
the CTG examination number 0643162.

I. DECELERATIONS CLASSIFICATION
Uterine contractions can affect fetal blood oxygenation, caus-
ing a heart rate deceleration. Therefore, as mentioned before,
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it is necessary to establish a temporal relationship between
the FHR and the uterine contractions, especially during FHR
decelerations.

The automatic classification of decelerations is a necessary
task for a computerized CTG system, since their visual clas-
sification by the medical staff is subjective, hence not very
robust and, at times inaccurate.

The method is directly obtained from the previous phase.
When the system detects a FHR deceleration, it saves the
beginning and ending points in time and the minimum value.

After that, the system checks if there are any uterine con-
tractions already detected during this interval with a tolerance
window of ε (ε = 10 seconds) and it was determined
according to the medical staff definition.

If there are no uterine contractions, the deceleration dura-
tion is calculated and is classified as variable or prolonged.
If there is a contraction, its fiducial points are compared with
the deceleration fiducial points, allowing the classification as
DIP I or DIP II.

Fig. 5 presents an example of simultaneous occurrence of
changes in both monitored signals during the examination
number 1105411. The system detects a late deceleration (fetal
distress).

FIGURE 5. Detection of a FHR DIP-II deceleration during the CTG
examination number 2232241. Deceleration nadir occurs after uterine
contraction peak.

An early deceleration was detected during the examina-
tion number 0827261 and is presented in Fig. 6. This kind
of deceleration is considered as physiological and does not
indicate fetal health problems.

A prolonged deceleration detected during the examination
number 1105411 is presented in Fig. 7. This can be related to
different maternal or fetal abnormal condition and the exam
must be considered as indeterminate or abnormal [5].

J. ALARMS AND WARNINGS
Based on the extracted CTG parameters for each exam,
a set of alarms and warnings based on [5] is proposed in
Table 3.

FIGURE 6. Detection of a FHR DIP-I deceleration during the CTG
examination number 0827261. Deceleration occurs mirrored with
uterine contraction.

FIGURE 7. Detection of a FHR prolonged deceleration during the CTG
examination number 1105411, which is not related to the uterine
contractions and is non-reassuring.

TABLE 3. CTG System set of alarms and warnings.

IV. RESULTS
In this section, the results obtained for both datasets CTG-I
and CTG-A are presented.
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TABLE 4. Detection and classification results for the CTG-I and CTG-A validation datasets for the proposed and reference methods - SE and PPV indices.

The two sets of examinations were submitted to a group of
CTG specialists from theMaternity Hospital MEAC-UFC for
visual inspection and identification of the following param-
eters for each examination: baseline values; uterine contrac-
tions (UC) identification; FHR accelerations identification;
FHR decelerations identification and classification for each
deceleration.

The DMW technique [20], a patented commercial and
CE approved computerized CTG analysis system, developed
by Trium Analysis Online GmBH, was presented as the
Reference Method.

The set of techniques presented in this work is references
as the Proposed Method.

A. BASELINE DETERMINATION RESULTS
The first relevant information that must be obtained to support
the diagnostic in a CTG examination is the baseline determi-
nation.

Since the baseline level can change during a CTG record-
ing, all the levels found for each examination by the
Reference and the Proposed methods were compared.

The comparison showed no statistical significance
(p<0.05) based on Pearson correlation, between the baseline
calculated values 75% of the examinations in CTG-A, which
is before labour, and 83% and CTG-I databases, which is
during labour.

B. DETECTION AND CLASSIFICATION RESULTS
The detection and classification results for the Proposed and
the Reference methods are presented in Table 4 for both
the CTG-I and CTG-A databases, considering the previously
marked values identified by the group of CTG specialists.

The two databases were divided in two groups identi-
fied as Group 1 - ‘‘General Results’’ and Group 2 - ‘‘FHR
Decelerations Classification’’.

The indices considered in the analysis were the sensitivity
(SE), for the evaluation of false negatives, and the positive
predictivity value (PPV), evaluating the occurrence of false
positives.

In the first group of results, ‘‘CTG-I - General Results’’,
the CTG-I database is considered and the Proposed System
achieved 93.05% of PPV and 91.31% of SE for the uter-
ine contractions, during labor, while the Reference Method
achieved SE 76.18% and PPV 81.63%. No false positives
for FHR accelerations were found by the Proposed Method,
resulting in 100% (PPV) and 95.45% (SE). The DMW Ref-
erence Method achieved 77.27% (SE) and 94.45% (PPV).

The second group of results is the ‘‘CTG-I - FHR Deceler-
ations Classification’’. For the prolonged decelerations, both
methods achieved 100% for SE and PPV indices. On the other
hand, the lowest SE value, 40%, was found for the Refer-
ence Method when classifying DIP-I decelerations, with the
occurrence of false negatives, while the Proposed Method
achieved 80%.

The third group presents the ‘‘CTG-A - General Results’’.
Since this database is before labour, no UC is expected.
Considering the FHR accelerations detection, for the pro-
posed method SE was 95.02% and PPV was 96.18%,
while for the reference method SE was 88.22% and PPV
was 96.84%.

Finally, the last group in Table 4 is the ‘‘CTG-A - FHR
Decelerations Classification’’. For the variable deceleration,
the ProposedMethod achieved SE equals to 92.78% and PPV,
96.90%, while for the Reference Method the SE was 92.51%
and PPV was 95.57%. The Reference Method couldn’t detect
one prolonged deceleration while the Proposed Method
detected all of them.

V. DISCUSSION
The presented results show robustness of the system when
submitted to artifact noises in rather severe conditions,
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producing low levels of false positives and false negatives for
both antepartum and intrapartum databases.
The baseline determination is a critical task since the fol-

lowing steps are based on it. As the parameters β1 and 1ts
follow the medical guidelines, the 1tc is the main tuning
parameter that may influence the system SE and PPV results.
If it is chosen a value smaller than 1tc, the signal baseline
may follow any transient changes and it will increase the false
negative rates. If it the value is greater than1tc, it can miss a
real baseline change and increase false positive rates.

When compared the proposed FHR baseline with the refer-
ence method, both signals presented a similar overall behav-
ior in all CTG traces, even during the intervals when the
statistical significance could not be determined.

During the Detection Line, Z (t), calculation, if the
trigger γ 1 is smaller than the selected value, the system may
consider normal oscillations as acceleration or deceleration
and this will increase false positive rates. On the other hand,
if γ 1 is greater than the selected value, the false negative
rates may increase and real FHR changes are not going to
be detected. A similar discussion applies for the UC signal
parameters. If γ 2 is smaller than the selected value, the sys-
tem may found UC false positives and if it is greater than the
selected value, the system can miss a real uterine contraction.

Following the same discussion, for the decelerations clas-
sification task, if the parameter ε is smaller than the proposed
value, the system may classify an early deceleration as a late
deceleration, which may incur in a severe diagnostic error,
that may lead to unnecessary labour intervention. On the con-
trary, if it is greater than the selected value, late deceleration
may be classified as an early one. In this case, a labour inter-
vention would be necessary and the system would miss it.

For the acceleration and uterine contraction detection, this
work achieved better results than the ReferenceMethod. Both
methods achieved similar results when analyzing variable
decelerations.

An important contribution of the proposed technique is
the classification of DIP-II and Prolonged FHR deceleration,
which are indicative of fetal distress. The proposed system
achieves 100% for both SE and PPV indices. Besides, when
compared to the Reference Method, the proposed system
improved the classification rates. This indicates not only a
good performance in FHR decelerations classification, but for
the system application as a computerized diagnostic aid tool.

Finally, the system achieves low levels of false positives
and false negatives rates not only for FHR accelerations
detection and variable decelerations classification, but also
for the deceleration classification task.

VI. CONCLUSION
Fetal monitoring using CTG is being widely used by
Obstetricians and Gynecologists because it is a non-invasive,
easy to implement, low cost examination.

This paper presents a new method to automatically detect
and segment changes in FHR and UC signals, based on a
set of pre-processing techniques, with fixed and adaptive

thresholds and the time domain analysis provided by the
Hilbert transform. It detects and classifies the existence of
simultaneous FHR decelerations and uterine contractions,
resulting in high levels of sensitivity (SE) and positive predic-
tivity value (PPV) indices for the considered databases, both
before and during labor.

The clinical impact of the proposed system is to allow the
possibility of reduction on the level of subjectivity of the CTG
analysis and help improve the diagnostic accuracy.

Future works may consider the use of other approaches
to detect transient changes in the original signals, such
as Wavelets, to compare with the proposed technique and
the application of deep learning architectures for the signal
classification.
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